
A Polynomial Time Algorithm for Multivariate Interpolation in
Arbitrary Dimension via the Delaunay Triangulation
Tyler H. Chang

Dept. of Computer Science
Virginia Polytechnic Institute and

State University
Blacksburg, VA
thchang@vt.edu

Layne T. Watson
Depts. of Computer Science,

Mathematics, and Aerospace & Ocean
Engineering

Virginia Polytechnic Institute and
State University

Thomas C. H. Lux
Bo Li

Dept. of Computer Science
Virginia Polytechnic Institute and

State University

Li Xu
Dept. of Statistics

Virginia Polytechnic Institute and
State University

Ali R. Butt
Kirk W. Cameron

Dept. of Computer Science
Virginia Polytechnic Institute and

State University

Yili Hong
Dept. of Statistics

Virginia Polytechnic Institute and
State University

ABSTRACT
The Delaunay triangulation is a fundamental construct from compu-
tational geometry, which �nds wide use as a model for multivariate
piecewise linear interpolation in �elds such as geographic infor-
mation systems, civil engineering, physics, and computer graphics.
Though e�cient solutions exist for computation of two- and three-
dimensional Delaunay triangulations, the computational complex-
ity for constructing the complete Delaunay triangulation grows
exponentially in higher dimensions. Therefore, usage of the Delau-
nay triangulation as a model for interpolation in high-dimensional
domains remains computationally infeasible by standard methods.
In this paper, a polynomial time algorithm is presented for inter-
polating at a �nite set of points in arbitrary dimension via the
Delaunay triangulation. This is achieved by computing a small
subset of the simplices in the complete triangulation, such that all
interpolation points lie in the support of the subset. An empiri-
cal study on the runtime of the proposed algorithm is presented,
demonstrating its scalability to high-dimensional spaces.

KEYWORDS
Delaunay triangulation,multivariate interpolation, high-dimensional
triangulation

ACM Reference Format:
Tyler H. Chang, Layne T. Watson, Thomas C. H. Lux, Bo Li, Li Xu, Ali R.
Butt, Kirk W. Cameron, and Yili Hong. 2018. A Polynomial Time Algorithm
for Multivariate Interpolation in Arbitrary Dimension via the Delaunay
Triangulation. In ACM SE ’18: ACM SE ’18: Southeast Conference, March
29–31, 2018, Richmond, KY, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3190645.3190680

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACM SE ’18, March 29–31, 2018, Richmond, KY, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5696-1/18/03. . . $15.00
https://doi.org/10.1145/3190645.3190680

1 INTRODUCTION
With the rise in big data analytics, accurate techniques for perform-
ing multivariate approximations that scale to high-dimensional do-
mains have become increasingly valuable. Well-known solutions to
the multivariate approximation problem include nearest-neighbor
interpolation, least squares approximation, spline based approxi-
mation functions, and a host of machine learning regression tech-
niques. Delaunay triangulations are fundamental to computational
geometry and are commonly used to perform piecewise linear multi-
variate interpolation in geographic information systems (GIS), civil
engineering, physics, and computer graphics applications [5, 7, 15].
Delaunay triangulations have also been proposed as an e�ective
means for learning nonlinear functions in the context of machine
learning [13], but never achieved mass popularity likely due to their
impractical computational complexity for high-dimensional data.

Given an underlying function f : Rd ! Rm , a �nite set of points
P in Rd , and the response values f (p) for all p 2 P , an interpolant f̂
is an approximation of f that satis�es f̂ (p) = f (p) for all p 2 P . In
the case where d > 1, f̂ is a multivariate interpolant. One method
for constructing a multivariate interpolant is to de�ne a mesh of
simplices that are disjoint except on their boundaries, have vertices
in P , and whose union is the convex hull of P , denotedCH (P). Such
a mesh is a d-dimensional triangulation of P .

Let T (P) be a d-dimensional triangulation of P . To de�ne an
interpolant in terms of T (P), let q 2 CH (P) be an interpolation
point, and let S be a simplex inT (P) with vertices s1, . . ., sd+1 such
that q 2 S . Then there exist unique convex weights w1, . . ., wd+1
such that q =

Pd+1
i=1 wisi ,

Pd+1
i=1 wi = 1, and wi � 0 for i = 1, . . .,

d + 1. Then the interpolant f̂T is given by

f̂T (q) = f (s1)w1 + f (s2)w2 + . . . + f (sd+1)wd+1. (1)

Note that f̂T is well-de�ned, since q is in multiple simplices if and
only if q lies on a shared face. In such a case, q can be expressed
as a convex combination of only the vertices de�ning this mutual
face. Therefore, the weights associated with all nonmutual vertices
must be zero.

The Delaunay triangulation is a speci�c triangulation that en-
joys several properties considered optimal for interpolation [14].

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

For computing two- and three-dimensional Delaunay triangula-
tions, several O (n logn) time algorithms exist [16]. However, for
higher-dimensional Delaunay triangulations, the computational
complexity grows exponentially [11]. This paper considers the case
where a user seeks to interpolate at a �nite set of points Q using
(1) with the Delaunay triangulation of P . A new algorithm is pro-
posed for doing so that runs in polynomial time with respect to
the dimension, number of input points, and number of points to be
interpolated.

