Towards a Polyalgorithm for Land Use Change Detection

Rishu Saxena¢, Layne T. Watson®, Randolph H. Wynne¢, Evan B. Brooks¢, Valerie A. Thomas®,

Yang Zhiqiang?, and Robert E. Kennedy*®

¢ Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061,

USA.

b Departments of Computer Science, Mathematics, and Aerospace and Ocean Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, VA 24061, USA.

“Department of Forest Resources and Environmental Conservation, Blacksburg, Virginia 24061.
dForest Ecosystems & Society, Oregon State University, Corvallis, OR 97331, USA.
¢College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.

Abstract. One way of analyzing satellite images for
land use and land cover change (LULCC) is time
series analysis (TSA). Most of the many TSA based
LULCC algorithms proposed in the remote sensing
community perform well on datasets for which they were
designed, but their performance on randomly chosen
datasets from across the globe has not been studied.
A polyalgorithm combines several basic algorithms,
each meant to solve the same problem, producing a
strategy that unites the strengths and circumvents the
weaknesses of constituent algorithms. The foundation of
the proposed TSA based ‘polyalgorithm’ for LULCC is
three algorithms (BFAST, EWMACD, and LandTrendR),
precisely described mathematically, and chosen to be
fundamentally distinct from each other in design and
in the phenomena they capture. Analysis of results
representing success, failure, and parameter sensitivity
for each algorithm is presented. For a given pixel,
Hausdorff distance is used to compare the distance
between the change times (breakpoints) obtained from
two different algorithms. Timesync validation data, a
dataset that is based on human interpretation of Landsat
time series in concert with historical aerial photography,
is used for validation. The polyalgorithm yields more
accurate results than EWMACD and LandTrendR alone,
but counterintuitively not better than BFAST alone. This
nascent work will be directly useful in land use and land
cover change studies, of interest to terrestrial science
research, especially regarding anthropogenic impacts on
the environment.

Keywords. Time series analysis, remote sensing, change
detection, scalable computing, polyalgorithm.

1. Introduction

Land use change is described as changes in how
humans use the surface of the Earth (e.g., for agriculture,
plantations, pastures, managed woods, conservation,
settlements, or leaving it alone as natural ecosystem).
Changes in land use lead to changes in albedo, thereby
directly affecting the temperatures of the surrounding
area. Significant and lasting changes in land use and
land cover (LULC) have more profound effects. The
past century has seen an exponential growth in human
activities such as deforestation and urbanization causing
significant changes in land cover in several parts of the
world (Hansen et al. 2013). Simultaneously, significant
changes in the global climate have also been observed,
driven in part by LULC change (LULCC) (e.g., Fall et
al. 2010). LULCC also has impacts on a wide variety
of other ecosystem services. Monitoring LULCC across
the globe, therefore, has become the need du jour. Land
use change detection comprises any methodology used
for determining the occurrence and nature of change in
LULC.

Earth observation satellites (EOS) such as Landsat
capture images of the Earth’s surface at regular intervals
using multiple spectral frequencies. These images hold
valuable information that, if harnessed well, can be
immensely helpful in understanding, monitoring, and
managing our natural resources, as well as studying
LULCC. One way of analyzing these satellite images
for LULCC studies is time series analysis (or, temporal
trajectory analysis). For time series analysis, several
images of the scene under consideration, taken over
a period of time, are stacked together chronologically
and subsequently analyzed. Commonly, the time series
for each pixel is treated individually; the full image
stack is thus a collection of many time series. The
choice of spectral band(s) varies from application to



application. The objective is to discover a ‘trend’ in
how different relevant variables (indicators) evolve over
time. In change detection analysis, when the trajectory
of one or more of the variables departs from the normal,
a change is detected. Time series analysis for LULCC
studies has been receiving increasing attention in the last
decade, specifically, after the Landsat data became freely
accessible in 2008 (Woodcock et al. 2008). Several
time series analysis algorithms have been proposed by
different groups in the remote sensing community.

Despite a plethora of time series analysis algorithms
available in remote sensing, design and selection of
algorithms for LULCC detection in remote sensing
appears to be almost always context specific. Most
of the methods proposed to date seem to perform well
on the type of data that they are designed for. Their
performance on randomly picked datasets from across
the globe has not been studied. The onus of choosing
an appropriate algorithm that will perform well on their
particular dataset falls on the user. Unfortunately, no
single algorithm designed so far seems to work for
all datasets (Cohen et al. 2017). For example, the
Western Antarctica as well as the Greenland Ice Sheets
are beginning to collapse due to global warming, the
melting leading to continually receding snow covers
at the respective locations. For these regions, using
LULC algorithms based on periodicity assumptions is
expected to lead to incorrect predictions and/or false
alarms, although the nature and extent of this has not
been studied yet. Even if there were no global warming,
mild shifts in the ‘phase’ and ‘amplitude’ of seasons are
known to take place (Petitjean, Inglada, and Gancarski
2011). Time warping techniques (Petitjean, Inglada, and
Gancarski 2011) to deal with these issues may be helpful
in some contexts, but their accuracy and scalability has
not yet been satisfactorily investigated. Approaches based
on periodicity and a moving window are possible, with
additional computational costs.

A polyalgorithm is an effective strategy to unite the
strengths and circumvent the weaknesses of multiple
algorithms that are also individually designed to solve
the same problem. The concept of polyalgorithm was
introduced by Rice and Rosen (1966). A polyalgorithm
uses a combination of several basic methods in a
framework. Each of these basic methods is applicable
to the same problem, with only their performance and/or
success being different for different datasets (inputs). The
construction of this framework involves experimenting
with an increasingly heterogeneous set of situations to
evolve a robust algorithm that is capable of choosing a
correct subset of algorithms suitable for a given input,
and has performance metrics to integrate their outputs.
The details of algorithm selection and processing stay
hidden from the user. Polyalgorithms have been designed

in the past for solving various problems, for example,
nonlinear systems of equations (Rice and Rosen 1966,
Rice 1969, Rice 2014, Rice 1967), matrix computations
on parallel architectures (Li 1996, Héfner, Schonauer, and
Weiss 1999), and certain chemical models (Gomeni and
Gomeni 1979).

This work lays the foundation for a polyalgorithm
for LULCC detection. Three currently existing, fun-
damentally different from each other, change detection
algorithms are utilized. A similar work in this direction
is Zhan et al. (2002), wherein a framework is developed
to evaluate five different algorithms on the input dataset,
compare them based on certain scores, and then return
the best results. Similar approaches are also gaining
ground recently in the field of classification algorithms
(Dietterich, Kittler, and Roli 2001, Kittler et al. 1998,
Wozniak, Grana, and Corchado 2014). Most recently,
in Healey et. al. (2017), multiple change detection
algorithms are utilized to build a decision trees based
ensemble algorithm for LULCC.

The rest of this paper is organized as follows: Section 2
presents background on state-of-the-art change detection
algorithms available in remote sensing, puts them in
the context of the general time series literature, and
explains the choice of algorithms used in this work.
Section 3 defines the notation. Sections 4, 5, and
6 describe three different trend and change detection
algorithms — EWMACD, BFAST, and LandTrendR;
experimental results demonstrating the successes, failures,
and sensitivity to parameters for each algorithm are
presented.  Prospects for a viable polyalgorithm are
discussed in Section 7, and Section 8 concludes with an
assessment and future work.

2. Background

Most of the LULC algorithms proposed in the remote
sensing literature can be divided into two categories:
bitemporal analysis and temporal trajectory analysis.
Bitemporal analysis was more popular before 2008 (when
the availability of satellite data to the public was very
limited) and forms the classical way of analyzing images
— these algorithms analyze changes occurring between
two images (dates). The more preferred bitemporal
algorithms rely on image differencing (Banner and
Lynham 1981, Hame 1986, Cohen and Fiorella 1998,
Cohen et al. 1998), and linear transformations (Richards
1984, Neilsen, Conradsen, and Simpson 1998, Fung
and LeDrew 1987, Fung 1990). Other strategies used
to design bitemporal algorithms include image ratioing
(Jensen 1983), image regression (Joyce and Burns 1981),
and composite analysis (Thomson, Davis, and Colwell
1980). Detailed surveys of these algorithms can be found
in Coppin et. al. (2004), and Lu et. al. (2004).
Multi-Index Integrated Change Analysis (MIICA) (Jin et



al. 2013), a recent popular algorithm, utilizes two Landsat
image pairs and four different derived spectral indices
for change detection. The interested reader is referred
to Campbell and Wynne (2011) for a further decent
categorization of these algorithms.

For time series analysis based change detection
algorithms, the popular strategy has been to design pixel
based algorithms, wherein the time series for one pixel
at a time is analyzed. One strategy is to segment the
time series into piecewise linear segments. Specifically,
the time span is partitioned into intervals where each
interval corresponds to a sustained trend in observed
values. The boundaries of these intervals correspond to
points of change or the start of a new trend. The number
of intervals depends on how many changes in trends
occurred for that time series. This approach is adopted,
for example, in Cohen, Yang, and Kennedy (2010),
Kennedy, Cohen, and Schroeder (2007), Verbesselt et.
al. (2010), de Jong et al. (2013), Verbesselt, Hyndman,
Newnham, and Culvenor (2010), Verbesselt, Hyndman,
Zeileis, and Culvenor (2010). In Moisen et al. (2016),
on the other hand, seven shapes that can possibly occur
in time series spectral data are identified. Constrained
regression is done using splines that can generate these
shapes. Some methods leverage the fact that climate
related phenomena such as vegetation, temperatures, and
the like are expected to follow a periodic pattern and
utilize models based on Fourier series (trigonometric
polynomials) (Brooks et al. 2014, Zhu and Woodcock
2014). In Vegetation Change Tracker (VCT) (Huang et
al. 2010), another popular method, for each image, cloud,
shadow, and water are first masked using histograms. A
derived index based on the mean and standard deviation
of observed values of multiple bands in that image is
calculated. One (that with the best derived index) image
per year is selected for further processing. Any masked
values appearing in these selected images are filled in
by interpolating two temporally nearest available values
in the previous and subsequent years. Then a suite
of decision rules is used to detect and classify forest
disturbances. Wavelets were utilized in Cai and Desheng
(2015).

