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ABSTRACT
Deep Learning (DL) methods have been transforming computer
vision with innovative adaptations to other domains including cli-
mate change. For DL to pervade Science and Engineering (S&E)
applications where risk management is a core component, well-
characterized uncertainty estimates must accompany predictions.
However, S&E observations and model-simulations often follow
heavily skewed distributions and are not well modeled with DL
approaches, since they usually optimize a Gaussian, or Euclidean,
likelihood loss. Recent developments in Bayesian Deep Learning
(BDL), which attempts to capture uncertainties from noisy obser-
vations, aleatoric, and from unknown model parameters, epistemic,
provide us a foundation. Here we present a discrete-continuous BDL
model with Gaussian and lognormal likelihoods for uncertainty
quantification (UQ). We demonstrate the approach by developing
UQ estimates on “DeepSD”, a super-resolution based DL model
for Statistical Downscaling (SD) in climate applied to precipitation,
which follows an extremely skewed distribution. We find that the
discrete-continuous models outperform a basic Gaussian distribu-
tion in terms of predictive accuracy and uncertainty calibration.
Furthermore, we find that the lognormal distribution, which can
handle skewed distributions, produces quality uncertainty estimates
at the extremes. Such results may be important across S&E, as well
as other domains such as finance and economics, where extremes
are often of significant interest. Furthermore, to our knowledge,
this is the first UQ model in SD where both aleatoric and epistemic
uncertainties are characterized.

CCS CONCEPTS
• Computing methodologies → Neural networks; Reconstruc-
tion; •Applied computing→Earth and atmospheric sciences;
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1 INTRODUCTION
Science and Engineering (S&E) applications are beginning to lever-
age the recent advancements in artificial intelligence through deep
learning. In climate applications, deep learning is being used to
make high-resolution climate projections [41] and detect tropical
cyclones and atmospheric rivers [35]. Remote sensing models such
as DeepSAT [3], a satellite image classification framework, also
leverage computer vision technologies. Physicists are using deep
learning for detecting particles in high energy physics [1] and in
transportation deep learning has aided in traffic flow prediction [30]
and modeling network congestion [31]. Scientists have even used
convolutional neural networks to approximate the Navier-Stokes
equations of unsteady fluid forces [34]. However, for many of these
applications, the underlying data follow non-normal and discrete-
continuous distributions. For example, when modeling precipita-
tion, we see most days have no precipitation at all with heavily
skewed amounts on the rainy days, as shown in Figure 1. Fur-
thermore, climate is a complex nonlinear dynamical system, while
precipitation processes in particular exhibit extreme space-time
variability as well as thresholds and intermittence, thus precipi-
tation data cannot be assumed to be Gaussian. Hence, for deep
learning to be harnessed to it’s potential in S&E applications, our
models must be resilient to non-normal and discrete-continuous
distributions.

Uncertainty quantification is another requirement for wide adop-
tion of deep learning in S&E, particularly for risk management
decisions. Twenty years ago, Jaeger et al. stated, “uncertainties in
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Figure 1: Histogram of daily precipitation on the Contiguous United States from 2006 to 2015. A) All precipitation data points.
B) Precipitation distribution on rainy days only. C) Log distribution of precipitation on rainy days.

climate change are so pervasive and far reaching that the tools for
handling uncertainty provided by decision analysis are no longer
sufficient [20].” As expected, uncertainty has been a particular in-
terest of climate and computer scientists to inform social and in-
frastructure adaptation to increasing weather extremes and natu-
ral disasters [21, 29]. For example, Kay et al. studied six different
sources of uncertainty of climate change impacts on a flood fre-
quency model [22]. These uncertainties included future greenhouse
gas scenarios, global climate models (GCMs) structure and param-
eters, downscaling GCMs, and hydrological model structure and
parameters. Hence, quantifying the uncertainty from each of these
processes is critical for understanding the system’s uncertainty.
This provides us with the problem of quantifying uncertainty in
discrete-continuous and non-normal distributions.

