
Towards a Polyalgorithm for Land Use Change Detection

Rishu Saxenaa, Layne T. Watsonb, Randolph H. Wynnec, Evan B. Brooksc, Valerie A. Thomasc,
Yang Zhiqiangd, and Robert E. Kennedye

a Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061,
USA.

b Departments of Computer Science, Mathematics, and Aerospace and Ocean Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, USA.

cDepartment of Forest Resources and Environmental Conservation, Blacksburg, Virginia 24061.
dForest Ecosystems & Society, Oregon State University, Corvallis, OR 97331, USA.
eCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.

Abstract. One way of analyzing satellite images for

land use and land cover change (LULCC) is time

series analysis (TSA). Most of the many TSA based

LULCC algorithms proposed in the remote sensing

community perform well on datasets for which they were

designed, but their performance on randomly chosen

datasets from across the globe has not been studied.

A polyalgorithm combines several basic algorithms,

each meant to solve the same problem, producing a

strategy that unites the strengths and circumvents the

weaknesses of constituent algorithms. The foundation of

the proposed TSA based ‘polyalgorithm’ for LULCC is

three algorithms (BFAST, EWMACD, and LandTrendR),

precisely described mathematically, and chosen to be

fundamentally distinct from each other in design and

in the phenomena they capture. Analysis of results

representing success, failure, and parameter sensitivity

for each algorithm is presented. For a given pixel,

Hausdorff distance is used to compare the distance

between the change times (breakpoints) obtained from

two different algorithms. Timesync validation data, a

dataset that is based on human interpretation of Landsat

time series in concert with historical aerial photography,

is used for validation. The polyalgorithm yields more

accurate results than EWMACD and LandTrendR alone,

but counterintuitively not better than BFAST alone. This

nascent work will be directly useful in land use and land

cover change studies, of interest to terrestrial science

research, especially regarding anthropogenic impacts on

the environment.

Keywords. Time series analysis, remote sensing, change

detection, scalable computing, polyalgorithm.

1. Introduction

Land use change is described as changes in how

humans use the surface of the Earth (e.g., for agriculture,

plantations, pastures, managed woods, conservation,

settlements, or leaving it alone as natural ecosystem).

Changes in land use lead to changes in albedo, thereby

directly affecting the temperatures of the surrounding

area. Significant and lasting changes in land use and

land cover (LULC) have more profound effects. The

past century has seen an exponential growth in human

activities such as deforestation and urbanization causing

significant changes in land cover in several parts of the

world (Hansen et al. 2013). Simultaneously, significant

changes in the global climate have also been observed,

driven in part by LULC change (LULCC) (e.g., Fall et

al. 2010). LULCC also has impacts on a wide variety

of other ecosystem services. Monitoring LULCC across

the globe, therefore, has become the need du jour. Land

use change detection comprises any methodology used

for determining the occurrence and nature of change in

LULC.

Earth observation satellites (EOS) such as Landsat

capture images of the Earth’s surface at regular intervals

using multiple spectral frequencies. These images hold

valuable information that, if harnessed well, can be

immensely helpful in understanding, monitoring, and

managing our natural resources, as well as studying

LULCC. One way of analyzing these satellite images

for LULCC studies is time series analysis (or, temporal

trajectory analysis). For time series analysis, several

images of the scene under consideration, taken over

a period of time, are stacked together chronologically

and subsequently analyzed. Commonly, the time series

for each pixel is treated individually; the full image

stack is thus a collection of many time series. The

choice of spectral band(s) varies from application to

1

application. The objective is to discover a ‘trend’ in

how different relevant variables (indicators) evolve over

time. In change detection analysis, when the trajectory

of one or more of the variables departs from the normal,

a change is detected. Time series analysis for LULCC

studies has been receiving increasing attention in the last

decade, specifically, after the Landsat data became freely

accessible in 2008 (Woodcock et al. 2008). Several

time series analysis algorithms have been proposed by

different groups in the remote sensing community.

Despite a plethora of time series analysis algorithms

available in remote sensing, design and selection of

algorithms for LULCC detection in remote sensing

appears to be almost always context specific. Most

of the methods proposed to date seem to perform well

on the type of data that they are designed for. Their

performance on randomly picked datasets from across

the globe has not been studied. The onus of choosing

an appropriate algorithm that will perform well on their

particular dataset falls on the user. Unfortunately, no

single algorithm designed so far seems to work for

all datasets (Cohen et al. 2017). For example, the

Western Antarctica as well as the Greenland Ice Sheets

are beginning to collapse due to global warming, the

melting leading to continually receding snow covers

at the respective locations. For these regions, using

LULC algorithms based on periodicity assumptions is

expected to lead to incorrect predictions and/or false

alarms, although the nature and extent of this has not

been studied yet. Even if there were no global warming,

mild shifts in the ‘phase’ and ‘amplitude’ of seasons are

known to take place (Petitjean, Inglada, and Gancarski

2011). Time warping techniques (Petitjean, Inglada, and

Gancarski 2011) to deal with these issues may be helpful

in some contexts, but their accuracy and scalability has

not yet been satisfactorily investigated. Approaches based

on periodicity and a moving window are possible, with

additional computational costs.

A polyalgorithm is an effective strategy to unite the

strengths and circumvent the weaknesses of multiple

algorithms that are also individually designed to solve

the same problem. The concept of polyalgorithm was

introduced by Rice and Rosen (1966). A polyalgorithm

uses a combination of several basic methods in a

framework. Each of these basic methods is applicable

to the same problem, with only their performance and/or

success being different for different datasets (inputs). The

construction of this framework involves experimenting

with an increasingly heterogeneous set of situations to

evolve a robust algorithm that is capable of choosing a

correct subset of algorithms suitable for a given input,

and has performance metrics to integrate their outputs.

The details of algorithm selection and processing stay

hidden from the user. Polyalgorithms have been designed

in the past for solving various problems, for example,

nonlinear systems of equations (Rice and Rosen 1966,

Rice 1969, Rice 2014, Rice 1967), matrix computations

on parallel architectures (Li 1996, Häfner, Schönauer, and

Weiss 1999), and certain chemical models (Gomeni and

Gomeni 1979).

This work lays the foundation for a polyalgorithm

for LULCC detection. Three currently existing, fun­

damentally different from each other, change detection

algorithms are utilized. A similar work in this direction

is Zhan et al. (2002), wherein a framework is developed

to evaluate five different algorithms on the input dataset,

compare them based on certain scores, and then return

the best results. Similar approaches are also gaining

ground recently in the field of classification algorithms

(Dietterich, Kittler, and Roli 2001, Kittler et al. 1998,

Wozniak, Grana, and Corchado 2014). Most recently,

in Healey et. al. (2017), multiple change detection

algorithms are utilized to build a decision trees based

ensemble algorithm for LULCC.

The rest of this paper is organized as follows: Section 2

presents background on state­of­the­art change detection

algorithms available in remote sensing, puts them in

the context of the general time series literature, and

explains the choice of algorithms used in this work.

Section 3 defines the notation. Sections 4, 5, and

6 describe three different trend and change detection

algorithms — EWMACD, BFAST, and LandTrendR;

experimental results demonstrating the successes, failures,

and sensitivity to parameters for each algorithm are

presented. Prospects for a viable polyalgorithm are

discussed in Section 7, and Section 8 concludes with an

assessment and future work.

2. Background

Most of the LULC algorithms proposed in the remote

sensing literature can be divided into two categories:

bitemporal analysis and temporal trajectory analysis.

Bitemporal analysis was more popular before 2008 (when

the availability of satellite data to the public was very

limited) and forms the classical way of analyzing images

— these algorithms analyze changes occurring between

two images (dates). The more preferred bitemporal

algorithms rely on image differencing (Banner and

Lynham 1981, Hame 1986, Cohen and Fiorella 1998,

Cohen et al. 1998), and linear transformations (Richards

1984, Neilsen, Conradsen, and Simpson 1998, Fung

and LeDrew 1987, Fung 1990). Other strategies used

to design bitemporal algorithms include image ratioing

(Jensen 1983), image regression (Joyce and Burns 1981),

and composite analysis (Thomson, Davis, and Colwell

1980). Detailed surveys of these algorithms can be found

in Coppin et. al. (2004), and Lu et. al. (2004).

Multi­Index Integrated Change Analysis (MIICA) (Jin et

2

al. 2013), a recent popular algorithm, utilizes two Landsat

image pairs and four different derived spectral indices

for change detection. The interested reader is referred

to Campbell and Wynne (2011) for a further decent

categorization of these algorithms.

For time series analysis based change detection

algorithms, the popular strategy has been to design pixel

based algorithms, wherein the time series for one pixel

at a time is analyzed. One strategy is to segment the

time series into piecewise linear segments. Specifically,

the time span is partitioned into intervals where each

interval corresponds to a sustained trend in observed

values. The boundaries of these intervals correspond to

points of change or the start of a new trend. The number

of intervals depends on how many changes in trends

occurred for that time series. This approach is adopted,

for example, in Cohen, Yang, and Kennedy (2010),

Kennedy, Cohen, and Schroeder (2007), Verbesselt et.

al. (2010), de Jong et al. (2013), Verbesselt, Hyndman,

Newnham, and Culvenor (2010), Verbesselt, Hyndman,

Zeileis, and Culvenor (2010). In Moisen et al. (2016),

on the other hand, seven shapes that can possibly occur

in time series spectral data are identified. Constrained

regression is done using splines that can generate these

shapes. Some methods leverage the fact that climate

related phenomena such as vegetation, temperatures, and

the like are expected to follow a periodic pattern and

utilize models based on Fourier series (trigonometric

polynomials) (Brooks et al. 2014, Zhu and Woodcock

2014). In Vegetation Change Tracker (VCT) (Huang et

al. 2010), another popular method, for each image, cloud,

shadow, and water are first masked using histograms. A

derived index based on the mean and standard deviation

of observed values of multiple bands in that image is

calculated. One (that with the best derived index) image

per year is selected for further processing. Any masked

values appearing in these selected images are filled in

by interpolating two temporally nearest available values

in the previous and subsequent years. Then a suite

of decision rules is used to detect and classify forest

disturbances. Wavelets were utilized in Cai and Desheng

(2015).

Data mining approaches have been proposed for

classification and change detection (Goodwin et al. 2008,

Mougel and Folcher 2012, Petitjean, Kurtz, and Gancarski

2012, Petitjean et al. 2010, Vintrou et al. 2012, Vintrou

et al. 2013). In Goodwin et al. (2008), a decision tree

classifier was used to detect an outbreak of mountain pine

beetle. This algorithm was originally implemented only

on a subset of all available Landsat images (specifically,

one scence per year was chosen from a 14 year span).

In Petitjean et al. (2010), sequential pattern mining was

proposed for finding trends (and changes) in land cover;

all images were utilized. Dynamic time warping (DTW)

was proposed in Petitjean, Inglada, and Gancarski (2011)

for comparing and analyzing remote sensing time series

as well as characterizing change. Other recent related

references include Anees et al. 2016, Benedek et al. 2011,

Bouziani, Goia, and He 2010,

Improved trend approximation can be obtained if,

instead of treating each pixel independently, information

from nearby pixels (spatial information) is also utilized.

One such approach is VeRDET (Hughes 2014), which

utilizes two­dimensional total variation regularization

(TVR) (Rudin, Osher, and Fatemi 1992; Goldstein and

Osher 2009) to modify the images so that they have

small­scale spatial patches (reduced spatial heterogeniety).

TVR is then used again for fitting a piecewise linear

polynomial to the time series of each pixel. In Petitjean,

Kurtz, and Gancarski (2012), each image in a stack is

first segmented to generate region associated indices (in

addition to the already existing spectral indices). Each

pixel is thus characterized by both a spectral and a

spatial index. Unsupervised classification algorithms are

then used over this expanded set of indices for time

series analysis and change detection. Other recent related

references include Anees et al. 2016, Benedek et al. 2011,

Bouziani, Goia, and He 2010, Chen et al. 2012a, Chen et

al. 2012b, Hussain et al. 2013, Iersel et al. 2018, Xiao et

al. 2016, Xing, Sieber, and Caelli 2018, and Gil­Yepes et

al. 2016.

While research on LULCC algorithms using satellite

image time series is relatively new, development and

use of time series analysis began nearly a century

ago, with applications such as econometrics, seismology,

weather prediction, electrocardiography, mathematical

finance, control systems, and more. This has led to

a plethora of algorithms for analysis and forecasting

in the time series literature. Autoregressive moving

average (ARMA) models, introduced by Wold (1938),

are polynomial models for representing any stochastic

process and making predictions (Whittle 1951). For

nonstationary data, the nonstationarity is eliminated by

preprocessing the data. Specifically, the observed (input)

values are replaced by the differences between their

values and the previous values. The rest of the

processing is carried out on this modified data using

ARMA. This is known as the autoregressive integrated

moving average (ARIMA) approach. The classic book

by Box and Jenkins (1970) presented their method

— a full framework for analyzing time series. This

framework is polynomial based applying either ARMA

or ARIMA models to find the best fit to a given

time series. Approaches based on Fourier transforms

(Agrawal, Faloutsos, and Swami 1993), wavelets (Chan

and Fu 1999), support vector machines (Vlasveld 2014),

piecewise linear approximations (Hunter and McIntosh

1999, Koski, Juhola, and Meriste 1995, Lavrenko et al.

3

2000, Keogh et al. 2001, and the references therein) are

other currently popular methods for approximating time

series. Regardless of the formalization, all the time series

algorithms in the literature fit in one of the following

classes:

(i) Kernel regression methods. These methods represent

the time series as a linear combination of basis

functions. Typically, a linear system of equations is

solved to determine the coefficients. Any analysis

and predictions are done based on this representation.

ARMA models (polynomial regression), Box­Jenkins

models (polynomial regression), Fourier transform

based approaches (trigonometric polynomials), and

wavelet transforms would all classify as kernel

regression.

(ii) Top­down approaches. In these algorithms, an

approximation is first made to the whole time series.