The paper is organized as follows. Section 2 provides relevant
de�nitions and a short summary of related work and challenges.
Section 3 contains a detailed description and analysis of the opera-
tions performed in the proposed algorithm. Section 4 introduces
the proposed algorithm along with an analysis of its complexity.
Section 5 raises several issues pertaining to numerical stability and
describes how they are addressed in the algorithm’s implementa-
tion. Section 6 brie�y describes a Fortran implementation of the
algorithm and presents an empirical analysis of its run time. Section
7 concludes this paper and outlines future work.

2 BACKGROUND
2.1 De�nitions
For completeness, �rst consider the following geometric de�nitions.
A (d � 1)-sphere in Rd with center � and radius r � 0 is given by
C (�, r) = {x | kx � � k2 = r }, and the (geometric) interior of C is
the open ball B (�, r) = {x | kx �� k2 < r }. Note that d + 1 a�nely
independent points in Rd de�ne a unique (d �1)-sphere that passes
through these points.

The Delaunay triangulation is de�ned as the geometric dual of
the Voronoi diagram, also known as the Dirichlet tessellation [5, 7].
To obtain a Delaunay triangulation from the Voronoi diagram of a
set of n points P ⇢ Rd , take the set of d-simplices de�ned by the
d+1 closest points to each Voronoi vertex. By de�nition of a Voronoi
vertex, there will always be at least d + 1 points equidistant from
each vertex. If there are more than d+1 points equidistant from one
or more Voronoi vertices, then the division of those points into two
or more space-�lling d-simplices is arbitrary, and any Delaunay
triangulation of P is not unique.

Note that each Voronoi vertex � is the center of a (d � 1)-sphere
C (�, r) through the d + 1 or more points de�ning � , such that
B (�, r) \ P = ;. This is often referred to as the empty circumsphere
property. Formalizing this property, the following alternative de�ni-
tion of a Delaunay triangulation is generally preferred. See Figure
1 for a visual.

De�nition 2.1. A Delaunay triangulation DT (P) of a �nite set
of points P ⇢ Rd is any triangulation of P such that for each d-
simplex S 2 DT (P), the (d � 1)-sphere C (�, r) circumscribing S

satis�es B (�, r) \ P = ;.

Note that if all p 2 P are contained in some lower-dimensional
linear manifold (or equivalently, if CH (P) has zero volume), then
all Voronoi edges extend without bound, and there are no Voronoi
vertices. Therefore, DT (P) (and in general, any full-dimensional
triangulation of P) does not exist. It should be noted that for any set
of n points in Rd , if n < d + 1 then all of the points lie in a (n � 1)-
dimensional linear manifold trivially and no triangulation can exist.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 1: A triangulation in R2 (top) and the Delaunay trian-
gulation (bottom).

In the context of interpolation, the case where n � d + 1 and still no
triangulation exists can be interpreted as an over-parameterization
of the underlying function f .

Except in degenerate cases, there will be exactly d + 1 points
on the boundary of every (d � 1)-sphere, and DT (P) is unique.
Generally, if n � d + 1, it can be assumed that DT (P) exists and is
unique. Since the existence and uniqueness of DT (P) is generally
presumed, it is customary to reference theDelaunay triangulation of
a set of points. This can be formalized with the following de�nition.

De�nition 2.2. A set of points P in Rd is said to be in general
position if P does not lie in some (d�1)-dimensional linear manifold,
and if no d + 2 points in P lie on the same (d � 1)-sphere.

Recall that every Delaunay simplex is circumscribed by a (d � 1)-
sphereC (�, r) satisfying B (�, r) \P = ;. Additionally, consider any
set s = {s1, . . ., sd+1} ofd+1 points in P that de�nes a (d�1)-sphere
C (�, r) with B (�, r) \ P = ;. Then no points in P \ s are closer to
� than the points in s . Therefore � must be a Voronoi vertex, and
s is the set of vertices of a d-simplex in DT (P). This leads to the
following useful equivalence.

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

Observation 2.3. A set of d + 1 points s ⇢ P is the set of vertices
of a d-simplex S 2 DT (P) if and only if s de�nes a (d � 1)-sphere
C (�, r) with B (�, r) \ P = ;.

2.2 Optimality of the Delaunay Interpolant
In this paper, the Delaunay interpolant will refer to the function
f̂DT , as de�ned in (1), where DT is a Delaunay triangulation. The
Delaunay triangulation has several favourable properties that make
f̂DT optimal with respect to all piecewise linear interpolants of
the form f̂T . The following results, originally shown by Rajan [14],
demonstrate some of these favourable properties, many of which
are analogous to properties associated with “quality” �nite element
meshes [5].
• The Delaunay triangulation uniformly minimizes the radius
of the min-containment sphere over all simplices, with re-
spect to all other triangulations.
• Consider any point x 2 P and let BTx = B

T
1 [B

T
2 [. . . [B

T
k

where {BTi } is the set of circumballs de�ned by all simplices
in T containing x as a vertex. Then for all T (P) , DT (P)

B
DT
x \CH (P) ⇢ B

T
x \CH (P).

• De�ne an edge of a simplex to be a 1-face of that simplex,
and let the length of an edge denote the Euclidean distance
between the two vertices de�ning the 1-face. Then the De-
launay triangulation minimizes the weighted sum of squares
of all edge lengths where the weight is given by the sum of
the volumes for all simplices incident to that edge.
• De�ne a simplex S to be “self-centered” if its circumsphere
C (�, r) satis�es � 2 S . Then if a triangulation T (P) exists
such that all S 2 T (P) are self-centered, then T (P) = DT (P).

