
Journal of Mathematical Biology (2019) 79:1–29
https://doi.org/10.1007/s00285-019-01348-1 Mathematical Biology

Low-dimensional representation of genomic sequences

Richard C. Tillquist1 ·Manuel E. Lladser2

Received: 30 April 2018 / Revised: 12 November 2018 / Published online: 30 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Numerous data analysis and data mining techniques require that data be embedded
in a Euclidean space. When faced with symbolic datasets, particularly biological
sequence data produced by high-throughput sequencing assays, conventional embed-
ding approaches like binary and k-mer count vectors may be too high dimensional
or coarse-grained to learn from the data effectively. Other representation techniques
such as Multidimensional Scaling (MDS) and Node2Vec may be inadequate for large
datasets as they require recomputing the full embedding from scratch when faced with
new, unclassified data. To overcome these issues we amend the graph-theoretic notion
of “metric dimension” to that of “multilateration.” Much like trilateration can be used
to represent points in the Euclidean plane by their distances to three non-colinear
points, multilateration allows us to represent any node in a graph by its distances to
a subset of nodes. Unfortunately, the problem of determining a minimal subset and
hence the lowest dimensional embedding isNP-complete for general graphs. However,
by specializing to Hamming graphs, which are particularly well suited to represent-
ing biological sequences, we can readily generate low-dimensional embeddings to
map sequences of arbitrary length to a real space. As proof-of-concept, we use MDS,
Node2Vec, and multilateration-based embeddings to classify DNA 20-mers centered
at intron–exon boundaries. Although these different techniques perform comparably,
MDSandNode2Vec potentially suffer from scalability issueswith increasing sequence
length whereas multilateration provides an efficient means of mapping long genomic
sequences.

Keywords Feature extraction · Graph embeddings · Hamming graph · Metric
dimension · Reads · Resolving set

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00285-
019-01348-1) contains supplementary material, which is available to authorized users.

B Manuel E. Lladser
manuel.lladser@colorado.edu

1 Department of Computer Science, The University of Colorado, Boulder, CO 80309-0526, USA

2 Department of Applied Mathematics, The University of Colorado, Boulder, CO 80309-0526, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01348-1&domain=pdf
http://orcid.org/0000-0001-6843-6845
https://doi.org/10.1007/s00285-019-01348-1
https://doi.org/10.1007/s00285-019-01348-1

2 R. C. Tillquist, M. E. Lladser

1 Introduction

Symbolic information plays a prominent role in modern biology. In contrast, many
of the most powerful, well-studied machine learning tools available, including k-
nearest neighbors (KNN) (Fix and Hodges Jr 1951) and support vector machines
(SVM) (Cortes and Vapnik 1995), assume that feature vectors reside in R

d , for some
integer d ≥ 1. It is not always clear, however, how to embed symbolic data into a
real-vector space to leverage the power of these algorithms. Ideally, such embeddings
should accurately reflect relevant relationships between different examples and should
be low-dimensional to allow for fast classification and to avoid overfitting. When
dealing with large datasets, it is essential that the process of generating an embedding
be fast, preferably linear, with respect to input size. Furthermore, new, unclassified
examples should be readily embeddable.

Many strategies for representing genomic sequences rely on features derived from
knowledge of various biochemical properties of nucleotides or amino acids, including
thermodynamic stability, structural flexibility (Sciabola et al. 2012), hydrophobicity,
charge, and polarity among others (Sarda et al. 2005; Cai et al. 2003a; Bock andGough
2001). The most common methods which rely solely on the symbols comprising a
sequence are k-mer count vectors (Leslie et al. 2002), which record the occurrences
of all k-mers in a sequence, and binary vectors (Cai et al. 2003b), which indicate
the presence or absence of each nucleotide or amino acid at each position within a
sequence. These embeddings can be, however, unnecessarily high-dimensional.

Other more sophisticated embedding techniques include Fisher kernels (Jaakkola
et al. 1999) and neural networks in the BioVec tool (Asgari and Mofrad 2015). Fisher
kernel methods apply the results of a trained generative model, typically a hidden
Markov model (Baum and Petrie 1966), to the creation of features for use in a dis-
criminativemodel, such as an SVM. Instead, BioVec embeds sequences by considering
the contexts in which they appear, an approach based on Word2Vec (Mikolov et al.
2013; Mikolov et al. 2013). Techniques related to BioVec have been used to generate
embeddings of DNA sequences of varying length (Ng 2017) and to take advantage of
known protein properties, like membrane localization and thermostability, in produc-
ing amino acid sequence embeddings (Yang et al. 2018). All these methods require
a substantial amount of data nevertheless to learn appropriate, useful embeddings for
all examples.

Multidimensional Scaling (MDS) (Krzanowski 2000), also knownasprincipal coor-
dinates analysis (PCoA, not to be confused with PCA), assumes a metric to embed n
examples into R

n−1. This technique has seen multiple applications for comparing and
visualizing biological communities in metagenomic studies (Lozupone and Knight
2005; Lozupone et al. 2011). To the best of our knowledge, MDS has not been used
for generating features of biological sequence data. This may be for good reasons.
Indeed, unless the mapped examples happen to be near a low-dimensional subspace,
classifiers based on MDS will be computationally demanding. Moreover, MDS does
not handle new points efficiently: given a new set of examples to be included in the
embedding, MDS must be rerun from scratch.

More recent algorithms such as DeepWalk (Perozzi et al. 2014) and Node2-
Vec (Grover and Leskovec 2016), which were originally devised to embed general

123

Low-dimensional representation of genomic sequences 3

graphs into real space, may also be used to generate features for sequence data.
Though such techniques have not been applied to this task before, interpreting biolog-
ical sequences as existing in a discrete abstract metric space allows us to depict such
sequences as graphs. These algorithms use random walks to generate node “contexts”
and take advantage of the skip-gram neural network architecture used in Word2Vec
to represent vertices in a graph as real vectors. The resulting embeddings have been
shown to be quite useful for graph visualization, node clustering, and node classifi-
cation tasks with very large networks (Perozzi et al. 2014). Despite the scalability of
these techniques for relatively large graphs, they too must be rerun from scratch when
facing new nodes in a graph, with prohibitive time or memory requirements for a full
embedding.

The chief goal of this manuscript is to develop a methodology for embedding
symbolic datasets and specifically biological sequence data into Euclidean space,
making systematic and efficient use of machine learning algorithms to learn classifiers
from such datasets. The basis of our method is multilateration, an amendment of the
notion of metric dimension in graph theory (Slater 1975; Harary and Melter 1976).
Broadly speaking,we seek to uniquely represent elements of a set in away analogous to
how trilateration can be used to represent points in the plane by their distances to three
non-colinear points. In abstract metric spaces, however, more than three points may
be needed to represent each element in the space uniquely. Moreover, determining the
smallest number of points required to accomplish this task, or even approximating this
number with guarantees, in a large finite metric space is a computationally challenging
problem in general.

We argue that multilateration-based embeddings have various desirable features for
classification. Indeed, they tend to be comparatively low-dimensional and preserve the
identity of examples (i.e., are one-to-one). They are also able to handle new instances
effortlessly. Furthermore, despite rarely being an isometry, embeddings based on mul-
tilaterationmap similar examples to closeby points in Euclidean space (i.e., are in some
sense continuous).

Organization of the paper A fair amount is known concerning the metric dimension
of certain families of graphs (Chartrand et al. 2000). In this work, we are most con-
cerned with three main results. First, finding the metric dimension of a general graph
is an NP-complete problem (Cook 1971). This has been established via reduction
from the 3-SAT (Khuller et al. 1996) and 3-dimensional matching (Gary and John-
son 1979) problems. The similarities between metric dimension and multilateration
strongly suggest that this is also the case for multilateration (Sect. 2.1). Second, metric
dimension is closely related to a number of other NP-complete problems including
k-embeddability (Blumenthal 1953) and the test set problem (Berman et al. 2005). It is
from these relationships that we are able to derive further intuition for multilateration
along with an approximation algorithm (Sect. 2.2).

Third, we are able to generalize a bound on the metric dimension of Cartesian
products of connected graphs and K2, the complete graph on two vertices (Chartrand
et al. 2000), to arbitrary Hamming graphs (Hamming 1950) (Sect. 3). The proof is
constructive and yields an algorithm quadratic in the length of underlying strings for
generating resolving, though not always optimal, sets which grow logarithmically in

123

4 R. C. Tillquist, M. E. Lladser

the number of nodes. In contrast, the so-called Information Content Heuristic (ICH)
algorithm (Hauptmann et al. 2012) has exponential complexity. As illustrations, we
consider the problems of embedding all octapeptides (Sect. 4) as well as DNA codons
(Sect. 5) into a real space.