Data mining approaches have been proposed for
classification and change detection (Goodwin et al. 2008,
Mougel and Folcher 2012, Petitjean, Kurtz, and Gancarski
2012, Petitjean et al. 2010, Vintrou et al. 2012, Vintrou
et al. 2013). In Goodwin et al. (2008), a decision tree
classifier was used to detect an outbreak of mountain pine
beetle. This algorithm was originally implemented only
on a subset of all available Landsat images (specifically,
one scence per year was chosen from a 14 year span).
In Petitjean et al. (2010), sequential pattern mining was
proposed for finding trends (and changes) in land cover;
all images were utilized. Dynamic time warping (DTW)

was proposed in Petitjean, Inglada, and Gancarski (2011)
for comparing and analyzing remote sensing time series
as well as characterizing change. Other recent related
references include Anees et al. 2016, Benedek et al. 2011,
Bouziani, Goia, and He 2010,

Improved trend approximation can be obtained if,
instead of treating each pixel independently, information
from nearby pixels (spatial information) is also utilized.
One such approach is VeRDET (Hughes 2014), which
utilizes two-dimensional total variation regularization
(TVR) (Rudin, Osher, and Fatemi 1992; Goldstein and
Osher 2009) to modify the images so that they have
small-scale spatial patches (reduced spatial heterogeniety).
TVR is then used again for fitting a piecewise linear
polynomial to the time series of each pixel. In Petitjean,
Kurtz, and Gancarski (2012), each image in a stack is
first segmented to generate region associated indices (in
addition to the already existing spectral indices). Each
pixel is thus characterized by both a spectral and a
spatial index. Unsupervised classification algorithms are
then used over this expanded set of indices for time
series analysis and change detection.

While research on LULCC algorithms using satellite
image time series is relatively new, development and
use of time series analysis began nearly a century
ago, with applications such as econometrics, seismology,
weather prediction, electrocardiography, mathematical
finance, control systems, and more. This has led to
a plethora of algorithms for analysis and forecasting
in the time series literature.  Autoregressive moving
average (ARMA) models, introduced by Wold (1938),
are polynomial models for representing any stochastic
process and making predictions (Whittle 1951). For
nonstationary data, the nonstationarity is eliminated by
preprocessing the data. Specifically, the observed (input)
values are replaced by the differences between their
values and the previous values. The rest of the
processing is carried out on this modified data using
ARMA. This is known as the autoregressive integrated
moving average (ARIMA) approach. The classic book
by Box and Jenkins (1970) presented their method
— a full framework for analyzing time series. This
framework is polynomial based applying either ARMA
or ARIMA models to find the best fit to a given
time series. Approaches based on Fourier transforms
(Agrawal, Faloutsos, and Swami 1993), wavelets (Chan
and Fu 1999), support vector machines (Vlasveld 2014),
piecewise linear approximations (Hunter and Mclntosh
1999, Koski, Juhola, and Meriste 1995, Lavrenko et al.



2000, Keogh et al. 2001, and the references therein) are

other currently popular methods for approximating time

series. Regardless of the formalization, all the time series
algorithms in the literature fit in one of the following
classes:

(i) Kernel regression methods. These methods represent
the time series as a linear combination of basis
functions. Typically, a linear system of equations is
solved to determine the coefficients. Any analysis
and predictions are done based on this representation.
ARMA models (polynomial regression), Box-Jenkins
models (polynomial regression), Fourier transform
based approaches (trigonometric polynomials), and
wavelet transforms would all classify as kernel
regression.

(ii)) Top-down approaches. In these algorithms, an
approximation is first made to the whole time series.
Then, typically using error estimate criteria, finer
partitions of the time series are sought so that
each new partition is a refinement of the previous
partition. This is repeated until either a maximum
number of iterations is reached or each segment of
the partition satisfies a convergence criterion. The
‘Iterative End Points Fits’ algorithm (Ramer 1972)
is an example of a top-down approach. Other
top-down algorithms include Douglas and Peucker
(1973), Duda and Hart (1973), Li, Yu, and Castelli
(1998), Shatkay and Zdonik (1996).

(iii) Bottom-up approaches. Bottom-up approaches
represent the most elementary units of the data
first; on each iteration, increasingly larger (or
coarser or more ‘complex’) structures are composed
from the simpler structures and their evaluations
in the previous iteration. Dynamic programming
and all recursive algorithms classify as bottom-up
algorithms, which are frequently implemented using
backtracking.

A list of some recent change detection algorithms in
remote sensing and their classification is displayed in

Table 1.

Table 1. General time series literature classification of
some remote sensing algorithms.

Algorithms in Segmentation approaches in

remote sensing general time series literature

(i) CCDC, EWMACD,
SHAPE-SELECT-
-FOREST
(i4) LandTrendR, VeRDET
(i4) BFAST, MIICA,
VCT

Kernel regression
method

Top-down approach
Bottom-up approach

A strategy to construct a polyalgorithm would be to
include algorithms that are fundamentally distinct from
each other in terms of the phenomenon they capture
as well as in construction. However, the suitability
of available algorithms to capture different scenarios
is currently not fully known. Therefore, choosing an
algorithm from each of the classes in Table 1, ensuring
some variation in type of phenomenon captured, may be
used as a first step towards polyalgorithm construction.
In this paper, LandTrendR, EWMACD, and BFAST are
studied. LandTrendR, a top-down approach, generates a
piecewise linear model to represent the input time series.
A broad trend can therefore be captured. It is not
expected to be sensitive to seasonal deviations/anomalies,
though. For a stationary time series whose periodicity
or variation changes, the performance of LandTrendR is
yet unknown. EWMACD is a kernel regression method
based on harmonic regression, designed to detect any
persistent deviations from the stable pattern observed
during a training period chosen by the user. This
algorithm performs very well in regions where the
land cover exhibits strong periodicity. However, its
performance on time series with aperiodic variations
and/or unstable training periods is limited. BFAST, a
bottom-up approach, is more generic and models both
linear trends and seasonal variations. BFAST’s periodic
linear model is more accurate than that of LandTrendR,
since BFAST recursively evaluates the possibility of every
single time point being a breakpoint, and then chooses
the most optimal set of breakpoints. Unfortunately,
such an exhaustive search makes BFAST more expensive
than other algorithms (Saxena et al. 2017a). Also, the
correctness of BFAST seasonal fits is yet to be tested.
Finally, the current algorithms were originally designed
for forest covers and have only been tested on the same
so far; their performance on nonforest land covers (e.g.,
arid areas) has not been studied.

Sections 4, 5, and 6 elaborate on each of these three
algorithms and present instances of their success and
failure.

3. Preliminaries

Notation and definitions. For an m x n matrix A,
an n-vector x, I C {1,...,m}, J C {1,...,n}, let Ar;
denote the submatrix of A formed from the rows indexed
by I and the columns indexed by .J, and x; denote the
subvector of x indexed by J. Aj. (A.;) are the rows
(columns) of A indexed by I (.J), respectively. An image
is an R x C matrix D, where each D,.. (pixel) is an S x B
matrix, whose (s,b) element (D,.)s is the signal value
at time index s and frequency band index b. S’ is the
number of missing data values and S is the total number
of timestamps provided in the data, i.e., S =S + 5.



Input data. Images taken by satellites Landsat 7
and 8 are used for the experiments presented in this
paper. Landsat 7 is equipped with an enhanced thematic
mapper (ETM+) instrument, which takes images at 30m
resolution, using eight different spectral bands (one image
per band). Landsat 8 employs an operational land imager
(OLI) for the same task. Any given area of the Earth’s
surface is captured every 16 days. The experiments
presented in this paper utilize normalized difference
vegetation index (Tucker 1979, Kriegler et al. 1969)
NIR - R
NIR + R’
where NIR is the near infrared band (band 4) and R
is the visual red band (band 3). In the remote sensing
community, NDVI is widely considered to be a good
metric for identifying the presence of vegetation cover.
NDVI is directly related to the photosynthetic capacity of
plant canopies. Broadly, forests typically tend to have
high positive values (e.g., 0.6-0.8), scrubs/shrubs lean
towards slightly smaller values, and any other land covers
with smaller canopy cover (e.g., meadows, grazing areas)
have even lesser values. Persistently decreasing NDVI
values usually indicate decreasing foliage — which could
be because of harvest (steep negative slope), insects
(gentler negative slope), seasons (descending portions
of periodic curves), or any other reason. Persistently
increasing NDVI values indicate leaf cover increasing.
For the experiments presented here, negative values of
NDVI are deemed irrelevant as they correspond to water,
clouds, or missing observations, and are masked out.

NDVI =

Reference data. TimeSync data, a dataset that is
based on human interpretation of Landsat time series,
is used for validating the results for experiments in 1D.
This dataset is prepared using TimeSync Landsat images
visualization and change data collection tool (Cohen,
Yang, and Kennedy 2010). This tool enables disturbance
characterizations for pixel-level samples of Landsat time
series data, relying on human interpretations of change as
viewed in image chip series, spectral index trajectories,
high spatial resolution image temporal snapshots from
Google Earth, and other supporting products. The current
dataset was built using Landsat image stacks belonging
to six different path/rows (scenes) and spanning the
years 1984 to 2014. From each scene, 300 pixels were
chosen with random sampling, and without regard to land
cover. There are 1800 change pixels in the dataset. For
each of these pixels, the following attributes were noted:
occurrence of disturbance, the first year of detection (a
year between 1986 and 2011), the duration for gradual
disturbances (in number of years), and the causal agent
class (harvest, fire, mechanical, decline, wind, other).
Similar to the approach adopted in Brooks et al. (2017),

all data marked by the associated Fmask codes (Zhu and
Woodcock 2012) as nonclear was excluded, and then the
NDVI values were calculated.