2.3 Related Works and Limitations
E�cient solutions exist for computing Delaunay triangulations in
two- and three-dimensions, running in O (n logn) time [16]. How-
ever, in Rd , the worst case size of the Delaunay triangulation is
known to be O (n dd/2e) [11]. Even in the common case, the De-
launay triangulation still tends to grow exponentially with the
dimension. This phenomenon is often referred to as the curse of
dimensionality.

In spite of this, many attempts have been made to compute
Delaunay triangulations in arbitrary dimension d . The earliest al-
gorithm proposed for computing arbitrary-dimensional Delaunay
triangulations was proposed independently by both Bowyer [4]
and Watson [17] in the same issue of The Computer Journal. In the
Bowyer-Watson algorithm, points are inserted incrementally; and
with each insertion, the triangulation is re�ned to be Delaunay.

Quickhull [1] is one of the most time e�cient methods for com-
puting high-dimensional Delaunay triangulations. It also boasts a
robust and numerically stable implementation, which is currently
used as the intrinsic for high-dimensional Delaunay triangulation
computation in Matlab, SciPy, and R. Quickhull takes advantage of
the Delaunay triangulation’s relationship with convex hulls, lifting
P onto the bottom of a bowl in Rd+1, computing the convex hull
of the lifted set, then projecting the facets of the convex hull back
down into the original space to get the Delaunay triangulation in
Rd .

The Delaunay Graph approach [2] is loosely based o� the algo-
rithm described in [3], which is at its core, a randomized variation
of the Bowyer-Watson algorithm. However, to avoid the explosion
in storage overhead, this algorithm (at the expense of computation
time) forces the Delaunay triangulation into a graph format that
can be stored in O (n2) space. This algorithm is currently used in
the Computational Geometry Algorithms Library (CGAL).

The �nal algorithm of interest is the Delaunay Wall (DeWall)
algorithm [6]. The DeWall algorithm is a divide-and-conquer based
approach that o�ers an interesting strategy for guided construction
of a Delaunay simplex “wall.”

It should be noted that none of the above mentioned algorithms
are believed to scale past eight dimensions for large data sets.

3 NECESSARY OPERATIONS
The goal of this work is a Delaunay interpolation algorithm that
scales polynomially to high-dimensional spaces. Recall from Sec-
tion 2.3 that the worst case size of the Delaunay triangulation is
O (n dd/2e). Therefore, any algorithm that requires the computation
of the complete Delaunay triangulation cannot scale. To circumvent
this limitation, the following observation is necessary.

Observation 3.1. Given a �nite set of points P inRd , the Delaunay
interpolant f̂DT (q) for some q 2 CH (P) can be exactly computed
given the vertices s = {s1, . . ., sd+1} of any simplex S 2 DT (P) such
that q 2 S .

This reduces the problem of computing DT (P) to that of comput-
ing a speci�c simplex in DT (P). Given an interpolation point q and
a point set P , the proposed algorithm computes a polynomial sized
subset of DT (P) such that q lies in the support of that subset. Given
the vertices of a simplex in DT (P) containing q, the computation
of f̂DT (q) via (1) is trivial.

In this section, the machinery for computing the previously de-
scribed containing Delaunay simplex is developed. The correctness
of the proposed algorithm will follow from the correctness of these
operations. There are three basic operations that need to be de�ned
and proven. They are the construction of an initial Delaunay sim-
plex, the completion of an open Delaunay facet, and the visibility
walk. The construction of a Delaunay simplex and the completion
of an open facet are also described as the basis for both incremental
construction and divide-and-conquer paradigms in [6]. The visibility
walk �nds wide use in several other Delaunay triangulation and
point location algorithms [2–4, 12, 17].

3.1 Growing a Delaunay Simplex
To begin, the following de�nition of a Delaunay face is useful.

De�nition 3.2. Let P be a set of points in Rd . Let F be a k-face
with vertices in P where 0  k  d . Then F is a Delaunay face if the
smallest (radius) (d � 1)-sphere C (�, r) circumscribing F satis�es
B (�, r) \ P = ;.

Note that if k = d , then by Observation 2.3, F is a Delaunay
simplex. The following lemma shows how to grow a complete
Delaunay simplex from an arbitrary Delaunay face.

L���� 3.3. Let P be a set of points in Rd in general position, and
let F be a Delaunay k-face with vertices � ⇢ P where k < d . Let

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

�
⇤ = � [{p

⇤
} where p⇤ 2 P \ � minimizes the radius of the smallest

(d �1)-sphereC�[{p } through the points in �[{p}, over all p 2 P \�.
Then F

⇤, the (k + 1)-face with vertices �⇤, is also a Delaunay face.

P����. The set of centers of (d � 1)-spheres C� (�, r) through �
is a (d � k)-dimensional linear manifoldM� (the solution set of k
linear equations), and similarly for �⇤, the (d � k � 1)-dimensional
linear manifoldM�⇤ . The center �⇤ of the smallest (d � 1)-sphere
C�⇤ (�

⇤, r⇤) through �⇤ is the projection of p⇤ ontoM�⇤ (the closest
point inM�⇤ to p⇤). If there were a p 2 P \ � with p 2 B (�⇤, r⇤),
then kp ��⇤k2 < r

⇤. Then by continuity B (�⇤, r⇤) \M� contains a
point z equidistant from all the points in � and p, with kz�pk2 < r

⇤,
and hence there exists a (d�1)-sphere centered at z through �[{p}
of radius less than r

⇤, which contradicts the de�nition of p⇤ and
r
⇤. Therefore F ⇤, the simplex with vertices �⇤, must be a Delaunay
face. ⇤

The smallest (d � 1)-sphere containing a single point is simply
the point itself, whose open ball is the empty set. Therefore, any
point in P is a Delaunay 0-face trivially. So, starting with an arbi-
trary point in P and applying the following algorithm d times, the
vertices of a full Delaunay simplex S are found. The correctness of
this approach follows immediately from Lemma 3.3.

