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Networks represent a powerful tool to visualize and predict 
information propagation in complex systems, from viral 
spread1, to neuronal2 or biochemical3–5 signals. In some cases 

the network topology exposes the natural geometry of the propaga-
tion, with the more distant nodes impacted at later times. In others, 
however, the translation is less transparent, a consequence of the 
diverse forms of nonlinear interactions that may take place between 
the nodes6–11. Therefore, advances are often system dependent, with 
each dynamics warranting its own dedicated analysis, allowing lim-
ited insight to transfer across domains.

To overcome this diversity we seek general tools to translate a 
network’s topology into predictions on its observed propagation 
patterns—often characterized through the system’s response to local 
perturbations3,12,13. A single component is perturbed, and as a result 
all other network components are impacted, leading, in the long 
term, to a cascade of responses, whose size and penetration depth 
help characterize the network’s dynamic behaviour3,4,14,15. Such 
predictions, however, tracking the system’s long-term response, 
provide little insight into its temporal propagation, leaving open 
time-related questions, such as, how much time it will take the cas-
cade to build up, which nodes respond first and which later, or what 
percentage of nodes are impacted at any given point in time.

We address these questions here by predicting an individual 
node’s degree-dependent response time, allowing us, by piec-
ing together all local responses, to predict the complete network 
spatiotemporal propagation patterns. Analytically tractable for a 
family of commonly encountered steady-state dynamics, our for-
malism allows us to systematically translate topology into signal 
propagation, in effect, reestablishing networks as predictors of 
information spread.

Diversity in signal propagation
To illustrate the challenge we begin with an artificial N-node protein 
interaction network Aij, which we use to simulate the propagation  

of biochemical signals in a sub-cellular environment (Fig. 1a). 
Denoting the abundance of the ith protein by xi(t), we capture the 
system’s dynamics through16 Ḣ = − + ∑ =x B x A x( )i i i

a
j
N

ij j1 , in which 
the first term describes a protein’s self-dynamics, for example, deg-
radation (a =  1), dimerization (a =  2) or a more complicated chain 
reaction (fractional a, Supplementary Section 2.2), and the second 
term depicts i’s regulation by its interacting partners, often captured 
by a Hill function of the form17,18 H = ∕ +x x x( ) (1 )j j

h
j
h  (Fig. 1b). 

Changes in the abundance of one protein propagate, through Aij, 
to affect the abundance levels of all other proteins, representing a 
spread of biochemical information in the system3. Hence we initi-
ate a biochemical signal by introducing a perturbation Δ xj to the 
steady-state abundance of the source j (black node), and then track 
its propagation, as it penetrates the network, for illustration, focus-
ing on four selected target nodes i =  1, 2, 3, 4 (coloured nodes).

In Fig. 1d–i we track the resulting propagation under different 
dynamics, by controlling the values of a and h and monitoring the 
sequence of responses Δ xi(t) of the four selected target nodes. We 
also measured the propagation times T(j →  i) for the signal in j to 
travel to i through

ηΔ = → = Δ → ∞x t T j i x t( ( )) ( ) (1)i i

namely T(j →  i) represents the time when i has reached an η-fraction 
of its final response to the j-signal (typically setting η ~ 1/2, the half-
life of i’s response; Fig. 1c, Supplementary Section 3.2). For a =  h =  1 
the propagation seems predictable—first impacting the nearest 
neighbours 1, 2, then reaching the farther nodes 3, 4 (Fig. 1d,e). 
This clean picture, however, is violated as the dynamics is changed. 
For instance, under a =  1/2 we find that the nearest neighbour 1 is 
impacted significantly later than all other nodes, seemingly skipped 
over by the more distant 3 and 4 (Fig. 1f,g). The opposite occurs 
when we set a =  3, h =  1/2, as now 1 becomes the first to receive the 
signal, preceding 4 by two orders of magnitude (Fig. 1h,i).
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This diversity of propagation patterns is also expressed by the 
mean propagation time

∑⟨ ⟩ = →
=

T
N

T j i1 ( ) (2)
i j

N

2
, 1

capturing the typical time for signals to cover the entire network. 
We find that 〈 T〉  ranges from ~10−2 (Fig. 1i, green) to ~102 (Fig. 1g,  
red), representing a several order of magnitude difference in 
timescales exhibited by the same network. Consequently, signal 
propagation cannot be mapped directly to the network topology,  
as, indeed, even in this simple example, we observe that changes to 
the dynamics (values of a and h) can have dramatic consequences 
on the spreading behaviour.