Finally, we use features derived via multilateration to classify intron–exon bound-
aries in the genome of Drosophila melanogaster (Sect. 6). Features based on MDS
and Node2Vec among other embeddings are applied and compared on the same task.

2 Multilateration

We begin by introducing the concept of multilateration in an abstract but general
setting.

Definition 1 (Multilateration problem) Given I , a finite set of items, and F , a set of
functions defined over I , determine a minimal set R ⊆ F such that the vectors (r(i)),
with r ∈ R, uniquely identify each item i ∈ I . Equivalently, if M is a matrix with
rows indexed by I and columns indexed by F such thatM(i, f) = f (i), determine a
minimal subset of columns needed to uniquely identify each row.

At a high level, multilateration may be thought of as an amendment to or an exten-
sion of the graph theoretic notion of metric dimension (Slater 1975; Harary andMelter
1976). Given a graph G = (V , E), a set R ⊆ V is called resolving if for all u, v ∈ V ,
with u �= v, there is an r ∈ R such that d(r , v) �= d(r , u). Here d(i, j) is the length
of a shortest path between two nodes i and j in the graph. The metric dimension of
G, denoted as β(G), is then defined as the size of a minimal resolving set of G.

In essence, metric dimension asks about the least number of nodes in a graph
required to uniquely identify all points in the graph based on the distances to said
nodes. When applied to the distance matrix of a graph, multilateration answers the
same question as metric dimension. However, while metric dimension assumes an
underlying graph structure, multilateration does not. In particular, multilateration does
not require entries in thematrix of interest to abide by the triangle inequality or, indeed,
to be numeric at all. Borrowing terminology, we refer to a smallest set R solving the
multilateration problem as an optimal resolving or minimal multilateration set.

2.1 NP-completeness

Here we show that multilateration is NP-complete via reduction from the set cover
problem (Karp 1972). This problem can be described as follows. GivenU , a finite set,
and S = {S1, . . . , Sm}, a finite cover of U , namely a collection of subsets of U such
that ∪m

i=1Si = U , determine a smallest sub-collection of S whose union is still U .

Theorem 1 The general multilateration problem is NP-complete.

Proof Consider a finite set U and a finite cover S = {S1, . . . , Sm} of U . Let a be any
element outside U ; for instance, one could take a = {U }. Furthermore, consider the
matrix M with rows indexed by U ∪ {a}, columns indexed by the indices in the set
{1, . . . ,m}, and with entries defined as follows:

123

Low-dimensional representation of genomic sequences 5

M(i, j) :=
{
i, if i ∈ S j ;
a, otherwise.

Note that M(a, j) = a for j ∈ {1, . . . ,m} because a /∈ U .
We claim the following (see Appendix 8.1 for its proof). ��

Lemma 1 Let J ⊂ {1, . . . ,m}. The columns with indices in J resolve the rows of M
if and only if U = ∪ j∈J S j .

Let n = |U | · |J |. To complete the proof of the theorem, we must verify that
the multilateration problem is in NP. Namely, we must show that there is a non-
deterministic algorithm capable of solving the problem in polynomial time. To do
this we need only show that the validity of a solution can be checked in polynomial
time. The brute force approach suffices in this context. Extract the sub-matrix M′ of
M with rows indexed by U and columns indexed by J . This takes O(n) steps. Next,
compare each pair of rows in M′. If any two of its rows are equal, then J is not a
valid solution to the instance of the multilateration problem. Otherwise it is a valid
solution. Since there are a total of

(|U |
2

)
comparisons to make, the total time to check a

solution is O(n) + (|U |
2

) · |J | = O(|U |2|J |) = O(n2). Furthermore, the construction
of the matrixM takes polynomial time in |U | · |S| = O(n). The set cover is therefore
polynomial time reducible to multilateration. As a result, Lemma 1 implies that the
multilateration problem is NP-complete.

2.2 Approximation algorithm

Many approximation and heuristic algorithms designed for estimating solutions to
the metric dimension problem of a graph G = (V , E) may be applied directly to
multilateration. Three of the most popular approaches for approximating β(G) utilize
genetic algorithms (Kratica et al. 2009), a variable neighborhood search (Mladenović
et al. 2012), and a greedy selection criterion (Hauptmann et al. 2012). The latter is
based on the so-called Information Content Heuristic (ICH), which was first used
for generating approximate solutions to instances of the test set problem (Berman
et al. 2005). The ICH algorithm has the significant advantage of guaranteeing an
approximation ratio of no more than 1+ (1+ o(1)) · ln |V |, the best possible ratio for
metric dimension (Hauptmann et al. 2012).

Consider a matrix M with n rows and m columns. Assume that altogether its
columns are resolving; in particular, the multilateration problem has at least one solu-
tion. Next, we describe how the ICH algorithm finds a resolving set (though not
necessarily optimal) of M. Notice that an equivalence relation on rows is defined by
any subset of columns R: say that two rows u and v are in the same equivalence class
(with respect to R) when M(u, s) = M(v, s), for every s ∈ R. The ICH algorithm
interprets the equivalence classes defined by a particular R as outcomes of a (discrete)
probability distribution and seeks to find an R of maximal entropy H(R). Since the
uniform distribution uniquely achieves the maximum entropy over n items, a set R of
maximal entropy must be resolving.

123

6 R. C. Tillquist, M. E. Lladser

The ICH algorithm is greedy. At each iteration, the entropies of all possible prob-
ability distributions generated by adding single unused columns to a growing set of
columns are computed. A single column associated with the maximum calculated
entropy is then added to the ever increasing set. More formally, let R0 = ∅ and define
the set Ri of columns of M recursively as follows: Ri = Ri−1 ∪ {C∗}, where C∗ is
any column C of M which satisfies:

C∗ = argmaxC H(Ri−1 ∪ {C}),
= argmaxC H(Ri−1 ∪ {C}) − H(Ri−1).

This process repeats until Ri imposes a uniform distribution over the rows of M i.e.
H(Ri) = log(n).

The computational complexity of this algorithm is O(nm2) as the i th iteration must
consider (m − i + 1) columns of length n, with a maximum of m iterations. This is
reasonably effective for up to medium-sized matrices. For larger matrices, however,
the ICH algorithm may be prohibitively slow. In the context of biological sequence
analysis where n andm often exceed 103 or 106, a linear or sublinear algorithm would
be vastly preferable. This motivates the study of multilateration on specific families of
matrices in the hopes that more efficient approximation methods can be constructed.

3 Specialization to Hamming graphs

Due to the prevalence of k-mers (i.e. genomic sequences of length k) in biological con-
texts, we address the multilateration problem for k-mers with respect to the Hamming
distance (Hamming 1950).

Let A be a finite set of certain size a > 0. We call this set the reference alphabet. In
what follows, Hk,A denotes the Hamming graph of k-mers formed using characters in
A. The vertex set of Hk,A is by definition Ak ; in particular, it hasak nodes. Furthermore,
two vertices u = (u1, . . . , uk) and v = (v1, . . . , vk) are adjacent (i.e. joined by an
edge) if and only if there exists a unique 1 ≤ i ≤ k such that ui �= vi . Since
the distance between two vertices of Hk,A coincides with their Hamming distance,
solving the multilateration problem for the distance matrix of Hk,A is equivalent to
determining its metric dimension as a graph.

Since the graph structure of a Hamming graph depends only on the size of its
reference alphabet, we write Hk,a as shorthand for the Hamming graph with reference
alphabet {0, . . . , a − 1} (see Fig. 1).

Before continuing we revise a notion of product between graphs. The (Cartersian)
product between G1 = (V1, E1) and G2 = (V2, E2) is the graph denoted G1 �G2
with vertex set V1 × V2. Two vertices (x1, x2), (y1, y2) ∈ V1 × V2 are said adjacent
if and only if x1 and y1 are adjacent in G1 and x2 = y2, or x1 = y1 and x2 and y2 are
adjacent in G2.

It follows that

Hk,a = H1,a � Hk−1,a, (1)

123

Low-dimensional representation of genomic sequences 7

Fig. 1 From left to right, visual representation of vertices and edges in the Hamming graphs H1,4, H2,3,
and H3,2

where H1,a is isomorphic to Ka (i.e. the complete graphwith vertex set {0, . . . , a−1}).
This recursive structure for Hamming graphs suggests that the metric dimension of
Hk,a is related to that of Hk−1,a . In fact, it is known that β(G) ≤ β(G � K2) ≤
β(G)+1, for any connected graph G (Chartrand et al. 2000). This in turn implies that
β(Hk−1,2) ≤ β(Hk,2) ≤ β(Hk−1,2)+1. Our next result generalizes these inequalities
for an arbitrary alphabet size.