Algorithm1, computes the vertices�⇤ � � of a Delaunay (k+1)-
face from the vertices� of a Delaunayk-face.

Let P be a set of n points p1, . . ., pn in Rd in general position.
Let � ⇢ P be the vertices of a Delaunay k-face where k < d .
Let ri denote the minimum radius of a (d � 1)-sphere containing
� and the point pi .

rmin := 1;
for i := 1, . . ., n do
if ri < rmin and pi < � then
p̂ := pi ;
rmin := ri ;

end if
end for
return �

⇤ := � [{p̂};

3.2 Completing an Open Facet
Before presenting the algorithm for completing an open facet, the
following observation is helpful. A visual representation of Obser-
vation 3.4 is presented in Figure 2.

Observation 3.4. Let DT (P) be the Delaunay triangulation of a
set of points P in Rd . Given a facet F of some simplex S 2 DT (P),
let p1, . . ., pn be a sequence of points in P and in a halfspaceH with
hyperplane boundary containing F . De�ne the circumspheres C1,
. . ., Cn with corresponding open balls B1, . . ., Bn such that each
Ck contains � and pk . Assume the sequence p1, . . ., pn satis�es
pk 2 Bk+1 for all 1  k < n. Then B1\H ⇢ B2\H ⇢ . . . ⇢ Bn \H .

The proof of this observation has been omitted but follows from
a simple continuity argument. Given Observation 3.4, the following
algorithm is proposed for completing an open facet of a Delaunay
simplex.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3
p3

p2p1

F

H

p3

p2p1

F

H

p3

p2p1

F

H

Figure 2: A 2D visualization of Observation 3.4. The solid
line segment is a facet F ,H is the halfspace above the dashed
line, and {p1,p2,p3} is a sequence satisfying p1 2 B2 and
p2 2 B3.

Algorithm 2, computes the set of vertices s of a Delaunay sim-
plex in the halfspace H from the vertices � of a Delaunay facet F
lying in the boundary hyperplane ofH .

Let P be a set of n points p1, . . ., pn in Rd in general position.
Let � be the vertices of a facet F of a Delaunay simplex.
Let H be a halfspace with hyperplane boundary containing F .
Let PH = (P \ �) \ H .
Let Bi denote the open ball de�ned by the (d � 1)-sphere con-
taining � and pi .

B := H ;
p̂ := p0; Note, p0 is a dummy vertex.
for i := 1, . . ., n do

if pi 2 PH and pi 2 B then
p̂ := pi ;
B := Bi ;

end if
end for
if p̂ = p0 then
� must de�ne a facet of CH (P)
return ;;

else
return s := � [{p̂};

end if

C���� 3.5. Let P be in general position. Then Algorithm 2 correctly
computes the vertices of a Delaunay simplex.

P����. First, note that if ; is returned, then the set PH = (P \
�) \ H was empty. Then the algorithm has correctly determined
that � de�nes a facet of CH (P), and no simplex can exist in H .
Now suppose a set of vertices s was returned. Since P is in general
position, for every pair of points p1,p2 2 PH , it must be that either
p1 2 B2 or p2 2 B1. Therefore, by Observation 3.4, the added vertex
p̂ is in the open ball de�ned by the circumsphere of every other

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

point in PH . So, p̂ is the only point in PH that could de�ne the
vertices for a Delaunay simplex in conjunction with the set � . It
has been given that � is the set of vertices of a Delaunay facet and
the Delaunay triangulation exists since the points are in general
position. Therefore, s = � [{p̂} must be the vertices of a Delaunay
simplex. ⇤

3.3 Visibility Walk
The �nal ingredient in the proposed algorithm will be a visibility
walk. Begin with the following de�nition.

De�nition 3.6. Let S,U be simplices in DT (P). Then S <x U , (x
is visible to S with respect to U), if every ray ` drawn from x that
has a nonempty intersection with both S andU intersects S “before”
U , i.e., for all � 2 S \ ` and for all z 2 U \ `, � is between x and z
on `.

A visibility walk is de�ned by a sequence of simplices S1, . . .,
Sn that satisfy Sn <x Sn�1 <x . . . <x S1. Using Algorithm 2,
a visibility walk could be performed from an arbitrary simplex
to the simplex containing an interpolation point q 2 CH (P), by
completing a shared facet between neighboring Si and Si+1 such
that Si+1 <q Si . From the de�nition, it is clear that if Fi is the
shared facet between Si and Si+1 and Si+1 is on the same side of
the hyperplane containing Fi as q, then Si+1 <q Si . Therefore, a
“next step” in the simplex walk always exists unless Si contains q.
However, it is not clear whether a given simplex walk will ever
terminate, (i.e., whether it will ever arrive at a Sn containing q).
Clearly, if a transitivity property can be established, then the walk
terminates since there are �nitely many simplices in any given
triangulation. The following de�nition formalizes this.