To advance from this anecdotal observation towards a general 
signal propagation framework, we seek to separate the role of the 
topology from that of the dynamics. Therefore, we constructed a 
systematic testing ground combining a diverse body of model and 

empirical networks with a set of frequently encountered dynamic 
models. This includes Erdős–Rényi (ER) and scale-free (SF) net-
works19 with different link weight distributions (SF, SF1, SF2), as well 
as empirical networks from social20–22, biological22–24, neuronal25 and 
ecological26 domains. To scan the dynamics space, we implemented 
relevant steady-state dynamic models, capturing epidemic spread-
ing (E27), ecological interactions (M10), regulatory dynamics (R1, 
R2

17,18), neuronal activation (N28) and population dynamics (P29),  
together a spectrum of nonlinear models from diverse application 
fields. We arrive at a combination totaling 41 systems—each pair-
ing a network with its relevant dynamics, on which to observe and 
understand the potential signal propagation patterns (Fig. 2a,b).

Introducing permanent activity perturbations Δ x around the 
steady state, as in Fig. 1, we examined signal propagation in each of 
our 41 combined networks/dynamics. The results for SF, across all 
six dynamic models, are presented in Fig. 3a–f. We find that despite 
the fact that the networks and layouts in all panels are identical,  
the spatiotemporal propagation patterns are visibly different, 
depending on the type of dynamics: in some cases propagating, 
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Fig. 1 | Propagation of signals in a complex network environment. To model network dynamics we use a two-layer description. a, The first layer is the 
topology, captured by the weighted network Aij. b, The second layer is the system’s dynamics, designed to capture the inner mechanisms driving the 
system’s observed behaviour. Here, for illustration, we consider protein interactions in sub-cellular networks: proteins are depleted at a rate proportional to 
xi

a (setting Bi =  1 for all i) and activated by their network neighbours via the Hill function H = ∕ +x x x( ) (1 )j j
h

j
h  (refs. 17,18). The dynamic behaviour of the system 

(a,b) can be captured through its patterns of information, or signal, propagation. A local signal in the form of an activity perturbation Δ xj is applied to the 
source node j (black), spreading through the network to impact all other nodes 1, 2, … . c, The spatiotemporal propagation of this signal is captured by the 
response of all target nodes, i, via Δ xi(t), which we normalize to satisfy Δ xi(t →  ∞ ) =  1. The propagation time, T(j →  i), captures the time for Δ xi to reach 
an η-fraction of its final response, here illustrated for η =  1/2 (half-life). We tested the propagation from j under different dynamics, varying the exponents 
a and h. d, The response Δ xi(t) versus t, as obtained for a =  h =  1 for nodes i =  1, 2, 3 and 4 (coloured in Aij). 1 and 2 respond almost simultaneously, hence 
their overlapping plots. e, The propagation time T(j →  i) for these four nodes. As expected we find that the signal first reaches the neighbouring nodes 
1,2, then propagates to impact the next neighbours 3, 4. f,g, Changing the value of a to 1/2 has a pronounced impact on the propagation pattern, as now 1 
seems to be skipped by the more distant 3 and 4. Moreover, T(j →  1) is now two orders of magnitude greater than T(j →  2), despite being at equal distance 
from j, and in sharp contrast with their previously simultaneous responses. h,i, The propagation sequence is further scrambled under a =  3, h =  1/2, as are 
the propagation timescales, with 1 now preceding the others by two orders of magnitude. Hence, Aij alone is insufficient to predict information spread, as 
indeed, changes in the dynamic equation in b translate to profound and seemingly unpredictable consequences on the observed propagation.
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expectedly, from core to periphery (R N,1 , blue), in others, strik-
ingly, advancing from the periphery inwards (R P,2 , red) and finally, 
in M and E, featuring a seemingly random scatter of early respond-
ing nodes (green). These observations indicate a non-trivial inter-
play between structure and dynamics, whose mathematical roots we 
investigate below.

analytical framework for spatiotemporal propagation
To understand the roots of the observed propagation patterns  
we develop a unified framework to capture the behaviour of  
all dynamic models used in Figs. 1–3. Therefore we consider the 
general equation (Fig. 2c)

∑= +
=

x
t

M x t A M x t M x t
d
d

( ( )) ( ( )) ( ( )) (3)i
i

j

N

ij i j0
1

1 2

in which the nonlinear functions M =  (M0(x), M1(x), M2(x)) can 
be selected to cover each of the systems included in our testing 
ground (Fig. 2a,b), together with a range of additional social30, bio-
logical16 or technological31 dynamics. For instance, the regulatory 
models R R,1 2 are covered by equation (3) through M =  (− Bxα, 1, 
xh/(1 +  xh)); similarly, the SIS model E maps to M =  (− Bx, 1 −  x, x); 
excluded, however, are non-factorizable interactions, for example, 
M(xi, xj) =  M(xj −  xi) (ref. 32). The network Aij ≥  0 represents a ran-
dom weighted network, with arbitrary degree/weight distribu-
tions—that is, a positive weighted configuration model network33.