Recent work in Bayesian Deep Learning (BDL) provides a foun-
dation for modeling uncertainty in deep networks which may be
applicable to many S&E applications [11, 13, 24, 44]. The simplicity
of implementing BDL on an already defined deep neural network
makes it an attractive approach. With a well-defined likelihood
function, BDL is able to capture both aleatoric and epistemic uncer-
tainty [24]. Epistemic uncertainty comes from noise in the model’s
parameters which can be reduced by increasing the dataset size. On
the other side, Aleatoric uncertainty accounts for the noise in the
observed data, resulting in uncertainty which cannot be reduced.
Examples of aleatoric uncertainty are measurement error and sen-
sor malfunctions. Aleatoric uncertainty can either be homoscedas-
tic, constant uncertainty for different inputs, or heteroscedastic,
uncertainty depending on the input. Heteroscedastic is especially
important in skewed distributions, where the tails often contain
orders of magnitude increased variability. Variants of these meth-
ods have already been successfully applied to applications such as
scene understanding [23] and medical image segmentation [42].

While BDL has been applied to few domains, these models gen-
erally assume a Gaussian probability distribution on the prediction.
However, as we discussed in S&E applications, such an assump-
tion may fail to hold. This motivates us to extend BDL further to
aperiodic non-normal distributions by defining alternative density
functions based on domain understanding. In particular, we focus
on a precipitation estimation problem called statistical downscal-
ing, which we will discuss in Section 2. In section 3, we review
“DeepSD”, our statistical downscaling method [41], and Bayesian

Figure 2: PrismObserved Precipitation: Left) Low resolution
at 64km. Right) High resolution at 16km.

Deep Learning Concepts. In section 4, we present two BDL discrete-
continuous (DC) likelihood models, using Gaussian and lognormal
distributions, to model categorical and continuous data. Following
in Section 5, we compare predictive accuracy and uncertainty cal-
ibration in statistical downscaling. Lastly, Section 6 summarizes
results and discusses future research directions.

1.1 Key Contributions
(1) A discrete-continuous bayesian deep learning model is pre-

sented for uncertainty quantification in science and engi-
neering.

(2) We show that a discrete-continuous model with a lognormal
likelihood can model fat-tailed skewed distributions, which
occur often in science and engineering applications.

(3) The first model to capture heteroscedastic, and epistemic,
uncertainties in statistical downscaling is presented.

2 PRECIPITATION ESTIMATION

2.1 Statistical Downscaling
Downscaling, either statistical or dynamical, is a widely used pro-
cess for producing high-resolution projections from coarse global
climate models (GCMs) [10, 17, 33]. Dynamical downscaling, often
referred to as regional climate models, are physics based numerical
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models encoding localized sub-grid processes within GCM bound-
ary conditions to generate high-resolution projections. Similar to
GCMs, dynamical downscaling are computational expensive and
simply cannot scale to ensemble modeling. Statistical downscaling
is a relatively efficient solution which aims to use observed data
to learn a functional mapping between low- and high-resolution
GCMs, illustrated in Figure 2. Uncertainty in GCMs is exacerbated
by both observational data and parameters in the functional map-
ping, motivating a probabilistic approach.

GCMs through the Fifth Coupled Model Intercomparison Project
(CMIP5) provides scientist with valuable data to study the effects
of climate change under varying greenhouse gas emission scenar-
ios [39]. GCMs are complex non-linear dynamical systems that
model physical processes governing the atmosphere up to the year
2200 (some to 2300). GCMs are gridded datasets with spatial reso-
lutions around 100km and contain a range of variables including
temperature, precipitation, wind, and pressure at multiple pres-
sure levels above the earth’s surface. More than 20 research groups
around the world contributed to CMIP5 by developing their own
models and encoding their understanding of the climate system.
Within CMIP5, each GCM is simulated under three or four emission
scenarios andmultiple initial conditions. This suite of climate model
simulations are then used to get probabilistic forecasts of variables
of interest, such as precipitation and temperature extremes [36].
While the suite of models gives us the tools to study large scale
climate trends, localized projections are required for adaptation.

Many statistical models have been explored for downscaling,
from bias correction spatial disaggregation (BCSD) [6] and auto-
mated statistical downscaling (ASD) [16] to neural networks [38]
and nearest neighbor models [18]. Multiple studies have compared
different sets of statistical downscaling approaches on various cli-
mate variables and varying temporal and spatial scales showing
that no approach consistently outperforms the others [5, 15, 40].
Recently, Vandal et al. presented improved results with an alterna-
tive approach to downscaling by representing the data as "images"
and adapting a deep learning based super-resolution model called
DeepSD [41]. DeepSD showed superior performance in downscal-
ing daily precipitation in the contiguous United States (CONUS)
when compared to ASD and BCSD.