Then, typically using error estimate criteria, finer

partitions of the time series are sought so that

each new partition is a refinement of the previous

partition. This is repeated until either a maximum

number of iterations is reached or each segment of

the partition satisfies a convergence criterion. The

‘Iterative End Points Fits’ algorithm (Ramer 1972)

is an example of a top­down approach. Other

top­down algorithms include Douglas and Peucker

(1973), Duda and Hart (1973), Li, Yu, and Castelli

(1998), Shatkay and Zdonik (1996).

(iii) Bottom­up approaches. Bottom­up approaches

represent the most elementary units of the data

first; on each iteration, increasingly larger (or

coarser or more ‘complex’) structures are composed

from the simpler structures and their evaluations

in the previous iteration. Dynamic programming

and all recursive algorithms classify as bottom­up

algorithms, which are frequently implemented using

backtracking.

A list of some recent change detection algorithms in

remote sensing and their classification is displayed in

Table 1.

Table 1. General time series literature classification of

some remote sensing algorithms.

Algorithms in Segmentation approaches in

remote sensing general time series literature

(i) CCDC, EWMACD, Kernel regression

SHAPE­SELECT­ method

­FOREST

(ii) LandTrendR, VeRDET Top­down approach

(iii) BFAST, MIICA, Bottom­up approach

VCT

A strategy to construct a polyalgorithm would be to

include algorithms that are fundamentally distinct from

each other in terms of the phenomenon they capture

as well as in construction. However, the suitability

of available algorithms to capture different scenarios

is currently not fully known. Therefore, choosing an

algorithm from each of the classes in Table 1, ensuring

some variation in type of phenomenon captured, may be

used as a first step towards polyalgorithm construction.

In this paper, LandTrendR, EWMACD, and BFAST are

studied. LandTrendR, a top­down approach, generates a

piecewise linear model to represent the input time series.

A broad trend can therefore be captured. It is not

expected to be sensitive to seasonal deviations/anomalies,

though. For a stationary time series whose periodicity

or variation changes, the performance of LandTrendR is

yet unknown. EWMACD is a kernel regression method

based on harmonic regression, designed to detect any

persistent deviations from the stable pattern observed

during a training period chosen by the user. This

algorithm performs very well in regions where the

land cover exhibits strong periodicity. However, its

performance on time series with aperiodic variations

and/or unstable training periods is limited. BFAST, a

bottom­up approach, is more generic and models both

linear trends and seasonal variations. BFAST’s periodic

linear model is more accurate than that of LandTrendR,

since BFAST recursively evaluates the possibility of every

single time point being a breakpoint, and then chooses

the most optimal set of breakpoints. Unfortunately,

such an exhaustive search makes BFAST more expensive

than other algorithms (Saxena et al. 2017a). Also, the

correctness of BFAST seasonal fits is yet to be tested.

Finally, the current algorithms were originally designed

for forest covers and have only been tested on the same

so far; their performance on nonforest land covers (e.g.,

arid areas) has not been studied.

Sections 4, 5, and 6 elaborate on each of these three

algorithms and present instances of their success and

failure.

3. Preliminaries

Notation and definitions. For an m × n matrix A,
an n­vector x, I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n}, let AIJ

denote the submatrix of A formed from the rows indexed

by I and the columns indexed by J , and xJ denote the

subvector of x indexed by J . AI· (A·J) are the rows

(columns) of A indexed by I (J), respectively. An image

is an R×C matrix D, where each Drc (pixel) is an S×B
matrix, whose (s, b) element (Drc)sb is the signal value

at time index s and frequency band index b. S′ is the

number of missing data values and S̄ is the total number

of timestamps provided in the data, i.e., S̄ = S + S′.

4

Input data. Images taken by satellites Landsat 7

and 8 are used for the experiments presented in this

paper. Landsat 7 is equipped with an enhanced thematic

mapper (ETM+) instrument, which takes images at 30m

resolution, using eight different spectral bands (one image

per band). Landsat 8 employs an operational land imager

(OLI) for the same task. Any given area of the Earth’s

surface is captured every 16 days. The experiments

presented in this paper utilize normalized difference

vegetation index (Tucker 1979, Kriegler et al. 1969)

NDVI =
NIR− R

NIR + R
,

where NIR is the near infrared band (band 4) and R

is the visual red band (band 3). In the remote sensing

community, NDVI is widely considered to be a good

metric for identifying the presence of vegetation cover.

NDVI is directly related to the photosynthetic capacity of

plant canopies. Broadly, forests typically tend to have

high positive values (e.g., 0.6–0.8), scrubs/shrubs lean

towards slightly smaller values, and any other land covers

with smaller canopy cover (e.g., meadows, grazing areas)

have even lesser values. Persistently decreasing NDVI

values usually indicate decreasing foliage — which could

be because of harvest (steep negative slope), insects

(gentler negative slope), seasons (descending portions

of periodic curves), or any other reason. Persistently

increasing NDVI values indicate leaf cover increasing.

For the experiments presented here, negative values of

NDVI are deemed irrelevant as they correspond to water,

clouds, or missing observations, and are masked out.

Reference data. TimeSync data, a dataset that is

based on human interpretation of Landsat time series,

is used for validating the results for experiments in 1D.

This dataset is prepared using TimeSync Landsat images

visualization and change data collection tool (Cohen,

Yang, and Kennedy 2010). This tool enables disturbance

characterizations for pixel­level samples of Landsat time

series data, relying on human interpretations of change as

viewed in image chip series, spectral index trajectories,

high spatial resolution image temporal snapshots from

Google Earth, and other supporting products. The current

dataset was built using Landsat image stacks belonging

to six different path/rows (scenes) and spanning the

years 1984 to 2014. From each scene, 300 pixels were

chosen with random sampling, and without regard to land

cover. There are 1800 change pixels in the dataset. For

each of these pixels, the following attributes were noted:

occurrence of disturbance, the first year of detection (a

year between 1986 and 2011), the duration for gradual

disturbances (in number of years), and the causal agent

class (harvest, fire, mechanical, decline, wind, other).

Similar to the approach adopted in Brooks et al. (2017),

all data marked by the associated Fmask codes (Zhu and

Woodcock 2012) as nonclear was excluded, and then the

NDVI values were calculated.

Evaluation. The three algorithms presented in this

paper are applied to NDVI data. The TimeSync dataset

is used as the reference data set. Due to a focus on

change detection, only experience with change pixels is

discussed in this paper. The time period of 2000â^12 is

utilized. Success/failure of each algorithm is compared to

TimeSync data by checking the distrurbance year(s) stated

in the dataset with the year(s) predicted in the outcome

of respective algorithms. Note that TimeSync itself is

an interpreted dataset, not ground truth. For the pixels

explicitly displayed in this paper, visual comparison of

outcome with trajectory is also done. Published values

of parameters are used. Sensitivity of algorithms to

parameters is also presented. In Section 7, mathematical

distances (Hausdorff distances) are utilized to further

provide quantify the differences in outcomes of different

algorithms.

The three algorithms presented in this paper are applied

to NDVI data. TimeSync dataset is used as reference data

set. Due to focus on change detection, only experience

with change pixels is discussed in this paper. The time

period of 2000–12 is utilized. Success/failure of each

algorithm is compared to TimeSync data by checking the

disturbance year(s) stated in the dataset with the year(s)

predicted in the outcome of respective algorithms. Note

that TimeSync itself is an interpreted dataset, not ground

truth. For the pixels explicitly displayed in this paper,

visual comparison of outcome with trajectory is also done.

Published values of parameters are used. Sensitivity of

algorithms to parameters is also presented. In Section 7,

mathematical distances (Hausdorff distances) are utilized

to further provide quantify the differences in outcomes of

different algorithms.

4. Exponentially Weighted Moving Average Change

Detection (EWMACD)

EWMACD, proposed in Brooks et al. (2014), is a

kernel regression approach modeling the time series as

a linear combination of trigonometric polynomials. The

model is trained over data collected in the initial two (or

more) years. When the observations in the subsequent

years deviate from the values forecast by the model for

a ‘substantial’ length of time (persistence), a change is

declared (recovery or disturbance). The training period as

well as the persistence are parameters of the algorithm.

A positive flag is raised in instances of sustained growth

while sustained losses are indicated by negative flags.

EWMACD is able to capture seasonal changes, but is

also very sensitive to several algorithm parameters.

Algorithm EWMACD.

5

for row r : = 1 step 1 until R
for column c : = 1 step 1 until C do

Step 1: Write the time series data in the column

(Drc)·b as

(Drc)·b =

(

u
v

)

,

where the M ­dimensional vector u is deemed

training data and the (S −M)­dimensional vector v
as the test data. Let

X =





1 sin t1 cos t1 · · · sinKt1 cosKt1
...

...
...

...
...

...

1 sin tM cos tM · · · sinKtM cosKtM





be the Gram matrix for the time points t1, . . ., tM ,

using K harmonics, where M > 2K + 1. The least

squares fit to the training data u is then written as

u(t) = α0 +

K
∑

i=1

(α2i−1 sin it+ α2i cos it)

with coefficients

α =
(

XtX
)−1

Xtu

and residual

E(α) = u−Xα.

Remark 1. In practice α is computed via a

QR factorization of X , not by computing (XtX)−1

explicitly.

Next let I = {i | |E(α)i| < γ1}, where γ1 is a user

defined threshold and |I| > 2K + 1. Calculate the

coefficients for an improved fit to the underlying

signal as

α∗ =
(

(XI·)
tXI·

)−1
(XI·)

t uI .

With the refined coefficients α∗, calculate the

residuals for

(i) the complete time series (Drc)·b as

E∗(α∗) = (Drc)·b − X̄α∗,

where X̄s· = (1, sin ts, cos ts, . . ., sinKts,

cosKts), for s = 1, . . ., S.

(ii) the outlier­free time series as
(

E∗(α∗)
)

Ī
, where

Ī = {s | |E∗(α∗)s| < γ2}, γ2 is a user defined

threshold, and

(iii) the outlier­free training set Î = Ī ∩ {1, . . . ,M}
as

(

E∗(α∗)
)

Î
= u

Î
−X

Î·α
∗,

where |Î| > 2K + 1.

Remark 2. In the present implementation,

γ2 =

{

1.5η, i ∈ [1,M],
20η, i ∈ (M,S],

where η is the standard deviation of the first M
elements of the residual vector E∗(α∗).

Step 2: Define the control limit vector τ by

τi = µ+ σL

√

λ

2− λ

(

1− (1− λ)2i
)

,

for i = 1, 2, . . ., |Ī|, where µ = 0 is used here, σ
is the standard deviation of the outlier­free training

data errors
(

E∗(α∗)
)

Î
, L is the multiple of this

standard deviation σ, and λ ∈ (0, 1] is the weight

given to the most recent residual in the exponentially

weighted moving average (EWMA) defined next. L
is typically set to 3 or slightly smaller depending on

the value of λ.

Step 3: Let Ī = {j1, j2, . . ., j|Ī|}, j1 < j2 < · · · <
j|Ī|. Define the vector z by

z1 =
(

E∗(α∗)
)

j1
,

zi = (1 − λ)zi−1 + λ
(

E∗(α∗)
)

ji
, i = 2, . . . , |Ī|.

This is the exponentially weighted moving average

(EWMA) of the residual
(

E∗(α∗)
)

Ī
.

Step 4: Define the flag history S­vector f by

fs =

{

sgn (zi)
⌊

|zi/τi|
⌋

, s = ji ∈ Ī ,

0, otherwise.

If there is a run of +1 or −1 in the values

sgn (∆fs) = sgn (fs+1 − fs) of length ̟, called

the ‘persistence’, signal a change at the index s
beginning the (nonzero) run.

Remark 3. Missing data is automatically handled

by not assuming that the time points ti are equally

spaced. Alternatively, missing data for time point

tk can be handled by including tk in the sequence

(t1, t2, . . ., tS), but excluding tk from the training

sequence (t1, t2, . . ., tM) and k from the sets I , Ī ,

and Î , which is equivalent to treating (Drc)kb as an

outlier and to setting the flag fk = 0.

end

end

The complexity of this approach is O
(

(2K + 1)2S
)

.

EWMACD outcomes are expected to be zeros when

the time series trajectory matches the trajectory in the

training period. Nonzeros are expected to appear when

the trajectory deviates from the training period for a

substantial length of time (determined by control chart

parameters and the persistence). The first timepoint when

the outcome trajectory deviates from the prior constant

(or zero) value is the estimated date of disturbance,

the subsequent nonzero sequence of values provides

recovery (or, loss) period information. A sharp loss

(e.g., harvest) is expected to manifest as a sudden drop

6

in the outcome as well. A gentler loss (e.g., mountain

pine beetle) is expected to appear in the form of the

outcome trajectory gradually drifting away from zero

(with an overall negative slope). Similarly, recovery will

appear in the form of the trajectory following an overall

positive slope, revealing recovery period information.

In Brooks et al.(2017), Edyn, an improved version of

EWMACD that retrains data after a disturbance is sensed,

is proposed (this development not implemented here). In

any case, since the training data in the postshock period

is unstable, the training period of Edyn after the first

break is expected to be unstable. For all the experiments

presented in this work, the first two years of data is used

for training EWMACD. The rest of the parameter values

for EWMACD are as follows: K = 2, L = 0.5, λ = 0.3,

̟ = 7.

Success. Figure 1 displays the outcome of EWMACD

on NDVI data for two pixels. Figure 1(a) has a

stable trajectory with high NDVI values until 2004.

The NDVI values drop suddenly in 2004 from 0.8 to

0.2, indicating the possibility of an event. Gradual

recovery is seen after that. Per TimeSync data, this

is a forest pixel where harvest occurred in 2004. The

trajectory and the TimeSync information are, thus, in

agreement for this pixel. Using the published parameters,

EWMACD captures the occurrence and timing of the

harvest accurately. The nonzero portion of the curve

following this until 2010 displays the recovery period

information, which exhibits seasonal effects, likely related

to the relatively flat training curve.