Evaluation. The three algorithms presented in this
paper are applied to NDVI data. The TimeSync dataset
is used as the reference data set. Due to a focus on
change detection, only experience with change pixels is
discussed in this paper. The time period of 20004"12 is
utilized. Success/failure of each algorithm is compared to
TimeSync data by checking the distrurbance year(s) stated
in the dataset with the year(s) predicted in the outcome
of respective algorithms. Note that TimeSync itself is
an interpreted dataset, not ground truth. For the pixels
explicitly displayed in this paper, visual comparison of
outcome with trajectory is also done. Published values
of parameters are used. Sensitivity of algorithms to
parameters is also presented. In Section 7, mathematical
distances (Hausdorff distances) are utilized to further
provide quantify the differences in outcomes of different
algorithms.

The three algorithms presented in this paper are applied
to NDVI data. TimeSync dataset is used as reference data
set. Due to focus on change detection, only experience
with change pixels is discussed in this paper. The time
period of 2000-12 is utilized. Success/failure of each
algorithm is compared to TimeSync data by checking the
disturbance year(s) stated in the dataset with the year(s)
predicted in the outcome of respective algorithms. Note
that TimeSync itself is an interpreted dataset, not ground
truth. For the pixels explicitly displayed in this paper,
visual comparison of outcome with trajectory is also done.
Published values of parameters are used. Sensitivity of
algorithms to parameters is also presented. In Section 7,
mathematical distances (Hausdorff distances) are utilized
to further provide quantify the differences in outcomes of
different algorithms.

4. Exponentially Weighted Moving Average Change
Detection (EWMACD)

EWMACD, proposed in Brooks et al. (2014), is a
kernel regression approach modeling the time series as
a linear combination of trigonometric polynomials. The
model is trained over data collected in the initial two (or
more) years. When the observations in the subsequent
years deviate from the values forecast by the model for
a ‘substantial’ length of time (persistence), a change is
declared (recovery or disturbance). The training period as
well as the persistence are parameters of the algorithm.
A positive flag is raised in instances of sustained growth
while sustained losses are indicated by negative flags.
EWMACD is able to capture seasonal changes, but is
also very sensitive to several algorithm parameters.

Algorithm EWMACD.



for row r : = 1 step 1 until R
for column c: = 1 step 1 until C' do
Step 1: Write the time series data in the column

(Dre) b as
(Dre)b = (z) :

where the M -dimensional vector u 1is deemed
training data and the (S — M )-dimensional vector v
as the test data. Let

1 sinty cos tq
X =

1 sintp costys

sin Kt1 cos Kt

sin Kty cos Kty
be the Gram matrix for the time points t1, ..., tar,
using K harmonics, where M > 2K 4 1. The least
squares fit to the training data v is then written as

K

u(t) = Qg + Z(OAQZ',l sin it + Q9; COS ’Lt)

i=1

with coefficients
a=(X'X)"" Xtu
and residual
E(a)=u—-Xa.

REMARK 1. In practice o is computed via a
QR factorization of X, not by computing (X¢X)~!
explicitly.

Next let I = {i | |E(a);| < 71}, where 77 is a user
defined threshold and |I| > 2K + 1. Calculate the
coefficients for an improved fit to the underlying
signal as

a* = ((X].)tX[.)il(X].)t ury.

With the refined coefficients «*, calculate the
residuals for

(i) the complete time series (Dy.).p as

E*(O‘*) = (Drc)~b - XO‘*,
where X, = (1, sint,, costs, ..
cos Ktg), fors=1, ..., S.

(i) the outlier-free time series as (E*(a*));, where
I={s||E*(a*)s| < 42}, 72 is a user defined
threshold, and

(iii) the outlier-free training set I=1n {1,...,M}
as

., sin Ktg,

(E*(a*))f =u; — X;a,

where |I| > 2K + 1.
REMARK 2. In the present implementation,

_ [15n, ie[1,M],
27 20m, ie(M,S],

where 7 is the standard deviation of the first M
elements of the residual vector E*(a™*).

Step 2: Define the control limit vector 7 by

fori =1, 2, ..., |I|, where u = 0 is used here, o
is the standard deviation of the outlier-free training
data errors (E*(a*))f, L is the multiple of this
standard deviation o, and A € (0,1] is the weight
given to the most recent residual in the exponentially
weighted moving average (EWMA) defined next. L
is typically set to 3 or slightly smaller depending on
the value of A.
Step 3: Let I = {ji, jo, -
Jj1)- Define the vector z by

21 = (E (Oé ))jlv

zi= (1= Nzici +AE (@), , i=2,... [l
This is the exponentially weighted moving average
(EWMA) of the residual (E*(a*)) .

T
Step 4: Define the flag history S-vector f by

f {Sgn(zi)UZz‘/ﬁH, s=jiel,
* 10

otherwise.

Shnh i <j2 <<

3

If there is a run of +1 or —1 in the values
sgn (Afs) = sgn (fs41 — fs) of length <, called
the ‘persistence’, signal a change at the index s
beginning the (nonzero) run.

REMARK 3. Missing data is automatically handled
by not assuming that the time points ¢; are equally
spaced. Alternatively, missing data for time point
t can be handled by including ¢; in the sequence
(t1, ta, ..., ts), but excluding ¢; from the training
sequence (t1, t2, ..., tar) and k from the sets I, I,
and I, which is equivalent to treating (D,..)k» as an
outlier and to setting the flag f; = 0.
end
end

The complexity of this approach is O((2K + 1)25).
EWMACD outcomes are expected to be zeros when
the time series trajectory matches the trajectory in the
training period. Nonzeros are expected to appear when
the trajectory deviates from the training period for a
substantial length of time (determined by control chart
parameters and the persistence). The first timepoint when
the outcome trajectory deviates from the prior constant
(or zero) value is the estimated date of disturbance,
the subsequent nonzero sequence of values provides
recovery (or, loss) period information. A sharp loss
(e.g., harvest) is expected to manifest as a sudden drop



in the outcome as well. A gentler loss (e.g., mountain
pine beetle) is expected to appear in the form of the
outcome trajectory gradually drifting away from zero
(with an overall negative slope). Similarly, recovery will
appear in the form of the trajectory following an overall
positive slope, revealing recovery period information.
In Brooks et al.(2017), Edyn, an improved version of
EWMACD that retrains data after a disturbance is sensed,
is proposed (this development not implemented here). In
any case, since the training data in the postshock period
is unstable, the training period of Edyn after the first
break is expected to be unstable. For all the experiments
presented in this work, the first two years of data is used
for training EWMACD. The rest of the parameter values
for EWMACD are as follows: K =2, L = 0.5, A = 0.3,
w=".

Success. Figure 1 displays the outcome of EWMACD
on NDVI data for two pixels. Figure 1(a) has a
stable trajectory with high NDVI values until 2004.
The NDVI values drop suddenly in 2004 from 0.8 to
0.2, indicating the possibility of an event. Gradual
recovery is seen after that. Per TimeSync data, this
is a forest pixel where harvest occurred in 2004. The
trajectory and the TimeSync information are, thus, in
agreement for this pixel. Using the published parameters,
EWMACD captures the occurrence and timing of the
harvest accurately. The nonzero portion of the curve
following this until 2010 displays the recovery period
information, which exhibits seasonal effects, likely related
to the relatively flat training curve.

In Figure 1(b), a stable trajectory with mean 0.6 and
much variance is seen until 2006. In 2006, the values drop
to 0.2 (perhaps very little leaf cover left). Subsequently,
some leaf cover is regained but the trajectory is different
from the pre-2006 trajectory. TimeSync data states that
this pixel is used for agriculture initially, is cleared
in 2006-07, and used for nonvegetated anthropogenic
purposes after that. The trajectory and the TimeSync
data are in agreement. EWMACD accurately detects the
sudden absence of vegetation cover. Gradual increase in
NDVI is indicated thereafter.

Failure. Failure of EWMACD when the training
period is not stable is trivial. Instances of failure when
the training period is stable are discussed here. Figure
2(a) displays a forest pixel. The NDVI trajectory shows
a disturbance in 2006. TimeSync data states a harvest
in 2005-06. EWMACD misses this event. The outcome
does not change with different parameters either, possibly
because the change is relatively brief compared to the
training data.

In Figure 2(b), the trajectory appears stable except for
two visible drops in 2002 and 2008. TimeSync data
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Figure 1. EWMACD success. Flag history (divided
by 10) signals times of change by runs of increases or
decreases in the flags. (a) Harvest in a forest; (b) Fire in
a nonforest pixel.

assigns nonvegetated anthropogenic (NVA) land cover to
this pixel, and no recorded LULCC event in the 2000-12
time period. EWMACD shows two instances of loss,
which seem to agree with the trajectory but not so with
TimeSync. The second signal (in 2008-09) vanishes
when three harmonics are used instead of two, indicating
that this trajectory could be following time periods that
are different from those used in EWMACD. The first
signal, however, remains through a range of parameters,
and could potentially be attributed to an insufficient
training period.

Sensitivity. The accuracy of EWMACD is expected
to be influenced by the parameters L and A\ used for
the control limits calculation (Step 2 of the algorithm),
the persistence parameter (w), and the training period.
Sensitivity to A is presented here. The forest pixel
displayed in Figure 3 is where a fire is known to have
occurred in 2005-06. The NDVI trajectory shows a
drop in 2005-06. For A = 0.5 (Figure 3(a)), EWMACD
detects the fire in 2005-06. In addition, it shows a second
flag in 2008, and a third flag in 2010-11 followed by
recovery. The second flag is likely a false alarm. The
third flag corresponds to a visible dip (potentially, an
event not recorded) in NDVI at that time. The false alarm
does not appear for A = 0.58 (Figure 3(b)). On using
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Figure 2. EWMACD failure. (a) Misses a harvest in a
forest; (b) false alarms in a developed area.

A = 0.6, the flag in 2010-11 also disappears (which may
make the outcome agree with TimeSync data but not
with the trajectory). Using A = 0.4, on the other hand,
produces more false alarms between 2000 and 2006.