De�nition 3.7. A triangulation T (P) is said to be acyclic with
respect to some viewpoint x if for all S,U ,V 2 T (P), S <x U and
U <x V impliesU <x V .

In general, an arbitrary triangulation T (P) is not acyclic, and a
visibility walk to locate some S 2 T (P) containing q 2 CH (P) may
go into an in�nite loop and fail to terminate. However, it is known
that Delaunay triangulations are acyclic.

T������ 3.8. Delaunay triangulations are acyclic with respect to
a �xed viewpoint x .

This theorem was originally shown by Edelsbrunner, and a de-
tailed proof is in his original paper [8]. However, for the sake of
completeness, consider the following abbreviated interpretation of
Edelsbrunner’s proof.

P����. If there exists a function �x : DT (P) ! R such that
S <x U) �x (S) < �x (U), then the proof follows trivially since it
cannot be that

�x (S1) < �x (S2) < . . . < �x (Sk) < �x (S1).

De�ne �x (S) = kx��S k22�r
2
S , whereC (�S , rS) is the (d�1)-sphere

circumscribing S . Assume S,U 2 DT (P) such that S <x U . Then
any ray originating at x passes through S before U . Since S and
U have mutually empty circumballs (with respect to each others’
vertices), it follows that �x (S) < �x (U). ⇤

4 DELAUNAY INTERPOLATION ALGORITHM
AND ANALYSIS

4.1 Algorithm Description
Using the three operations outlined in Section 3, it is possible to
grow an initial Delaunay simplex then “walk” toward the simplex
containing an interpolation point q 2 CH (P) by completing open
facets such that the sequence S1, . . ., Sk of constructed Delaunay
simplices satis�es Sk <q Sk�1 <q . . . <q S1.

Note, that for every S 2 DT (P) and q 2 Rd , q is a unique a�ne
combination of the vertices of S . Furthermore, if q is in S , then
this a�ne combination will also be convex by the de�nition of a
simplex. Therefore, one can terminate based on the nonnegativity
of the a�ne weights for q with respect to the vertices of the current
simplex S . Furthermore, if q is not in S , then at least one of the
weights will be negative, corresponding to a point that should be
dropped to advance “closer” to q with respect to <q . Conveniently,
upon termination, the convex weights for q are the exact weights
needed to linearly interpolate at q within S , as de�ned in (1). Pseudo
code for the proposed algorithm is provided below.

Algorithm 3, computes the value of the Delaunay interpolant
f̂DT (q) for q 2 CH (P).
Let P be a set of n points in Rd in general position.
Let q 2 CH (P) be a point to interpolate at.
Let fi = f (pi) be known for all pi 2 P , and let f (s) denote the set
{ fi1 , fi2 , . . . , fid+1 } for a set s of d + 1 points {pi1 , pi2 , . . . , pid+1 }
in P .
Let MakeFirstSimplex(P) be a function that grows the set of
vertices of a Delaunay simplex from points in P as described in
Algorithm 1.
Let CompleteSimplex(� , q, P) be a function that completes the
facet de�ned by the set of vertices � with a point from P that is on
the same side of the hyperplane containing � as q; as described
in Algorithm 2.
Let A�neWeights(q, s) be a function that returns the a�ne
weights that give q as a combination of the vertices s .
Let MinIndex(w) return the index of the most negative element
wi .
Let DropVertex(s , i) return the set s \ {si } where si is the ith
element of s .

s := MakeFirstSimplex(P);
w := A�neWeights(q, s);
whilewi < 0 for some 1  i  d + 1 do
i := MinIndex(w);
� := DropVertex(s , i);
s := CompleteSimplex(� , q, P);
w := A�neWeights(q, s);

end while
return f̂DT (q) := hw, f (s)i (inner product);
The correctness of Algorithm 3 follows from the correctness of

the operations in Sections 3.1 - 3.3. The simplices constructed will
always be Delaunay by Algorithms 1 and 2, and the while loop will
terminate in �nite time by Theorem 3.8.

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

4.2 Time Complexity
The construction of the �rst simplex, as de�ned in Algorithm 1, can
be formulated as a sequence of least squares (LS) problems ranging
in size from 2 ⇥d to d ⇥d . Each LS problem can be solved in O (d3)
time. At all d � 1 sizes, one must solve up to n LS problems, taking
the point that produces the minimum residual as the next vertex.
Therefore, the total computation time for the �rst simplex will be
O (nd4).

To complete a simplex (in one iteration of the visibility walk)
requires at most n linear solves, performed in O (nd3) total time.
Therefore, the total time complexity of the visibility walk is given by
O (nd3k), where k is the number of iterations required to converge
on the interpolation point. Bowyer [4] claims that for uniformly
distributed input points P , the expected length of a walk starting
from the center of the Delaunay triangulation is O (n1/d). However,
no proof is provided so this remains speculative. Mücke, Saias, and
Zhu [12] prove that in up to three dimensions, a randomized variant
of the visibility walk converges in O (n

1
d+1) iterations, but the proof

does not generalize past three dimensions.
Assuming Bowyer’s claim holds, using the proposed algorithm

to interpolate at m points from a set of n points in Rd will take
O (mn

1+ 1
d d3 +mnd

4) expected time. This is a signi�cant improve-
ment over the exponential time required for computing the entire
Delaunay triangulation.