To predict the signal propagation patterns of equation (3), we 
first focus on each node’s individual response time τi to a directly 
incoming signal; that is, we seek the T(j →  i) for signals originat-
ing in i’s nearest neighbour j. In Supplementary Section 1 we show, 
based on linear response theory, that we can link τi to i’s weighted 
degree = ∑ =S Ai j

N
ij1  through the universal scaling relationship

τ ~ θS (4)i i

where

θ = − −Γ2 (0) (5)

The parameter Γ (0) is determined by the system’s dynamics M 
through the leading powers of the Hahn series expansion

∑=−

=

∞
ΓY R x C x( ( )) (6)

n
n

n1

0

( )

where Y(x) =  (d(M1R)/dx)−1, R(x) =  − M1(x)/M0(x) and R−1(x) 
denotes its inverse function. The Hahn expansion in equation (6) 
is a generalization of the Taylor expansion, to include both negative 
and real powers34; hence Γ (n), n =  0, … , ∞ , represents a sequence of 
real powers in ascending order; that is, Γ (n +  1) >  Γ (n). Equation (5) 
relates the exponent θ in equation (4) to the leading power Γ (0) of 
equation (6), hence directly linking τi to the system’s dynamics M (see 
Supplementary Section 2 for detailed application of equations (4)–(6) 
on all dynamics of Fig. 2b).

Equations (4)–(6) represent our first key prediction, showing 
that the individual response times of all nodes are driven by the 
interplay between topology, Si, and dynamics, θ. Therefore, the 
exponent θ helps translate topology into dynamic insight, here map-
ping response time, a desirable dynamic function, to the weighted 
degree, a well-mapped topological characteristic. To test this predic-
tion, we measured τi versus Si for each of the 41 systems summa-
rized in Fig. 2a. The results, presented in Fig. 4a–c, fully confirm our 
predicted scaling: for R1 and N, equation (5) predicts θ =  0 (Fig. 4a);  
for R2 and P, it predicts θ =  3/2 and θ =  1, respectively (Fig. 4b);  

for M and E the prediction is θ =  − 1 (Fig. 4c), all corroborated by 
our simulation results.

Most crucially, θ is intrinsic to the system’s dynamics M, inde-
pendent of the network topology Aij. Indeed, Fig. 4a–c groups 
together distinct systems based on their shared dynamics: R1 and N 
having θ =  0, R2 and P with θ =  3/2 and 1, respectively, and M and 
E both having θ =  − 1. In each of these dynamic classes, the scal-
ing of equation (4) is sustained across diverse networks, ranging in 
size, density and structural heterogeneity. Hence θ is a fingerprint of 
the system’s dynamic model M, providing the desired separation of 
topology versus dynamics: Aij provides the degrees Si and their dis-
tribution P(S), while M translates these into τi through θ (Fig. 2d).

Global propagation regimes
Equation (4) provides not only the local response times τi, but also 
helps unravel the global propagation patterns T(j →  i), predicting 
three distinct propagation regimes:

Distance-limited propagation (R1, N, blue). In case θ =  0 we have 
τi in equation (4) independent of Si. Therefore, as the signal propa-
gates along network paths, each node in its trajectory causes, on 
average, the same delay, and hence the propagation time T(j →  i) 
is primarily governed by the path length Lij. In Fig. 4d we present 
T(j →  i) versus Lij, confirming our prediction that in R1 and N prop-
agation is, indeed, driven by distance.

Degree-limited propagation (R2, P, red). For θ >  0 equation (4) 
predicts that hubs respond at a slower rate than low-degree nodes, 
in effect being the bottlenecks of signal propagation. In this class the 
length of a path Lij is of little importance compared to the degrees 
of the nodes along its trajectory; especially in SF networks, where 
paths are extremely short35, whereas degrees range over orders of 
magnitude (Fig. 4e).

Composite propagation (E, M, green). For θ <  0 the hubs respond 
rapidly, and hence signal propagation is, again, primarily limited 
by the path length from source to target (Fig. 4f); however paths 
enriched with hubs will support a more rapid propagation.

We can now revisit the illustrative Fig. 1, to better understand its 
observed T(j →  i). The blue dynamics (Fig. 1d,e) is distance limited 
(θ =  0), therefore the signal reaches the nearest neighbours first at 
t ≈  1, then proceeds to impact the next neighbours at t ≈  2. In con-
trast, red (Fig. 1f,g) is degree limited (θ =  2), and hence the highly 
connected hub node 1 is the last to receive the signal, bypassed by 3, 
whose incoming information is routed via the low-degree, and thus 
fast-responding, node 2. This illustrates that under degree-limited 
propagation, short paths do not necessarily translate to rapid propa-
gation. Finally, for the green system (Fig. 1h,i), we predict θ =  − 2/3, a 
composite dynamics, in which the hub-enriched paths are now fastest, 
leading to a third propagation sequence 1, 3 (hubs), followed by 2, 4.