In general, decreasing L and w has the effect of
increasing the sensitivity of the algorithm. This means
that the number of false alarms may also increase.
A determines the restrospectiveness of the algorithm.
Decreasing A should mask abrupt changes (the kind
displayed in examples here) in favor of highlighting
subtle, chronic changes (the kind TimeSync might also
pick up). Finally, since this algorithm utilizes a training
period, it is important that there be no change during the
training period. When the training period does happen
to contain a change, the signals’ signs are expected
to skew in the direction opposite to the direction of
‘the change during the training period’, but this needs
to be investigated further. In Edyn (Brooks et al.
2017), an improved version of EWMACD, the harmonic
model coefficients and the persistence are dynamically
updated. Specifically, when EWMACD finds an event, the
following (two) years are used to retrain the model, and
the updated model is used for sensing change thereafter.
This may alleviate the postchange false alarms to some
extent.
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Figure 3. EWMACD sensitivity. A false alarm appears
for A = 0.5, but not for A = 0.58. For A\ = 0.6, the
second event also disappears.

5. LandTrendR

LandTrendR was proposed in (Kennedy, Yang, and
Cohen 2010). Starting with a linear regression fit to the
entire time series, LandTrendR partitions the time series
step by step, adding breakpoints (called vertices here) at
each step. A set of potential vertices is thus generated
in a straight top-down approach. Once these vertices
have been generated, they are refined in multiple passes:
(i) first the least influential vertices (corresponding to
most obtuse angles) are discarded; (ii) then, of the now
remaining vertices, each vertex is dropped one by one,
based on a continuous piecewise linear fit (a ‘model’)
using anchored regression (anchored regression comprises
doing a least squares fit to the data but with one end fixed
and only the slope (or the second end) to be determined);
and (iii) the goodness of each model is evaluated in
terms of F-statistics (‘improvement compared to the mean
model’). Of all the potential models, the model with
lowest p value of the F-statistic is chosen as the final
model®’.  (also called intercept-only model, intercept
being equal to the average of the observations under
consideration.) LandTrendR’s original implementation
utilized only one image per year from the Landsat image
stacks, out of the 23 or so available per year. However,
in this work, all available images are utilized.

Algorithm LandTrendR.



for row r : = 1 step 1 until R do
for column c: = 1 step 1 until C' do

{51

Step 1: Despike Let u = (D%, denote the
raw time series data. For each time point %;,
1 <i< S, define Au; = (Dgc)(iJrl)b - (Dgc)ib»
Vu; = (D))ip — (DY) i-1yps #0u; = (DY) i1y —
(DR i—1yps ki = 1 — |pdus|/ max{| V], [Aug]},
and correction r; = (6%u;)ki/2 = ((D°,)i—1)p —
2(D2.)ib + (D2e)(i41))ki/2. For each i such that
(DPe)iv + Hi

1<y

Repeat iteratively until max k; < v, some given
1<j<S

k;, = max, k;, update (Dyc)ip : =

despiking tolerance.

Step 2: Find potential breakpoints Let S' = (t1,
.., tg) be the original sequence of time points

and ! = (2, , S — 1) denote the corresponding
sequence of interior indices. Let
1
X = . .
1 tg
be the Gram matrix for the time points ¢4, ..., tg,

for ordinary least squares linear regression. The
least squares fit to this data is given by
u(t) = ag + ast
with coefficients
a=(X'X)"1 X"y
and residuals
E'(a) =u— Xa.

Find the smallest index 4; corresponding to the
maximum absolute deviation, i.e.,

= min{i |ie I and |E* ()] = I]%al)f|E1(a)j|}-

Split the sequence S* into two subsequences,
Sll = (ﬁl, AN 7ti1) and S,l = (ti17 AN ,ﬁs).

Do linear regression on each of these and compute
their respective mean squared errors, MSE; and
MSE,.. Suppose [MSE;| < [MSE,|. Then let §% =
S} with interior index set I2 = (i1 +1,...,5—1) be
the next candidate sequence for ‘breakpoint search’.
Again, find the smallest index iy corresponding to
the maximum absolute deviation

is =min{i | i € I* and |E*(a®);| = ma1x|E2(a2)j|}.
Jer?

Again, split S? into two subsequences S7 =
(tiy,.--,ti,) and S? = (t;,,...,ts), compute the
least squares fit for each of these, choose the
interval with higher MSE, and find the index
i3 corresponding to maximum absolute deviation.

Recursively apply the algorithm until there are
©+ v + 1 breakpoints (including ¢; and tg), where
w is the maximum number of segments allowed and
v is the maximum number of vertex overshoots (see
Step 3 below) allowed. (In the rare circumstance
that MSE; = MSE,. = 0 at some iteration, there may
be fewer than p + v + 1 breakpoints.)
Let S = (t1, tiy, ... ti,,,_,» ts) be the final
sequence of (sorted) breakpoints thus obtained,
j = (1, il, “eny Z.“Jr,/,l, S) and ‘7 = (’Ul, Uiy s
.., vg) be the corresponding index and ‘vertex’
sequences, where v; = (t;, u;).
Step 3: Cull by angle change
Define the sequence of angles

Qi = arccos (Uff _ Uff*l) ) (Ule - ”I})
J B b
vz, = vz, Dll(vz,,, —vp)l

for j =2,3,...

N2
Find a = min{z’ | i = min oaj}, delete v from the
J

sequence V', and recalculate from this the angles
with the new vertices. Repeat until reaching the
sequence V* = (v1, vy, ..., v, ,, vg) with index
sequence L* = (1, I, ..., l—1, S).

Step 4: Fit trajectories

Moving from 7 = 1, ..., u, consider consecutive
vertices vLr, VL, € V* one at a time, and an

1
anchored regression fit

uar(t) =yr: +at —tr:),

where yL: is the ‘fitted’ value inferred from the fit in
the preceding interval (¢ L s tL;), « is the solution
to the least squares regression problem usp ~ u
at the points thurl, A tL;}‘+1 For the special
case ¢ = 1, the coefficient yL: is also estimated.
The final result of this step will be a continuous
piecewise linear function P*(t) covering the full
domain. Further, let Y™ = (y1, ¥1,, - Y11 Ys)
be the sequence of fitted values at the breakpoints
with indices L*. Call the tuple M* = (P*(t), L*,
V*) a regression model. In addition, let (y1, yo, ...,
ys) be the sequence of fitted values over all time
points in S' as predicted by M*.
Step 5: Model statistics
The improvement in prediction from regression
compared to the mean model is given by the random
variable

S S S

X7 = Z(Uz‘ —a)? - Z(Ui —yi)’ = Z(yi —a)?,

i=1 i=1 i=1
where «# is the mean value of the observations.
The squared distance of the observed values from



the values predicted by the regression model is the
random variable

S

X22 = Z(UZ — yi)2-

i=1
Assuming that y; — @ and u; — y; are independent,
normally distributed, and have variance one, X 12 and
X2 have a x? distribution with degrees of freedom
di = p, do =S — u—1, respectively. Therefore, the
ratio

_ XP/dy

X3 /ds

has an F'-distribution and F'-statistics can be used
for measuring the ‘goodness’ of fit of the regression
model. Let f be the F-statistic for model M.
Calculate the p-value of this F'-statistic:

dy d
Q(fldi,do) =1—T a5 (—=,2
a1 F+d2 272

dy d
=1 4 (=2,=2).
dyFdif 272

Q(f|d1,d2) is the probability that F > f and
I.(a,b) denotes the regularized incomplete Beta
function given by

_ 1 N a—1 b—1
I.(a,b) = Blab) /0 71 — )" dt,
a > 0,b> 0, where
['(a)T'(b) /1 -1 b—1
—_— = 7 (1 -t dt
T(a+0) 0 ( )

is the (complete) Beta function, and

B(a,b) =

I'(z) = / t*~te~tat, Rz>0
0

is the Gamma function.

For model M) = AM*, where the superscript
corresponds to the number of segments in the model,
let the p-value calculated in this step be pH),

Step 6: Generate more (simpler) models
Begin with the model M) = (P LW V1) =
(P*(t), L*, V*).

(1) Assume that a disturbance always corresponds
to a positive slope while a negative slope
indicates recovery.

First look for negative slopes at interior vertices.

Let Vlg’:)) # V" be the left vertex (leftmost
in case of a tie) of the segment with steepest

Delete L) from the index

negative slope. i)

sequence L"), giving the shorter sequence
L1,

10

However, if no negative slopes are found or, if
the steepest negative segment happens to be the

leftmost segment of the current model, then for

each interior vertex Ugj ) in the model, consider

the point to point connect using the vertices

immediately to the left and right of v(L’j ), ie.,

”(Llj),l and Vg
yL(}L) - yL(_H)
ugﬁ;(t) — it1 i—1 (t — tLE;i)l) + yLE;i)l,

toa —trw
L'Lil L'Lu

fori € LW\ {1, S}, and calculate the MSE; o)

for vertex Uy as
i

1
MSE, ) = - 7

i (n) — (r)
Liil Ll‘il

(D)
L

> (ugfz)v(tk) - Uk)2 :

—7 )
k=L;")

for i € LW\ {1,S}. Then define i¥ =
min{i | MSEL- = min MSE_- }, the index of
7 ] J

the vertex dropping which leads to least MSE.
Delete Lgﬁf), resulting in the shorter sequence
L(e=1)

(ii) Remove the corresponding vertex from V(%)
giving V(#=1) and as in Step 4 generate the
new piecewise linear fit P“~1)(¢) and model
M=) = (p(ufl)(t), L1, V(ufl))'

(ili) Calculate the p-value p(*~1) for this model.

Proceeding in this way, generate a total of p models

MO G=p, 1

Step 7: Pick best model M.

Let ¢* be the smallest index ¢ corresponding to

the models M) whose p-value is less than a user

defined recovery threshold 7, i.e., i* = min{i |

p <7, i=1,..., )

REMARK. Check the linear segment slopes. If, for

any model M) under consideration, the recovery

(to a global baseline) happens quicker than the

quickest disturbance g (from a global baseline), that

model is discarded.

Step 8: Alternate approach.