In Figure 1(b), a stable trajectory with mean 0.6 and

much variance is seen until 2006. In 2006, the values drop

to 0.2 (perhaps very little leaf cover left). Subsequently,

some leaf cover is regained but the trajectory is different

from the pre­2006 trajectory. TimeSync data states that

this pixel is used for agriculture initially, is cleared

in 2006–07, and used for nonvegetated anthropogenic

purposes after that. The trajectory and the TimeSync

data are in agreement. EWMACD accurately detects the

sudden absence of vegetation cover. Gradual increase in

NDVI is indicated thereafter.

Failure. Failure of EWMACD when the training

period is not stable is trivial. Instances of failure when

the training period is stable are discussed here. Figure

2(a) displays a forest pixel. The NDVI trajectory shows

a disturbance in 2006. TimeSync data states a harvest

in 2005–06. EWMACD misses this event. The outcome

does not change with different parameters either, possibly

because the change is relatively brief compared to the

training data.

In Figure 2(b), the trajectory appears stable except for

two visible drops in 2002 and 2008. TimeSync data

2000 2002 2004 2006 2008 2010 2012
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

NDVI

EWMACD/10

(a) Forest, Harvest in 2004

2000 2002 2004 2006 2008 2010 2012
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

NDVI

EWMACD/10

(b) Agriculture → NVA, Clearing in 2006

Figure 1. EWMACD success. Flag history (divided

by 10) signals times of change by runs of increases or

decreases in the flags. (a) Harvest in a forest; (b) Fire in

a nonforest pixel.

assigns nonvegetated anthropogenic (NVA) land cover to

this pixel, and no recorded LULCC event in the 2000–12

time period. EWMACD shows two instances of loss,

which seem to agree with the trajectory but not so with

TimeSync. The second signal (in 2008–09) vanishes

when three harmonics are used instead of two, indicating

that this trajectory could be following time periods that

are different from those used in EWMACD. The first

signal, however, remains through a range of parameters,

and could potentially be attributed to an insufficient

training period.

Sensitivity. The accuracy of EWMACD is expected

to be influenced by the parameters L and λ used for

the control limits calculation (Step 2 of the algorithm),

the persistence parameter (̟), and the training period.

Sensitivity to λ is presented here. The forest pixel

displayed in Figure 3 is where a fire is known to have

occurred in 2005–06. The NDVI trajectory shows a

drop in 2005–06. For λ = 0.5 (Figure 3(a)), EWMACD

detects the fire in 2005–06. In addition, it shows a second

flag in 2008, and a third flag in 2010–11 followed by

recovery. The second flag is likely a false alarm. The

third flag corresponds to a visible dip (potentially, an

event not recorded) in NDVI at that time. The false alarm

does not appear for λ = 0.58 (Figure 3(b)). On using

7

2000 2002 2004 2006 2008 2010 2012
0.0

0.2

0.4

0.6

0.8

1.0

NDVI

EWMACD/10

(a) Forest, Harvest in 2005–06

2000 2002 2004 2006 2008 2010 2012
−0.2

0.0

0.2

0.4

0.6

0.8

NDVI

EWMACD/10

(b) NVA, No recorded change

Figure 2. EWMACD failure. (a) Misses a harvest in a

forest; (b) false alarms in a developed area.

λ = 0.6, the flag in 2010–11 also disappears (which may

make the outcome agree with TimeSync data but not

with the trajectory). Using λ = 0.4, on the other hand,

produces more false alarms between 2000 and 2006.

In general, decreasing L and ̟ has the effect of

increasing the sensitivity of the algorithm. This means

that the number of false alarms may also increase.

λ determines the restrospectiveness of the algorithm.

Decreasing λ should mask abrupt changes (the kind

displayed in examples here) in favor of highlighting

subtle, chronic changes (the kind TimeSync might also

pick up). Finally, since this algorithm utilizes a training

period, it is important that there be no change during the

training period. When the training period does happen

to contain a change, the signals’ signs are expected

to skew in the direction opposite to the direction of

‘the change during the training period’, but this needs

to be investigated further. In Edyn (Brooks et al.

2017), an improved version of EWMACD, the harmonic

model coefficients and the persistence are dynamically

updated. Specifically, when EWMACD finds an event, the

following (two) years are used to retrain the model, and

the updated model is used for sensing change thereafter.

This may alleviate the postchange false alarms to some

extent.

2000 2002 2004 2006 2008 2010 2012
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

NDVI

EWMACD/10

(a) λ = 0.5

2000 2002 2004 2006 2008 2010 2012
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

NDVI

EWMACD/10

(b) λ = 0.58

Figure 3. EWMACD sensitivity. A false alarm appears

for λ = 0.5, but not for λ = 0.58. For λ = 0.6, the

second event also disappears.

5. LandTrendR

LandTrendR was proposed in (Kennedy, Yang, and

Cohen 2010). Starting with a linear regression fit to the

entire time series, LandTrendR partitions the time series

step by step, adding breakpoints (called vertices here) at

each step. A set of potential vertices is thus generated

in a straight top­down approach. Once these vertices

have been generated, they are refined in multiple passes:

(i) first the least influential vertices (corresponding to

most obtuse angles) are discarded; (ii) then, of the now

remaining vertices, each vertex is dropped one by one,

based on a continuous piecewise linear fit (a ‘model’)

using anchored regression (anchored regression comprises

doing a least squares fit to the data but with one end fixed

and only the slope (or the second end) to be determined);

and (iii) the goodness of each model is evaluated in

terms of F­statistics (‘improvement compared to the mean

model’). Of all the potential models, the model with

lowest p value of the F­statistic is chosen as the final

model1. (also called intercept­only model, intercept

being equal to the average of the observations under

consideration.) LandTrendR’s original implementation

utilized only one image per year from the Landsat image

stacks, out of the 23 or so available per year. However,

in this work, all available images are utilized.

Algorithm LandTrendR.

8

for row r : = 1 step 1 until R do

for column c : = 1 step 1 until C do

Step 1: Despike Let u = (D0
rc)·b denote the

raw time series data. For each time point ti,
1 < i < S, define ∆ui = (D0

rc)(i+1)b − (D0
rc)ib,

∇ui = (D0
rc)ib− (D0

rc)(i−1)b, µδui = (D0
rc)(i+1)b−

(D0
rc)(i−1)b, ki = 1 − |µδui|/max{|∇ui|, |∆ui|},

and correction κi = (δ2ui)ki/2 =
(

(D0
rc)(i−1)b −

2(D0
rc)ib + (D0

rc)(i+1)

)

ki/2. For each i such that

ki = max
1<j<S

kj , update (Drc)ib : = (D0
rc)ib + κi.

Repeat iteratively until max
1<j<S

kj < υ, some given

despiking tolerance.

Step 2: Find potential breakpoints Let S1 = (t1,

. . ., tS) be the original sequence of time points

and I1 = (2, . . ., S − 1) denote the corresponding

sequence of interior indices. Let

X =





1 t1
...

...

1 tS





be the Gram matrix for the time points t1, . . ., tS ,

for ordinary least squares linear regression. The

least squares fit to this data is given by

u(t) = α0 + α1t

with coefficients

α = (XtX)−1Xtu

and residuals

E1(α) = u−Xα.

Find the smallest index i1 corresponding to the

maximum absolute deviation, i.e.,

i1 = min
{

i | i ∈ I1 and |E1(α)i| = max
j∈I1

|E1(α)j |
}

.

Split the sequence S1 into two subsequences,

S1
l = (t1, . . . , ti1) and S1

r = (ti1 , . . . , tS).

Do linear regression on each of these and compute

their respective mean squared errors, MSEl and

MSEr. Suppose |MSEl| ≤ |MSEr|. Then let S2 =

S1
r with interior index set I2 = (i1+1, . . . , S−1) be

the next candidate sequence for ‘breakpoint search’.

Again, find the smallest index i2 corresponding to

the maximum absolute deviation

i2 = min
{

i | i ∈ I2 and |E2(α2)i| = max
j∈I2

|E2(α2)j |
}

.

Again, split S2 into two subsequences S2
l =

(ti1 , . . . , ti2) and S2
r = (ti2 , . . . , tS), compute the

least squares fit for each of these, choose the

interval with higher MSE, and find the index

i3 corresponding to maximum absolute deviation.

Recursively apply the algorithm until there are

µ+ ν + 1 breakpoints (including t1 and tS), where

µ is the maximum number of segments allowed and

ν is the maximum number of vertex overshoots (see

Step 3 below) allowed. (In the rare circumstance

that MSEl = MSEr = 0 at some iteration, there may

be fewer than µ+ ν + 1 breakpoints.)

Let S̄ = (t1, ti1 , . . ., tiµ+ν−1 , tS) be the final

sequence of (sorted) breakpoints thus obtained,

Ī = (1, i1, . . ., iµ+ν−1, S) and V̄ = (v1, vi1 ,

. . ., vS) be the corresponding index and ‘vertex’

sequences, where vi = (ti, ui).

Step 3: Cull by angle change

Define the sequence of angles

αj =arccos

(

(vĪj − vĪj−1
) · (vĪj+1

− vĪj)

‖(vĪj − vĪj−1
)‖‖(vĪj+1

− vĪj)‖

)

,

for j = 2, 3, . . . , µ+ ν.

Find ā = min
{

i | αi = min
j

αj

}

, delete vā from the

sequence V̄ , and recalculate from this the angles

with the new vertices. Repeat until reaching the

sequence V ∗ = (v1, vl1 , . . ., vlµ−1 , vS) with index

sequence L∗ = (1, l1, . . ., lµ−1, S).

Step 4: Fit trajectories

Moving from i = 1, . . ., µ, consider consecutive

vertices vL∗

i
, vL∗

i+1
∈ V ∗, one at a time, and an

anchored regression fit

uAR(t) = yL∗

i
+ α(t− tL∗

i
),

where yL∗

i
is the ‘fitted’ value inferred from the fit in

the preceding interval
(

tL∗

i−1
, tL∗

i

)

, α is the solution

to the least squares regression problem uAR ≈ u
at the points tL∗

i
+1, . . ., tL∗

i+1
. For the special

case i = 1, the coefficient yL∗

1
is also estimated.

The final result of this step will be a continuous

piecewise linear function P ∗(t) covering the full

domain. Further, let Y ∗ = (y1, yl1 , . . ., ylµ−1 , yS)
be the sequence of fitted values at the breakpoints

with indices L∗. Call the tuple M∗ = (P ∗(t), L∗,

V ∗) a regression model. In addition, let (y1, y2, . . .,
yS) be the sequence of fitted values over all time

points in S1 as predicted by M∗.

Step 5: Model statistics

The improvement in prediction from regression

compared to the mean model is given by the random

variable

X2
1 =

S
∑

i=1

(ui − ū)2 −
S
∑

i=1

(ui − yi)
2 =

S
∑

i=1

(yi − ū)2,

where ū is the mean value of the observations.

The squared distance of the observed values from

9

the values predicted by the regression model is the

random variable

X2
2 =

S
∑

i=1

(ui − yi)
2.

Assuming that yi − ū and ui − yi are independent,

normally distributed, and have variance one, X2
1 and

X2
2 have a χ2 distribution with degrees of freedom

d1 = µ, d2 = S−µ− 1, respectively. Therefore, the

ratio

F =
X2

1/d1
X2

2/d2

has an F ­distribution and F ­statistics can be used

for measuring the ‘goodness’ of fit of the regression

model. Let f be the F ­statistic for model M.

Calculate the p­value of this F ­statistic:

Q(f |d1, d2) = 1− I d1f

d1f+d2

(

d1
2
,
d2
2

)

= I d2
d2+d1f

(

d2
2
,
d1
2

)

.

Q(f |d1, d2) is the probability that F > f and

Ix(a, b) denotes the regularized incomplete Beta

function given by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1 − t)b−1dt,

a > 0, b > 0, where

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1(1− t)b−1dt

is the (complete) Beta function, and

Γ(z) =

∫ ∞

0

tz−1e−tdt, ℜ z > 0

is the Gamma function.

For model M(µ) = M∗, where the superscript

corresponds to the number of segments in the model,

let the p­value calculated in this step be p(µ).

Step 6: Generate more (simpler) models

Begin with the model M(µ) = (P (µ), L(µ), V µ)) =
(P ∗(t), L∗, V ∗).

(i) Assume that a disturbance always corresponds

to a positive slope while a negative slope

indicates recovery.

First look for negative slopes at interior vertices.

Let V
(µ)

i(µ) 6= V
(µ)
1 be the left vertex (leftmost

in case of a tie) of the segment with steepest

negative slope. Delete L
(µ)

i(µ) from the index

sequence L(µ), giving the shorter sequence

L(µ−1).

However, if no negative slopes are found or, if

the steepest negative segment happens to be the

leftmost segment of the current model, then for

each interior vertex v
(µ)
Li

in the model, consider

the point to point connect using the vertices

immediately to the left and right of v
(µ)
Li

, i.e.,

v
(µ)
Li−1

and v
L

(µ)

i+1

:

u
(µ)
PP (t) =

y
L

(µ)
i+1

− y
L

(µ)
i−1

t
L

(µ)
i+1

− t
L

(µ)
i

(t− t
L

(µ)
i−1

) + y
L

(µ)
i−1

,

for i ∈ L(µ) \{1, S}, and calculate the MSE
L

(µ)

i

for vertex v
L

(µ)
i

as

MSE
L

(µ)
i

=
1

t
L

(µ)

i+1

− t
L

(µ)

i−1

L
(µ)
i+1
∑

k=L
(µ)
i−1

(

u
(µ)
PP (tk)− uk

)2

,

for i ∈ L(µ) \ {1, S}. Then define i(µ) =

min
{

i | MSEL∗

i
= min

j
MSEL∗

j

}

, the index of

the vertex dropping which leads to least MSE.

Delete L
(µ)

i(µ) , resulting in the shorter sequence

L(µ−1).

(ii) Remove the corresponding vertex from V (µ)

giving V (µ−1), and as in Step 4 generate the

new piecewise linear fit P (µ−1)(t) and model

M(µ−1) =
(

P (µ−1)(t), L(µ−1), V (µ−1)
)

.

(iii) Calculate the p­value p(µ−1) for this model.