Even though uncertainty is crucial in statistical downscaling,
it is rarely considered in downscaling studies. For instance, all
the downscaled climate projections used in the latest US National
Climate Assessment report (CSSR), produced on the NASA Earth
Exchange, come with no uncertainty estimates. Though widely
used in climate impact assessments, a recurrent complaint from
the users is a lack of uncertainty characterization in these projec-
tions. What users often request are estimates of geographic and
seasonal uncertainties such that the adaptation decisions can be
made with robust knowledge [43]. Khan et al. presented one study
that assessed monthly uncertainty from confidence based intervals
of daily predictions [25]. However, this approach only quantifies
epistemic uncertainty and therefore cannot estimate a full probabil-
ity distribution. To the best of the authors’ knowledge, no studies
have modeled aleatoric (heteroscedastic) uncertainty in statistical
downscaling, presenting a limitation to adaptation.

2.2 Climate Data
A wide variety of data sources exists for studying the earth’s cli-
mate, from satellite and observations to climate models. Above we
discussed some of the complexities and uncertainty associated with
ensembles of GCMs as well as their corresponding storage and
computational requirements. While the end goal is to statistically
downscale GCMs, we must first learn a statistical function to ap-
ply a low- to high-resolution mapping. Fortunately, one can use
observed datasets that are widely available and directly transfer
the trained model to GCMs. Such observation datasets stem from
gauges, satellite imagery, and radar systems. In downscaling, one
typically will use either in-situ gauge estimates or a gridded data
product. As we wish to obtain a complete high-resolution GCM, a
gridded data product is required. Such gridded-data products are
generally referred to as reanalysis datasets, which use a combina-
tion of data sources with physical characteristics aggregated to a
well estimated data source. For simplicity, the remainder of this
paper we will refer to reanalysis datasets as observations.

In SD, it is important for our dataset to have high spatial reso-
lution at a daily time temporal scale spanning as many years as
possible. Given these constraints, we choose to use precipitation
from the Prism dataset made available by Oregon State University
with a 4km spatial resolution at a daily temporal scale [8]. The
underlying data in Prism is estimated from a combination of gauges
measuring many climate variables and topographical information.
To train our model, the data is upscaled from 4km to the desired
low-resolution. For example, to train a neural network to downscale
from 64km to 16km, we upscale Prism to 16km and 64km and learn
the mapping between the two (see Figure 2).

For the reader, it may be useful to think about this dataset as
an image where precipitation is a channel analogous to traditional
RGB channels. Similarly, more variables can be added to our dataset
which therefore increases the number of channels. However, it is im-
portant to be aware that the underlying spatio-temporal dynamics
in the chaotic climate systemmakes this dataset more complex than
images. In our experiments with DeepSD, we included an eleva-
tion from the Global 30 Arc-Second Elevation Data Set (GTOPO30)
provided by the USGS.

3 BACKGROUND
3.1 DeepSD
The statistical downscaling approach taken by DeepSD differs from
more traditional approaches, which generally do not capture spatial
dependencies in both the input and output. For example Automated
Statistical Downscaling (ASD) [16] learns regression models from
low-resolution to each high-resolution point independently, fail-
ing to preserve spatial dependencies in the output and requiring
substantial computational resources to learn thousands of regres-
sion models. In contrast, DeepSD represents the data as low- and
high-resolution image pairs and adapts super-resolution convolu-
tional neural networks (SRCNN) [9] by including high-resolution
auxiliary variables, such as elevation, to correct for biases. These
auxiliary variables allows one to use a single trained neural net-
work within the training domain. This super-resolution problem
is essentially a pixel-wise regression such that Y = F (X;Θ) where
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Y is high-resolution with input X = [Xlr ,Xaux ] and F a convolu-
tional neural network parameterized by Θ. F can then be learned
by optimizing the loss function:

L =
1
2N

∑
i ∈S

∥F (Xi ;Θ) − Yi ∥22 (1)

where S is a subset n examples. Based on recent state-of-the-art
results in super-resolution [26, 28], we modify the SRCNN archi-
tecture to include a residual connection between the precipitation
input channel and output layer, as shown in Figure 3.

Figure 3: Residual SRCNN Architecture used for DeepSD
with a skip connection between precipitation and the out-
put layer.