If no models are found using Steps 1-7, repeat Steps
4-7 with the following modifications:

Step 4. Instead of computing the continuous
piecewise linear approximation P*(¢) one segment
at a time, going from left to right, compute P*()
using all the data at once. This is done by expressing



P*(t) as a linear combination of B-splines of order
2 with knot sequence (t1, t1, t1,, tiys - l1,_ys
ts, ts), and then solving a linear least squares
problem for the p + 1 coefficients of these B-spline
basis functions. (Note that there is no need to use
the Levenberg-Marquardt algorithm as proposed in
Kennedy, Yang, and Cohen (2010)).

Step 6’. Skip directly to the point to point connect
approach, without looking for negative slopes at all.

end
end

The complexity of the algorithm is n,O(S), where
ny = pu+ v — 1. LandTrendR output consists of a set of
breakpoints as well as a fit to the data. The fit is always
continuous piecewise linear. The fit is displayed in the
results discussed here. Since the fit is piecewise linear,
the breakpoints are obvious. The following parameter
values are used for LandTrendR in this work: v = 0.9,
w=6v=317=02 0=1.0.

Success. Figure 4 presents examples of LandTrendR
success. The pixel of Figure 4(a) is forest, per TimeSync
data. In the 12 year period 2000-2012, one significant
instance of harvest is recorded in 2010-11. The NDVI
trajetory stays stable until 2010, and then a sharp fall
is seen in the NDVI values in 2010-11, matching the
harvest. LandTrendR captures the trajectory accurately,
indicating stability until 2010, a sharp loss in vegetation
cover in 2010, followed by gradual recovery.

Figure 4(b) has a trajectory with mean 0.3-0.4, high
variance until 2002. After 2002, the NDVI values are
almost constant, close to 0.1, indicating absence of any
vegetation cover. TimeSync data indicates that this pixel
is an agricultural area that is cleared in 2002-03, and
used for nonvegetated anthropogenic purposes starting
2003. The trajectory and the TimeSync information are
thus in agreement. LandTrendR indicates some variation
in trend pre-2002 and then successfully captures the
2002-03 harvest.

Failure. The two pixels of Figure 5 present instances
of LandTrendR failure. Per TimeSync data, Figure
5(a) is a forest. The trees are harvested sometime in
between 2008-10, and the land is subsequently used
for agricultural purposes. The NDVI trajectory exhibits
totally different mean and variance before and after
2009. In 2009, a sharp drop in NDVI values is seen,
confirming the TimeSync information. The LandTrendR
approximation shows an overall decrease in NDVI values
between 2004 and 2010, but there is no breakpoint at the
2009 drop. The breakpoints that it does predict appear to
be mostly false alarms.
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Figure 4. LandTrendR success.

Figure 5(b) is for a nonforest vegetation area.
TimeSync states a mechanical change in 2008-10, after
which the area is used for nonvegetated anthropogenic
purposes, consistent with the NDVI trajectory: the mean
NDVI value has a sharp drop in 2008, and the trajectory
after that also has much lower variance. LandTrendR
senses a decrease in vegetation cover but there is no
breakpoint at the time where the sharp drop occurs. The
trend, in general, does not match the trajectory.

Sensitivity. LandTrendR extensively harnesses least
squares fitting. The determination of the initial breakpoint
set is based on iteratively finding indices where deviation
of the least squares fit to the data in certain intervals is
maximum (cf. Step 2). Since least squares fit can be
easily affected by outliers, this methodology for initial
breakpoint set construction is also prone to being affected
by outliers. In particular, sometimes points on only one
side of a disturbance make it in to S, the sequence
of initial vertices, and even these may get dropped in
reaching the sequence V*. This makes LandTrendR’s
success in breakpoint determination sensitive to outliers.

Figure 6 shows the final outcomes of LandTrendR for
two values of the parameter v. TimeSync states nonforest
vegetation type for this pixel prior to 2003, a mechanical
event in 2003-04, conversion of land cover type to urban
after that, a second mechanical event in 2004-05, and
continued urbanized land cover for the rest of the time.
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The NDVI values start quite small (0.3) and stay low
throughout. The changes are not evident in the trajectory,
although a gradual decline in NDVI values is seen from
2002 to 2006, and less noise is seen after 2006. Figure
6(a) corresponds to v = 0.8. LandTrendR gets the overall
approximation to the trend correct but misses both the
breakpoints for v = 0.8. Figure 6(b) corresponds to
v = 0.9. For v = 0.9, a breakpoint is placed in 2004-05
though the 2003-04 breakpoint is still missing.

Of relevance to the polyalgorithm are also the
parameters p and v. With smaller values of these
parameters, ‘localization’ of breakpoints appears to be
less prevalent.

6. Breaks For Additive and Seasonal Trend (BFAST)

BFAST (Verbesselt, Hyndman, Newnham, and Cul-
venor 2010) decomposes the given time series iteratively
into three components: trend, seasonal, and noise. BFAST
computes and evaluates least squares fits in windows of
increasing size. Qualitatively, (i) first the possibility of
there being any structural change in the given time series
is determined by computing the partial sums of residuals
of least squares fits in windows (OLS-MOSUM). The
limiting process of these partial sums is the increments
of a Brownian bridge process (Chu, Hornik, and Kuan
1995). If the observations do have a structural change,
an ordinary linear least squares fit will result in large
residuals and, hence, in large partial sums. Therefore,

12

0.6

— - NDVI
== LandTrendR

0.5t

0.4

0.3}

0.2

0.1

O'OZOOO 2002 2004 2006 2008

2010 2012
(a)v=0.8
0.6— : : . : :
—- NDVI
.

0.4

0.3]

0.2

0.1

00560 2002 2004 2006 2008 2010 2012

b)v=0.9
Figure 6. LandTrendR sensitivity.

the occurrence of large values in the process is an
indication of the presence of a structural change — this
probability being calculated from the Brownian bridge
table. (ii) If a structural change is indicated, a search
for change location is done. Each interior time point ¢
is considered a breakpoint (change location) candidate.
A recursive residual is the error at time ¢; from the
linear least squares fit over the window [¢;,...,t;_1].
The breakpoints (change locations) are chosen so as to
minimize the sum of squared recursive residuals over all
windows in between (omitting) the breakpoints. This is
done for both trend and seasonal components of the time
series, consecutively.

Algorithm BFAST.

for row r : =1 step 1 until R do
for column c: = 1 step 1 until C do
Let T' = (t1,...,ts) be the sequence of given time
points and the S-vector v denote the time series data
in the column (D,.).p, i.e., u = (Dyc).p. Assume
that the general model is of the form

u=V+W+He,

where }V and W denote the iteratively computed
trend and seasonal components, respectively, present
in the data and € is the noise. The trend V may
be piecewise linear and the seasonal component VW
may be piecewise harmonic. Let N be the maximum



number of iterations, n be the iteration number, and
V™ and W™ be the trend and seasonal components,
respectively, computed at the nth iteration. Let
h € (0,1) denote the proportion of data points
by which two consecutive breakpoints ¢; and t;
(including ¢; and tg) must be separated. Thus
[Sh] < j—i— 1. Take the length of moving
windows to be [Sh], initialize the iteration number
n := 1, and initialize the seasonal component as
WUT) = (wl, ..., wd).

Step 1.1: Determine the possibility of breakpoints
in trend.
Eliminate the seasonal component from the data

u" =u—WHT).

The ordinary least squares (OLS) estimator for the
trend is given as

a=(X'X) 1 xty"
where X is the Gram matrix for linear regression

given by
1 &

1 tg
The prediction error (or residual vector or the OLS
residual) is defined as

E° =u" — Xa,

[

where the superscript ‘o’ is used to signify the
fact that these residuals are OLS regression based.
Consider the process defined by the moving sums
(MOSUM) of these OLS residuals

S

1 k
— E? ;
a\/[5h] i—k—%}ﬂ-ﬂ

k=[Sh]

Q=

where ¢ is the sample standard deviation of all the
OLS residuals.
Compute the OLS-MOSUM test statistic

fo = max 2

! 1<k<S—[Sh]+1 @kl
as the maximum absolute value of this process, then
compute the asymptotic critical value of the OLS-
MOSUM test using the two-sided boundary-crossing

probability
pr = P> [,
where pr is read from the Brownian Bridge table.

A p-value less than a user defined parameter
7y € (0, 1) indicates the presence of breakpoints.

REMARK 1: As discussed in (Chu, Hornik, and
Kuan 1995), under the null hypothesis, the OLS-
MOSUM process converges in distribution to the
increments of a Brownian Bridge process.

Step 1.2: Locate trend breakpoints.

Suppose pr < 7. To locate the breakpoints,
consider all possible partitions of the domain,
compute OLS fits for each partition, and settle with
a partition that yields minimum squared error.

Let X[; ;) denote the matrix formed from rows i
through j of the matrix X, and Q4] denote the least
squares coefficients computed using the matrix X{; ;

with time points ¢;, .. ., ¢;, and data uﬁ_j] = uf{lz gt
Fori=1,...,5—[Sh]+1, consider each window
[tis ..o tj—1], 1 +2 < j < S, and the linear fit in

this window. The recursive residual at point ¢; is

then defined as the weighted prediction error

un
4,

1~ X[al 1]

;= -
\/1 + X (X[ Xig-1)

The superscript ‘r’ is used to signify the fact that the
process/statistic is recursive residual based.

Suppose a breakpoint has been found at ¢;. Then
the cost of placing the next breakpoint at ¢
is calculated as the accumulated sum of squared
recursive residuals in the interval [¢;, tx—1], i.e.,

Tt ’
X391

k-1
2
= (E5)".
j=i+2
All possible positions for the breakpoints can thus
be calculated by considering the moving sums of
squared recursive residuals, i.e., the process defined
by

g S—[Sh]+1
k

Q=94 > (B
j=ir2 k=it+2 ) ;4

Given the number p of desired interior breakpoints,
let k1, ..., k, be integers such that k; 11 —k; > [Sh],
ki > [Sh] +1, and k, < S — [Sh]. Determine
K =1, ki, ..., k,, S) to minimize the moving
sums of squared recursive residuals

k1—1 ka—1 ks—1

Z(Eii)2+ Z (E/:hi)QJF Z (E/:N‘)Q*

1=3 i=ki1+2 i=ko+2
s 2
T
e E (Ek,“i) .
i=k,+2

Then (ty,, ..., t,) are the interior breakpoints in
the trend component.