Consequently, θ provides not only local insight, but also guide-
lines on the global spreading patterns, identifying rapid versus slow 
pathways. More broadly, these insights can help us uncover the 
dynamic consequences associated with two of the most profound 
characteristics of real networks: first, most real networks exhibit 
extremely short paths, often following ⟨ ⟩ ~L Nlogij

35; second, the 
(weighted) degree distribution P(S) of many real systems is fat-
tailed, often scale-free, featuring hubs alongside low-degree nodes36. 
Our analysis indicates that these two topological hallmarks impact 
the propagation of signals in a rather distinctive fashion. Whereas 
the short paths accelerate propagation, the impact of degree hetero-
geneity depends on the dynamic regime: hubs may either expedite 
propagation (θ <  0, green, Fig. 4i), have no effect on it (θ =  0, blue, 
Fig. 4g) or cause delays (θ >  0, red, Fig. 4h).

To quantify this effect consider again the mean propagation 
time 〈 T〉  in equation (2), which measures the efficiency of the  
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Fig. 2 | testing ground and characterization of network signal propagation. a, We tested signal propagation on 41 systems constructed from combinations 
of 15 networks and 6 relevant dynamic models; for example, epidemic spreading E on the social network UCIonline (shaded boxes). The networks 
(Supplementary Section 3.4): ER, Erdős–Rényi; SF, SF1, SF2, scale-free networks with binary, uniform and scale-free distributed weights, respectively; PPI1–
PPI4, protein interaction networks22–24; Brain, physical connections between human brain regions38; ECO1/2, plant pollinator network of Carlinville, Illinois26, 
collapsed on to the plants/pollinators; UCIonline, Epoch, Epinions and ATN, online social networks20–22. We tested all dynamic models on our four model 
networks (24 shaded boxes, top) and on the appropriate empirical networks (17 shaded boxes, bottom). b, The dynamics (Supplementary Section 2): R R,1 2
, gene regulation via the Michaelis–Menten model17,18 with different exponents39 for the self-dynamics (1 versus 0.4) and for the regulating Hill function (1 
versus 0.2); N, activation dynamics between brain regions28; P, population dynamics through birth–death processes29,31,40; M, mutualsitic interactions, for 
example, plant–pollinator relationships in ecological networks10; E, susceptible–infected–susceptible (SIS) model for epidemic spreading41–43. c, We offer 
to capture these dynamics, together with a range of additional pairwise dynamics, through the universal equation (3). d, The propagation patterns emerge 
from the interplay between the weighted topology Aij and the system’s intrinsic dynamics M =  (M0(x), M1(x), M2(x)). The topology provides the path lengths 
Lij and the weighted degree distribution P(S); the dynamics determine how these topological features translate into τi through θ (equation (4)). Combining 
the two contributions, for example, equation (7), provides the spatiotemporal propagation T(j →  i). e, Depending on the value of θ we predict that systems 
within equation (3) exhibit three dynamic regimes, each with its series of distinctive observable fingerprints, characterizing how topological features  
(for example, system size N), impact propagation patterns (for example, mean propagation time 〈 T〉 ; characteristic 5).
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network propagation. Our analysis predicts three levels of efficiency. 
The first, efficient spread ( R Nθ = 0, ,1 , Fig. 4j), occurs in distance-
limited propagation where we have T(j →  i) ∝  Lij, and hence, for a 
random network ⟨ ⟩ ∝ ⟨ ⟩ ~T L Nlogij , a rapid coverage that grows 
only logarithmically with the system’s size. The second, slow spread 
( R Pθ > 0, ,2 , Fig. 4k), occurs in the degree-limited regime where the 
propagation times are governed by the hubs, whose degrees increase 
with N; hence for a large system (N →  ∞ ), signals require an 
extremely long time to penetrate the network. For SF networks this 
leads to a scaling behaviour ⟨ ⟩ ~ αT N , an inefficient propagation in 
which 〈 T〉  diverges polynomially with N. Therefore, despite the fact 