As discussed above, the resolution enhancement of 8x or more
needed in statistical downscaling is much greater than the 2-4x en-
hancements used for images. DeepSD uses stacked SRCNNs, each
improving resolution by 2x allowing the model to capture regional
and local weather patterns, depending on the level. For instance,
to downscale from 100km to 12.5km, DeepSD first trains models
independently (or with transfer learning) to downscale from 100km
to 50km, 50km to 25km, and 25km to 12.5km. During inference,
these models are simply stacked on each other where the output
of one plus the next corresponding auxiliary variables are inputs
to the next. In the case of downscaling precipitation, inputs may
include LR precipitation and HR elevation to predict HR precipi-
tation. In this work, we focus on uncertainty quantification for a
single stacked network which can then be translated to stacking
multiple Bayesian neural networks.

3.2 Bayesian Deep Learning
In the early 1990’s Mackay [32] introduced a Bayesian neural net-
works (BNNs) by replacing deterministic weights with distributions.
However, as is common with many Bayesian modeling problems,
direct inference on BNNs is intractable for networks of more than
a one or two hidden layers. Many studies have attempted to re-
duce the computational requirements using various approxima-
tions [2, 14, 19]. Most recently, Gal and Ghahramani presented a
practical variational approach to approximate the posterior distri-
bution in deep neural networks using dropout and monte carlo
sampling [11, 12]. Kendall and Gal then followed this work for com-
puter vision applications to include both aleatoric and epistemic
uncertainties in a single model [24].

To begin, we define weights of our neural network as ω =
{W1,W2, ...,WL} such that W ∼ N(0, I ) and L being the num-
ber of layers in our network. Given random outputs of a BNN
denoted by f ω (x), the likelihood can be written as p(y| f ω (x)).

Then, given data X and Y, as defined above, we infer the posterior
p(ω |X,Y) to find a distribution of parameters that best describe the
data. For a regression task assuming a predictive Gaussian posterior,
p(y| f ω (x)) = N(ŷ, σ̂ 2) with random outputs:

[ŷ, σ̂ 2] = f ω (x).

Applying variational inference to the weights, we can define
an approximate and tractable distribution qΘ(ω) =

∏L
l=1 qMl (Wl )

where qMl (Wl ) = Ml × diag
[
Bernoulli(1 − pl )

Kl
]
parameterized

by Θl = {Ml ,pl } containing the weight mean of shape Kl × Kl+1,
Kl being the number of hidden units in layer l , and dropout proba-
bility pl . Following, we aim to minimize the Kullback-Leibler (KL)
divergence between qΘ(ω) to the true posterior, p(ω |X,Y). The op-
timization objective of the variational interpretation can be written
as [12]:

L̂(Θ) = −
1
M

∑
i ∈S

logp(yi | f ω (xi )) +
1
N
KL(qΘ(ω)| |p(ω)) (2)

= L̂x (Θ) +
1
N
KL(qΘ(ω)| |p(ω)) (3)

where S is a set ofM data points. To obtain well calibrated uncer-
tainty estimates, it is crucial to select a well estimated pl . Rather
than setting pl to be constant, we can learn it using a concrete
distribution prior which gives us a continuous approximation of
the Bernoulli distribution [13]. As presented by Gal et al., the KL
divergence term is then written as:

KL(qΘ(ω)| |p(ω)) =

L∑
l=1

KL(qMl (Wl )| |p(Wl )) (4)

KL(qMl (W)| |p(W)) ∝
l2(1 − pl )

2
| |Ml | | − KlH(pl ) (5)

where
H(p) = −p log p − (1 − p) log (1 − p) (6)

is the entropy of a Bernoulli random variable with probability p. We
note that given this entropy term, the learning dropout probability
cannot exceed 0.5, a desired effect. For brevity, we encourage the
reader to refer to [13] for the concrete dropout optimization. In
the remainder of this paper, we will use this concrete dropout
formulation within all presented models.

4 BAYESIAN DEEP LEARNING FOR SKEWED
DISTRIBUTIONS

In this section we describe three candidate Bayesian deep learning
models to quantify uncertainty in super-resolution based downscal-
ing. We begin by formalizing the use of BDL within the SRCNN
architecture assuming a normal predictive distribution, identical to
the pixel-wise depth regression in [24]. This approach is further ex-
tended to a discrete-continuous model that conditions the amount
of precipitation given an occurrence of precipitation. This leverages
the domain knowledge that the vast majority of data samples are
non-rainy days which are easy to predict and contain little infor-
mation for the regression. Such a technique was used by Sloughter
el al. using a discrete-continuous gamma distribution [37]. Lastly,
we show that a lognormal distribution can be applied directly in
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BDL and derive its corresponding log-likelihood loss and unbiased
parameter estimates.