Y =

REMARK 2: The breakpoints t1, #x,, ..., tg,, ts
are optimal in the sense of the above moving sums
of squared recursive residuals criterion.

REMARK 3: If pr > 7, then there are only two
breakpoints (¢; and tg) and no interior breakpoints.
So this step is skipped and there is simply one linear
fit over the entire domain [t1,ts] (Step 1.3).

Step 1.3: Let kg =1, kypq1 = 5, and Iy =

[tkmtkl), Il = [tk17tk’2)’ ey 1, = [tku’tku+1]‘ For
each interval I;, determine the linear regression
coefficients

T t -1 n
7= (X[kiyki+l]X[ki7ki+1]) X[k’i7ki+1]u[ki-,ki+l]

and construct the (discontinuous) piecewise linear fit

V() =Y T,
=0

where
; S+t tel
T t) = Yo 1% 75
®) 0, otherwise.
Let V*(T') = (v, ..., v%) be the sequence of values

estimated at tq, ..
fit.

., tg using this piecewise linear

Step 2.1: Determine the possibility of breakpoints
in seasons.

Eliminate the estimated trend component from the
observed data

a" =u—V"(T).

The Gram matrix for the seasonal
component is given by

(harmonic)

1 sint; costy sin Kt1  cos Kt

: : : : : ’
1 sintg costg sin Ktg cosKtg
where K is the degree of the trigonometric poly-
nomial used for regression. The trigonometric
regression coefficients for the seasonal component

are computed as
B=(Yty) tytar.
The prediction error for this fit is defined as
E°=a"-Yp.

The OLS-MOSUM process for these errors is given
by

E°

Ay
ay/[Sh] i=k—[Sh]+1 ' ,

k=[Sh]

Q=
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and the OLS-MOSUM test statistic is

= 13jsglfarxsm+1 @71

The two-sided boundary-crossing probability
ps = Plg° > §°]

is read from the Brownian Bridge table.

A p-value less than a user defined parameter
7w € (0,1) indicates the presence of seasonal
breakpoints.

Step 2.2: Locate seasonal breakpoints.

Suppose ps < myy. Using the same notation as for

the trend breakpoints,

B gy = Yi5,5180,-1]

Y iy, (vt “yt
+ [J}J']( [i,5—1] [i-,jfl]) 15,41

is the recursive residual at time ¢,

obtained
by trigonometric regression in the time window
[ti,tj-1].

Given the number v of desired seasonal interior
breakpoints and a minimum number of data points
separating breakpoints (as for the trend), let [y,
.. 1, be integers such that [, —I; > [Sh],
Iy > [Sh]1+1, and I, < S — [Sh].
L=(11,..
of squared recursive residuals

Determine
- 1y, S) to minimize the moving sums

I1—1 la—1 I3—1

Z(Eil,i)QjL Z (Elrm)2+ Z (Elrz.,i)QJf

=3 i=l1+2 i=la+2

Then (¢,, ..., t;,) are the interior breakpoints in the
seasonal component.

REMARK 4: If ps > 7, then there are only two
breakpoints (¢; and tg) and no interior breakpoints.
So this step is skipped and there is simply one
trigonometric polynomial fit over the entire domain
[t1,ts] (Step 2.3).

Step 2.3: Let lo =1, l,41 = S, and Jy = [ti,, t1)s
Ji = [t t,), ... Ju = [ty t,,,]. For each
interval J; determine the trigonometric polynomial
regression coefficients

) t -1 ~n
o = (Y[lj,lj+1]Y[ljalj+1]) }/[lj7lj+1]u[lj7lj+1]



and construct the (discontinuous) piecewise trigono-
metric polynomial

WH(t) = i AJ(t), where AJ(t) =
J=0

K
& + Z (5gk sin kt + (5gk+1 coskt, teJj,
k=1
0, otherwise.
Let W*(T) = (w}, ..., wg) be the sequence of

values estimated at ¢1, ..., tg using this piecewise
trigonometric polynomial approximation.

Step 3: Compare the breakpoints between itera-
tions n — 1 and n.

If the Hamming distance between the two breakpoint
vectors (tp,, ..., tk,, ti,, ..., t;,) at iterations
n — 1 and n is less than some defined tolerance or
the number of iterations has reached N, then exit.
Otherwise, increment the iteration number n and
repeat Steps 1.1 to 3.

end
end

The complexity of BFAST is (9(53), with the

calculation of all the recursive residuals being O(S?)
and dynamic programming to find the optimal breakpoint
sequence being O(SQ). While the experiments so
far assure that the method captures the linear trend
correctly, its ability to capture phenological (seasonal)
changes has not been studied sufficiently yet. Like
LandTrendR, BFAST offers a fit to the data as well as a
set of breakpoints. The number of breakpoints is fixed,
though, and the piecewise linear fit offered is possibly
discontinuous (an advantage). The following parameters
are used for BFAST in this work: K =1, p =v = 2,
h=0.15 7 =7y =0.05, N = 2.

Success. Figure 7 presents two examples of BFAST’s
success, the first one being a forest pixel and the second
one a nonforest pixel. Figure 7(a) has two instances of
fire — one in 2006-07, and another in 2009-10, both
seen in the NDVI trajectory as well. The occurrence of
these events is well sensed by BFAST.

Figure 7(right) depicts the functioning of BFAST on
forest as well as nonforest land covers. Specifically, this
pixel is a forest initially, a mechanical activity causes a
sudden loss in vegetation cover in 2006-07, and there is
nonvegetated anthropogenic (NVA) usage following that.
Based on the NDVI trajectory, some recovery in leaf
cover appears to have taken place post2007. A second
mechanical event is known to have happened in 2011-12.
BFAST is able to capture both events and also replicates
the trends in each of the three segments (separated by
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these breakpoints) correctly. These results endure after
minor changes in the parameters.

Failure. Some examples where BFAST fails are

presented here.  However, such instance are rather

rare. In general, it is difficult to find instances where
BFAST fails to capture events and/or trends in forests,
its main limitation being the a priori chosen number of
breakpoints. Specifically, if the number of breaks in the
time series is more than the number of breaks specified
by the user, only the strongest breaks are captured.
Figure 8(a) corresponds to a forest pixel. There is
a harvest in the year 2011-12, reflected in the NDVI
BFAST is not able to capture this

If two harmonics are used (instead of one)

trajectory as well.
change.
or if the breakpoint spacing proportion h is reduced to
h = 0.10, this change is captured.

Figure 8(right) represents a pixel that undergoes a
mechanical change in 2003-04, going from forest until
2003 (prior to change) to nonforest vegetation after the
change. The NDVI trajectory reflects changes in trend
and periodicity; two breakpoints are evident — one in
2004 and another in 2006. BFAST places breakpoints
in 2001 and 2006, neither agreeing with TimeSync data.
However, the 2006 breakpoint does agree with the NDVI
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trajectory. This outcome did not change with slight
variations in parameters.

Sensitivity. BFAST is mostly able to capture the
trends well. For the pixels where it fails, the output for
some (not all) of them appears to improve by using more
harmonics (K, cf. Step 2.1). Figure 9 corresponds to a
forest pixel known to have been harvested twice — in
2002 and 2005. When published parameters are used,
BFAST detects the first harvest but misses the second
one. Using two harmonics, the occurrence as well as the
timing of both harvests are sensed accurately. Another
instance of failure/parameter sensitivity was discussed in
Figure 8(a): for this pixel the breakpoint location is too
close to the right boundary of the domain. In such
situations, the default value of h prevents the (correct)
detection of breakpoints.

7. Prospects for a Viable Polyalgorithm

Once the algorithms have been implemented, the next
step is to develop a procedure to choose the most
appropriate outcome for the input. One possibility is to
draw a consensus between algorithm outcomes: if more
than half the algorithms being used predict breakpoint
sets that are in proximity of each other, one of those
algorithms gets chosen as the most appropriate algorithm.
To this end, a method to measure the distance between
the breakpoint sets is needed. Hausdorff distance from
topology is used here.
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Consider the set of real numbers R and the usual
distance function d(z,y) = |z —y| defined on R. Suppose
A ={aq,...,a;} is the set of breakpoints from algorithm
A, and B = {by,...,by,} is the set of breakpoints from
algorithm B. Then A and B are subsets of R. Using

the distance function d(x,y), define the distance from a
point @ € A to the set B as

d(a, B) = inf{d(a,b) | b € B}.
Then define the distance from set A to set B as
d(A, B) = sup{d(a, B) | a € A}.

Note that d is not a metric since possibly d(A, B) #
d(B, A). Hausdorff distance is defined as

H(A, B) = max{d(A, B),d(B, A)},

and H is a metric.

If every point in A happens to be close to some point
B and vice versa, the Hausdorff distance is small. If
some point in A is very far from every point in B or vice
versa, the Hausdorff distance is large.

Some other facts important in designing the procedure
are: (i) EWMACD works based on training data. If
the training data is not from a period of stability,
EWMACD outcomes cannot be trusted. In general, a
prior knowledge of change during the training period is
not available. (ii) Since Hausdorff distance is symmetric,
H only determines the pair of algorithms that are closest
to each other; some method to zero in on a single final



algorithm is needed. (iii) The case that an algorithm
predicts stability (correctly or incorrectly) for a pixel will
often arise, so the empty breakpoint set special case must
be handled.

In this early work, the following overall procedure for
an LULCC polyalgorithm is used:

(1) Run the three algorithms on the input.

(2) For EWMACD, consider only isolated breakpoints.
Specifically, during periods of stability, f; = fi—1.
For any i, if f; # f;_1, check the previous, say 50,
time points. If f;_y = f;,j =4 —50,...,7—2, then
use ¢; as a breakpoint. Otherwise, ¢; is only a part of
an ongoing recovery or loss period, does not mark a
new event, and is ignored.

If BFAST predicts a change during the training
period of EWMACD, EWMACD results are not
used for that pixel (only BFAST and LandTrendR
are used).

If A=( and B # 0, d(A, B) is undefined and
not used. If A # 0 and B =0, d(A, B) = .
If A= B =1, d(A,B) = 0. The interpretation
of this is that the two algorithms agree totally on
breakpoints for this pixel.