Theorem 2 β(Hk−1,a) ≤ β(Hk,a) ≤ β(Hk−1,a) + �a/2�

According to the theorem:

β(Hk,a) ≤ (a − 1) + (k − 1)�a/2�,

i.e., the metric dimension of Hk,a grows at most linearly with k; in particular, we can
embed all ak k-mers into an O(k)-dimensional Euclidean space using multilateration.
This is crucial for the practical use of multilateration. Moreover, because the proof
of Theorem 2 is constructive, from any given resolving set Rk−1 of Hk−1,a , we can
construct a resolving set for Hk,a in O(|Rk−1|) time (see Algorithm 3). In particular,
since H1,a = Ka and any subset of (a − 1) nodes in Ka is resolving, repeated appli-
cations of Algorithm 3 allow us to construct resolving sets for Hk,a in polynomial
O(ak2) time. In contrast, the time complexity of the ICH algorithm would be O(a3k)
i.e. exponential in k.

We note that tighter bounds on the metric dimension of Hamming graphs are possi-
ble (Cáceres et al. 2007), for example, in the case where a is small in comparison to k.
However, these bounds proceed from non-constructive probabilistic arguments (Chvá-
tal 1983). Also, while the metric dimension of Hamming graphs has been studied in
some depth, it remains unknown whether the problem is NP-complete or not for this
family of graphs.

Proof of Theorem 2 Let d denote the distancematrix of Hk−1,a when vertices are sorted
lexicographically. Furthermore, let 1 be the matrix of dimension (ak−1 × ak−1) with
all entries equal to one. For each integer 0 ≤ i ≤ (a−1), let Vi denote the set of all k-
mers that start with the character i . Sorting the vertices of Hk,a also lexicographically,
the distance matrix D of Hk,a has the following block structure:

123

8 R. C. Tillquist, M. E. Lladser

D =

⎛
⎜⎜⎜⎝

V0 V1 · · · Va−1

V0 d d + 1 · · · d + 1
V1 d + 1 d · · · d + 1

...
...

...
. . .

...

Va−1 d + 1 d + 1 · · · d

⎞
⎟⎟⎟⎠, (2)

where the rows and columns are indexed by the sets V0, . . . , Va−1.
To begin, we show that β(Hk−1,a) ≤ β(Hk,a), i.e. β(Hk,a) is an increasing function

of k for fixed a. For this let S0 be the sub-matrix of D associated with rows labeled by
V0. Namely:

S0 = (V0 V1 · · · Va−1

V0 d d + 1 · · · d + 1
)
. (3)

In addition, for each x ∈ Hk,a , let S0(·, x) denote the column of S0 labeled by x .
Consider the following equivalence relation over Hk,a . Say that x is equivalent to
y if and only if the vector S0(·, x) − S0(·, y) has identical entries. The following
intermediate result is useful (see Appendix 8.2).

Lemma 2 (a) Each x ∈ Hk,a is equivalent to a unique element in V0. (b) If R is a
resolving set of S0 and x, y ∈ Hk,a are equivalent then (R \ {x}) ∪ {y} also resolves
S0.

Suppose that Rk is a minimal resolving set of Hk,a . Then Rk must also resolve the
rows of S0. Further, due to Lemma 2(a), for each x ∈ Rk there is a unique y(x) ∈ V0
such that x and y(x) are equivalent. Define R′

k := ∪x∈Rk {y(x)}; in particular, |R′
k | ≤

|Rk |. Due to Lemma 2(b), R′
k is also a resolving set of S0. Furthermore, because

R′
k ⊂ V0, R′

k resolves the rows of d. As a result β(Hk−1,a) ≤ |R′
k | ≤ |Rk | = β(Hk,a),

as claimed.
Next,we show thatβ(Hk,a) ≤ β(Hk−1,a)+�a/2�. For each integer 0 ≤ i ≤ (a−1),

let Si denote the sub-matrix of D associated with rows labeled by Vi . Consider the
following finer equivalence relation over Hk,a . Say that x and y are equivalent if
and only if, for each 0 ≤ i ≤ (a − 1), the vector Si (·, x) − Si (·, y) has identical
entries. Before continuing, we state two intermediate results that are used to construct
a resolving set for Hk,a from a resolving set for Hk−1,a (see Appendices 8.3 and 8.4).

Lemma 3 (a) If Rk−1 is a resolving set for Hk−1,a then, for each 0 ≤ i ≤ (a − 1),
{0} × Rk−1 is a resolving set for Si . (b) If for each 0 ≤ i ≤ (a − 1), Rk is a resolving
set for Si , and x, y ∈ Hk,a are equivalent, then (Rk \ {x}) ∪ {y} is also a resolving set
for each Si .

Lemma 4 If 0 ≤ i < j ≤ (a − 1) and u, v, x ∈ Hk−1,a then (a) D((i, u), (i, x))
�= D((j, v), (i, x)) or D((i, u), (j, x)) �= D((j, v), (j, x)), and (b) if there is 0 ≤
m ≤ (a − 1) different from i and j then D((i, u), (i, x)) �= D((j, v), (i, x)) or
D((i, u), (m, x)) �= D((j, v), (m, x)).

123

Low-dimensional representation of genomic sequences 9

Let Rk−1 = {x1, . . .} be a minimal resolving set of Hk−1,a . Furthermore, let R′
k

and R′′
k be as given in Algorithm 3. It follows that

R′
k = {(i, x�i/2�+1) with 0 ≤ i ≤ (a − 1)};

R′′
k = {(0, x j) with �(a − 1)/2� + 1 < j ≤ |Rk−1|}.

We note that the set R′
k is well-defined because

�(a − 1)/2� + 1 ≤ (a − 1) = β(H1,a) ≤ β(Hk,a) = |Rk−1|.

We claim that Rk = (R′
k ∪ R′′

k) resolves Hk,a . To verify this, it suffices to show that
(1) for each i , Rk resolves Si ; and (2) for each i �= j , Rk differentiates rows in Si from
rows in S j .

Due to Lemma 3(a), for each i , {0}× Rk−1 is a resolving set of Si . But note that for
each 0 ≤ j ≤ (a − 1), (0, x� j/2�+1) is equivalent to (j, x� j/2�+1). Thus, by repeated
applications of Lemma 3(b), it follows that (R′

k ∪ R′′
k) is a resolving set of Si . This

shows the first claim. To show the second claim, assume without loss of generality that
0 ≤ i < j ≤ (a − 1), and consider (i, u) ∈ Vi and (j, v) ∈ Vj . Define x := x�i/2�+1.
We consider two cases. If �i/2� = � j/2� then (i, x), (j, x) ∈ Rk . Hence, due to
Lemma 4(a), Rk differentiates row (i, u) in Si from row (j, v) in S j . Otherwise, if
�i/2� �= � j/2� then we must have a ≥ 3. As a result, there is m �= i such that
�m/2� = �i/2�; in particular, m �= j and (i, x), (m, x) ∈ Rk . Lemma 4(b) implies
that Rk also differentiates row (i, u) in Si from row (j, v) in S j . This shows the second
claim, and completes the proof of the Theorem. ��

Algorithm 3
Hamming Graph Resolving Set Construction
Input: Rk−1 is a resolving set of Hk−1,a
Output: Rk is a resolving set of Hk,a

1: function constructResolvingSet(Rk−1,a)
2: R′

k ← {}
3: R′′

k ← {}
4: i ← 0
5: for w ∈ Rk−1 do
6: //Include pairs of columns to guarantee that Lemmas 4(a) and 4(b) apply
7: //This differentiates rows in Si and S j with i �= j
8: if i < a then
9: R′

k ← R′
k ∪ {iw}

10: if i < (a − 1) then
11: R′

k ← R′
k ∪ {(i + 1)w}

12: end if
13: end if
14: //Ensure that every element of Rk−1 is represented
15: //Thus, by Lemmas 3(a) and 3(b), every Si is resolved
16: if i ≥ a then
17: R′′

k ← R′′
k ∪ {0w}

123

10 R. C. Tillquist, M. E. Lladser

18: end if
19: i ← (i + 2)
20: end for
21: Rk ← (R′

k ∪ R′′
k)

22: return Rk

23: end function
We note that even though Algorithm 3 is deterministic and based on the proof

of Theorem 2, it is easy to tweak in various ways to produce a number of different
resolving sets for Hk,a from a single resolving set for Hk−1,a .