Proceeding in this way, generate a total of µ models

M(i), i = µ, . . ., 1.

Step 7: Pick best model Mi∗ .

Let i∗ be the smallest index i corresponding to

the models M(i) whose p­value is less than a user

defined recovery threshold τ , i.e., i∗ = min{i |

p(i) ≤ τ , i = 1, . . ., µ}.

Remark. Check the linear segment slopes. If, for

any model M(i) under consideration, the recovery

(to a global baseline) happens quicker than the

quickest disturbance ̺ (from a global baseline), that

model is discarded.

Step 8: Alternate approach.

If no models are found using Steps 1–7, repeat Steps

4–7 with the following modifications:

Step 4′. Instead of computing the continuous

piecewise linear approximation P ∗(t) one segment

at a time, going from left to right, compute P ∗(t)
using all the data at once. This is done by expressing

10

P ∗(t) as a linear combination of B­splines of order

2 with knot sequence (t1, t1, tl1 , tl2 , . . ., tlµ−1 ,

tS , tS), and then solving a linear least squares

problem for the µ+ 1 coefficients of these B­spline

basis functions. (Note that there is no need to use

the Levenberg­Marquardt algorithm as proposed in

Kennedy, Yang, and Cohen (2010)).

Step 6′. Skip directly to the point to point connect

approach, without looking for negative slopes at all.

end

end

The complexity of the algorithm is nbO(S), where

nb = µ+ ν − 1. LandTrendR output consists of a set of

breakpoints as well as a fit to the data. The fit is always

continuous piecewise linear. The fit is displayed in the

results discussed here. Since the fit is piecewise linear,

the breakpoints are obvious. The following parameter

values are used for LandTrendR in this work: υ = 0.9,

µ = 6, ν = 3, τ = 0.2, ̺ = 1.0.

Success. Figure 4 presents examples of LandTrendR

success. The pixel of Figure 4(a) is forest, per TimeSync

data. In the 12 year period 2000–2012, one significant

instance of harvest is recorded in 2010–11. The NDVI

trajetory stays stable until 2010, and then a sharp fall

is seen in the NDVI values in 2010–11, matching the

harvest. LandTrendR captures the trajectory accurately,

indicating stability until 2010, a sharp loss in vegetation

cover in 2010, followed by gradual recovery.

Figure 4(b) has a trajectory with mean 0.3–0.4, high

variance until 2002. After 2002, the NDVI values are

almost constant, close to 0.1, indicating absence of any

vegetation cover. TimeSync data indicates that this pixel

is an agricultural area that is cleared in 2002–03, and

used for nonvegetated anthropogenic purposes starting

2003. The trajectory and the TimeSync information are

thus in agreement. LandTrendR indicates some variation

in trend pre­2002 and then successfully captures the

2002–03 harvest.

Failure. The two pixels of Figure 5 present instances

of LandTrendR failure. Per TimeSync data, Figure

5(a) is a forest. The trees are harvested sometime in

between 2008–10, and the land is subsequently used

for agricultural purposes. The NDVI trajectory exhibits

totally different mean and variance before and after

2009. In 2009, a sharp drop in NDVI values is seen,

confirming the TimeSync information. The LandTrendR

approximation shows an overall decrease in NDVI values

between 2004 and 2010, but there is no breakpoint at the

2009 drop. The breakpoints that it does predict appear to

be mostly false alarms.

2000 2002 2004 2006 2008 2010 2012
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NDVI

LandTrendR

(a) Forest, Harvest in 2010–11

2000 2002 2004 2006 2008 2010 2012
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NDVI

LandTrendR

(b) Agriculture → NVA, Harvest in 2002–03

Figure 4. LandTrendR success.

Figure 5(b) is for a nonforest vegetation area.

TimeSync states a mechanical change in 2008–10, after

which the area is used for nonvegetated anthropogenic

purposes, consistent with the NDVI trajectory: the mean

NDVI value has a sharp drop in 2008, and the trajectory

after that also has much lower variance. LandTrendR

senses a decrease in vegetation cover but there is no

breakpoint at the time where the sharp drop occurs. The

trend, in general, does not match the trajectory.

Sensitivity. LandTrendR extensively harnesses least

squares fitting. The determination of the initial breakpoint

set is based on iteratively finding indices where deviation

of the least squares fit to the data in certain intervals is

maximum (cf. Step 2). Since least squares fit can be

easily affected by outliers, this methodology for initial

breakpoint set construction is also prone to being affected

by outliers. In particular, sometimes points on only one

side of a disturbance make it in to S̄, the sequence

of initial vertices, and even these may get dropped in

reaching the sequence V ∗. This makes LandTrendR’s

success in breakpoint determination sensitive to outliers.

Figure 6 shows the final outcomes of LandTrendR for

two values of the parameter υ. TimeSync states nonforest

vegetation type for this pixel prior to 2003, a mechanical

event in 2003–04, conversion of land cover type to urban

after that, a second mechanical event in 2004–05, and

continued urbanized land cover for the rest of the time.

11

2000 2002 2004 2006 2008 2010 2012
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NDVI

LandTrendR

(a) Forest → agriculture, Mechanical in 2008–10

2000 2002 2004 2006 2008 2010 2012
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
NDVI

LandTrendR

(b) NFV → NVA, Mechanical in 2008–10

Figure 5. LandTrendR failure.

The NDVI values start quite small (0.3) and stay low

throughout. The changes are not evident in the trajectory,

although a gradual decline in NDVI values is seen from

2002 to 2006, and less noise is seen after 2006. Figure

6(a) corresponds to υ = 0.8. LandTrendR gets the overall

approximation to the trend correct but misses both the

breakpoints for υ = 0.8. Figure 6(b) corresponds to

υ = 0.9. For υ = 0.9, a breakpoint is placed in 2004–05

though the 2003–04 breakpoint is still missing.

Of relevance to the polyalgorithm are also the

parameters µ and ν. With smaller values of these

parameters, ‘localization’ of breakpoints appears to be

less prevalent.

6. Breaks For Additive and Seasonal Trend (BFAST)

BFAST (Verbesselt, Hyndman, Newnham, and Cul­

venor 2010) decomposes the given time series iteratively

into three components: trend, seasonal, and noise. BFAST

computes and evaluates least squares fits in windows of

increasing size. Qualitatively, (i) first the possibility of

there being any structural change in the given time series

is determined by computing the partial sums of residuals

of least squares fits in windows (OLS­MOSUM). The

limiting process of these partial sums is the increments

of a Brownian bridge process (Chu, Hornik, and Kuan

1995). If the observations do have a structural change,

an ordinary linear least squares fit will result in large

residuals and, hence, in large partial sums. Therefore,

2000 2002 2004 2006 2008 2010 2012
0.0

0.1

0.2

0.3

0.4

0.5

0.6
NDVI

LandTrendR

(a) υ = 0.8

2000 2002 2004 2006 2008 2010 2012
0.0

0.1

0.2

0.3

0.4

0.5

0.6
NDVI

LandTrendR

(b) υ = 0.9
Figure 6. LandTrendR sensitivity.

the occurrence of large values in the process is an

indication of the presence of a structural change — this

probability being calculated from the Brownian bridge

table. (ii) If a structural change is indicated, a search

for change location is done. Each interior time point t
is considered a breakpoint (change location) candidate.

A recursive residual is the error at time tj from the

linear least squares fit over the window [ti, . . . , tj−1].
The breakpoints (change locations) are chosen so as to

minimize the sum of squared recursive residuals over all

windows in between (omitting) the breakpoints. This is

done for both trend and seasonal components of the time

series, consecutively.

Algorithm BFAST.

for row r : = 1 step 1 until R do

for column c : = 1 step 1 until C do

Let T = (t1, . . . , tS) be the sequence of given time

points and the S­vector u denote the time series data

in the column (Drc)·b, i.e., u = (Drc)·b. Assume

that the general model is of the form

u = V +W + ǫ,

where V and W denote the iteratively computed

trend and seasonal components, respectively, present

in the data and ǫ is the noise. The trend V may

be piecewise linear and the seasonal component W
may be piecewise harmonic. Let N be the maximum

12

number of iterations, n be the iteration number, and

Vn and Wn be the trend and seasonal components,

respectively, computed at the nth iteration. Let

h ∈ (0, 1) denote the proportion of data points

by which two consecutive breakpoints ti and tj
(including t1 and tS) must be separated. Thus

⌈Sh⌉ ≤ j − i − 1. Take the length of moving

windows to be ⌈Sh⌉, initialize the iteration number

n := 1, and initialize the seasonal component as

W0(T) = (w0
1 , . . ., w0

S).

Step 1.1: Determine the possibility of breakpoints

in trend.

Eliminate the seasonal component from the data

un = u−Wn−1(T).

The ordinary least squares (OLS) estimator for the

trend is given as

α = (XtX)−1Xtun

where X is the Gram matrix for linear regression

given by

X =





1 t1
...

...

1 tS



 .

The prediction error (or residual vector or the OLS

residual) is defined as

Eo = un −Xα,

where the superscript ‘o’ is used to signify the

fact that these residuals are OLS regression based.

Consider the process defined by the moving sums

(MOSUM) of these OLS residuals

Qo =







1

σ
√

⌈Sh⌉

k
∑

i=k−⌈Sh⌉+1

Eo
i







S

k=⌈Sh⌉

,

where σ is the sample standard deviation of all the

OLS residuals.

Compute the OLS­MOSUM test statistic

f̂o = max
1≤k≤S−⌈Sh⌉+1

|Qo
k|

as the maximum absolute value of this process, then

compute the asymptotic critical value of the OLS­

MOSUM test using the two­sided boundary­crossing

probability

pT = P [fo > f̂o],

where pT is read from the Brownian Bridge table.

A p­value less than a user defined parameter

τV ∈ (0, 1) indicates the presence of breakpoints.

Remark 1: As discussed in (Chu, Hornik, and

Kuan 1995), under the null hypothesis, the OLS­

MOSUM process converges in distribution to the

increments of a Brownian Bridge process.

Step 1.2: Locate trend breakpoints.

Suppose pT ≤ τV . To locate the breakpoints,

consider all possible partitions of the domain,

compute OLS fits for each partition, and settle with

a partition that yields minimum squared error.

Let X[i,j] denote the matrix formed from rows i

through j of the matrix X , and α[i,j] denote the least

squares coefficients computed using the matrix X[i,j]

with time points ti, . . ., tj , and data un
[i,j] = un

{i,...,j}.

For i = 1, . . ., S − ⌈Sh⌉+ 1, consider each window

[ti, . . ., tj−1], i + 2 ≤ j ≤ S, and the linear fit in

this window. The recursive residual at point tj is

then defined as the weighted prediction error

Er
ij =

un
[j,j] −X[j,j]α[i,j−1]

√

1 +X[j,j]

(

Xt
[i,j−1]X[i,j−1]

)−1
Xt

[j,j]

.

The superscript ‘r’ is used to signify the fact that the

process/statistic is recursive residual based.

Suppose a breakpoint has been found at ti. Then

the cost of placing the next breakpoint at tk
is calculated as the accumulated sum of squared

recursive residuals in the interval [ti, tk−1], i.e.,

ρik =

k−1
∑

j=i+2

(

Er
ij

)2
.

All possible positions for the breakpoints can thus

be calculated by considering the moving sums of

squared recursive residuals, i.e., the process defined

by

Qr =

















k
∑

j=i+2

(

Er
ij

)2







S

k=i+2











S−⌈Sh⌉+1

i=1

.

Given the number µ of desired interior breakpoints,

let k1, . . ., kµ be integers such that ki+1−ki > ⌈Sh⌉,

k1 > ⌈Sh⌉ + 1, and kµ < S − ⌈Sh⌉. Determine

K = (1, k1, . . ., kµ, S) to minimize the moving

sums of squared recursive residuals

k1−1
∑

i=3

(

Er
1,i

)2
+

k2−1
∑

i=k1+2

(

Er
k1,i

)2
+

k3−1
∑

i=k2+2

(

Er
k2,i

)2
+

· · ·+
S
∑

i=kµ+2

(

Er
kµ,i

)2

.

Then (tk1 , . . ., tkµ
) are the interior breakpoints in

the trend component.

13

Remark 2: The breakpoints t1, tk1 , . . ., tkµ
, tS

are optimal in the sense of the above moving sums

of squared recursive residuals criterion.

Remark 3: If pT > τV , then there are only two

breakpoints (t1 and tS) and no interior breakpoints.

So this step is skipped and there is simply one linear

fit over the entire domain [t1, tS] (Step 1.3).

Step 1.3: Let k0 = 1, kµ+1 = S, and I0 =

[tk0 , tk1), I1 = [tk1 , tk2), . . ., Iµ = [tkµ
, tkµ+1]. For

each interval Ii, determine the linear regression

coefficients

γi =
(

Xt
[ki,ki+1]

X[ki,ki+1]

)−1
X[ki,ki+1]u

n
[ki,ki+1]

and construct the (discontinuous) piecewise linear fit

Vn(t) =

µ
∑

i=0

Γi(t),

where

Γi(t) =

{

γi
0 + γi

1t, t ∈ Ii,
0, otherwise.

Let Vn(T) = (vn1 , . . ., vnS) be the sequence of values

estimated at t1, . . ., tS using this piecewise linear

fit.

Step 2.1: Determine the possibility of breakpoints

in seasons.

Eliminate the estimated trend component from the

observed data

ũn = u− Vn(T).

The Gram matrix for the seasonal (harmonic)

component is given by

Y =





1 sin t1 cos t1 · · · sinKt1 cosKt1
...

...
...

...
...

...

1 sin tS cos tS · · · sinKtS cosKtS



 ,

where K is the degree of the trigonometric poly­

nomial used for regression. The trigonometric

regression coefficients for the seasonal component

are computed as

β = (Y tY)−1Y tũn.

The prediction error for this fit is defined as

Eo = ũn − Y β.

The OLS­MOSUM process for these errors is given

by

Qo =







1

σ
√

⌈Sh⌉

k
∑

i=k−⌈Sh⌉+1

Eo
i







S

k=⌈Sh⌉

,

and the OLS­MOSUM test statistic is

ĝo = max
1≤j≤S−⌈Sh⌉+1

|Qo
j |.