If d(A, B) < d(B, A), by the principle of parsimony,
choose A over B.

If d(A, B) > d,,VA, B, where d; is a user defined
threshold, then no consensus has been found between
the algorithms, and the pixel is declared to be stable.
Due to the limited number of algorithms included
at present, and lack of control over the number of
breakpoints for BFAST and LandTrendR, d, = 13
(the number of years in the data) is used. This is
because two algorithms that agree and have found
a breakpoint correctly, may have temporally distant
false alarms, resulting in either of them not getting
selected. As the polyalgorithm evolves, lower values
of d, can be used.

3)

“)

)
(6)

7.1. Results

Each component algorithm produces a different kind
of outcome (flags for disturbance, continuous fit, discon-
tinuous fit). In the rest of this work, only the breakpoints
produced by each algorithm are considered (the focus of
this work being correct breakpoint placement); any ‘fit’ or
‘recovery period information’ (originally included in the
figures in Sections 3, 4, and 5) is not included here. For
BFAST K = 2 is used. For the formulae appearing in the
descriptions in the rest of this section, the breakpoint set
produced by EWMACD is denoted by E, that by BFAST
by B, and that by LandTrendR by L. For BFAST, the
height of a jump corresponds to the signed magnitude of
the corresponding discontinuity in the proposed model.
For EWMACD, the height of the jump corresponds to the
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signed magnitude of the flag predicted by EWMACD at
the corresponding location. For LandTrendR, the model
is continuous. So a value of +1 is used at its breakpoints
for display purposes.

Figure 10 displays instances of polyalgorithm success.
The pixel of Figure 10(a) has a stable NDVI trajectory
until 2005, suffers a sudden drop in NDVI to almost no
vegetation in 2005, and has small but gradually increasing
NDVI values thereafter. Based on this trajectory, there
should be exactly one breakpoint in 2005. Per TimeSync
data, this pixel is a forest that is cleared of vegetation
in 2005-06 and is used for anthropogenic purposes
after that, agreeing with the TimeSync data and NDVI
trajectory. On running the polyalgorithm for this pixel,
EWMACD produces one breakpoint, precisely at the
location where the drop in NDVI occurs. BFAST
produces two breakpoints (as requested), one at the
NDVI drop location and another in 2007. LandTrendR
produces four breakpoints, the first three being false
alarms between 2001 and 2005, and the fourth one
being close to the drop location. The breakpoint-
sets are:  E = {2006.03}, B = {2005.85,2007.72},
L ={2002.1,2004.2,2004.5,2004.8,2005.5}. The d(-,-)
values are displayed along with the figures. Since
d(E,B) = 0.18 is the smallest one, EWMACD gets
chosen as the final algorithm and the final breakpoint is
January 10th, 2006, quite in agreement with both the
trajectory as well as TimeSync data. Note that both
BFAST and LandTrendR also catch the break in 2005-06.

Figure 10(b) has a stable trajectory until 2006, a
sudden drop in NDVI in 2006, with gradual recovery in
the subsequent years. There is one breakpoint in the
trajectory. Per TimeSync data, this pixel is a forest,
with a single harvest in 2007-08. EWMACD assesses
this pixel as stable. LandTrendR has a breakpoint
in 2000, and multiple breakpoints in 2006 to 2008.
BFAST has breakpoints in 2006 and 2010.  The
breakpoint sets are: E = {}, B = {2006.5,2010.17},
and L = {2000.7,2006.36,2007.2,2007.8,2007.9}. The
d(-,-) values are displayed along with the figure. BFAST
gets selected as the final algorithm, labeling 2006 and
2010 (a false alarm) as breakpoint locations.

Figure 10(c) has a drop in NDVI in 2005, from
vegetated to almost zero vegetation. The NDVI recovers
in 2005-07. The new vegetation NDVI has a smaller
mean. For this trajectory, two breakpoints are expected:
one in 2005, and another in 2007. Per TimeSync data,
this pixel is initially covered with nonforest vegetation
(NFV), experiences a flood in 2004, and has nonvegetated
natural (NVN) land cover thereafter. TimeSync does not
note the end of recovery period/beginning of the stable
period. Each of the three algorithms detects the flooding
event, with their breakpoint placement for the flood being
not exactly the same but in close proximity to each other.
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Figure 10. Polyalgorithm outcomes.

EWMACD places one breakpoint in 2004, and none in
2006. BFAST produces two breakpoints, the first in 2005,
and the second in 2007. BFAST output is thus most
in agreement with the NDVI trajectory. LandTrendR
places multiple breaks in 2004-05, one each in 2000 and
2010, and none in 2006-07. The polyalgorithm selects
EWMACD as the final algorithm. EWMACD’s selection
can be attributed to (i) fewest number of breakpoints,
and (ii) each of its breakpoints being close to some
breakpoint of LandTrendR. The outcome of each of the
three component algorithms as well as the polyalgorithm
agrees with TimeSync data, but BFAST offers the best
match to the trajectory. This pixel with flooding does not
reflect the general situation with flooding, where all the
algorithms perform poorly.

The low NDVI values in Figure 10(d) indicate
relatively low vegetation cover. There is one sharp drop
in 2007, recovery until 2010, and stability thereafter.
TimeSync data classifies this pixel as one covered with
nonforest vegetation, with an instance of fire in 2007.
The trajectory and TimeSync are in agreement, except
that TimeSync does not record the end of a recovery
period. EWMACD detects four breakpoints, BFAST
two, and LandTrendR two. The three algorithms agree
only on 2007 being the breakpoint, which is the desired
outcome. The polyalgorithm chooses LandTrendR as the
final algorithm.
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Sometimes, a ‘majority’ of the component algorithms
(two or more out of three here) capture the same set
of incorrect breakpoints leading to polyalgorithm failure.
Per TimeSync, the pixel of Figure 11(a) is initially
covered with nonforest vegetation, cleared in 2008-10,
and used for anthropogenic purposes after that. Per
the NDVI trajectory, there is a major lasting change in
2008. BFAST detects the occurrence of this change
correctly. However, both EWMACD and LandTrendR
detect changes in 2002-03 and 2006-07 (in addition
to more changes signalled by LandTrendR). Due to
this, the EWMACD outcome gets finally chosen by the
polyalgorithm. Clearly, the breakpoints based on this
final selection (EWMACD) are not correct.

Figure 11(b) shows how an algorithm’s localized output
can lead to the selection of a suboptimal algorithm. The
NDVI trajectory for this pixel has four breakpoints: 2004
(beginning of a recovery period), 2006 (an abrupt drop in
NDVI), 2010 (another recovery period), and 2011 (another
abrupt drop in NDVI), TimeSync records specify a fire
in 2006, and no other event. Ideally, a change detection
algorithm would have four breakpoints. EWMACD
places breakpoints in 2004, 2008, and 2010. It misses
the events in 2006 and 2011, because these events occur
amidst unstable periods. In all, EWMACD disagrees
with TimeSync information, places breakpoints at two
out of four locations expected based on NDVI trajectory.
BFAST, with the allowed two breakpoints, places breaks
in 2006 and 2010. LandTrendR, on the other hand,
with its binary search pattern of stencil choosing, places
multiple breakpoints in a very small period 2009-11.
Overall, all three algorithms agree on the breakpoint in
2010, but only BFAST catches the fire in 2006-07, only
EWMACD catches the beginning a of recovery period in
2004, and only LandTrendR catches the event in 2011.
With all breakpoints of LandTrendR accumulated in one
region, and one breakpoint (2010) each of EWMACD
and BFAST close to all these breakpoints, d(L, B) and
d(L, F) are small numbers and the polyalgorithm selects
LandTrendR for the final outcome, disagreeing with
TimeSync information, and agreeing with the trajectory
only on the 2010-12 part. Note that none of the three
algorithms captures all four breakpoints suggested by the
trajectory (although BFAST got its limit of two correct).

Finally, instances where the TimeSync data differs
from the NDVI trajectory are presented. In Figure
12(a), all three algorithms yield outcomes that disagree
with TimeSync information. = The NDVI trajectory
appears mostly stable except two instances of NDVI
drop — in 2002 and 2008. TimeSync does not record
any event during the time period under consideration.
Per TimeSync, this pixel is being used for nonvegetated
anthropogenic purposes (although the NDVI values appear
to be high for the pixel to not have any vegetation).
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Each of the component algorithms predicts breakpoints.
Due to BFAST’s outcome, EWMACD’s selection for the
final algorithm is ruled out. (This explains the co values
of d(E,-) and d(-, E) displayed with the figure. Note
that, this implies that even if EWMACD had correctly
captured the stability, it would not get selected as the
final algorithm because of BFAST’s outcome.) BFAST
gets selected as the final algorithm. In Figure 12(right),
TimeSync reports mechanical change in 2009-10 but no
such change is evident in the NDVI trajectory. On the
other hand, the trajectory exhibits three distinct trends:
descending NDVI values from 2000 to 2003, a flat trend
from 2003 to 2008, and an ascent in NDVI values
from 2008-12. Thus, breakpoints in 2003 and 2008
are appropriate. EWMACD and BFAST place breaks
2002-04 and 2008-09. LandTrendR is chosen as the final
algorithm. A third instance of disagreement between
TimeSync and NDVI trajectory was discussed in Figure
11(b).
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7.2. Discussion

Estimates of true positives (TPs, instances where an
algorithm correctly identifies a breakpoint) and false
negatives (FNs, instances where an algorithms misses
a breakpoint) using TimeSync data as reference are
presented in Table 2. Four specific types of events are
considered: harvest, mechanical, flood, and fire. The total
number of pixels that contain these events (not the same
as the total number of events) is listed in parentheses
beside the event name. Table 3 shows the percentage of
algorithm selection in the current polyalgorithm.