3.1 Automorphisms of Hamming graphs

Given a resolving set, we may also generate other resolving sets by applying any
automorphism (i.e., bijection from {0, . . . , a − 1}k to itself that preserves edges) in
Hk,a .

We denote the automorphism group of Hk,a as A(Hk,a).
Because automorphisms of a graph preserve distances between vertices, if Rk is a

resolving set of Hk,a then so is �(Rk), for any � ∈ A(Hk,a). The next result provides
a handy representation of the elements in this group.

Lemma 5 (Adapted from Chaouche and Berrachedi 2006) If S
′
k and Sk denote the

group of permutations over {0, . . . , k−1} and {1, . . . , k}, respectively, thenA(Hk,a) =
(×k

i=1S
′
a) � Sk .

In the lemma, × denotes the operation of direct product between groups whereas
� denotes their semi-direct product. In particular, we may uniquely identify each
automorphism � of Hk,a as a (k + 1)-tuple of the form (σ1, . . . , σk; σ), where
σ1, . . . , σk ∈ S

′
a and σ ∈ Sk . Broadly speaking, this means that� may be thought of as

a permutation of characters in k-mers (described by σ), followed by the application of
bijective maps at each character (the i th character is transformed by σi). To fix ideas,
consider the case with k = 2 and the alphabet {x, y, z} (i.e. a = 3). If for example:

� =
((x y z

y x z

)
,
(x y z
z x y

)
;
(1 2
2 1

))
,

then �(yz) = zx because σ(yz) = zy, σ1(z) = z and σ2(y) = x . Likewise, �(xx) =
yz, �(xy) = xz, �(xz) = zz, �(yx) = yx , �(yy) = xx , �(yz) = zx , �(zy) = xy,
and �(zz) = zy.

Lemma 5 implies that |A(Hk,a)| = (a!)kk!. Unfortunately, despite this rapidly
growing number of automorphisms when a > 1, it is not necessarily true that any two
resolving sets of the same size are equivalent up to an isomorphism. This has been
noted in (Harrison 1963) for hypercubes (i.e. when a = 2). More generally, say that
two subsets of nodes V1 and V2 are equivalent if and only if there is � ∈ A(Hk,a) such
that V1 = �(V2). An upper bound for the total number of subsets is the total number
of equivalence classes times the maximum size of a single equivalence class. Since
each subset of nodes is equivalent to at most (a!)kk! other sets, it follows that there are

123

Low-dimensional representation of genomic sequences 11

Fig. 2 Mean time required to determine an embedding function of variousHamming graphs usingNode2Vec
for increasing k-mer sizes

at least 2a
k
/(k!(a!)k) different equivalence classes. But note that 2ak/(k!(a!)k) � ak

because

lim
k→∞

2a
k

k!(a!)kak = +∞.

In particular, since the size of a subset of nodes in Hk,a must be between 0 and ak , for
all k sufficiently large, it must be that there are at least two subsets of the same size in
different equivalence classes.

4 Illustrative example

Consider the problem of embedding all octapeptides (i.e., 8-mers of amino acids) into
a real space. Such an embedding may be valuable for characterizing targets of the
Dengue virus protease (Aguirre et al. 2012; Yu et al. 2012), a task which has proven
difficult (Li et al. 2005).

Since there are about twenty-five billion octapeptides, MDS cannot be used to
produce an embedding as this would require storing in memory and manipulating a
non-sparse distance matrix of dimensions 208 × 208 (i.e., with more than six hundred
quintillion entries). Similarly, and although algorithms like DeepWalk and Node2Vec
only involve the incidence matrix implicitly, with a state space this large, the mem-
ory and time complexity of such algorithms to generate a complete embedding is
unworkable. In fact, as seen in Fig. 2, the time required to fully embed a Ham-
ming graph using Node2Vec grows rapidly with k—even for much smaller alphabet
sizes. This figure displays the mean time necessary to generate an embedding function
f : {0, . . . , a−1}k → R

d , where d = (a−1)+(k−1)�a/2� (based on Algorithm 3),
using Node2Vec over ten replicates. We used the Python Node2Vec implementation

123

12 R. C. Tillquist, M. E. Lladser

from (Grover and Leskovec 2016) and assumed edge list files had already been cre-
ated. For a = 20, the time requirements are large enough to prevent measurements
for k > 3 from being taken.

A possible way to overcome these memory and time bottlenecks would be to regard
octapeptides as nodes in the Hamming graph H8,20. Certainly, the size of this graph
makes approximating its metric dimension via the ICH algorithm impractical. How-
ever, one can first use the ICH to find a resolving set of size 32 for H3,20 and then
apply Algorithm 3 five times to find that the following set of dimension 82 is resolving
for H8,20 (see Appendix 9):

R8 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AAAAAAAA, AAAAAAAR, AAAAAARA, AAAAARAA,

AAAARAAA, AAARAAAA, ARWAAAAA, CCCHHHHH,

CCCHHHHI, CCCHHHIA, CCCHHIAA, CCCHIAAA,

CCCIAAAA, CNSAAAAA, DDDEEEEE, DDDEEEEG,

DDDEEEGA, DDDEEGAA, DDDEGAAA, DDDGAAAA,

DHFAAAAA, EAGAAAAA, EEEFAAAA, EEEMFAAA,

EEEMMFAA, EEEMMMFA, EEEMMMMF, EEEMMMMM,

FFFAAAAA, GGGPPPPP, GGGPPPPS, GGGPPPSA,

GGGPPSAA, GGGPSAAA, GGGSAAAA, HHHTTTTT,

HHHTTTTW, HHHTTTWA, HHHTTWAA, HHHTWAAA,

HHHWAAAA, HPVAAAAA, IIIVAAAA, IIIYVAAA,

IIIYYVAA, IIIYYYVA, IIIYYYYV, IIIYYYYY,

KKKAAAAA, KLQAAAAA, LLLAAAAA, MKYAAAAA,

MMMAAAAA, NNNCCCCC, NNNCCCCQ, NNNCCCQA,

NNNCCQAA, NNNCQAAA, NNNQAAAA, NSTAAAAA,

PPPAAAAA, QPKAAAAA, QQQKAAAA, QQQLKAAA,

QQQLLKAA, QQQLLLKA, QQQLLLLK, QQQLLLLL,

QYEAAAAA, RRRDAAAA, RRRNDAAA, RRRNNDAA,

RRRNNNDA, RRRNNNND, RRRNNNNN, SISAAAAA,

SVTAAAAA, TTCAAAAA, VFRAAAAA, WMPAAAAA,

WWDAAAAA, YGLAAAAA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

In other words, we can readily represent any octapeptide as an 82-dimensional real
vector based on its Hamming distance to each 8-mer in the above set. For instance,
using this representation:

YAPSQYRR ←→ (7, 6, 6, 7, . . . , 8, 7),

because the Hamming distance of the octamer YAPSQYRR to AAAAAAAA,
AAAAAAAR, AAAAAARA, AAAAARAA, WWDAAAAA, and YGLAAAAA is
7, 6, 6, 7, 8, and 7, respectively.

In comparison, k-mer count vectors and binary vectors are unnecessarily high
dimensional. For instance, using a sliding window with k = 3, a 3-mer count vector
representation would use 203 i.e. 8, 000 features. In contrast, the embedding based
on metric dimension needs 98.9% fewer dimensions. With binary vectors, only 160
features are required. While vectors of this length are sparse and manageable, the
embedding based on metric dimension needs at least 48.75% fewer dimensions.

123

Low-dimensional representation of genomic sequences 13

5 Metric distortion

Acritical feature of any embedding is how closely distances in the original spacematch
those after the embedding. This motivated us to test the effect of metric dimension
based embeddings on Hamming distances between nodes.

We first considered the Hamming graph H3,4. In a biological context, this would be
the graph of interest to embed codons, as done e.g. in Sect. 6. Using the ICH algorithm,
we found that the set R3 = {GGC,GGT ,GCG,GTG,CGG, TGG} is resolving.
Since it can be verified thatβ(H3,4) = 6 via an exhaustive search (seeOnline Resource
4), R3 is also minimal.

Motivated by the use of Lipschitz constants to evaluate BioVec (Asgari andMofrad
2015), we define

M(u, v) := d(u, v)

|| f (u) − f (v)||2 ,

where d(·, ·) is the Hamming distance between 3-mers, and f : {A,C,G, T }3 →
R
6 is the embedding induced by the resolving set R3. We call M(u, v) the (metric)

distortion of the embedding between u and v.
As seen on the top-left of Fig. 3, a metric dimension based embedding produces

a fairly diverse set of distortion-values centered near 1 (mean = 0.953, sd = 0.303).
Also, a significant portion of the values seems to fall below one, suggesting that this
embedding does a reasonable job of maintaining pairwise distances between nodes
and, for many, is an expansion.