The two­sided boundary­crossing probability

pS = P [go > ĝo]

is read from the Brownian Bridge table.

A p­value less than a user defined parameter

τW ∈ (0, 1) indicates the presence of seasonal

breakpoints.

Step 2.2: Locate seasonal breakpoints.

Suppose pS ≤ τW . Using the same notation as for

the trend breakpoints,

Er
ij =

ũn
[j,j] − Y[j,j]β[i,j−1]

√

1 + Y[j,j]

(

Y t
[i,j−1]Y[i,j−1]

)−1
Y t
[j,j]

is the recursive residual at time tj , obtained

by trigonometric regression in the time window

[ti, tj−1].

Given the number ν of desired seasonal interior

breakpoints and a minimum number of data points

separating breakpoints (as for the trend), let l1,

. . ., lν be integers such that li+1 − li > ⌈Sh⌉,

l1 > ⌈Sh⌉ + 1, and lν < S − ⌈Sh⌉. Determine

L = (1, l1, . . ., lν , S) to minimize the moving sums

of squared recursive residuals

l1−1
∑

i=3

(

Er
1,i

)2
+

l2−1
∑

i=l1+2

(

Er
l1,i

)2
+

l3−1
∑

i=l2+2

(

Er
l2,i

)2
+

· · ·+
S
∑

i=lν+2

(

Er
lν ,i

)2
.

Then (tl1 , . . ., tlν) are the interior breakpoints in the

seasonal component.

Remark 4: If pS > τW , then there are only two

breakpoints (t1 and tS) and no interior breakpoints.

So this step is skipped and there is simply one

trigonometric polynomial fit over the entire domain

[t1, tS] (Step 2.3).

Step 2.3: Let l0 = 1, lν+1 = S, and J0 = [tl0 , tl1),

J1 = [tl1 , tl2), . . ., Jν = [tlν , tlν+1]. For each

interval Jj determine the trigonometric polynomial

regression coefficients

δj =
(

Y t
[lj ,lj+1]

Y[lj ,lj+1]

)−1
Y[lj ,lj+1]ũ

n
[lj,lj+1]

14

and construct the (discontinuous) piecewise trigono­

metric polynomial

Wn(t) =

ν
∑

j=0

∆j(t), where ∆j(t) =











δj1 +

K
∑

k=1

δj2k sinkt+ δj2k+1 cos kt, t ∈ Jj ,

0, otherwise.

Let Wn(T) = (wn
1 , . . ., wn

S) be the sequence of

values estimated at t1, . . ., tS using this piecewise

trigonometric polynomial approximation.

Step 3: Compare the breakpoints between itera­

tions n− 1 and n.

If the Hamming distance between the two breakpoint

vectors (tk1 , . . ., tkµ
, tl1 , . . ., tlν) at iterations

n− 1 and n is less than some defined tolerance or

the number of iterations has reached N , then exit.

Otherwise, increment the iteration number n and

repeat Steps 1.1 to 3.

end

end

The complexity of BFAST is O
(

S3
)

, with the

calculation of all the recursive residuals being O
(

S3
)

and dynamic programming to find the optimal breakpoint

sequence being O
(

S2
)

. While the experiments so

far assure that the method captures the linear trend

correctly, its ability to capture phenological (seasonal)

changes has not been studied sufficiently yet. Like

LandTrendR, BFAST offers a fit to the data as well as a

set of breakpoints. The number of breakpoints is fixed,

though, and the piecewise linear fit offered is possibly

discontinuous (an advantage). The following parameters

are used for BFAST in this work: K = 1, µ = ν = 2,

h = 0.15, τV = τW = 0.05, N = 2.

Success. Figure 7 presents two examples of BFAST’s

success, the first one being a forest pixel and the second

one a nonforest pixel. Figure 7(a) has two instances of

fire — one in 2006–07, and another in 2009–10, both

seen in the NDVI trajectory as well. The occurrence of

these events is well sensed by BFAST.

Figure 7(right) depicts the functioning of BFAST on

forest as well as nonforest land covers. Specifically, this

pixel is a forest initially, a mechanical activity causes a

sudden loss in vegetation cover in 2006–07, and there is

nonvegetated anthropogenic (NVA) usage following that.

Based on the NDVI trajectory, some recovery in leaf

cover appears to have taken place post2007. A second

mechanical event is known to have happened in 2011–12.

BFAST is able to capture both events and also replicates

the trends in each of the three segments (separated by

2000 2002 2004 2006 2008 2010 2012
0.4

0.5

0.6

0.7

0.8

NDVI

BFAST

(a) Forest, Fire in 2006 and 2009.

2000 2002 2004 2006 2008 2010 2012
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NDVI

BFAST

(b) Forest → NVA, Mechanical in 2006 and 2011.

Figure 7. BFAST success.

these breakpoints) correctly. These results endure after

minor changes in the parameters.

Failure. Some examples where BFAST fails are

presented here. However, such instance are rather

rare. In general, it is difficult to find instances where

BFAST fails to capture events and/or trends in forests,

its main limitation being the a priori chosen number of

breakpoints. Specifically, if the number of breaks in the

time series is more than the number of breaks specified

by the user, only the strongest breaks are captured.

Figure 8(a) corresponds to a forest pixel. There is

a harvest in the year 2011–12, reflected in the NDVI

trajectory as well. BFAST is not able to capture this

change. If two harmonics are used (instead of one)

or if the breakpoint spacing proportion h is reduced to

h = 0.10, this change is captured.

Figure 8(right) represents a pixel that undergoes a

mechanical change in 2003–04, going from forest until

2003 (prior to change) to nonforest vegetation after the

change. The NDVI trajectory reflects changes in trend

and periodicity; two breakpoints are evident — one in

2004 and another in 2006. BFAST places breakpoints

in 2001 and 2006, neither agreeing with TimeSync data.

However, the 2006 breakpoint does agree with the NDVI

15

2000 2002 2004 2006 2008 2010 2012
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NDVI

BFAST

(a) Forest, Harvests in 2002 and 2005.

2000 2002 2004 2006 2008 2010 2012
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NDVI

BFAST

(b) Forest → NFV, Mechanical in 2003–04.

Figure 8. BFAST failure.

trajectory. This outcome did not change with slight

variations in parameters.

Sensitivity. BFAST is mostly able to capture the

trends well. For the pixels where it fails, the output for

some (not all) of them appears to improve by using more

harmonics (K , cf. Step 2.1). Figure 9 corresponds to a

forest pixel known to have been harvested twice — in

2002 and 2005. When published parameters are used,

BFAST detects the first harvest but misses the second

one. Using two harmonics, the occurrence as well as the

timing of both harvests are sensed accurately. Another

instance of failure/parameter sensitivity was discussed in

Figure 8(a): for this pixel the breakpoint location is too

close to the right boundary of the domain. In such

situations, the default value of h prevents the (correct)

detection of breakpoints.

7. Prospects for a Viable Polyalgorithm

Once the algorithms have been implemented, the next

step is to develop a procedure to choose the most

appropriate outcome for the input. One possibility is to

draw a consensus between algorithm outcomes: if more

than half the algorithms being used predict breakpoint

sets that are in proximity of each other, one of those

algorithms gets chosen as the most appropriate algorithm.

To this end, a method to measure the distance between

the breakpoint sets is needed. Hausdorff distance from

topology is used here.

2000 2002 2004 2006 2008 2010 2012
0.3

0.4

0.5

0.6

0.7

0.8

0.9

NDVI

BFAST

K = 1.

2000 2002 2004 2006 2008 2010 2012
0.3

0.4

0.5

0.6

0.7

0.8

0.9

NDVI

BFAST

K = 2.

Figure 9. BFAST sensitivity.

Consider the set of real numbers R and the usual

distance function d̄(x, y) = |x−y| defined on R. Suppose

A = {a1, . . . , al} is the set of breakpoints from algorithm

A, and B = {b1, . . . , bm} is the set of breakpoints from

algorithm B. Then A and B are subsets of R. Using

the distance function d̄(x, y), define the distance from a

point a ∈ A to the set B as

d̂(a,B) = inf{d̄(a, b) | b ∈ B}.

Then define the distance from set A to set B as

d(A,B) = sup{d̂(a,B) | a ∈ A}.

Note that d is not a metric since possibly d(A,B) 6=
d(B,A). Hausdorff distance is defined as

H(A,B) = max{d(A,B), d(B,A)},

and H is a metric.

If every point in A happens to be close to some point

B and vice versa, the Hausdorff distance is small. If

some point in A is very far from every point in B or vice

versa, the Hausdorff distance is large.

Some other facts important in designing the procedure

are: (i) EWMACD works based on training data. If

the training data is not from a period of stability,

EWMACD outcomes cannot be trusted. In general, a

prior knowledge of change during the training period is

not available. (ii) Since Hausdorff distance is symmetric,

H only determines the pair of algorithms that are closest

to each other; some method to zero in on a single final

16

algorithm is needed. (iii) The case that an algorithm

predicts stability (correctly or incorrectly) for a pixel will

often arise, so the empty breakpoint set special case must

be handled.

In this early work, the following overall procedure for

an LULCC polyalgorithm is used:

(1) Run the three algorithms on the input.

(2) For EWMACD, consider only isolated breakpoints.

Specifically, during periods of stability, fi = fi−1.

For any i, if fi 6= fi−1, check the previous, say 50,

time points. If fi−1 = fj, j = i− 50, . . . , i− 2, then

use ti as a breakpoint. Otherwise, ti is only a part of

an ongoing recovery or loss period, does not mark a

new event, and is ignored.

(3) If BFAST predicts a change during the training

period of EWMACD, EWMACD results are not

used for that pixel (only BFAST and LandTrendR

are used).

(4) If A = ∅ and B 6= ∅, d(A,B) is undefined and

not used. If A 6= ∅ and B = ∅, d(A,B) = ∞.

If A = B = ∅, d(A,B) = 0. The interpretation

of this is that the two algorithms agree totally on

breakpoints for this pixel.

(5) If d(A,B) ≪ d(B,A), by the principle of parsimony,

choose A over B.

(6) If d(A,B) > dτ , ∀A,B, where dτ is a user defined

threshold, then no consensus has been found between

the algorithms, and the pixel is declared to be stable.

Due to the limited number of algorithms included

at present, and lack of control over the number of

breakpoints for BFAST and LandTrendR, dτ = 13
(the number of years in the data) is used. This is

because two algorithms that agree and have found

a breakpoint correctly, may have temporally distant

false alarms, resulting in either of them not getting

selected. As the polyalgorithm evolves, lower values

of dτ can be used.

7.1. Results

Each component algorithm produces a different kind

of outcome (flags for disturbance, continuous fit, discon­

tinuous fit). In the rest of this work, only the breakpoints

produced by each algorithm are considered (the focus of

this work being correct breakpoint placement); any ‘fit’ or

‘recovery period information’ (originally included in the

figures in Sections 3, 4, and 5) is not included here. For

BFAST K = 2 is used. For the formulae appearing in the

descriptions in the rest of this section, the breakpoint set

produced by EWMACD is denoted by E, that by BFAST

by B, and that by LandTrendR by L. For BFAST, the

height of a jump corresponds to the signed magnitude of

the corresponding discontinuity in the proposed model.

For EWMACD, the height of the jump corresponds to the

signed magnitude of the flag predicted by EWMACD at

the corresponding location. For LandTrendR, the model

is continuous. So a value of +1 is used at its breakpoints

for display purposes.

Figure 10 displays instances of polyalgorithm success.

The pixel of Figure 10(a) has a stable NDVI trajectory

until 2005, suffers a sudden drop in NDVI to almost no

vegetation in 2005, and has small but gradually increasing

NDVI values thereafter. Based on this trajectory, there

should be exactly one breakpoint in 2005. Per TimeSync

data, this pixel is a forest that is cleared of vegetation

in 2005–06 and is used for anthropogenic purposes

after that, agreeing with the TimeSync data and NDVI

trajectory. On running the polyalgorithm for this pixel,

EWMACD produces one breakpoint, precisely at the

location where the drop in NDVI occurs. BFAST

produces two breakpoints (as requested), one at the

NDVI drop location and another in 2007. LandTrendR

produces four breakpoints, the first three being false

alarms between 2001 and 2005, and the fourth one

being close to the drop location. The breakpoint­

sets are: E = {2006.03}, B = {2005.85, 2007.72},

L = {2002.1, 2004.2, 2004.5, 2004.8, 2005.5}. The d(·, ·)
values are displayed along with the figures. Since

d(E,B) = 0.18 is the smallest one, EWMACD gets

chosen as the final algorithm and the final breakpoint is

January 10th, 2006, quite in agreement with both the

trajectory as well as TimeSync data. Note that both

BFAST and LandTrendR also catch the break in 2005–06.

Figure 10(b) has a stable trajectory until 2006, a

sudden drop in NDVI in 2006, with gradual recovery in

the subsequent years. There is one breakpoint in the

trajectory. Per TimeSync data, this pixel is a forest,

with a single harvest in 2007–08. EWMACD assesses

this pixel as stable. LandTrendR has a breakpoint

in 2000, and multiple breakpoints in 2006 to 2008.

BFAST has breakpoints in 2006 and 2010. The

breakpoint sets are: E = {}, B = {2006.5, 2010.17},

and L = {2000.7, 2006.36, 2007.2, 2007.8, 2007.9}. The

d(·, ·) values are displayed along with the figure. BFAST

gets selected as the final algorithm, labeling 2006 and

2010 (a false alarm) as breakpoint locations.

Figure 10(c) has a drop in NDVI in 2005, from

vegetated to almost zero vegetation. The NDVI recovers

in 2005–07. The new vegetation NDVI has a smaller

mean. For this trajectory, two breakpoints are expected:

one in 2005, and another in 2007. Per TimeSync data,

this pixel is initially covered with nonforest vegetation

(NFV), experiences a flood in 2004, and has nonvegetated

natural (NVN) land cover thereafter. TimeSync does not

note the end of recovery period/beginning of the stable

period. Each of the three algorithms detects the flooding

event, with their breakpoint placement for the flood being

not exactly the same but in close proximity to each other.