that SF shrinks the topological distance, it greatly inflates the tem-
poral distance, illustrating the potentially non-trivial mapping from 
topology to dynamics. Finally, in composite dynamics ( E Mθ < 0, , , 
Fig. 4l), signals rapidly propagate thanks to the hubs. Consequently, 
the propagation time is primarily determined by the response of the 
target nodes, which is independent of N or of the path length. This 
results in an ultra-efficient spread, in which ⟨ ⟩ ~T const, effectively 
independent of N. Indeed, in Fig. 4l we find that networks of vastly 
different size, ranging over more than four orders of magnitude, are 
all covered within approximately the same 〈 T〉 ; a counter-intuitive 
form of propagation, that is yet fully predicted by our formalism.
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Fig. 3 | Classifying the zoo of propagation patterns. a, Propagation on the scale-free network SF under regulatory dynamics R1. At t =  0 we introduce a 
perturbation to the activity of a randomly selected source node (centre), then track the propagation, presenting three snapshots observed at selected time 
points. The size and colour depth of each node represent its response; hence nodes that received the signal at earlier times appear first. b–f, We repeated 
this experiment on the same network and the same source node, using different dynamic models (as detailed in Fig. 2b). We observe different propagation 
patterns depending on the dynamics, resulting in a zoo of seemingly unpredictable propagation patterns. g,h, The probability density function P(T) versus 
T as obtained from R1 and N on ER (top) and SF (bottom). We find that P(T) exhibits multiple sharp peaks in both ER and SF, indicating that the degree 
distribution P(S) has little impact on the propagation. i,j, In R2 and P the density P(T) has a fundamentally different form with no discrete peaks. Here P(T) 
is broader in SF (bottom) compared with ER (top), showing that now P(S) has a significant impact on the propagation. k,l, M and E exhibit a third type of 
P(T), featuring multiple overlapping peaks. To highlight these peaks we show (in shades of green) P(T ∩  L), capturing the probability that T(j →  i) ∈  (T, T +  dT)  
while Lij =  L; that is, P(T) extracted exclusively from node pairs at distance Lij =  1, 2, … . The complete P(T) is a composition of these overlapping peaks. For 
SF (bottom) the inner peaks P(T ∩  L) are broader and hence show more overlap compared with ER (top). Therefore in this class the propagation is affected 
both by distance (discrete peaks) and by P(S) (variance within each peak). Complementary results from all our 41 model/empirical systems—the testing 
ground of Fig. 2—appear in Supplementary Section 4.
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Fig. 4 | Dynamic regimes of signal propagation. We measured the local response times τi of all nodes versus their weighted degree Si, for our 41 
networks/dynamics detailed in Fig. 2a,b. a, τi versus Si, as obtained from R1 (dark) and N (light) on all relevant networks (symbols). As predicted, 
we observe the scaling of equation (4) with θ =  0 (solid black line). This scaling relationship is independent of Aij, sustained across all models (ER, 
SF, SF1, SF2) and relevant empirical networks (PPI1–PPI4, Brain). b, For R2 and P we predict θ =  3/2 and θ =  1, respectively (solid lines), in perfect 
agreement with the observed results (symbols). c, For M and E we predict θ =  − 1, again confirmed for both the model and relevant empirical 
networks. d, T(j →  i) versus Lij as obtained from R1 and N on ER and SF. These systems are in the distance-limited regime, θ =  0, in which T(j →  i) 
is proportional to Lij. e, R2 and P, having θ >  0, are in the degree-limited regime, and consequently T(j →  i) is almost independent of Lij. f, M and E 
represent composite dynamics, where, again T(j →  i) ∝  Lij. g–i, The mean propagation time 〈 T〉  on ER and SF networks with identical average degree 
〈 S〉 . g, Distance limited: 〈 T〉  is unaffected by the ER/SF networks, other than a minor decrease in 〈 T〉  for SF, a consequence of the typically shorter 
paths characterizing SF networks. h, Degree limited: here hubs delay the propagation, and hence SF dramatically increases 〈 T〉 . The effect is more 
pronounced when θ is large. Indeed, R2 (θ =  3/2) features a 612% increase, compared with the 278% exhibited by P (θ =  1). i, Composite: 〈 T〉  is 
dominated by the response time of the small nodes, which is roughly the same in ER and SF. It is smaller than in the two other regimes (blue, red) 
due to the fast response of the hubs along all pathways from source to target. j, Efficient spread: 〈 T〉  versus the number of nodes N as obtained from 
R1 (dark) and N (light). As predicted, ⟨ ⟩T N~ log  (solid lines). k, Slow spread: for R2 (dark) and P (light), ⟨ ⟩ αT N~  (solid line represents α =  1/2). 
Hence, despite the fact that SF shrinks the mean topological distance 〈 L〉 , it greatly inflates the mean temporal distance 〈 T〉 . l, Ultra-efficient spread: 
in composite dynamics we predict ⟨ ⟩T ~ const, independent of system size. Indeed, N spans four orders of magnitude, whereas 〈 T〉  is practically 
constant. Data points in a–c and j–l represent logarithmic bins44 in Si,N (Supplementary Section 3.3).
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Going beyond the averaged 〈 T〉 , a most profound distinction 
between the three regimes is expressed through the response time 
distribution, P(T), capturing the probability density that a randomly 
selected i, j pair has T(j →  i) ∈  (T, T +  dT). In the distance-limited 
regime, nodes are divided into discrete equidistant shells, compris-
ing the nearest neighbours of the signal source, the next-nearest 
neighbours and so on. In each of these shells, the signal reaches 
all nodes approximately simultaneously, resulting in discrete time 
intervals, which shape P(T) in a unique form of sequentially sepa-
rated peaks, a distinctive structure that can be observed in Fig. 3g,h. 
Here, since response time is independent of degree, we predict that 
the structure of P(T) is unaffected by P(S), and hence ER (top) and 
SF (bottom) have similar P(T). In contrast, under degree-limited 
propagation, SF networks exhibit a much broader P(T), a conse-
quence of the delayed propagation caused by the hubs (Fig. 3i,j). 
With P(S) being the prime determinant of the propagation in this 
regime, the discrete nature of Lij, responsible for the peaks in the 
distance-limited P(T), now plays no role in shaping the system’s 
temporal response patterns. Finally, in composite dynamics, P(T) 
is shaped by both Lij and P(S), leading to a sequence of overlap-
ping peaks (Fig. 3k,l). This captures the essence of the compos-
ite regime: the mean propagation time is governed by Lij (peaks), 
whereas at each distance, the variance is governed by P(S) (width 
of each peak), a composition of degrees and distances. Hence, our 
predicted regimes (θ positive, negative or zero) are characterized by 
highly distinctive P(T), providing a clear fingerprint for each of the 
predicted propagation patterns.