The nodes of H3,4 were also embedded using MDS and Node2Vec (see top-right
and bottom of Fig. 3). In each case, and for a reliable comparison, the dimension of
the embedding was set to six to match that of the metric dimension based embedding.

The objective of metric MDS is to place a set of points in a real space of fixed
dimension while minimizing “stress,” i.e. the sum of squared differences between the
true distance and the embedded distance of every pair of points. We used the metric
MDS implementation of Python’s scikit-learn library (Pedregosa et al. 2011) with the
distance matrix of H3,4 to produce representations of DNA 3-mers in R

6. To obtain
a scaled stress value, we divided it by the total number of pairwise distances. Since
scikit-learn uses a stochastic iterative method for minimization, we embedded H3,4
into R

6 50-times and obtained a mean scaled stress of 0.1704 ± 8.5 × 10−5.
Node2Vec, following the concept of Word2Vec, embeds the nodes of H3,4 based

on context. The context of a node u ∈ V is defined as a set of sequences of nodes
visited by a second order random walk starting at u and guided by two parameters,
p and q. To generate contexts, we consider 30 walks of length 6 taken from each
node. To guide the walks, we set p = 1 and q = 1, a parameterization making
Node2Vec equivalent to DeepWalk, as well as p = 0.0545 and q = 1.22. This
second pair of values was found via a simple grid search in an effort to minimize the
squared difference between average distortion values of Node2Vec andmultilateration
embeddings. Since Node2Vec embeddings are based on random walks (and hence are
themselves random), the bottom plots in Fig. 3 display the distribution of distortion-
values over three replicates.

123

14 R. C. Tillquist, M. E. Lladser

Fig. 3 Distributions of metric distortion values in embeddings of H3,4 based on metric dimension, MDS,
and two parameterizations of Node2Vec

Metric distortion values for the MDS embedding are more tightly clustered near 1
(mean = 0.978, sd = 0.193). This is not surprising asMDS explicitly seeks to minimize
the “stress” of an embedding, taking the distances between nodes into account directly.
For DeepWalk, distortion-values have a mean of 2.187 (sd = 0.809), with a maximum
distortion of 8.340. Such an embedding greatly distorts the distances between nodes—
contracting the space overall. Instead, for Node2Vec with p = 0.0545 and q = 1.22
the mean and standard deviation are practically identical (mean = 0.956, sd = 0.283) to
those found for themetric dimension based embedding. This suggests that embeddings
with this parameterization also do a good job of maintaining distance relationships
between nodes.

We also tested the distortions produced by metric dimension based embeddings for
relatively large k-mers with alphabet sizes relevant for epigenetics (a = 2), genomic
sequences (a = 4), and proteins (a = 20). As seen in Fig. 4, distortions in the associated

123

Low-dimensional representation of genomic sequences 15

Fig. 4 Metric distortion values for metric dimension based embeddings of the Hamming graphs Hk,2, Hk,4,
and Hk,20. Error bars represent 95% confidence intervals over 10,000 random sample distances drawn from
each graph

Hamming graphs have similar characteristics to those observed in H3,4. To generate the
figure, for each a ∈ {2, 4, 20} and even 1 ≤ k ≤ 50, a set of size (a − 1) was chosen
uniformly at random as the resolving set H1,a , and then Algorithm 3 was applied
iteratively to produce a resolving set for Hk,a . While many of these embeddings were
expansions of the underlying space, the average distortion increased slowly with k
at a rate that seemed to depend on a. Interestingly, and even though the range of
values for metric distortion increased with repeated applications of Algorithm 3, the
lower-bound of the confidence intervals remained almost constant and well below
one. This suggests that for a considerable number of pairs of nodes in Hk,a the metric
dimension based-embedding is nearly an isometry. In conclusion, for alphabet sizes of
relevance to modern biology and for relatively large k-mers, metric dimension based
embeddings tend to induce sensible distortions to Hamming distances despite the fact
that positions under such embeddings are not chosen with the goal of maintaining
pairwise Hamming distances between k-mers.

6 Proof-of-concept: learning intron–exon boundaries

Gene identification is a fundamental and well studied problem in computational biol-
ogy (Hayes and Borodovsky 1998; Hoff et al. 2008; Reese et al. 2000; Stanke et al.
2004). In this section, we showcase and evaluate embeddings based on multilatera-
tion, MDS, and Node2Vec on the task of identifying intron–exon boundaries. Our goal
is to provide a proof-of-concept of how these alternative feature generation methods
may be applied to problems involving biological sequence data and to compare their
performance to that of k-mer counts and binary vector representations.

We gathered DNA 20-mers centered at annotated intron–exon boundaries in the
genome of Drosophila melanogaster from Ensembl BioMart (Yates et al. 2016). 20-
mers containing ambiguous bases were thrown out. This left a set of ∼87K positive
examples, with ∼22K repeated and ∼65K unique 20-mers in the dataset.

123

16 R. C. Tillquist, M. E. Lladser

To apply simple binary classification and to avoid any bias towards one class or
the other, an equal number of negative examples was drawn from the genome itself.
In particular, this set consists of ∼87K 20-mers drawn randomly from the positive
and negative strands of the D. melanogaster genome. These negative examples were
allowed to match annotated intron–exon boundaries (i.e., positive examples) on pre-
fixes or suffixes of at most 10 bases. Negative examples were generated in this way,
and not simply selected uniformly at random from the set of all possible 20-mers, in
order to provide a realistic space for testing.

We used two separate datasets for testing. One with duplicate positive examples
included (dataset 1, see Online resource 5), and one with a single copy of each positive
example (dataset 2, see Online resource 6). We then compared the performance of a
KNN classifier using features generated by various embeddings on these datasets.

6.1 Features generation

We considered five possible feature vector representations of 20-mers (see Table 1).
These included 64-dimensional 3-mer count vectors and 80-dimensional binary
vectors. We note that both of these representations are sparse. Features based on
multilateration, MDS, and Node2Vec used embeddings of the Hamming graph H3,4
in real spaces instead.

To generate feature vectors based on multilateration we used the resolving set (see
Sect. 5):

R3 = {GGC,GGT ,GCG,GTG,CGG, TGG}. (5)

To embed 20-mers based on this set, we used a sliding window of length three and
appended the 6-dimensional coordinates associated with each window to construct
a 108-dimensional representation. The same approach was used to generate 108-
dimensional feature vectors based on MDS and Node2Vec. Namely, a 6-dimensional
embedding of H3,4 was determined (see Online Resources 1 and 2) and then used
to describe full 20-mers based on the coordinates of each constituent 3-mer. For
Node2Vec we set p = 0.0545 and q = 1.22 (see Sect. 5).

There are many ways in which features based on these embeddings could be gener-
ated. We choose to use a sliding window of length three for two key reasons. First, we
have reason to believe that codons (i.e. sequences of three consecutive nucleotides, or
3-mers) will be relevant in this application. Second, by using local information, we
can generate more fine-grained embeddings which in turn may capture more subtle
aspects of intron–exon boundaries.

6.2 Results

To qualitatively evaluate the ability of the different embedding techniques to separate
positive from negative examples, we used a t-distributed stochastic neighbor embed-
ding (t-SNE) to project data points down to two dimensions (Maaten and Hinton
2008).

123

Low-dimensional representation of genomic sequences 17

Table 1 Summary of tested feature types for 20-mers

Name Dimensions Feature description

3-mer counts 64 Vector recording number of possibly overlapping
occurrences of each codon in a 20-mer

Binary 80 Vector describing the presence or absence of each
nucleotide at each position in a 20-mer

Multilateration 108 Vector associated with the embedding of each codon in
a 20-mer via the multilateration of H3,4

MDS 108 Vector associated with the six-dimensional embedding
of each codon in a 20-mer using MDS

Node2Vec 108 Vector associated with the six-dimensional embedding
of each codon in a 20-mer using Node2Vec

The scikit-learn (Pedregosa et al. 2011) t-SNE implementation with default param-
eters and a PCA based initialization was used to generate projections of 2000
randomly selected data points represented with features based on multilateration,
MDS, Node2Vec, binary vectors, and 3-mer count vectors. As seen in Fig. 5, all
representations except for 3-mer count vectors exhibit clustering of positive examples
away from negative examples. This strongly suggests that most of these methods of
representing 20-mers based on embeddings of H3,4 can to some extent differentiate
intron–exon boundaries from non-boundaries in the D. melanogaster genome.