4.3 Space Complexity
Recall from Section 2.3 that the size of the Delaunay triangula-
tion grows exponentially with the dimension. Therefore, space
complexity is equally as concerning as time complexity since, for
large d , one cannot store the exponentially sized triangulation in
memory. Another advantage of the proposed algorithm is that any
computed simplex that does not contain any interpolation point
can be discarded immediately after one of its open facets has been
completed.

Therefore, the required space for computing the Delaunay inter-
polant is reduced to:
• O (nd) space for the n input points in Rd ;
• O (md) space for storing them interpolation points in Rd ,
the m containing simplices of size d + 1 each, and the m
convex coordinate vectors of size d + 1 each;
• O (d2) space for storing the d ⇥ d matrices involved in per-
forming linear solves;
• Other temporary storage arrays that require O (d) space.

This makes the total space complexity O (nd +md + d2). Since no
triangulation can exist unless n > d , the space complexity can be
further reduced to O (nd +md), which is approximately the same
size as the input.

4.4 Optimizations
There are several optimizations that are easily implemented to
improve the performance of the proposed algorithm. First, in a
slight modi�cation to Algorithm 3, one could identify the point
p̂ 2 P that is a nearest neighbor to q with respect to Euclidean
distance in O (n) time and build the �rst simplex o� of p̂ instead of
an arbitrarily chosen point. As seen in Table 1, for interpolating

at a single point, this typically leads to location of the simplex
containing q in O (d logd) iterations of the visibility walk with very
little dependency on n.

Table 1: Average number (with a sample size of 20) of Delau-
nay simplices computed in a simplex walk from the simplex
built o� the nearest neighbor to q for n pseudo-randomly
generated points in d dimensions.

n = 2K n = 8K n = 16K n = 32K
d = 2 3.05 2.90 3.25 3.10
d = 8 23.75 24.75 24.30 23.10
d = 32 95.25 125.60 131.85 150.10
d = 64 171.95 221.85 248.35 280.60

When interpolating many points, it is often the case that some
simplex or simplices in the walk contain interpolation points that
have not yet been resolved. With no increase in total time complex-
ity, it is possible to check if the current simplex contains any of the
unresolved interpolation points. If the points being interpolated
are tightly clustered, it is typical for them to all be contained in a
small number of Delaunay simplices, signi�cantly reducing total
computation time.

Furthermore, as will be described in Section 5, when numerical
stability is considered, construction of the �rst simplex becomes
a dominant factor. Then it often becomes optimal to “daisy chain”
visibility walks, walking from each solution simplex to the next
without ever recomputing an initial simplex. Note that when this
approach is taken, the previous complexity analyses regarding the
length of the visibility walk no longer apply, and not much can
be said about the length of the walk. However, in practice, for a
moderate number of interpolation points the walk still tends to
locate all simplices in relatively few steps and signi�cantly less time
than what would be required to compute the complete triangulation.

4.5 Extrapolation
Up until this point, the proposed algorithm has only covered inter-
polation cases (when q is in CH (P)). Often, however, it is reason-
able to make a prediction about some extrapolation points Z that
are slightly outside CH (P). In these cases, it is most reasonable to
project each z 2 Z ontoCH (P) and interpolate at each projection ẑ,
provided the residual r = kz � ẑk2 is small. The projection of z onto
CH (P) can be easily reformulated as an inequality constrained least
squares problem, whose e�cient solution is described in [10]. Note
that the time and space complexity for performing the projection
could be expensive compared to what is required for computing
the Delaunay interpolant.

5 ISSUES IN STABILITY
An important assumption that has been made up until this point is
that P is in general position. However, in real world applications,
it is possible that P could be some degenerate set. There are two
cases that lead to meaningful degeneracies.
• P could be contained in some lower-dimensional linear man-
ifold.

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

• There could exist d + 2 or more points in P that lie on the
same (d � 1)-sphere.

A special case of the second listed degeneracy, is the case where
k + 1 points in P lie on some (k � 1)-dimensional linear manifold
and on some (k � 2)-sphere embedded in that manifold. This leads
to a situation where Algorithms 1 and 2 can fail by selecting points
that minimize the radius of the resulting (d � 1)-sphere but de�ne
a degenerate k-face.

5.1 Dealing with Degeneracies
The situation where all points lie on a lower-dimensional linear
manifold will always result in a situation where no new point can
be “added” to the set of vertices during the construction of the
�rst Delaunay simplex without making some face degenerate. This
situation is easily detected via a check for rank de�ciency and
need not be handled since users can apply dimension reduction
techniques to construct an equivalent non degenerate problem.

In the case where more than d + 1 points lie on some (d � 1)-
sphere, one would like to still obtain aDelaunay interpolant, though
it will no longer be unique. Exactly which Delaunay interpolant is
obtained is actually unimportant, since all Delaunay interpolants
are equally optimal. Since degeneracies occur with zero probability,
one solution to this problem could be to perturb each p 2 P by
some small random amount such that the perturbed set � (P) is in
general position [9].

Alternatively, one could handle degeneracies by constantly check-
ing that each Delaunay k-face created is not embedded in some
(k�1)-dimensional manifold (including the case where k = d so the
k-face is a d-simplex). This would mean checking while growing
the simplex that no k-face is degenerate, and checking during the
walk that each added point is not directly on the hyperplane con-
taining the current facet. Implementing these checks ensures that
a legal Delaunay simplex is ultimately found (as opposed to a “�at”
simplex with zero volume). Finally, in the case where two points
p1 and p2 would de�ne simplices with the same circumsphere in
conjunction with the current vertices �, the choice between adding
p1 and p2 can be made arbitrarily since both solutions produce legal
Delaunay simplices.