4.1 Gaussian Likelihood
Super-resolution is an ill-posed pixel-wise regression problem such
that BDL can be directly applied, as Kendall and Gal showed for
predicting depth in computer vision [24]. As discussed in previous
sections, it is crucial to capture both aleatoric and epistemic uncer-
tainties in downscaling. As shown in section 3.1 of [24], we must
measure the aleatoric uncertainty by estimating the variance, σ 2,
in the predictive posterior while also sampling weights via dropout
from the approximate posterior, Ŵ ∼ qΘ(W). As before, we defined
our Bayesian convolutional neural network f :

[ŷ, σ̂ 2] = fŴ(X). (7)

and make the assumption that Y ∼ N(ŷ, σ̂ 2). The Gaussian log-
likelihood can be written as:

Lx (Θ) =
1
2D

∑
i
σ̂−2
i | |yi − ŷi | |2 +

1
2
log σ̂ 2

i (8)

where pixel i in y corresponds to input x andD being the number of
output pixels. The KL term is identical to that in Equation 4. Given
this formulation, σ̂i , the variance for pixel i is implicitly learned
from the data without the need for uncertainty labels. We also note
that during training the substiution si := log σ̂ 2

i is used for stable
learning using the Adam Optimization algorithm [27], a first-order
gradient based optimization of stochastic objective functions.

Unbiased estimates of the first two moments can the be obtained
with T Monte Carlo samples, {ŷt , σ̂ 2

i }, from fŴ(x) with masked
weights Ŵt ∼ q(W):

E[Y] ≈
1
T

T∑
t=1

ŷt (9)

Var[Y] ≈
1
T

T∑
t=1

µ̂2t −
1
T

T∑
t=1

σ̂ 2
t +

( 1
T

T∑
t=1

µ̂t
)2
. (10)

These first two moments provide all the necessary information to
easily obtain prediction intervals with both aleatoric and epistemic
uncertainties. For further details, we encourage the reader to refer
to [24].

4.2 Discrete-Continuous Gaussian Likelihood
Rather than assuming a simple Gaussian distribution for all output
variables, which may be heavily biased from many non-rainy days
in our dataset, we can condition the model to predict whether rain
occurred or not. The BNN is now formulated such that the mean,
variance, and probability of precipitation are sampled respectively
from f :

[ŷ, σ̂ 2, ϕ̂] = fŴ(X) (11)

p̂ = Sigmoid(ϕ̂). (12)

Splitting the distribution into discrete and continuous parts gives
us:

p
(
y| f ω (x)

)
=

{
(1 − p̂) y = 0
p̂ · N

(
y; ŷ, σ̂ 2) y > 0 (13)

Plugging this in to 2 and dropping the constants gives us the loss
function (for brevity, we ignore the KL term which is identical to
Equation 4):

Lx (Θ) = −
1
D

∑
i
log

(
1yi>0 · p̂i · N

(
yi ; ŷi , σ̂ 2

i
)
+ 1yi=0 · (1 − p̂i )

)
= −

1
D

∑
i,yi>0

(
log p̂i + log N

(
yi ; ŷi , σ̂ 2

i
) )

−
1
D

∑
i,yi=0

log(1 − p̂i )

=
1
D

∑
i

(
1yi>0 · p̂i + (1 − 1yi>0) · (1 − p̂i )

)
−

1
2D

∑
i,yi>0

σ̂−2
i | |yi − ŷi | |2 + log σ 2

i

(14)

where the first term is the cross entropy of a rainy day and the
second term is the conditional Gaussian loss. Furthermore, we can
write the unbiased estimates of the first two moments as:

E[Y] ≈
1
T

T∑
t=1

p̂t ŷt (15)

Var[Y] ≈
1
T

T∑
t=1

p̂2t
(
ŷ2t + σ̂

2
t
)
−

( 1
T

T∑
t=1

p̂t µ̂t
)2
. (16)

4.3 Discrete-Continuous Lognormal
Likelihood

Precipitation events, especially extremes, are known to follow fat-
tailed distributions, such as lognormal and Gamma distributions [7,
37]. For this reason, as above, we aim to model precipitation using
a discrete-continuous lognormal distribution. It should be noted
that the lognormal distribution is undefined at 0 so a conditional
is required for downscaling precipitation. To do this, we slightly
modify our BNN:

[µ̂, σ̂ 2, ϕ̂] = fŴ(X) (17)

p̂ = Sigmoid(ϕ̂). (18)

where µ̂ and σ̂ are sampled parameters of the lognormal distribution.
Following the same steps as above, we can define a piece-wise
probability density function:

p
(
y| f ω (x)

)
=


(1 − p̂) y = 0

p̂ ·
1

yσ̂
√
2π

exp
(
−
(log(y) − µ̂)2

2σ̂ 2

)
y > 0

(19)
This gives us the modified log-likelihood objective:

Lx (Θ) =
1
D

∑
i

(
1yi>0 · p̂i + (1 − 1yi>0) · (1 − p̂i )

)
−

1
2D

∑
i,yi>0

σ̂−2
i | |log yi − µ̂i | |

2 + log σ 2
i

(20)
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In practice, we optimize ŝ := exp(σ̂ ) for numerical stability. And
lastly, the first two moments are derived as:

E[y] ≈
1
T

T∑
t=1

p̂t exp(µ̂ +
1
2
σ̂ 2) (21)

Var[Y] ≈
1
T

T∑
t=1

p̂2t exp(2µ̂ + 2σ̂
2) (22)

Given these first two moments, we can derive unbiased estimates
of µ and σ :

σ̂ = log
(
1 +

1
2

√
4Var[Y]
E[y]2

+ 1
)

(23)

µ̂ = E[y] −
σ̂ 2

2
(24)

that can be used to compute pixel-wise probabilistic estimates.
In the next section, we will apply each of the three methods to
downscaling precipitation, compare their accuracies, and study
their uncertainties.

5 PRECIPITATION DOWNSCALING
For our experimentation, we define our problem to downscale pre-
cipitation from 64km to 16km, a 4x resolution enhancement in
a single SRCNN network. We begin with precipitation from the
PRISM dataset, as presented in Section 2.2, at 4km which is then up-
scaled to 16km using bilinear interpolation. This 16km dataset are
our labels and are further upscaled to 64km, generating training in-
puts. Furthermore, we use elevation from the Global 30 Arc-Second
Elevation Datset (GTOPO30) provided by the USGS as an auxilary
variable, also upscaled to 16km. In the end, our dataset is made up
of precipitation at 64km and elevation at 16km as inputs where
precipitation at 16km are the labels. In the discrete-continuous mod-
els, precipitation >0.5mm is considered a rainy day. Precipitation
measured in millimeters (mm) is scaled by 1/100 for training when
optimizing the Gaussian models. Elevation is normalized with the
overall mean and variance. The training data is taken from years
1980 to 2005 and the test set from 2006 to 2015. Sub-images se-
lected of size 64x64 with stride 48 are used for generating training
examples.

Our super-resolution architecture is defined with two hidden
layers of 512 kernels using kernel sizes 9, 3, and 5 (see Figure 3). The
model is trained for 3 × 106 iterations using a learning rate of 10−4
and a batch size of 10. Three models are optimized using each of the
three log-likelihood loss’s defined above, Gaussian distribution as
well as discrete-continuous Gaussian and lognormal distributions
conditioned on a rainy day. 50 Monte Carlo passes during inference
are used to measure the first two moments which then estimates
the given predictive distribution’s parameters.

Concrete dropout is used to optimize the dropout probability
with parameters τ=1e-5 and prior length scale as l = 1 to improve
uncertainly calibration performance [13]. For a pixel-wise regres-
sion the number of samplesN is set as Days×Height×Width. These
parameters were found to provide a good trade-off between likeli-
hood and regularization loss terms. As shown in Figure 4, dropout
rates for each model and hidden layer are close to 0.5, the largest
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Figure 4: Dropout probabilities learned using Concrete
Dropout for both hidden layers.

possible dropout rate. We find that the Gaussian distribution has dif-
ficulty converging to a dropout rate while the discrete-continuous
models quickly stabilize. Furthermore, the lognormal distribution
learns the largest dropout rate, suggesting a less complex model.

Validation is an important task for choosing a highly predic-
tive and well calibrated downscaling model. In our experiments,
we study each model’s ability to predict daily precipitation, cal-
ibration of uncertainty, and width of uncertainty intervals. For
reproducibility, we provide the codes for training and testing on
github (https://github.com/tjvandal/discrete-continuous-bdl).