The effectiveness of these different representations in classifying intron–exon
boundaries was analyzed further in numerous ways.

First, using the KNN implementaton from scikit-learn, precision-recall curves were
generated for each dataset using neighborhood sizes of 3, 5, and 7 as follows. For a
fixed neighborhood size s, and using thresholds from 1 to s, precision-recall values
were calculated over five splits of the data using 80% of the examples for training
and 20% for testing. As seen in Fig. 6, curves associated with 3-mer count vectors are
substantially lower than those generated using other methods.While features based on
multilateration, Node2Vec, MDS, and binary vector embeddings all achieve compara-
ble precision-recall values, the precision-recall curve for multilateration is generally
lower than others. Receiver operating characteristic (ROC) curves generated follow-
ing an analogous procedure show a similar relationship between the different feature
types (see Fig. 7). This is not surprising given the connection between the two repre-
sentations (Davis and Goadrich 2006).

The mean and standard deviation of accuracy, sensitivity, and specificity using five
nearest neighbors over 50 random subsamples of the data were also collected and
analyzed. This process was repeated with different proportions (from 95 to 5%, in 5%
increments) of the dataset being held out for testing. Further, to compare the perfor-
mance of KNN under different feature vectors, we interpreted the average accuracy,
sensitivity, and specificity over 50 replicates as the success probability of a Binomial
distribution with a number of trials equal to the number of labels generated. That is,
n = (number of replicates) × (size of testing set) = 50 · |D| · (1 − f), where |D| is
the total size of the dataset, and f is the fraction of examples used for training. This

123

18 R. C. Tillquist, M. E. Lladser

Fig. 5 t-SNE projections of 2000 randomly chosen points from dataset 1 (left) and dataset 2 (right), using
representations based on 3-mer count vectors, binary vectors, multilateration, MDS, and Node2Vec

allowed us to test the significance of differences in the accuracies, sensitivities, and
specificities of each pair of features, over each dataset, and for each test set size.

As seen in Fig. 8, accuracies for 3-mer count vectors are substantially lower than
those for other feature vectors. We attribute this and the poor performance of 3-mer
count vectors with respect to precision-recall and ROC curves to the fact that the
relative position of 3-mers within a sequence is ignored under this representation.
In fact, in a context where each positive example is half intronic and half exonic
DNA, location information should be relevant for classification. All other feature

123

Low-dimensional representation of genomic sequences 19

Fig. 6 Precision-recall curves for 3-NN, 5-NN, and 7-NN classifiers under different feature types for dataset
1 (top) and dataset 2 (bottom). Five splits of the data were considered for each possible threshold

Fig. 7 ROC curves for 3-NN, 5-NN, and 7-NN classifiers under different feature types for dataset 1 (top)
and dataset 2 (bottom). Five splits of the data were considered for each possible threshold

123

20 R. C. Tillquist, M. E. Lladser

Fig. 8 Mean and sample standard deviation of accuracy, sensitivity, and specificity for a 5-NN classifier
under different feature types, and varying the fraction of data used for training. The left column displays
results for dataset 1 and the right column results for dataset 2

vectors take the location of 3-mers within each example into account. Accuracies
for these methods are all roughly comparable, falling within a tight 3% range (see
Fig. 8). Though most differences are statistically significant based on the Binomial
proportion test described before (only 5 out of 152 of the p-values are between 0.05
and 0.95), absolute differences in accuracy across training fraction sizes correspond
to between 2000 and 4000 correctly labeled examples. This indicates features based
on multilateration, MDS, Node2Vec, and a simple binary embedding are all highly
competitive with one another in this context.

Also seen in Fig. 8, the sensitivity of features derived using multilateration is
generally somewhat lower than that achieved using Node2Vec, MDS, and binary
embeddings. In contrast, the specificity of multilateration features tends to be higher
than specificities achieved with other feature types. Again, most differences across
feature types in these two metrics are statistically significant. Depending on the appli-

123

Low-dimensional representation of genomic sequences 21

Fig. 9 Accuracies using 5-NNwith the 3-mer resolving set R3, andwith 50 other randomly chosen resolving
sets

cation and the potential cost of different misclassifications, this may be a desirable
property.

We note that there are over 18 million resolving sets of H3,4. Due to the inher-
ent symmetry of Hamming graph structures, many of these sets are isomorphic (see
Sect. 3.1). To investigate the extent to which classification performance depends on the
specific resolving set chosen, we collected a uniformly random sample of 50 resolv-
ing sets and repeated classification (see Online Resource 3). As seen in Fig. 9, R3 in
equation (5) ends up out-performing the average resolving set but nevertheless falls
near one sample standard deviation away from the mean. In particular, the choice of
resolving set does not appear to affect classification performance much in this setting.
Nevertheless, this may not be the case in general and boosting over multiple classi-
fiers, each based on a different resolving set, may be advisable to reduce performance
dependence on a specific resolving set choice.

In summary, the performance ofKNNclassifiers for identifying intron–exon bound-
aries in the genome ofD. melanogaster based on features derived frommultilateration
embeddings is comparable to those based on Node2Vec, MDS, and binary vector
embeddings. Concerning precision-recall and ROC curves as well as sensitivity, mul-
tilateration underperforms slightly compared to these othermethods. The accuracy and
specificity of classifiers using multilateration based features are, however, generally
higher than those obtained using other feature types. Interestingly, this proof-of-
concept suggests that metric dimension serves as a guide to select the least dimension
on which to embed k-mers into real-space using MDS and Node2Vec.

6.3 Biological insights via multilateration

Given the features generated by multilateration on codons, we next analyzed intron–
exon boundaries to determine a subset of metric dimension based features that most

123

22 R. C. Tillquist, M. E. Lladser

Fig. 10 Heat-map of total variation distance between distribution of Hamming distances for positive and
negative examples. The x-axis is associated with the starting index of a window of length three in a 20-mer,
and the y-axis with 3-mers in the resolving set R3

distinguished positive and negative examples. We focused our attention on the dataset
containing no duplicate positive examples, though results are similar for the other
dataset.

For each of the 108 multilateration-based features, we considered the distribution
of values for positive and negative examples. Computing the total variation distance
between these two distributions, we compared features with respect to how well they
differentiated sequences centered at intron–exon boundaries from those that are not
(see Fig. 10). We found that the most important feature in classifying intron–exon
boundaries is the distance of the 3-mer in the eighth window to GGC. Moreover, while
the eighth window is the most discriminatory overall, values in the seventh through
tenth windows show greater discrepancies between positive and negative examples
than those in the remaining windows. Notice that none of these windows appears
entirely within the exon. At first, this was somewhat puzzling considering that exons
are under more evolutionary pressure than introns. In particular, we might expect
certain patterns in exonic DNA to be highly conserved and thus strongly indicative of
an exon as opposed to an intron. However, recall that the positive examples represent
all known intron–exon boundaries in the fruit fly genome; in particular, the function
of proteins being coded for by sequences in the positive example set is not preserved
and there is no reason to believe that any specific codon (i.e. amino acid) will be over
or under represented in these sequences.

We note that while 108 features are required to guarantee unique distinguishability
of all 20-mers via multilateration, only a small fraction of these are necessary to
distinguish intron–exon boundary sequences reliably. Using total variation distances
to order the multilateration features, we explored how many features are needed to
achieve reasonable accuracy. Adding one feature at a time in the designated order, we

123

Low-dimensional representation of genomic sequences 23

Fig. 11 Accuracy of a KNN classifier as the top 40 metric dimension based features are added in the order
determined by total variation distance. Each point is associated with 50 replicates. Plots are displayed
following the same convention as Fig. 8

Table 2 Distribution of
distances of codon in the eighth
window of positive examples to
each 3-mer in resolving set R3.
The top row shows the fraction
of distances expected over all
possible 3-mers

Resolving set 3-mers 0 1 2 3

Expected 0.0156 0.1406 0.4219 0.4219

GGC 0.0047 0.0371 0.1225 0.8357

GGT 0.0035 0.0381 0.1322 0.8262

GCG 0.0046 0.0387 0.8064 0.1503

GTG 0.0037 0.0409 0.8306 0.1249

CGG 0.0038 0.4946 0.3494 0.1522

TGG 0.0044 0.2206 0.6387 0.1363

achieve a maximum accuracy of 0.8249 (sd = 0.0013) with the top 25 features (see
Fig. 11). In fact, accuracies within 0.0071 of this maximum are reached with the top
8 features.