17

2000 2002 2004 2006 2008 2010 2012
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=1.7, d(E,B)=0.18, d(B,L)=2.25

d(L,B)=3.7, d(L,E)=3.9, d(E,L)=0.6

(a) Forest → NVA, Mechanical in 2005.

2000 2002 2004 2006 2008 2010 2012
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=∞, d(E,B)=∗, d(B,L)=2.2

d(L,B)=5.7, d(L,E)=∞, d(E,L)=∗

(b) Forest, Harvest in 2007.

2000 2002 2004 2006 2008 2010 2012
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=2.4, d(E,B)=0.63, d(B,L)=1.7

d(L,B)=4.4, d(L,E)=5.5, d(E,L)=0.17

(c) NFV → NVN, Flood in 2004.

2000 2002 2004 2006 2008 2010 2012

−0.2

0.0

0.2

0.4

0.6

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=3.02, d(E,B)=5.4, d(B,L)=2.97

d(L,B)=0.04, d(L,E)=0.04, d(E,L)=5.5

(d) Nonforest vegetated, Fire in 2007.

Figure 10. Polyalgorithm outcomes.

EWMACD places one breakpoint in 2004, and none in
2006. BFAST produces two breakpoints, the first in 2005,
and the second in 2007. BFAST output is thus most
in agreement with the NDVI trajectory. LandTrendR
places multiple breaks in 2004–05, one each in 2000 and
2010, and none in 2006–07. The polyalgorithm selects
EWMACD as the final algorithm. EWMACD’s selection
can be attributed to (i) fewest number of breakpoints,
and (ii) each of its breakpoints being close to some
breakpoint of LandTrendR. The outcome of each of the
three component algorithms as well as the polyalgorithm
agrees with TimeSync data, but BFAST offers the best
match to the trajectory. This pixel with flooding does not
reflect the general situation with flooding, where all the
algorithms perform poorly.

The low NDVI values in Figure 10(d) indicate
relatively low vegetation cover. There is one sharp drop
in 2007, recovery until 2010, and stability thereafter.
TimeSync data classifies this pixel as one covered with
nonforest vegetation, with an instance of fire in 2007.
The trajectory and TimeSync are in agreement, except
that TimeSync does not record the end of a recovery
period. EWMACD detects four breakpoints, BFAST
two, and LandTrendR two. The three algorithms agree
only on 2007 being the breakpoint, which is the desired
outcome. The polyalgorithm chooses LandTrendR as the
final algorithm.

2000 2002 2004 2006 2008 2010 2012
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=3.4, d(E,B)=5.5, d(B,L)=3.4

d(L,B)=5.47, d(L,E)=1.9, d(E,L)=0.07

(a) NFV → NVA, Mechanical in 2008.

2000 2002 2004 2006 2008 2010 2012
−0.1

0.0

0.1

0.2

0.3

0.4

0.5
NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=2.36, d(E,B)=2.39, d(B,L)=3.76,

d(L,B)=1.115, d(L,E)=1.118, d(E,L)=6.15

(b) NFV, Fire in 2006.

Figure 11. Current limitations of the polyalgorithm.

18

Sometimes, a ‘majority’ of the component algorithms

(two or more out of three here) capture the same set

of incorrect breakpoints leading to polyalgorithm failure.

Per TimeSync, the pixel of Figure 11(a) is initially

covered with nonforest vegetation, cleared in 2008–10,

and used for anthropogenic purposes after that. Per

the NDVI trajectory, there is a major lasting change in

2008. BFAST detects the occurrence of this change

correctly. However, both EWMACD and LandTrendR

detect changes in 2002–03 and 2006–07 (in addition

to more changes signalled by LandTrendR). Due to

this, the EWMACD outcome gets finally chosen by the

polyalgorithm. Clearly, the breakpoints based on this

final selection (EWMACD) are not correct.

Figure 11(b) shows how an algorithm’s localized output

can lead to the selection of a suboptimal algorithm. The

NDVI trajectory for this pixel has four breakpoints: 2004

(beginning of a recovery period), 2006 (an abrupt drop in

NDVI), 2010 (another recovery period), and 2011 (another

abrupt drop in NDVI), TimeSync records specify a fire

in 2006, and no other event. Ideally, a change detection

algorithm would have four breakpoints. EWMACD

places breakpoints in 2004, 2008, and 2010. It misses

the events in 2006 and 2011, because these events occur

amidst unstable periods. In all, EWMACD disagrees

with TimeSync information, places breakpoints at two

out of four locations expected based on NDVI trajectory.

BFAST, with the allowed two breakpoints, places breaks

in 2006 and 2010. LandTrendR, on the other hand,

with its binary search pattern of stencil choosing, places

multiple breakpoints in a very small period 2009–11.

Overall, all three algorithms agree on the breakpoint in

2010, but only BFAST catches the fire in 2006–07, only

EWMACD catches the beginning a of recovery period in

2004, and only LandTrendR catches the event in 2011.

With all breakpoints of LandTrendR accumulated in one

region, and one breakpoint (2010) each of EWMACD

and BFAST close to all these breakpoints, d(L,B) and

d(L,E) are small numbers and the polyalgorithm selects

LandTrendR for the final outcome, disagreeing with

TimeSync information, and agreeing with the trajectory

only on the 2010–12 part. Note that none of the three

algorithms captures all four breakpoints suggested by the

trajectory (although BFAST got its limit of two correct).

Finally, instances where the TimeSync data differs

from the NDVI trajectory are presented. In Figure

12(a), all three algorithms yield outcomes that disagree

with TimeSync information. The NDVI trajectory

appears mostly stable except two instances of NDVI

drop — in 2002 and 2008. TimeSync does not record

any event during the time period under consideration.

Per TimeSync, this pixel is being used for nonvegetated

anthropogenic purposes (although the NDVI values appear

to be high for the pixel to not have any vegetation).

Each of the component algorithms predicts breakpoints.

Due to BFAST’s outcome, EWMACD’s selection for the

final algorithm is ruled out. (This explains the ∞ values

of d(E, ·) and d(·, E) displayed with the figure. Note

that, this implies that even if EWMACD had correctly

captured the stability, it would not get selected as the

final algorithm because of BFAST’s outcome.) BFAST

gets selected as the final algorithm. In Figure 12(right),

TimeSync reports mechanical change in 2009–10 but no

such change is evident in the NDVI trajectory. On the

other hand, the trajectory exhibits three distinct trends:

descending NDVI values from 2000 to 2003, a flat trend

from 2003 to 2008, and an ascent in NDVI values

from 2008–12. Thus, breakpoints in 2003 and 2008

are appropriate. EWMACD and BFAST place breaks

2002­04 and 2008­09. LandTrendR is chosen as the final

algorithm. A third instance of disagreement between

TimeSync and NDVI trajectory was discussed in Figure

11(b).

2000 2002 2004 2006 2008 2010 2012
−0.2

0.0

0.2

0.4

0.6

0.8

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=∞, d(E,B)=∞, d(B,L)=2.4

d(L,B)=6.4, d(L,E)=∞, d(E,L)=∞

(a) Nonvegetated anthropogenic, stable.

2000 2002 2004 2006 2008 2010 2012
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NDVI

LandTrendR

BFAST

EWMACD/10

d(B,E)=1.4, d(E,B)=1.6, d(B,L)=4.3

d(L,B)=1.2, d(L,E)=2.1, d(E,L)=5.8

(b) Nonvegetated anthropogenic, Mechanical in 2009.

Figure 12. NDVI trajectory vs. TimeSync records.

19

7.2. Discussion

Estimates of true positives (TPs, instances where an

algorithm correctly identifies a breakpoint) and false

negatives (FNs, instances where an algorithms misses

a breakpoint) using TimeSync data as reference are

presented in Table 2. Four specific types of events are

considered: harvest, mechanical, flood, and fire. The total

number of pixels that contain these events (not the same

as the total number of events) is listed in parentheses

beside the event name. Table 3 shows the percentage of

algorithm selection in the current polyalgorithm.

BFAST and LandTrendR have high false positive (FP)

rates. In particular, for BFAST, the number of breakpoints

the algorithm must calculate is fixed (ν, µ, user defined,

default to two or none in this work), so BFAST is expected

to produce one false alarm for each pixel that happens

to have only a single event. This explains the overall

high false alarm count for the algorithm. For the current

set of parameters LandTrendR is also characterized by

several false alarms for any given trajectory. EWMACD

is flexible in terms of the number of breakpoints, thereby

producing fewer FPs. The polyalgorithm naturally inherits

false alarms from the component algorithms. Preliminary

experiments to allow flexible values of ν, µ for BFAST

and µ for LandTrendR have shown encouraging results,

but a reliable strategy to adopt this feature is currently

not there. On a different note, for short term trajectories,

the available TimeSync data contains only major events

such as fire, harvest, and the like (and, sometimes, does

not agree with the NDVI trajectory (Figure 12)). Each

of the three algorithms frequently registers the beginning

of any new trend in trajectory as a breakpoint as well.

Since ‘nonmajor­changes’ such as beginning or end of

recovery period are not included in TimeSync data, these

breakpoints often get (incorrectly) counted towards false

alarms. With such limitations, the presented FP numbers

are a rather unfair assessment.

In case of BFAST, when there exists an ongoing

gradual event in the beginning of the trajectory (e.g.,

a harvest from 2000–02), BFAST places a breakpoint

at the end of this change, or, in other words, at the

beginning of the next (recovery or stability) trend (so,

in 2002 or 2003 for the harvest that extended from

2000–02). This breakpoint is correct with respect to the

trajectory. However, for this example, TimeSync records

2000–02 as the change years. So while checking against

TimeSync data, no change is found in the years on

record and BFAST gets a false negative. Consequently,

BFAST’s true positives are slightly undercounted and

Table 2. Breakpoint detection relative to TimeSync data.

EWMACD LTR BFAST PolyAlg.

Harvest TP 271 304 368 340

(558 pixels) FN 340 307 243 275

FP 204 913 310 368

Mechanical TP 33 44 49 46

(58 pixels) FN 39 28 23 26

FP 83 260 102 123

Flood TP 8 11 9 8

(19 pixels) FN 13 10 12 13

FP 196 581 226 261

Fire TP 79 72 88 82

(130 pixels) FN 54 61 45 51

FP 25 94 30 39

Table 3. Percentage of algorithm selection

EWMACD LandTrendR BFAST none

Harvest 32.8% 50.5% 14.9% 1.7%

Mechanical 25.8% 25.8% 46.5% 1.7%

Flood 42% 26.3% 31.6% 0%

Fire 27.7% 20.8% 49.2% 2.3%

false negatives are slightly overcounted. The same is true

for the polyalgorithm’s false negatives/true positives.

Based on the numbers in the tables, the polyalgorithm

demonstrates improved results compared to either EW­

MACD or LandTrendR alone. However, BFAST turns out

to be the highest performing algorithm, even better than

the polyalgorithm itself. The results collectively suggest

that, for a significant number of instances, (i) EWMACD

and LandTrendR miss ‘major’ events while these events

are correctly identified by BFAST, but (ii) EWMACD

and LandTrendR still get chosen as the final algorithm

by the polyalgorithm. The selection in these instances

could potentially be because of (i) both algorithms finding

similar sets of incorrect breakpoints and therefore being

in consensus, or (ii) situations similar to Figures 11

and 12(b) — one of the component algorithms yields a

clustered set of breakpoints, which also happens to be

close to any breakpoint from one of the other component

algorithms. Experiments on long term trajectories with

the same polyalgorithm strategy have not shown any

significant changes in success rates. Including more

algorithms will partially alleviate this situation. To

robustly combat this situation, the polyalgorithm strategy

itself needs to evolve further. Minor variations in

polyalgorithm strategy have shown promise but having

more algorithms will be beneficial prior to any significant

strategy changes.

20

BFAST vs. polyalgorithm. BFAST is very thorough

in its breakpoint search, so its good performance is

not surprising. It appears that using BFAST alone

may be better than using multiple algorithms and the

polyalgorithm. However, BFAST does not scale well

(Saxena et al. 2017a, Saxena et al. 2017b). Furthermore,

the user­defined, fixed number of breakpoints (µ = 2 in

this study) that BFAST uses is a significant limitation.

For the same stack of images (scene), different pixels may

have zero, one, two, or more breakpoints. In addition, for

longer lengths of time more breakpoints may be desirable.

Two breakpoints are barely enough to capture one loss

plus the subsequent recovery. Eventually, therefore,

other algorithms that allow on­the­fly determination of

breakpoints and are also scalable will need to be included

as component algorithms. BFAST can instead be used,

for example, in subintervals of the dataset to validate

breakpoints produced by other component algorithms, or,

to check stability in the training period of algorithms

dependent on training data. The polyalgorithmic approach

appears to be the most promising way of change detection

over a variety of land covers, but a viable polyalgorithm

remains to be worked out.

Dependence on parameters. The present results

are based on a fixed set of parameters (the published

parameters). In some (to many) instances, variation of

input parameters for any one algorithm could well cause

output variability comparable to that between algorithms.

Using larger values of persistance ̟ and L for EWMACD,

for instance, make significant differences in the output.

Similarly, using ν = 0 for LandTrendR appears to reduce

clustering of breakpoints. The current polyalgorithm used

the published value ν = 0. The number of breakpoints

used for BFAST and LandTrendR, in particular, has

significant influence on the polyalgorithm outcomes.

Imbalance in number of breakpoints. Currently,

EWMACD has an independent number of breakpoints,

BFAST has a user defined, fixed number of breakpoints,

while LandTrendR has a user defined upper limit on the

number of breakpoints. Different algorithms producing

different numbers of breakpoints almost always leads to a

significant imbalance in the Hausdorff directional distance

based voting. To alleviate this imbalance, one possibility

is to run EWMACD, if it produces a minimum number of

breakpoints (minimum being decided based on the total

number of years in the study), set µ for LandTrendR and

ν = µ for BFAST equal to it. Preliminary experiments

with this approach have shown improved results for

BFAST, LandTrendR and the polyalgorithm. However,

more algorithms need to be included (at least, to combat

the dependence of EWMACD itself on its training period)

and outcomes studied further before drawing conclusions.