In Fig. 5 we illustrate the impact of network modularity on signal 
propagation in each of our three dynamic regimes (see Methods).

Taken together, we find that the zoo of diverse spreading behav-
iours observed in Figs. 1–5 is, in fact, a consequence of a deep uni-
versality that can be fully predicted through the single, analytically 
tractable, exponent θ. Its value helps systematically translate micro-
scopic (Si), mesoscopic (Lij, modularity) and macroscopic (P(S), N) 
network characteristics into distinctive patterns of dynamic propa-
gation, all summarized in Fig. 2e.

Universal dynamic metric for signal propagation
To simplify the observed signal propagation we seek a predictive met-
ric, L →j i( ) that transparently reflects the actual propagation times 
T(j →  i); namely we seek a temporal distance L → ∝ →j i T j i( ) ( ) (ref. 1).  
Consider the shortest path Π (j →  i) =  j →  q →  …  →  i from the source 
j to the target i. Being shortest, this path is the main artery through 
which j’s signal impacts i (ref. 4). Following equation (4), the delay 
incurred on each node p ∈  Π (j →  i) scales as θSp, therefore leading to 
the desired metric

L





















∑→ = .θ

Π → ∈Π →
≠

j i S( ) min (7)
j i p j i

p j

p
( ) ( )

The summation captures the accumulated lag time along each path, 
and the minimization selects the fastest of all shortest paths from j 
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periphery and shifts hubs towards the centre. Additional layouts from our empirical networks are shown in Supplementary Section 4. i, T(j →  i) versus 
L →j i( ) for all networks under the distance-limited R1 (dark) and N (light) dynamics. The linear relationship indicates that L →j i( ) precisely captures 
the actual patterns of propagation. j, T(j →  i) versus L →j i( ) in the degree-limited R2 (dark) and P (light). Here T(j →  i) and L →j i( ) span several 
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inversely scale with the weighted degrees of nodes along each path. Therefore we use inverted axes 1/T(j →  i) versus L∕ →j i1 ( ). In j and k we employed 
logarithmic binning44 (Supplementary Section 3.3).
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to i. Equation (7) provides the temporal distance between all pairs 
of nodes i and j, designed to naturally capture the system’s dynamic 
signal propagation. As opposed to other common metrics, L →j i( ) 
depends not only on Aij, but also on the dynamics M through θ 
(equation (5)). Hence, for a given Aij the distances L →j i( ) are adap-
tive, relocating all nodes depending on the nature of the system’s 
nonlinear interactions (Fig. 6a,b).

To test equation (7) we used it to layout the SF networks shown 
in Fig. 3a–f, placing each node in its appropriate location, at dis-
tance L →j i( ) from the perturbed source (Fig. 6c–h). The originally 
unpredictable spreading patterns (Fig. 3) collapse into a concentric 
propagation, with the desired L→ ∝ →T j i j i( ) ( ). The crucial point 
is that these layouts are dynamically adaptive. Hence, despite using 
the same Aij the nodes are located differently as the dynamics is 
shifted from R1 and N (blue, θ =  0) to R2 and P (red, θ =  1, 3/2), 
and further to M and E (green, θ =  − 1). In Fig. 6i–k we show the 
observed T(j →  i) versus the analytically calculated L →j i( ) in equa-
tion (7) for all our 41 model/empirical systems—each according to 
its classification (blue, red, green). Layouts of all remaining systems 
appear in Supplementary Section 4.