One of the hallmarks of intron–exon boundaries is the presence of a highly con-
served AG sequence near the boundary at what is called the acceptor site (Breathnach
et al. 1978). Even though our embedding does not make explicit use of this fact, fea-
tures based on multilateration pick up on this characteristic as being indicative of a
positive example. To see why, consider the relative frequencies in Table 2, and notice
that there are far more positive examples at a distance three from GGC than we would
expect by chance. This suggests that, for the second position of the eighth window, G
is uncommon in positive examples. The abundance of positive examples at a distance

123

24 R. C. Tillquist, M. E. Lladser

Fig. 12 (Top) Number of DNA dimers observed in each window of all positive examples. (Bottom) 3-mer
frequencies in positive examples

one from CGG then tells us that G is a rather common nucleotide in the third position.
Moreover, the overabundance of positive examples at distance three from GGC and
at distance two from GCG and GTG, suggest that neither G nor C nor T are common
nucleotides in the second position. Consequently, the dimer AG must be a rather com-
mon nucleotide starting at position nine of the positive examples. This deduction is
supported by raw counts of dimers across all positive examples (see Fig. 12 on the
top). To end, we note that while 3-mer count features show an overabundance of CAG
in positive examples (see Fig. 12 on the bottom), it is not immediately obvious that
this 3-mer nearly always occurs immediately before the exon. Multilateration-based
features provide this location information nevertheless.

7 Conclusion

In the Euclidean plane (i.e., two-dimensional real space) three non-colinear points
suffice to represent any point by its distance to those points uniquely. In thismanuscript,
we have explored extensions of this idea, particularly in the context of finite metric
spaces, to develop meaningful numeric features from certain types of symbolic data.

Specifically, we defined a multilateration set of a matrix as a minimal subset of
columns which uniquely label all rows. As an embedding technique, multilateration
focuses on producing low dimensional maps while guaranteeing unique distinguisha-

123

Low-dimensional representation of genomic sequences 25

bility and ready embeddability of new examples. When applied to data that can be
represented as nodes in a graph, it reduces to determining the metric dimension of the
graph. This allows for the direct application of multilateration to data structured in this
way. For example, multilateration may be used to embed vertices of networks like the
Netflix movie ratings network (Bennett et al. 2007), arXiv citation networks (Gehrke
et al. 2003), or airport networks (Opsahl 2011) in some real space. Such embeddings
can then be used to encodemovies, papers, and airports as features inmachine learning
algorithms.

While multilateration-based embeddings are agnostic of any specific domain and
may be applied to any symbolic dataset, we examined how it may be used for the
analysis of biological sequence data. Using features derived from multilateration, we
classified DNA 20-mers in the Drosophila melanogaster genome as being centered
or not around an intron–exon boundary. These features allowed us to achieve perfor-
mances comparable to, and sometimes better than, those obtained by more traditional,
or computationally intensive embedding strategies. They also made it possible to pick
out the acceptor site motif as a distinguishing characteristic of positive examples.

Features based on two other embedding methods not commonly used in producing
representations of biological sequences, MDS and Node2Vec, also performed well on
the intron–exon boundary classification task. The success of features derived using
multilateration, MDS, and Node2Vec in this proof-of-concept shows that these tools
can be used to generate meaningful embeddings of biological sequence data.

Finally, the concept of multilateration is easily extended in a number of directions.
Various weakenings of the unique identifiability constraint, including only requiring
uniqueness between groups of rows or a set fraction of rows, could allow for more effi-
cient discovery of a suitable set of columns. Extensions which allow for the application
of multilateration on classes of matrices or graphs generated via particular underlying
processes would significantly increase the scope of problems for whichmultilateration
may prove useful.

8 Appendices

8.1 Proof of Lemma 1

Suppose first that J is a resolving set forM. Looking for a contradiction, suppose that
∪ j∈J S j �= U ; in particular, there is i ∈ U such that i /∈ ∪ j∈J S j . From the definition
of M, this implies that M(i, j) = a for all j ∈ J . But then M(i, j) = M(a, j) for
all j ∈ J , which contradicts the assumption that J is a resolving set. As a result,
U = ∪ j∈J S j as claimed.

Conversely, suppose thatU = ∪ j∈J S j . Again looking for a contradiction, suppose
that J is not a resolving set for M. Then there must be at least two rows in M that
are identical when restricted to the columns in J . But note that row i can only contain
two elements, i and a. This means that two rows can be identical only if they contain
a’s in the specified columns. As a result, there is i ∈ U such thatM(i, j) = a, for all
j ∈ J . But then i /∈ ∪ j∈J S j i.e. i /∈ U . This contradicts that i ∈ U , therefore J must
be a resolving set for M. This completes the proof of the lemma.

123

26 R. C. Tillquist, M. E. Lladser

8.2 Proof of Lemma 2

To show part (a), suppose without loss of generality that x ∈ Hk,a \ V0 and, let i �= 0
be such that x ∈ Vi . In particular, there is u ∈ {0, . . . , a − 1}k−1 such that x = (i, u).
Define y := (0, u). Since for each z ∈ V0, S0(z, x) − S0(z, y) = 1, it follows that
x and y are equivalent. Moreover, because y ∈ V0, this shows that any element in
Hk,a is equivalent to at least one element in V0. To show that said element is unique,
it suffices to show that no two different elements in V0 are equivalent.

To show the latter claim, consider x = (0, u) and y = (0, v)with u, v ∈ {0, . . . , a−
1}k−1 and u �= v; in particular, D(x, y) > 0. But note that S0(x, x) − S0(x, y) =
−D(x, y) and S0(y, x) − S0(y, y) = D(x, y). Hence x and y cannot be equivalent,
which shows part (a).

To show part (b), consider a resolving set Rk of S0 and x, y ∈ Hk,a equivalent.
Without any loss of generality assume that x ∈ Rk . Otherwise, because Rk is resolving,
so is Rk ∪ {z} for any z ∈ Hk,a . Because x and y are equivalent, for all z1, z2 ∈ V0,
S0(z1, x) = S0(z2, x) if and only if S0(z1, y) = S0(z2, y). In particular, replacing x
by y cannot alter the rows of S0 resolved by Rk . Since Rk is a resolving set for S0,
this completes the proof of the lemma.

8.3 Proof of Lemma 3

To show part (a), let Rk−1 be a resolving set for Hk−1,a ; in particular, Rk−1 resolves
the rows of the matrix d. In addition, let Si,0 be the sub-matrix of Si associated with
columns labeled by V0. From Eq. (2), we see that S0,0 = d. From this, it is immediate
that {0} × Rk−1 resolves S0,0 and hence also S0. Instead, for i > 0, Si,0 = (d + 1)
and again it is immediate that {0} × Rk−1 resolves Si,0 and thus Si too. This shows
part (a).

To show part (b), consider a resolving set Rk that resolves the rows of each Si .
Furthermore, let x, y ∈ Hk,a , with x ∈ Rk , be equivalent (with the respect to the second
equivalence relation defined). It follows that for all i and z1, z2 ∈ Vi , Si (z1, x) =
Si (z2, x) if and only if Si (z1, y) = Si (z2, y). Following an argument analogous to
the one used to show Lemma 2(b), this means that replacing x with y cannot alter the
rows of Si resolved by Rk . Since Rk resolves each Si , the lemma follows.

8.4 Proof of Lemma 4

For (a), let 0 ≤ i < j ≤ (a − 1) and u, v, x ∈ Hk−1,a . By contradiction, suppose
that D((i, u), (i, x)) = D((j, v), (i, x)), and D((j, v), (j, x)) = D((i, u), (j, x)).
Equivalently, said:

d(u, x) = 1 + d(v, x);
d(v, x) = 1 + d(u, x).

The first identity implies that d(u, x) > d(v, x) whereas the second one implies that
d(v, x) > d(u, x). Since the latter two inequalities are not simultaneously possible,
part (a) follows.

123

Low-dimensional representation of genomic sequences 27

To show part (b), consider 0 ≤ m ≤ (a − 1) that is different from i and j . Again
proceeding by contradiction, suppose that D((i, u), (i, x)) = D((j, v), (i, x)) and
D((i, u), (m, x)) = D((j, v), (m, x)). Then, because i , j , and m are different, this is
equivalent to saying that

d(u, x) = 1 + d(v, x);
d(u, x) = d(v, x).

Hence, we must have d(v, x) = 1+ d(v, x). Since this is not possible, part (b) in the
lemma follows and completes its proof.