8. Conclusions and Future Work.

At present, the polyalgorithm offers some improvement

over EWMACD or LandTrendR alone, but not over

BFAST. Since BFAST is the most rigourous/exhaustive

component algorithm, and the polyalgorithm is not

as good as BFAST yet, there is surely room for

improvement of the polyalgorithm. The experiments

carried out in this work are just the beginning of further

work towards a viable polyalgorithm. Several directions

of research/development must be pursued in this regard.

First, the number of algorithms included here is

not sufficient for a robust consensus vote. Two out

of three algorithms often miss trends and/or important

changes of interest to users. With only three algorithms

in the framework, the polyalgorithm also misses these

changes/events. At least two more algorithms must be

included for robust voting. Algorithms based on splines

(e.g., Moisen et al. 2016) and those utilizing spatial

information have potential for inclusion.

Second, the current algorithm selection is not exhaus­

tive in data coverage. For example, for trajectories where

there is no significant change in trend and the training

period of EWMACD is also unstable, only LandTrendR

is applicable. An algorithm suitable for such trajectories

is needed. Further, most examples presented in this

paper are related to vegetated pixels (mainly because

NDVI was being used as input). Studying the use of the

polyalgorithm to monitor urban land cover changes is one

of the next steps and will likely involve utilizing other

spectral bands.

Third, in addition to determining the ‘best’ algorithm

for a given pixel, it may also be possible to incorporate

parameter tuning/adaptation in the polyalgorithm. For

example, for a random sample of pixels with known

validated changes, the polyalgorithm may run each

algorithm for a range of parameters rather than for the

fixed set of (published) parameters. The polyalgorithm

will then also suggest good parameter choices for each

algorithm on the full data set. Adding such intelligence

to any of the algorithms, and to the polyalgorithm, is a

significant research challenge.

Fourth, resource allocation is a concern. Parallelism

is presently implemented only across pixels (first level)

using OpenMP, i.e., multiple cores of a node take different

pixels and process them simultaneously. For a fixed pixel,

the component algorithms are currently executed serially.

With this arrangement, load balancing within individual

algorithms is already an issue. If a national level image

analysis has to be carried out or if parameter tuning

has to be included in the polyalgorithm, parallelism

across algorithms (second level) becomes essential. A

third layer of parallelism, namely, parallelism within

algorithms, is also desirable. Load balancing between

21

these three (coarse to fine grained) levels of parallelism

in the polyalgorithm will be challenging.

Finally, the directional Hausdorff distance d(·, ·) alone

is not sufficient to determine the polyalgorithm outcome.

The instances of failure of the current basic strategy are

primarily due to an insufficient number of component

algorithms, and equally important, due to to multiple

algorithms producing proximal but incorrect results. To

fully circumvent the latter situation, the polyalgorithm

strategy needs to evolve further. Possibilities include: (i)

including parameter variation (ii) breakpoint acceptance

test (for example, residuals for a piecewise linear fit based

on proposed breakpoints). (iii) tests for goodness of

fit and correlation coefficient, (iv) preemptively checking

whether a component algorithm is even suitable for a

given time series (e.g., if the training period of EWMACD

is not stable, then EWMACD is simply not used for that

pixel). Including more algorithms will allow designing

more sophisticated strategies.

Given the inconsistent trend predictions between the

different algorithms, the sometimes erratic behavior of a

given algorithm on a given image stack, the sensitivity

to parameters for some algorithms, and the prohibitive

execution times for serial codes, there is clearly a need

for a parallel polyalgorithm (an intelligent, adaptive union

of multiple algorithms). This and earlier work (Saxena

et al. 2017a), assessing the scalability and memory

footprint, the parameter sensitivity, and the range of

applicability of individual algorithms are but first steps

toward such a parallel polyalgorithm for hyperspectral

Landsat image stacks. In summary, the contributions

of this work are (1) a systematic investigation of the

issues involved in creating a polyalgorithm; (2) precise

mathematical descriptions of BFAST, EWMACD, and

LandTrendR; (3) efficient, portable, parallel Fortran 2008

code for all algorithms; (4) directional Hausdorff distance

for comparing changes; (5) a unified I/O framework for

running and comparing LULCC algorithms.

9. Acknowledgements

This work was supported in part by USDA Forest

Service Grant 13­JV­11330145­046, NSF Grant CNS­

1565314, US Geological Survey Contract G12PC00073,

NASA Grants NNX17AI07G and NNX17AI09G, and the

Virginia Agricultural Experiment Station and the McIntire­

Stennis Program of NIFA, USDA (Project Number

1007054, “Detecting and Forecasting the Consequences

of Subtle and Gross Disturbance on Forest Carbon

Cycling"). The authors thank the anonymous reviewers

for their insightful feedback on the original manuscript.

10. Author Contributions

RS wrote the codes and conducted the experiments;

RS, LTW, and RHW wrote the paper; EBB, VAT, YZ,

and REK assisted in data collection and validation.

References

Agrawal, R., Faloutsos, C., and Swami, A., 1993, Efficient

similarity search in sequence databases, in Lomet

D.B. (eds) Foundations of Data Organization and

Algorithms, 69–84.

Ahn, T.­H., Sandu, A., Watson, L.T., Shaffer, C.A., Cao,

Y., and Baumann, W.T., 2015, “A framework to

analyze the performance of load balancing schemes

for ensembles of stochastic simulations,” Int. J.

Parallel Programming, 43(4), 597–630.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra,

J., Du Croz, J., Greenbaum, A., Hammarling, S.,

McKenney, A., and Sorensen, D., 1992, LAPACK

Users’ Guide, SIAM.

Anees, A., Aryal, J., O’Reilly, M.M., Gale, T.J., Wardlaw,

T., 2016, “A robust multi­kernel change detection

framework for detecting leaf beetle defoliation using

Landsat 7 ETM+ data,” ISPRS J. Photogrammetry

and Remote Sensing, 122, 167–178.

Banner, A., and Lynham, T., 1981, Multitemporal analysis

of Landsat data for forest cutover mapping — a

trial of two procedures, in Proc. of the 7th Canadian

Symposium on Remote Sensing, Winnipeg, Canada,

233–240.

Benedek, C., Shadaydeh, M., Kato, Z., Szirányi, T.,

Zerubia, J., 2015, “Multilayer Markov Random

Field models for change detection in optical remote

sensing images,” ISPRS J. Photogrammetry and

Remote Sensing, 107, 22–37.

Bergh, F.V.D., Wessels, K.J., Miteff, S., Zyl, T.L.V.,

Gazendam, A.D., and Bachoo, A.K., 2012,

“HiTempo: a platform for time­series analysis of

remote­sensing satellite data in a high­performance

computing environment,” Int. J. of Remote Sensing,

33(15), 4720–4740.

Brooks, E.B., Thomas, V.A., Wynne, R.H., and Coulston,

J. W., 2012, “Fitting the multitemporal curve:

a Fourier series approach to the missing data

problem in remote sensing analysis,” IEEE Trans. on

Geosciences and Remote Sensing, 59, 3340–3353.

Brooks, E.B., Wynne, R.H., Thomas, V.A., Blinn, C.E.,

and Coulston, J.W., 2014, “On­the­fly massively mul­

titemporal change detection using statistical quality

control charts and Landsat data,” IEEE Trans. on

Geoscience and Remote Sensing, 52(6), 3316–3332.

Brooks, E.B., Zhiqiang, Y., Thomas, V.A., and Wynne,

R.H., 2017, “Edyn: Dynamic Signaling of Changes

to Forests Using Exponentially Weighted Moving

Average Charts,” Forests, 8(304), 18.

Bouziani, M., Goia, K., He, D.C., 2010, “Automatic

change detection of buildings in urban environment

from very high spatial resolution images using

existing geodatabase and prior knowledge,” ISPRS

J. of Photogrammetry, 65(1), 143–153.

22

Box, G.E.P., and Jenkins, G.M., 1970, Time Series

Analysis: Forecasting and Control, San Francisco:

Holden Day. (Revised edition published 1976).

Cai, S., and Desheng, L., 2015, “Detecting Change

Dates from Dense Satellite Time Series Using a

Sub­Annual Change Detection Algorithm,” Remote

Sensing, 7, 8705–8727.

Campbell, J.B., and Wynne, R.H., 2011, Introduction to

Remote Sensing, Fifth Edition, Guilford Publications.

Chan, K.P., and Fu, A.W­C., 1999, Efficient time series

matching by wavelets, in Proc. of the 15th IEEE Int.

Conference on Data Engineering (ICDE), 8 pages.

Chen, G., Hay, G.J., Carvalho, L.M., Wulder, M.A.,

2012a, “Object­based change detection,” Int. J.

Remote Sensing, 33(14), 4434â^4457.

Chen, X., Chen, J., Shi, Y., Yamaguchi, Y., 2012b,

“An automated approach for updating land cover

maps based on integrated change detection and

classification methods,” ISPRS J. Photogrammetry

and Remote Sensing, 71, 86–95.

Chu, C­S.J., Hornik, K., and Kuan, C.­M., 1995, “Mosum

tests for parameter constancy,” Biometrika, 82, 603–

617.

Cohen, W.B., and Fiorella, M., 1998, Remote Sensing

Change Detection: Environmental Monitoring Appli­

cations and Methods, edited by C. D. Elvidge and

R. S. Lunetta, Ann Arbor Press, 89–102.

Cohen, W.B., Fiorella, M., Gray, J., Helmer, E., and

Anderson, K., 1998, “An efficient and accurate

method for mapping forest clear cuts in the Pacific

Northwest using Landsat imagery,” Photogrammetric

Engineering and Remote Sensing, 64, 293–300.

Cohen, W.B., Healey, S.P., Zhiqiang, Y., Stehman, S.V.,

Brewer, C.K., Brooks, E.B., Gorelick, N., Huang,

C., Hughes, M.J., Kennedy, R.E., Loveland, T.R.,

Moisen, G.G., Schroeder, T.A., Vogelmann, J.E.,

Woodcock, C.E., Yang, L., and Zhu, Z., 2017, “How

Similar Are Forest Disturbance Maps Derived from

Different Landsat Time Series Algorithms,” Forests,

8(98), doi: 10.3390/f8040098.

Cohen, W.B., Yang, Z., and Kennedy, R.E., 2010,

“Detecting trends in forest disturbance and recovery

using yearly Landsat time series: 2. TimeSync­Tools

for calibration and validation,” Remote Sensing of

Environment, 114(12), 2911–2924.

Coppin, P.R., and Bauer, M.E., 1994, Processing of

multitemporal Landsat TM imagery to optimise

extraction of forest cover change features, in IEEE

Trans. on Geoscience and Remote Sensing, 32,

918–927.

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B.,

and Lambin, E., 2004, “Digital change detection

methods in ecosystems monitoring: A review,” Int.

J. of Remote Sensing, 25(5), 1565–1596.

Dietterich, T.G., Kittler, J., and Roli, F., 2001, Ensemble

methods in machine learning, Multiple Classifier

Systems, LNCS Vol. 1857, Springer, 1–15.

Douglas, D.H., and Peucker, T.K., 1973, “Algorithms for

the reduction of the number of points required to

represent a digitized line or its carricature,” Canadian

Cartographer, 10(2), 112–122.

Duda, R.O., and Hart, P.E., 1973, Pattern Classification

and Scene Analysis, Wiley, New York.

Fall, S., Niyogi, D., Gluhovsky, A., Pielke, R.A. Sr.,

Kalnay, E., and Rochon, G., 2010, “Impacts of

land use and land cover on temperature trends over

the continental United States: assessment using the

North American Regional Reanalysis,” Int. J. of

Climatology, 30(13), 1980–1993.

Fung, T., and LeDrew, E., 1987, “Application of prin­

cipal components analysis to change detection,”

Photogrammetric Engineering and Remote Sensing,

53, 1649–1658.

Fung, T., 1990, “An assessment of TM imagery for land

cover change detection,” IEEE Trans. on Geoscience

and Remote Sensing, 28, 681–684.

Goldstein, T., and Osher, S., 2009, “The split Bregman

method for L1­regularized problems,” SIAM J. on

Imaging Sciences, 2(2), 323–343.

Gomeni, R., and Gomeni, C., 1979, “AUTOMOD: A

polyalgorithm for an integrated analysis of linear

pharmacokinetic models,” Computers in Biology and

Medicine, 9(1), 39–48.

Goodwin, N.R., Coops, N.C., Wulder, M.A., Gillanders,

S., Schroeder, T.A., and Nelson, T., 2008, “Estimation

of insect infestation dynamics using a temporal

sequence of Landsat data,” Remote Sensing of

Environment, 112, 3680–3689.

Moisen, G.G., Meyer, M.C., Schroeder, T.A., Liao, X.,

Schleeweis, K.G., Freeman, E.A., and Toney, C.,

2016, “Shape selection in Landsat time series: a

tool for monitoring forest dynamics,” Global Change

Biology, 22(10), 3518–3528.

Häfner, H., Schönauer, W., and Weiss, R., 1999, “The

program package LINSOL — basic concepts and

realization,” Applied Numerical Mathematics, 30(2–

3), 213–224.

Hame, T.H., 1986, “Satellite image aided change de­

tection,” In Remote sensing­aided forest inventory,

Research Notes No. 19, Department of Forest Men­

suration and Management, University of Helsinki,

Helsinki, Finland, 47–60.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M.,

Turubanova, S.A., Tyukavina, A., Thau, D., Stehman,

S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A.,

Egorov, A., Chini, L., Justice, C.O., and Townshend,

J.R.G., 2013, “High­resolution global maps of 21st­

century forest cover change,” Science, 342, 850–853.