5.1 Predictive Ability
We begin by comparing each model’s ability to predict the ground
truth observations. Root Mean Square Error (RMSE) and bias are
compared to understand the average daily effects of downscaling.
To analyze extremes, we select two metrics from Climdex (http://
www.clim-dex.org) which provides a suite of extreme precipitation
indices and is often used for evaluating downscaling models [4, 40]:

(1) R20 - Very heavy wet days ≥ 20mm
(2) SDII - Daily intensity index = (Annual total) / (precip days

≥ 0.5 mm).

In our analysis, we compute each index for the test set as well as
observations. Then the difference between the predicted indices
and observed indices are computed, ie. (SDIImodel - SDIIobs). These
results can be seen in Table 1. We see a clear trend of the DC
models performing better than a regular Gaussian distribution on
all computedmetrics. In particular, DC-Lognormal shows the lowest
Bias, RMSE, and R20 error while DC-Gaussian has slightly higher
errors but performs marginally better at estimating the SDII index.
Furthermore, we study the predictability over space in Figure 5 by
computing the pixel-wise RMSEs. Each model performs well in the
mid-west and worse in the southeast, a region with large numbers
of convective precipitation events.

We see that the DC models, DC-Lognormal in particular, have
lower bias than a regular Gaussian distribution. Similarly for RMSE,
DC models, lead by a DC-Gaussian, have the lowest errors. Looking
more closely, we see improved performance along the coasts which
are generally challenging to estimate. The convolutional operation
with a 5x5 kernel in the last layer reconstructs the image using a
linear combination of nearby points acting as a smoothing opera-
tion. However, when this is applied to the conditional distributions,
the gradient along this edge can be increased by predicting high
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Figure 5: Daily Root Mean Square Error (RMSE) computed at each location for years 2006 to 2015 (test set) in CONUS. A)
Gaussian, B) Conditional-Gaussian, and C) Conditional-Lognormal. Red corresponds to high RMSE while blue corresponds to
low RMSE.

Bias RMSE R20 Error SDII Error

Gaussian -0.11 ± 0.34 2.14 ± 1.31 -0.73 ± 1.94 -0.83 ± 0.93
DC-Gaussian -0.11 ± 0.30 2.07 ± 1.28 -0.61 ± 1.67 -0.21 ± 0.78
DC-Lognormal -0.02 ± 0.30 2.05 ± 1.27 -0.36 ± 1.63 -0.28 ± 0.81

Table 1: Predictive accuracy statistics computed pixel-wise and aggregated. Daily intensity index (SDII) and yearly precipita-
tion events greater than 20mm (R20) measure each model’s ability to capture precipitation extremes. R20-Err and SDII-Err
measures the difference between observed indicies and predicted indicies (closer to 0 is better).

and low probabilities of precipitation in a close neighborhood. This
insight is particularly important when applied to coastal cities.
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Figure 6: Precision recall curve of classifying rainy days in
conditional models.

Lastly, we look at each conditional model’s ability to classify
precipitous days with precision recall curves (Figure 6). We see
that recall does not begin to decrease until a precision of 0.8 which
indicates very strong classification performance. It was assumed
that classification of precipitation would be easy for such a dataset.

5.2 Uncertainty Quantification
The remainder of our analysis focuses on each model’s perfor-
mance in estimating well calibrated uncertainty quantification. We

limit our analysis of uncertainty to only days with precipitation
(≥ 0.5mm) as uncertainty on non-rainy days is not of interest. The
calibration metric used computes the frequency of observations
occurring within a varying predicted probability range:

c(z) =
1
N

N∑
i=1

IP (yi |f ω (xi ))>(0.5−z/2) ∗ IP (yi |f ω (xi ))<(0.5+z/2) (25)

where P is the cumulative density function of the predictive poste-
rior and z ∈ [0, 1] defined the predictive probability range centered
at 0.5. Ideally the frequency of observations will be equal to the
probability. A calibration error can then be defined as:

RMSEcal =

√√√
1
K

K∑
i=1

(c(i/K) − i/K)2 (26)

where K is the number bins. In our analysis, we use K = 100. The
calibration plots for each model can be seen in Figure 7.