Extended testing. In Supplementary Sections 5 and 6 we examine 
the application of our formalism to two real systems, capturing the 
spread of a global epidemic, and the propagation of a power cas-
cade. We further discuss the empirical relevance of our framework 
in Supplementary Sections 7 and 8. These applications and tests go 
beyond our analytical framework; therefore, they help us examine 
the relevance and applicability of our general approach: to first map 
the timescales associated with individual components (τi), and then 
piece them together to obtain the global propagation patterns (for 
example, L →P T j i( ), ( )).

Discussion and outlook
Predicting the spread of information in a complex network environ-
ment is at the heart of our ability to understand its dynamic behav-
iour, hence the widespread efforts to collect data on the topology of 
real biological, social and technological networks. Yet, if we wish to 
leverage these data into actual dynamic insights, we must system-
atically translate our findings on network structure into dynamic 
predictions. Our formalism offers such translation by separating 
the contribution of the topology, Aij, from that of the dynamics, M, 
using the exponent θ to obtain the different forms in which Aij gen-
erates signal propagation.

A crucial aspect of our predicted propagation patterns is that they 
are fully controlled by the system’s dynamics, independent of the 
underlying topology. Therefore, being, for example, in the compos-
ite class is an intrinsic fingerprint of the SIS model E, regardless of 
whether it is implemented on Epoch or on UCIonline. Interestingly, 
within the same dynamics, the propagation class may, generally, 
change as the system transitions between states. For example, in 
Supplementary Section 7.6 we show that the pandemic transition in 
E is also a transition from distance-limited to composite dynamics. 
This offers an additional layer by which to understand such state 
transitions: the system not only transfers from healthy to pandemic, 
but also changes its propagation regime.

Although complex system dynamics can take almost unlimited 
forms, our formalism shows that the determinants of information 
spread are restricted to the few leading powers of M, as encapsulated 
within Γ (0) in equation (6). This groups together fundamentally 
different dynamics under the same propagation class, for example, 
ecological interactions (M) and epidemics (E), which exhibit iden-
tical spreading patterns. Most importantly, the dependence on the 
powers (Γ (n)) as opposed to the coefficients (Cn), shows that our 
predictions are intrinsic to the system’s dynamics, determined by 
the functional form of M, rather than by its specific rate constants. 
For instance, our prediction that E is in the composite regime is not 

sensitive to the microscopic rates of infection/recovery, which vary 
across different diseases, but rather represents a robust property of 
the SIS model itself. Hence θ reduces the complexity of the micro-
scopic description to a small number of relevant parameters—here 
the leading powers of M. An analogous approach was successfully 
employed in the past to expose universality in particle systems37 
and we believe that this line of thought may lead to similar break-
throughs in our understanding of complex network dynamics.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-018-0409-0.
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Methods
Derivation outline for the universal exponent θ. Although a detailed and 
rigorous derivation is provided in Supplementary Section 1, here we provide a 
rough derivation, outlining the main steps used to derive equations (4) and (5). 
First we write equation (3) as

M= +
x
t

M x t S M x t t
d
d

( ( )) ( ( )) ( ) (8)i
i i i i0 1

where = ∑ =S Ai j
N

ij1  is node i’s weighted degree, and

M ∑=
=

t
S

A M x t( ) 1 ( ( )) (9)i
i j

N

ij j
1

2

represents the mean impact experienced by node i from its direct neighbourhood. 
Under the configuration model framework, node i’s neighbours are extracted from 
a similar distribution to that of all other nodes, allowing us to substitute M t( )i  by 
M t( ), omitting the index i, to signify the fact that, on average, i’s neighbourhood 
is identical to that of all other nodes (Supplementary Section 1.1). Using this 
approximation in equation (8), and setting the derivative on the left-hand-side to 
zero we obtain the steady-state activities of all nodes

λ= −x R ( ) (10)i i
1

where R(x) =  − M1(x)/M0(x), Mλ = ∕ ∝ −S S1i i i
1 and R−1(x) represents R’s inverse 

function (Supplementary Section 1.2). Omitting the argument t, we use xi and M 
to denote the steady-state values of xi(t) and M t( ). Next we consider the response 
Δ xi(t) of equation (8) to a small perturbation Δ xm to one of i’s nearest neighbours, 
which, linearizing around the steady state, yields the non-homogeneous linear 
equation (Supplementary Section 1.3)

Δ
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1 ( ) ( , ) ( ) (11)i

i
i i

2

with

M
τ = −

′ + ′M x S M x
1

( ) ( ) (12)i
i i i0 1

In equation (11) τi represents node i’s intrinsic response time, which is precisely 
what we seek. In contrast, the non-homogeneous term f(Si, t) determines i’s final 
response Δ xi(t →  ∞ ), but has no impact on its temporal dynamics towards this 
final state; hence in the present discussion we do not pursue this term any further 
(see Supplementary Section 1.3 for a more detailed treatment). The derivatives 