23

Healey, S.P., Cohen, W.B., Yang, Z., Brewer,

C.K., Brooks, E.B., Gorelick, N., Hernandez,

A.J., Huang, C., Hughes, M.J., Kennedy, R.E.,

Loveland, T.R., Moisen, G.G., Schroeder, T.A.,

Stehman, S.V., Vogelmann, J.E., Woodcock, C.E.,

Yang, L., and Zhu, Z., 2017, “Mapping forest

change using stacked generalization: An ensem­

ble approach,” Remote Sensing of Environment,

http://dx.doi.org/10.1016/j.rse.2017.09.029.

Huang, C., Goward, S.N., Masek, J.G., Thomas, N.,

Zhu, Z., and Vogelmann, J.E., 2010, “An automated

approach for reconstructing recent forest disturbance

history using dense Landsat time series stacks,”

Remote Sensing of Environment, 114(1), 183–198.

Hughes, M.J., 2014, New Remote Sensing Methods for

Detecting and Quantifying Forest Disturbance and

Regeneration in the Eastern United States, University

of Tennessee ­ Knoxville.

Hunter, J., and McIntosh, N., 1999, Artificial Intelligence

in Medicine, Springer.

Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.,

2013, “Change detection from remotely sensed im­

ages: from pixel­based to object­based approaches,”

ISPRS J. of Photogrammetry and Remote Sensing,

80, 91–106.

Iersel, W.V., Straatsma, M., Addink, E., and Middlekoop,

H., 2018, “Monitoring height and greenness of non­

woody floodplain vegetation with UAV time series,”

ISPRS J. of Photogrammetry and Remote Sensing,

141, 112–123.

Jensen, J.R., 1983, “Urban change detection mapping

using Landsat digital data,” The American Cartogra­

pher, 81, 127–147.

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J.,

and Xian, G., 2013, “A comprehensive change

detection method for updating the National Land

Cover Database to circa 2011,” Remote Sensing of

Environment, 132, 159–175.

de Jong, R., Verbesselt, J., Schaepman, M.E., and de

Bruin, S., 2012, “Trend changes in global greening

and browning: Contribution of short­term trends to

longer­term change,” Global Change Biology, 18,

642–655.

de Jong, R., Verbesselt, J., Zeileis, A., and Schaepman,

M., 2013, “Shifts in global vegetation activity

trends,” Remote Sensing, 5(3), 1117–1133.

Joyce, A.T., and Burns, G.S., 1981, Evaluation of land

cover change detection techniques using Landsat

MSS data, in Proc. of the 7th PECORA Symposium,

Sioux Falls, SD, USA (Bethesda, MD: ASPRS),

252–260.

Kalluri, S.N.V., JaJa, J., Bader, D.A., Zhang, Z., Town­

shend, J.R.G., and Fallah­Adl, H., 2000, “High

performance computing algorithms for land cover

dynamics using remote sensing data,” Int. J. of

Remote Sensing, 21(6 & 7), 1513–1536.

Kennedy, R.E., Cohen, W.B., and Schroeder, T.A., 2007,

“Trajectory­based change detection for automated

characterization of forest disturbance dynamics,”

Remote Sensing of Environment, 110, 370–386.

Kennedy, R.E., Yang, Z., and Cohen, W.B., 2010,

“Detecting trends in forest disturbance and recovery

using yearly Landsat time series: 1. LandTrendr –

Temporal segmentation algorithms,” Remote Sensing

of Environment, 114, 2897–2910.

Keogh, E., Chu, S., Hart, D., and Pazzani, M., 2001, An

online algorithm for segmenting time series, in Proc.

of IEEE Int. Conference Data Mining, 289–296.

Kittler, J., Hatef, M., Duin, R.P.W., Matas, J., 1998,

“On combining classifiers,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, 20(3), 226–239.

Koski, A., Juhola, M., and Meriste, M., 1995, “Syntactic

recognition of ECG signals by attributed finite

automata,” Pattern Recognition, 28(12), 1927–1940.

Kriegler, F.J., Malila, W.A., Nalepka, R.F., and Richard­

son, W., 1969, Preprocessing transformations and

their effects on multispectral recognition, in Proc.

of the Sixth Int. Symposium on Remote Sensing of

Environment, 97–131.

Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen,

D., and Allen, J., 2000, Mining of Concurrent Text

and Time Series, in Proc. of the 6th Int. Conference

on Knowledge Discovery and Data Mining, 37–44.

Lay, David C., Linear Algebra and its Applications,

Addison Wesley.

Lee, C.A., Gasster, S.D., Plaza, A.J., Chang, C.­T.,

and Huang, B., 2011, “Recent developments in

high performance computing for remote sensing: a

review,” IEEE J. of Selected Topics in Applied Earth

Observations and Remote Sensing, 4(3), 508–527.

Li, C., Yu, P., and Castelli, V., 1998, MALM: A framework

for mining sequence database at multiple abstraction

levels, in Proc. of the 9th Int. Conference on

Information and Knowledge Management, 267–272.

Li, J., 1996, A Polyalgorithm for Parallel Dense Ma­

trix Multiplication on two­dimensional process grid

topologies, Thesis: Missisippi State University.

LLNL, OpenMP, https://computing.llnl.gov/tutorials/­

openMP/#THREADPRIVATE.

Lu, D., Mausel, P., Brondizio, E., and Moran, E., 2004,

“Change detection techniques,” Int. J. of Remote

Sensing, 25(37), 2365–2401.

Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon,

J.G., and Worthy, L.D., 2006, “Land­cover change

detection using multi­temporal MODIS NDVI data,”

Remote Sensing of Environment, 105(2), 142–154.

Mougel, P.N., and Folcher, N.S., 2012, A data mining

approach to discover collections of homogeneous

24

regions in satellite image time series, in Geoscience

and Remote Sensing Symposium (IGARSS), 4360–

4363.

Myeneni, B., R., Keeling, C.D., Tucker, C.J., Asrar, G.,

and Nemani, R.R., 1997, “Increased plant growth

in the northern high latitudes from 1981 to 1991,”

Nature, 386, 698–702.

Neilsen, A., Conradsen, K., and Simpson, J., 1998,

“Multivariate alteration detection (MAD) and MAF

post processing in multi­spectral bi­temporal image

data: new approaches to change detection studies,”

Remote Sensing of Environment, 64, 1–19.

Petitjean, F., Gancarski, P., Masseglia, F., and Forestier,

G., 2010, “Analysing satellite image time series

by means of pattern mining,” Lecture Notes in

Computer Science, 6283, 45–52.

Petitjean, F., Kurtz, C., and Gancarski, P., 2012, Spatio­

Temporal Reasoning for the Classification of Satellite

Image Time Series, in Pattern Recognition Letters,

14 pages.

Petitjean, F., Inglada, J., and Gancarski, P., 2011, “Satellite

Image Time Series Analysis under Time Warping,”

IEEE Trans. on Geoscience and Remote Sensing,

50(8), 3081–3095.

Phillips, R.D., Watson, L.T., and Wynne, R.H., 2007,

“Hybrid image classification and parameter selec­

tion using a shared memory parallel algorithm,”

Computers & Geosciences, 33(7), 875–897.

Plaza, A.J., and Chang, C.­I., 2007, High Performance

Computing in Remote Sensing, CRC Press.

Plisnier, P.D., Serneels, S., and Lambin, E.F., 2000,

“Impact of ENSO on East African ecosystems: mul­

tivariate analysis based on climatologic and remote

sensing data,” Global Ecology and Biogeography

Letters, 9, 481–497.

Quinn, M.J., 2004, Parallel Programming in C with MPI

and OpenMP, McGraw Hill.

Ramer, U., 1972, “An iterative procedure for the polygonal

approximation of planar curves,” Computer Graphics

and Image Processing, 1, 244–256.

Rice, J.R., 1967, On the Construction of Polyalgorithms

for Automatic Numerical Analysis, in Interactive

Systems for Experimental Applied Mathematics,

301–313.

Rice, J.R., 1969, A Polyalgorithm for the Automatic

Solution of Nonlinear Equations, in Proc. of the

1969 24th National Conference, 179–183.

Rice, J.R., 2014, Numerical Methods in Software and

Analysis, Elselvier.

Rice, J.R., and Rosen, S., 1966, NAPSS – a numerical

analysis problem solving system, in Proc. of the

ACM National Conference, 51–56.

Richards, J.A., 1984, “Multitemporal analysis of Landsat

imagery for monitoring forest cutovers in Nova

Scotia,” Canadian J. of Remote Sensing, 11, 188–

194.

Rudin, L., Osher, S., and Fatemi, E., 1992, “Nonlinear

total variation based noise removal algorithms,”

Physica D: Nonlinear Phenomena, 60, 259–268.

Saxena, R., Watson, L.T., Thomas, V.A., and Wynne,

R.H., 2017a, Scaling constituent algorithms of a

trend and change detection polyalgorithm, in Proc.

High Performance Computing Symp. (HPC 2017),

2017 Spring Simulation Multiconference, Soc. for

Modelling and Simulation Internat., Vista, CA, 12

pages.

Saxena, R., Watson, L.T., Wynne, R.H., and Thomas,

V.A., 2017b, Scalability of land use monitoring

codes, in Proc. 2017 Internat. Conf. on Scientific

Computing, H.R. Arabnia, M.R. Grimaila, D.D.

Hodson, and F.G. Tinetti (eds.) CSREA Press, Las

Vegas, NV, 3–9.

Serneels, S., Said, M., and Lambin, E.F., 2001, “Land­

cover changes around a major East African wildlife

reserve: the Mara ecosystem,” Int. J. of Remote

Sensing, 22, 3397–3420.

Shatkay, H., and Zdonik, S., 1996, Approximate queries

and representations for large data sequences, in

Proc. of the 12th IEEE Int. Conference on Data

Engineering, 546–553.

Thomson, F., Davis, G., and Colwell, J.E., 1980, Detection

and measurement of changes in the production and

quality of renewable resources, in USDA Forest

Service Final Report 145300–4­F, ERIM, Ann Arbor,

MI, USA.

Toney, C., Liknes, G., Lister, A., and Meneguzzo,

D., 2012, Assessing alternative measures of tree

canopy cover: photo­interpreted NAIP and ground­

based measures, in Proc. of Monitoring Across

Borders: 2010 Joint Meeting of the Forest Inventory

and Analysis (FIA) Symposium and the Southern

Mensurationists. Edited by W. McWilliams and F.A.

Roesch. USDA Forest Service, Southern Research

Station, Asheville, North Carolina, e­Gen. Tech. Rep.

SRS­157, 209–215.

Tucker, C.J., 1979, “Red and photographic infrared linear

combinations for monitoring vegetation,” Remote

sensing of Environment, 8(2), 127­150.

Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor,

D., 2010, “Detecting trend and seasonal changes

in satellite image time series,” Remote Sensing of

Environment, 114, 106–115.

Verbesselt, J., Hyndman, R., Zeileis, A., and Culvenor,

D., 2010, “Phenological change detection while

accounting for abrupt and gradual trends in satellite

image time series,” Remote Sensing of Environment,

114, 2970–2980.

25

Vintrou, E., Ienco, D., Begue, A., and Tesseire, M.,

2013, “Data mining, a promising tool for large area

cropland mapping,” IEEE J. of Selected Topics in

Applied Earth Observations and Remote Sensing,

6(5), 2132–2138.

Vintrou, E., Desbrosse, A., Begue, A., Traore, S., Baron,

C., and Seen, D.L., 2012, “Crop area mapping in

West Africa using landscape stratification of MODIS

time series and comparison with existing global land

products,” Int. J. of Applied Earth Observation and

Geoinformation, 14, 83–93.

Vlasveld, R.Q., 2014, Temporal Segmentation using

Support Vector Machines in the context of Human

Activity Recognition, Utrecht University.

Whittle, P., 1951, Hypothesis Testing in Time Series

Analysis, Uppsala: Almqvist & Wiksells Boktryckeri

AB.

Wold, H., 1938, A Study in the Analysis of Stationary

Time Series, Almqvist & Wiksell.

Woodcock, E.C., Allen, R., Anderson, M., Belward, A.,

Bindschadler, R., Cohen, W., Gao, F., Goward, S.N.,

Helder, D., Helmer, E.M., Nemani, R., Oreopou­

los, R., Schott, J., Thenkabail, P., Vermonte, E.,

Vogelmann, J., Wulder, M., and Wynne, R., 2008,

“Free access to Landsat imagery,” Science, 320,

1011–1011.

Wozniak, M., Grana, M., Corchado, E., 2014, “A survey

of multiple classifier systems as hybrid systems,”

Information Fusion, 16, 3–17.

Xiao, P., Zhang, X., Wang, D., Yuan, M., Feng, X., Kelly,

M., 2016, “Change detection of built­up land: A

framework of combining pixel­based detection and

object­based recognition,” ISPRS J. Photogrammetry

and Remote Sensing, 119, 402–414.

Xing, J., Sieber, R., and Caelli, T., 2018, “A scale­

invariant change detection method for land use/cover

change research,” ISPRS J. of Photogrammetry and

Remote Sensing, 141, 252–264.

Gil­Yepes, J.L., Ruiz, L.A., Recio, J.A., Balaguer­Beser,

A., Hermosilla, T., 2016, “Description and validation

of a new set of object­based temporal geostatistical

features for land­use/land­cover change detection,”

ISPRS J. of Photogrammetry Remote Sensing, 121,

77–91.

Zhan, X., Sohlberg, A.R., Townshend, J.R.G., DiMiceli,

C., Carroll, M.L., Eastman, J.C., Hansen, M.C.,

and DeFries, R.S., 2002, “Detection of land cover

changes using MODIS 250 m data,” Remote Sensing

of Environment, 83, 336–350.

Zhu, Z., and Woodcock, C.E., 2012, “Object­based cloud

and cloud shadow detection in Landsat imagery,”

Remote Sensing of Environment, 118, 83–94.

Zhu, Z., and Woodcock, C.E., 2014, “Continuous Change

Detection and Classification of Land Cover Using

All Available Landsat Data,” Remote Sensing of

Environment, 144, 152–171.

Zhe, Z., 2017, “Change detection using landsat time series:

A review of frequencies, preprocessing, algorithms,

and applications,” ISPRS J. of Photogrammetry

Remote Sensing, 130, 370–384..

26