In this work, the latter solution is preferred over ad hoc pertur-
bation since it allows for degeneracies to be handled at minimal
computational cost and is easily adapted to handle �oating-point
error. A drawback of this method is that in the degenerate case,
the simplices obtained containing two nearby interpolation points
(though both simplices will be Delaunay) may not come from the
same Delaunay triangulation. This can create discontinuities in
the “surface” de�ned by the interpolant, but does not detract from
interpolation accuracy.

5.2 Dealing with Imprecision
The degeneracy problem is only exacerbated in the context of a
�oating-point paradigm. Let � be the working precision of the
�oating-point environment. In this section, the case is considered
where an error of magnitude � could occur in any computation.

Most notably, instead of checking whether the vertices of a De-
launay k-face lie exactly in a (k � 1)-dimensional linear manifold,

it is now necessary to check whether they are nearly in a (k � 1)-
dimensional linear manifold. Consider the d ⇥k matrixAwhose ith
column is given by Ai = pi+1 � p1 where pi is the ith vertex of the
current face. Then the vertices of the de�ning k-face are “nearly”
in a (k � 1)-dimensional linear manifold if the ratio between the
smallest and largest singular values �k/�1 is less than � .

Note that singular value decompositions are expensive and gen-
erally computed via iterative methods. So to save time, a check for
rank de�ciency should only be performed after constructing the
complete �rst simplex. Then, if �d/�1 < � , the entire simplex must
be reconstructed with a check after each insertion so that a vertex
that causes a degeneracy can be immediately discarded. The case
where all vertices cause degeneracy at step k of the initial simplex
construction implies that P is contained in a (k � 1)-dimensional
linear manifold “up to the working precision” (where k  d) so no
triangulation exists. After constructing the initial simplex, stability
can be ensured by only considering points that are a distance of �
o� the hyperplane containing the current facet.

It is also possible that a set of points that do not de�ne a Delaunay
face could be computed as such due to �oating-point error. For the
purpose of interpolation, this is not considered to be an issue since
the vertices of the resulting simplex must be within a perturbation
of magnitude � of de�ning a Delaunay simplex. Therefore, the
computed simplex and the true Delaunay simplex can be thought
of as having the same circumspheres up to the working precision,
so the choice between them can be made arbitrarily.

Finally, points that are on or near the boundary of their contain-
ing simplex could be perturbed outside that simplex by �oating-
point error. This could result in an in�nite loop if the point is not
perturbed identically when checked for in the adjacent simplices.
Therefore, a simplex should be accepted as containing q if the a�ne
weights computed in Algorithm 3 are all greater than �� (i.e., posi-
tive up to the working precision).

On a �nal note, the tolerance � should be proportional to the
machine precision and should be scale/shift invariant. To achieve
scale/shift invariance, the input data set is translated and rescaled
to be centered about the origin with a radius of one.

6 IMPLEMENTATION
A serial numerically stable implementation of the proposed algo-
rithm has been coded in ISO Fortran 2003. Note that the value
chosen for the working precision was � = pµ where µ is the unit
roundo�. This code was tested for correctness on over 10,000 data
sets ranging in size from n = 3 to n = 800 and ranging in dimension
from d = 1 to d = 4. For each data set, anywhere from one to
several hundred interpolation points were predicted using both the
described algorithm and the standard implementation of Quickhull.
On the non degenerate data sets, the code performed identically to
Quickhull up to a modest multiple of the machine precision. On the
degenerate data sets, a small sample of the largest discrepancies
were hand checked and con�rmed to be resulting from degenera-
cies. The described real world data sets were gathered at Virginia
Tech for usage in the VarSys project. The data was also tested on a
small number of pseudo-random data sets in �ve dimensions, and
due to the lack of degeneracy in the random data, the algorithm

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

always computed simplices from Quickhull’s computed Delaunay
triangulation.

Using the proposed algorithm, run times were gathered for
pseudo-randomly generated point sets in up to 64 dimensions. Note
that the problem of computing a small number of simplices in the
triangulation is inherently easier than the problem of computing
an exponentially large triangulation. Subsequently, the proposed
algorithm can be timed in much higher dimensional spaces, where
computation via its competitors is either painfully slow or totally
infeasible. However, previous studies have managed to evaluate the
runtime of Quickhull and several other competitors in �ve dimen-
sions, and the runtime tables in Section 5 of [2] could be compared
to the data in Tables 2 and 3.

The following run times were gathered on an Intel i7-3770 CPU
@3.40 GHz running CentOS release 7.3.1611. All averages are based
on a sample size of 20 runs, each performed on a di�erent pseudo
randomly generated data set. Table 2 details average run times for
interpolating at uniformly distributed interpolation points on a �ve-
dimensional uniformly distributed data set. Table 3 details average
run times for interpolating at clustered interpolation points (limited
to a hypercube with 10% of the original point-set’s diameter) on
a �ve-dimensional uniformly distributed data set. Table 4 details
average run times for interpolating at a single point in up to 64
dimensions over uniformly distributed data sets ranging in size
from 2K points up to 32K points. All input data sets consist of
pseudo-randomly generated points in the unit hypercube, generated
using the Fortran intrinsic random number generator. Times were
recorded with the Fortran intrinsic CPU_TIME function, which is
accurate up to either microsecond resolution or the precision of
the system clock.