′M x( )q i  (q =  0, 1) represent dMq/dxi with xi taken at the steady state, as provided by 
equation (10). Using the fact that M0(x) =  − M1(x)/R(x) we write
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where in the last step we used the fact that R(R−1(λi)) =  λi. In a similar fashion we 
express the second term in the denominator of equation (12) as

M M
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1

Collecting all terms we rewrite equation (12), preserving only the components 
that contribute to the scaling of τi with Si (or λ ∝ −Si i

1), ignoring, for instance, the 
nearest-neighbour average M, which is independent of Si. We arrive at

τ λ
λ λ λ λ~ ′ + ′− − − −R R M R M R R R1 1 [ ( ( )) ( ( )) ( ( )) ( ( ))] (15)

i i
i i i i2
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1

1
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where, once again, we used λi =  R(R−1(λi)) to extract the pre-factor of λ −
i

2 on the 
right-hand-side. Interestingly, the terms in the square brackets are in the form of a 
product derivative, allowing us to further simplify equation (15) into
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We can now write

τ λ λ~ −Y R( ( )) (17)i i i
2 1

where
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In the limit of large Si (small λi) we express Y(R−1(λi)) in equation (17) as a Hahn 
series around λi =  0

∑λ λ=−
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n
n i
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( )

which, to leading order, provides us with τ λ λ~ Γ
i i i

2 (0). Substituting −Si
1 for λi, we 

arrive at the desired scaling relationship

τ ~ θS (20)i i

where θ =  − 2 −  Γ (0), as appears in equations (4) and (5).
Interestingly, the scaling exponent θ is fully determined by the self-dynamic 

functions M0(xi) and M1(xi), independent of the neighbours’ function M2(xj). This 
does not mean that propagation times are not affected by M2(xj), only that the 
scaling relationship of equation (4) is not sensitive to this function. Indeed, M2(xj) 
does impact the response time τi in equation (12) through M, which approximates 
the steady-state value of M t( )i  in equation (9). However, when seeking θ we are not 
focused on the specific value of τi, but rather on its scaling with Si. Hence, although 
M contributes to this specific value, being independent of i, it has no bearing on 
τi’s scaling with Si. This separation is enabled by the configuration model, which 
allows us to approximate M M≈t t( ) ( )i , relying on the vanishing correlation 
between i’s degree and that of its neighbours (Supplementary Section 1.1).

The expansion in equation (19) is defined if the dynamic functions M can 
be expressed by a convergent Hahn series around R−1(0), excluding, for example, 
discontinuous threshold dynamics, which cannot be treated within the bounds of 
our analytic framework.

Example: mutualistic dynamics M. To extract θ for the M-dynamics (Fig. 2b) we 
first write it as
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setting, for simplicity, all rate constants to unity. Here we have R(x)  
=  − M1(x)/M0(x) =  1/(x2 −  1), and therefore
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Next we use equation (18) to write
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Taking R−1(x) from equation (22), the Hahn expansion in equation (19) takes  
the form
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for which the leading power is Γ (0) =  − 1. As a result we predict, using equation (5), that 
θ =  − 2 −  Γ (0) =  − 1, a negative scaling, placing M in the composite regime. A detailed 
analysis of this and all other models of Fig. 2b appears in Supplementary Section 2.

The impact of modularity (Fig. 5). Although our quantitative predictions are 
valid under the configuration model (that is, a random network), they can still 
offer qualitative insights on more general structures. As an illustrative example, we 
consider the effect of network modularity on signal propagation. We constructed 
two communities, linked through a single hub (Fig. 5), representing, topologically, 
two distinct functional modules45. The question is whether this topological 
modularity translates also to dynamic modularity; namely, are the two modules 
functionally isolated. Indeed, this strongly depends on the dynamic regime of the 
system, as the exponent θ crucially impacts the efficiency of information transfer 
between the modules: in distance-limited propagation the signal first spreads 
within its own module, but then spills over to the neighbouring module within a 
short time, driven by the short paths linking across the modules (Fig. 5a,b, blue). In 
contrast, under degree-limited propagation the connecting hub responds extremely 
slowly, acting as an effective shock-absorber, which restricts the signal for a very 
long time within one module (Fig. 5c,d, red). Hence, in this regime the structural 
modularity translates into an equally stiff dynamic modularity. In composite 
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dynamics the picture is fundamentally different: the rapidly responding hub 
node, effectively renders the boundary between the two communities transparent 
for signal propagation. Therefore, counter-intuitively, signals cross community 
boundaries almost instantaneously (Fig. 5e,f, green).

Data availability
All data and codes to reproduce the results presented here are freely accessible at 
https://github.com/CRHENS/Spatio-Temporal-/blob/master/README.md.  

Additional information is available from the corresponding author upon 
reasonable request. The only exception is the air-traffic network data, which the 
authors are restricted from sharing.
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