Right away we see from Figure 7 that the Gaussian distribution
over-estimates uncertainty for most of the range with a wider range
of variability between pixels. DC-Lognormal also overestimates
uncertainty but has a lower range of variability between pixels,
showing more consistent performance from location to location.
Overall, DC-Gaussian shows the lowest calibration error hovering
right around x = y but underestimates uncertainty at the tails.
Though DC-Lognormal is better calibrated at the tails, one could
calibrate the tails by simply forcing the variance to explode. Tak-
ing this a step further, we present calibration RMSEs per pixel in
Figure 7 (bottom row) to visualize spatial patterns of UQ. In the
Gaussian model we find weakened and more variable results at
high-elevations in the west and mid-west. Each of the DC models

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2383 



0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

A) Gaussian
RMSE=0.119 ± 0.077

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

B) DC-Gaussian
RMSE=0.082 ± 0.058

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

C) DC-Lognormal
RMSE=0.106 ± 0.065

25°N

30°N

35°N

40°N

45°N

125°W
120°W

115°W
110°W

105°W
100°W 95°W 90°W 85°W 80°W 75°W 70°W

D)

25°N

30°N

35°N

40°N

45°N

125°W
120°W

115°W
110°W

105°W
100°W 95°W 90°W 85°W 80°W 75°W 70°W

E)

25°N

30°N

35°N

40°N

45°N

125°W
120°W

115°W
110°W

105°W
100°W 95°W 90°W 85°W 80°W 75°W 70°W

F)

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Figure 7: Calibration is computed as the frequency of predictions within a given probability range. This probability is varied
on the x-axis with the corresponding frequency on the y-axis. Columns represent each model Gaussian, DC-Gaussian and
Lognormal. Calibration plots on the first row compute per pixel with the shaded area representing the 80% confidence interval
of calibration. The second row depicts calibration root mean square error (RMSE) per location.
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Figure 8: Uncertainty widths based on quantiles from their predictive distributions. The points are observations versus the
expected value. The bands correspond to 50%, 80%, and 90% predictive intervals.

perform well, but DC-Lognormal also has areas of increased error
in the west.

In Figure 8 we aim to better understand these uncertainties for
increasingly intense precipitation days. At these high rainfall days
our models generally under-predict precipitation, but the Gaussian
models often fail to capture these extremes.While the lognormal has
wider uncertainty intervals, it is able to produce a well calibrated
distribution at the extremes. Furthermore, these wide intervals
indicate that the model becomes less confident with decreasing
domain coverage at higher intensities. This may suggest that there
exists a bias-variance trade-off between the Gaussian and Log-
Normal distributions.

6 CONCLUSION
In this paper we present Bayesian Deep Learning approaches in-
corporating discrete-continuous and skewed distributions targeted
at S&E applications. The discrete-continuous models contain both
a classifier to categorize an event and conditional regressor given
an event’s occurrence. We derive loss functions and moments for
Gaussian and lognormal DC regression models. Using precipita-
tion as an example, we condition our model on precipitous days
and predict daily precipitation on a high-resolution grid. Using
the lognormal distribution, we are able to produce well-calibrated
uncertainties for skewed fat-tailed distributions. To our knowledge,
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this is the first model for uncertainty quantification in statistical
downscaling.

Through experiments, we find that this DC approach increases
predictive power and uncertainty quantification performance, re-
ducing errors with well calibrated intervals. In addition, we find
that this conditional approach improves performance at the ex-
tremes, measured by daily intensity index and number of extreme
precipitation days from ClimDex. Visually, we found that the DC
models perform better than a regular Gaussian on the coasts, a chal-
lenge in statistical downscaling. These edge errors appear during
reconstruction when the kernel partially overlaps with the coastal
edge, acting as a smoothing operation. However, the DC models
reduce this smoothing by increasing the expected value’s gradients.

Overall, we find that the DC distribution approaches provides
strong benefits to deep super-resolution based statistical downscal-
ing. Furthermore, while the lognormal distribution uncertainty was
slightly less calibrated, it was able to produce well understood un-
certainties at the extremes. This presents a strong point, Bayesian
Deep Neural Networks can well fit non-normal distributions when
motivated by domain knowledge.

In the future we aim to extend this work to stacked super-
resolution networks, as used in DeepSD [41], which requires sam-
pling of between networks. Some other extensions could be the
addition of more variables, extension to other skewed distributions,
and larger network architectures. Finally, incorporating these the-
oretical advances in uncertainty characterization, the NEX team
plans to use DeepSD to produce and distribute next generation of
climate projections for the upcoming congressionally mandated
national climate assessment.
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