Table 2: Average runtime in seconds for interpolating at
uniformly distributed interpolation points for n pseudo-
randomly generated input points in 5 dimensions.

n = 2K n = 8K n = 16K n = 32K
32 interp. pts 0.3 s 2.7 s 9.6 s 35.7 s

1024 interp. pts 2.5 s 11.6 s 28.9 s 79.1 s

Table 3: Average runtime in seconds for interpolating at clus-
tered interpolation points for n pseudo-randomly generated
input points in 5 dimensions.

n = 2K n = 8K n = 16K n = 32K
32 interp. pts 0.2 s 2.2 s 8.4 s 33.0 s

1024 interp. pts 0.2 s 2.5 s 9.2 s 35.2 s

Note that in the numerically stable implementation described,
expensive checks for rank de�ciency, computation of the diameter
of P (an O (n2) operation), and daisy-chaining the simplex walk as
described in Section 4.4, leads to computation times that do not
scale as predicted in Section 4. However, the resulting algorithm
is still able to robustly compute the Delaunay interpolant on a
moderately sized data set in up to 64 dimensions, and the empirical
results clearly indicate a sub-exponential time complexity.

Table 4: Average runtime in seconds for interpolating at a
single point for n pseudo-randomly generated input points
in d-dimensional space .

n = 2K n = 8K n = 16K n = 32K
d = 2 0.1 s 1.7 s 6.8 s 27.0 s
d = 8 0.2 s 2.5 s 9.6 s 37.9 s
d = 32 1.4 s 9.5 s 29.7 s 101.1 s
d = 64 13.2 s 60.1 s 138.6 s 349.1 s

7 CONCLUSION AND FUTUREWORK
In this paper, a new Delaunay triangulation algorithm is proposed
for interpolating in point clouds in arbitrary dimension d . This is
achieved by computing a relatively small number of simplices from
the complete Delaunay triangulation. A robust numerically stable
implementation is empirically shown to scale to high-dimensional
spaces. In future work, the methods used to construct and locate a
single Delaunay simplex for the purpose of interpolation could be
extended for other Delaunay triangulation applications. In particu-
lar, knowledge of a Voronoi cell can be achieved by computing the
star of simplices incident at a given vertex.

REFERENCES
[1] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The Quickhull

Algorithm for Convex Hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (1996), 469–483.

[2] Jean-Daniel Boissonnat, Olivier Devillers, and Samuel Hornus. 2009. Incremental
Construction of the Delaunay Triangulation and the Delaunay Graph in Medium
Dimension. In Proceedings of the twenty-�fth annual symposium on Computational
geometry. ACM, 208–216.

[3] Jean-Daniel Boissonnat andMonique Teillaud. 1993. On the randomized construc-
tion of the Delaunay tree. Theoretical Computer Science 112, 2 (1993), 339–354.

[4] Adrian Bowyer. 1981. Computing Dirichlet tessellations. Comput. J. 24, 2 (1981),
162–166.

[5] Siu-Wing Cheng, Tamal K Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh
Generation. CRC Press.

[6] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. DeWall: A Fast
Divide & Conquer Delaunay Triangulation Algorithm in Ed . Computer-Aided
Design 30, 5 (1998), 333–341.

[7] Mark de Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. 2008.
Computational Geometry: Algorithms and Applications (third ed.). Springer-Verlag
Berlin Heidelberg.

[8] Herbert Edelsbrunner. 1989. An acyclicity theorem for cell complexes in d dimen-
sions. In Proceedings of the �fth annual symposium on Computational geometry.
ACM, 145–151.

[9] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of Simplicity:
A Technique to Cope with Degenerate Cases in Geometric Algorithms. ACM
Transactions on Graphics (TOG) 9, 1 (1990), 66–104.

[10] Richard J Hanson and Karen H Haskell. 1982. Algorithm 587: Two Algorithms
for the Linearly Constrained Least Squares Problem. ACM Transactions on Math-
ematical Software (TOMS) 8, 3 (1982), 323–333.

[11] Victor Klee. 1980. On the complexity of d-dimensional Voronoi diagrams. Archiv
der Mathematik 34, 1 (1980), 75–80.

[12] Ernst P Mücke, Isaac Saias, and Binhai Zhu. 1999. Fast randomized point location
without preprocessing in two-and three-dimensional Delaunay triangulations.
Computational Geometry 12, 1-2 (1999), 63–83.

[13] Stephen M Omohundro. 1990. Geometric Learning Algorithms. Physica D:
Nonlinear Phenomena 42, 1-3 (1990), 307–321.

[14] VT Rajan. 1994. Optimality of the Delaunay Triangulation in Rd . Discrete &
Computational Geometry 12, 2 (1994), 189–202.

[15] WE Schaap and R Van De Weygaert. 2000. Continuous Fields and Discrete Sam-
ples: Reconstruction through Delaunay Tessellations. Astronomy and Astrophysics
363 (2000), L29–L32.

[16] Peter Su and Robert L Scot Drysdale. 1995. A Comparison of Sequential Delaunay
Triangulation Algorithms. In Proceedings of the eleventh annual symposium on
Computational geometry. ACM, 61–70.

[17] David F Watson. 1981. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. Comput. J. 24, 2 (1981), 167–172.