9 Resolving set of H8,20

The resolving set in Eq. (4) was found via repeated applications of Algorithm 3,
starting with the set:

⎧⎪⎪⎨
⎪⎪⎩

AAA, RRR, NNN, DDD, CCC, QQQ, EEE, GGG, HHH,

III, LLL, KKK, MMM, FFF, PPP, SIS, NST, TTC,

ARW, WWD, MKY, QYE, YGL, HPV, VFR, EAG, KLQ,

DHF, WMP, CNS, SVT, QPK

⎫⎪⎪⎬
⎪⎪⎭ ,

which is resolving for H3,20. The latter was found using the ICH algorithm. For both
algorithms, amino acids were ordered lexicographically by full name, not abbrevia-
tions. Namely, the following order was assumed: A < R < N < D < C < Q < E < G < H < I

< L < K < M < F < P < S < T < W < Y < V.

Acknowledgements The authors thank the reviewers for their very insightful comments on the original
version of this manuscript. This research was partially funded by the NSF IGERT Grant 1144807, and
NSF IIS Grant 1836914. The authors acknowledge the BioFrontiers Computing Core at the University of
Colorado–Boulder for providing High-Performance Computing resources (funded by National Institutes of
Health 1S10OD012300), supported by BioFrontiers IT group.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Aguirre S,Maestre AM, Pagni S, Patel JR, Savage T, GutmanD,Maringer K, Bernal-RubioD, ShabmanRS,
Simon V, Rodriguez-Madoz JR, Mulder LC, Barber GN, Fernandez-Sesma A (2012) DENV inhibits
type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8(10):e1002–934

Asgari E, Mofrad MR (2015) Continuous distributed representation of biological sequences for deep pro-
teomics and genomics. PloS One 10(11):e0141–287

Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann
Math Stat 37(6):1554–1563

Bennett J, Lanning S et al (2007) The Netflix prize. In: Proceedings of KDD cup and workshop, New York,
vol 2007, p 35

123

28 R. C. Tillquist, M. E. Lladser

BermanP,DasGuptaB,KaoMY(2005)Tight approximability results for test set problems in bioinformatics.
J Comput Syst Sci 71(2):145–162

Blumenthal LM (1953) Theory and applications of distance geometry. Clarendon Press, Oxford
Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics

17(5):455–460
Breathnach R, Benoist C, O’hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a

leader sequence in mRNA and DNA sequences at the exon–intron boundaries. Proc Natl Acad Sci
75(10):4853–4857

Cáceres J,HernandoC,MoraM, Pelayo IM, PuertasML, SearaC,WoodDR (2007)On themetric dimension
of cartesian products of graphs. SIAM J Discrete Math 21(2):423–441

Cai C, Han L, Ji ZL, Chen X, Chen YZ (2003a) SVM-Prot: web-based support vector machine software for
functional classification of a protein from its primary sequence. Nucleic Acids Res 31(13):3692–3697

Cai YD, Feng KY, Li YX, Chou KC (2003b) Support vector machine for predicting α-turn types. Peptides
24(4):629–630

Chaouche FA, Berrachedi A (2006) Automorphisms group of generalized Hamming graphs. Electron Notes
Discrete Math 24:9–15

ChartrandG, Eroh L, JohnsonMA,OellermannOR (2000) Resolvability in graphs and themetric dimension
of a graph. Discrete Appl Math 105(1):99–113

Chvátal V (1983) Mastermind. Combinatorica 3(3–4):325–329
Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM

symposium on theory of computing. ACM, pp 151–158
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of

the 23rd international conference on machine learning. ACM, pp 233–240
Fix E, Hodges JL Jr (1951) Discriminatory analysis-nonparametric discrimination: consistency properties.

Tech. rep, DTIC Document
Gary MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. WH

Freeman and Company, New York
Gehrke J, Ginsparg P, Kleinberg J (2003) Overview of the 2003 KDD cup. ACM SIGKDD Explor Newsl

5(2):149–151
Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd

ACMSIGKDD international conference on knowledge discovery and data mining. ACM, pp 855–864
Hamming RW (1950) Error detecting and error correcting codes. Bell Labs Techn J 29(2):147–160
Harary F, Melter R (1976) On the metric dimension of a graph. Ars Comb 2:191–195
Harrison MA (1963) The number of transitivity sets of Boolean functions. J Soc Ind Appl Math 11(3):806–

828
Hauptmann M, Schmied R, Viehmann C (2012) Approximation complexity of metric dimension problem.

J Discrete Algorithms 14:214–222
Hayes WS, Borodovsky M (1998) How to interpret an anonymous bacterial genome: machine learning

approach to gene identification. Genome Res 8(11):1154–1171
Hoff KJ, TechM, Lingner T, Daniel R, Morgenstern B, Meinicke P (2008) Gene prediction in metagenomic

fragments: a large scale machine learning approach. BMC Bioinf 9(1):217
Jaakkola TS, Diekhans M, Haussler D (1999) Using the Fisher kernel method to detect remote protein

homologies. ISMB 99:149–158
Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations.

Springer, pp 85–103
Khuller S, Raghavachari B, Rosenfeld A (1996) Landmarks in graphs. Discrete Appl Math 70(3):217–229
Kratica J, Kovačević-Vujčić V, Čangalović M (2009) Computing the metric dimension of graphs by genetic

algorithms. Comput Optim Appl 44(2):343–361
Krzanowski WJ (2000) Principles of multivariate analysis: a user’s perspective. OUP, Oxford
Leslie CS, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification.

Pac Symp Biocomput 7:566–575
Li J, Lim SP, Beer D, Patel V, Wen D, Tumanut C, Tully DC, Williams JA, Jiricek J, Priestle JP, Harris

JL, Vasudevan SG (2005) Functional profiling of recombinant NS3 proteases from all four serotypes
of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280(31):28,766–
28,774

123

Low-dimensional representation of genomic sequences 29

Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities.
Appl Environ Microbiol 71(12):8228–8235

Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric
for microbial community comparison. ISME J 5(2):169–172

Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9((Nov)):2579–2605
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space.

ArXiv e-prints 1301.3781
MikolovT, Sutskever I, ChenK,CorradoGS,Dean J (2013)Distributed representations ofwords and phrases

and their compositionality. In: Advances in neural information processing systems, pp 3111–3119
Mladenović N, Kratica J, Kovačević-Vujčić V, Čangalović M (2012) Variable neighborhood search for

metric dimension and minimal doubly resolving set problems. Eur J Oper Res 220(2):328–337
Ng P (2017) dna2vec: consistent vector representations of variable-length k-mers. ArXiv e-prints

1701.06279
Opsahl T (2011)Why Anchorage is not (that) important: binary ties and sample selection. http://toreopsahl.

com/2011/08/12/why-anchorage-is-not-that-important-binary-tiesand-sample-selection. Accessed
September 2013

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings
of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM,
pp 701–710

Reese MG, Kulp D, Tammana H, Haussler D (2000) Genie—gene finding in Drosophila melanogaster.
Genome Res 10(4):529–538

SardaD, ChuaGH, LiKB,KrishnanA (2005) pSLIP: SVMbased protein subcellular localization prediction
using multiple physicochemical properties. BMC Bioinform 6(1):152

Sciabola S, Cao Q, Orozco M, Faustino I, Stanton RV (2012) Improved nucleic acid descriptors for siRNA
efficacy prediction. Nucleic Acids Res 41(3):1383–1394

Slater PJ (1975) Leaves of trees. Congressus Numerantium 14(549–559):37
Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in

eukaryotes. Nucleic Acids Res 32(suppl 2):W309–W312
Yang KK, Wu Z, Bedbrook CN, Arnold FH (2018) Learned protein embeddings for machine learning.

Bioinformatics 34(15):2642–2648
Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald

S, Gil L et al (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL (2012) Dengue virus targets the adaptor

protein MITA to subvert host innate immunity. PLoS Pathog 8(6):e1002–780

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1701.06279
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-tiesand-sample-selection
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-tiesand-sample-selection

	Low-dimensional representation of genomic sequences
	Abstract
	1 Introduction
	2 Multilateration
	2.1 NP-completeness
	2.2 Approximation algorithm

	3 Specialization to Hamming graphs
	3.1 Automorphisms of Hamming graphs

	4 Illustrative example
	5 Metric distortion
	6 Proof-of-concept: learning intron–exon boundaries
	6.1 Features generation
	6.2 Results
	6.3 Biological insights via multilateration

	7 Conclusion
	8 Appendices
	8.1 Proof of Lemma 1
	8.2 Proof of Lemma 2
	8.3 Proof of Lemma 3
	8.4 Proof of Lemma 4

	9 Resolving set of H8, 20
	Acknowledgements
	References