BFAST and LandTrendR have high false positive (FP)
rates. In particular, for BFAST, the number of breakpoints
the algorithm must calculate is fixed (v, p, user defined,
default to two or none in this work), so BFAST is expected
to produce one false alarm for each pixel that happens
to have only a single event. This explains the overall
high false alarm count for the algorithm. For the current
set of parameters LandTrendR is also characterized by
several false alarms for any given trajectory. EWMACD
is flexible in terms of the number of breakpoints, thereby
producing fewer FPs. The polyalgorithm naturally inherits
false alarms from the component algorithms. Preliminary
experiments to allow flexible values of v, u for BFAST
and p for LandTrendR have shown encouraging results,
but a reliable strategy to adopt this feature is currently
not there. On a different note, for short term trajectories,
the available TimeSync data contains only major events
such as fire, harvest, and the like (and, sometimes, does
not agree with the NDVI trajectory (Figure 12)). Each
of the three algorithms frequently registers the beginning
of any new trend in trajectory as a breakpoint as well.
Since ‘nonmajor-changes’ such as beginning or end of
recovery period are not included in TimeSync data, these
breakpoints often get (incorrectly) counted towards false
alarms. With such limitations, the presented FP numbers
are a rather unfair assessment.

In case of BFAST, when there exists an ongoing
gradual event in the beginning of the trajectory (e.g.,
a harvest from 2000-02), BFAST places a breakpoint
at the end of this change, or, in other words, at the
beginning of the next (recovery or stability) trend (so,
in 2002 or 2003 for the harvest that extended from
2000-02). This breakpoint is correct with respect to the
trajectory. However, for this example, TimeSync records
2000-02 as the change years. So while checking against
TimeSync data, no change is found in the years on
record and BFAST gets a false negative. Consequently,
BFAST’s true positives are slightly undercounted and
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Table 2. Breakpoint detection relative to TimeSync data.

EWMACD LTR BFAST PolyAlg.

Harvest TP 271 304 368 340
(558 pixels) FN 340 307 243 275
FP 204 913 310 368

Mechanical TP 33 44 49 46
(58 pixels) FN 39 28 23 26
FP 83 260 102 123

Flood TP 8 11 9 8
(19 pixels) FN 13 10 12 13
FP 196 581 226 261

Fire TP 79 72 88 82
(130 pixels) FN 54 61 45 51
FP 25 94 30 39

Table 3. Percentage of algorithm selection

EWMACD LandTrendR BFAST none

Harvest 32.8% 50.5% 14.9% 1.7%

Mechanical — 25.8% 25.8% 46.5% 1.7%
Flood 42% 26.3% 31.6% 0%

Fire 27.7% 20.8% 49.2% 2.3%

false negatives are slightly overcounted. The same is true
for the polyalgorithm’s false negatives/true positives.

Based on the numbers in the tables, the polyalgorithm
demonstrates improved results compared to either EW-
MACD or LandTrendR alone. However, BFAST turns out
to be the highest performing algorithm, even better than
the polyalgorithm itself. The results collectively suggest
that, for a significant number of instances, (i) EWMACD
and LandTrendR miss ‘major’ events while these events
are correctly identified by BFAST, but (ii) EWMACD
and LandTrendR still get chosen as the final algorithm
by the polyalgorithm. The selection in these instances
could potentially be because of (i) both algorithms finding
similar sets of incorrect breakpoints and therefore being
in consensus, or (ii) situations similar to Figures 11
and 12(b) — one of the component algorithms yields a
clustered set of breakpoints, which also happens to be
close to any breakpoint from one of the other component
algorithms. Experiments on long term trajectories with
the same polyalgorithm strategy have not shown any
significant changes in success rates. Including more
algorithms will partially alleviate this situation. To
robustly combat this situation, the polyalgorithm strategy
itself needs to evolve further. Minor variations in
polyalgorithm strategy have shown promise but having
more algorithms will be beneficial prior to any significant
strategy changes.



BFAST vs. polyalgorithm. BFAST is very thorough
in its breakpoint search, so its good performance is
not surprising. It appears that using BFAST alone
may be better than using multiple algorithms and the
polyalgorithm. However, BFAST does not scale well
(Saxena et al. 2017a, Saxena et al. 2017b). Furthermore,
the user-defined, fixed number of breakpoints (4 = 2 in
this study) that BFAST uses is a significant limitation.
For the same stack of images (scene), different pixels may
have zero, one, two, or more breakpoints. In addition, for
longer lengths of time more breakpoints may be desirable.
Two breakpoints are barely enough to capture one loss
plus the subsequent recovery. Eventually, therefore,
other algorithms that allow on-the-fly determination of
breakpoints and are also scalable will need to be included
as component algorithms. BFAST can instead be used,
for example, in subintervals of the dataset to validate
breakpoints produced by other component algorithms, or,
to check stability in the training period of algorithms
dependent on training data. The polyalgorithmic approach
appears to be the most promising way of change detection
over a variety of land covers, but a viable polyalgorithm
remains to be worked out.

Dependence on parameters. The present results
are based on a fixed set of parameters (the published
parameters). In some (to many) instances, variation of
input parameters for any one algorithm could well cause
output variability comparable to that between algorithms.
Using larger values of persistance w and L for EWMACD,
for instance, make significant differences in the output.
Similarly, using v = 0 for LandTrendR appears to reduce
clustering of breakpoints. The current polyalgorithm used
the published value v = 0. The number of breakpoints
used for BFAST and LandTrendR, in particular, has
significant influence on the polyalgorithm outcomes.

Imbalance in number of breakpoints. Currently,
EWMACD has an independent number of breakpoints,
BFAST has a user defined, fixed number of breakpoints,
while LandTrendR has a user defined upper limit on the
number of breakpoints. Different algorithms producing
different numbers of breakpoints almost always leads to a
significant imbalance in the Hausdorff directional distance
based voting. To alleviate this imbalance, one possibility
is to run EWMACD, if it produces a minimum number of
breakpoints (minimum being decided based on the total
number of years in the study), set u for LandTrendR and
v = p for BFAST equal to it. Preliminary experiments
with this approach have shown improved results for
BFAST, LandTrendR and the polyalgorithm. However,
more algorithms need to be included (at least, to combat
the dependence of EWMACD itself on its training period)
and outcomes studied further before drawing conclusions.
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8. Conclusions and Future Work.

At present, the polyalgorithm offers some improvement
over EWMACD or LandTrendR alone, but not over
BFAST. Since BFAST is the most rigourous/exhaustive
component algorithm, and the polyalgorithm is not
as good as BFAST yet, there is surely room for
improvement of the polyalgorithm. The experiments
carried out in this work are just the beginning of further
work towards a viable polyalgorithm. Several directions
of research/development must be pursued in this regard.

First, the number of algorithms included here is
not sufficient for a robust consensus vote. Two out
of three algorithms often miss trends and/or important
changes of interest to users. With only three algorithms
in the framework, the polyalgorithm also misses these
changes/events. At least two more algorithms must be
included for robust voting. Algorithms based on splines
(e.g., Moisen et al. 2016) and those utilizing spatial
information have potential for inclusion.

Second, the current algorithm selection is not exhaus-
tive in data coverage. For example, for trajectories where
there is no significant change in trend and the training
period of EWMACD is also unstable, only LandTrendR
is applicable. An algorithm suitable for such trajectories
is needed. Further, most examples presented in this
paper are related to vegetated pixels (mainly because
NDVI was being used as input). Studying the use of the
polyalgorithm to monitor urban land cover changes is one
of the next steps and will likely involve utilizing other
spectral bands.

Third, in addition to determining the ‘best’ algorithm
for a given pixel, it may also be possible to incorporate
parameter tuning/adaptation in the polyalgorithm. For
example, for a random sample of pixels with known
validated changes, the polyalgorithm may run each
algorithm for a range of parameters rather than for the
fixed set of (published) parameters. The polyalgorithm
will then also suggest good parameter choices for each
algorithm on the full data set. Adding such intelligence
to any of the algorithms, and to the polyalgorithm, is a
significant research challenge.

Fourth, resource allocation is a concern. Parallelism
is presently implemented only across pixels (first level)
using OpenMP, i.e., multiple cores of a node take different
pixels and process them simultaneously. For a fixed pixel,
the component algorithms are currently executed serially.
With this arrangement, load balancing within individual
algorithms is already an issue. If a national level image
analysis has to be carried out or if parameter tuning
has to be included in the polyalgorithm, parallelism
across algorithms (second level) becomes essential. A
third layer of parallelism, namely, parallelism within
algorithms, is also desirable. Load balancing between



these three (coarse to fine grained) levels of parallelism
in the polyalgorithm will be challenging.

Finally, the directional Hausdorff distance d(-,-) alone
is not sufficient to determine the polyalgorithm outcome.
The instances of failure of the current basic strategy are
primarily due to an insufficient number of component
algorithms, and equally important, due to to multiple
algorithms producing proximal but incorrect results. To
fully circumvent the latter situation, the polyalgorithm
strategy needs to evolve further. Possibilities include: (i)
including parameter variation (ii) breakpoint acceptance
test (for example, residuals for a piecewise linear fit based
on proposed breakpoints). (iii) tests for goodness of
fit and correlation coefficient, (iv) preemptively checking
whether a component algorithm is even suitable for a
given time series (e.g., if the training period of EWMACD
is not stable, then EWMACD is simply not used for that
pixel). Including more algorithms will allow designing
more sophisticated strategies.

Given the inconsistent trend predictions between the
different algorithms, the sometimes erratic behavior of a
given algorithm on a given image stack, the sensitivity
to parameters for some algorithms, and the prohibitive
execution times for serial codes, there is clearly a need
for a parallel polyalgorithm (an intelligent, adaptive union
of multiple algorithms). This and earlier work (Saxena
et al. 2017a), assessing the scalability and memory
footprint, the parameter sensitivity, and the range of
applicability of individual algorithms are but first steps
toward such a parallel polyalgorithm for hyperspectral
Landsat image stacks. In summary, the contributions
of this work are (1) a systematic investigation of the
issues involved in creating a polyalgorithm; (2) precise
mathematical descriptions of BFAST, EWMACD, and
LandTrendR; (3) efficient, portable, parallel Fortran 2008
code for all algorithms; (4) directional Hausdorff distance
for comparing changes; (5) a unified I/O framework for
running and comparing LULCC algorithms.
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