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Abstract 

Evolutionary innovations are qualitatively novel traits that emerge through evolution and 

increase biodiversity. The genetic mechanisms of innovation remain poorly understood. A 

systems view of innovation requires the analysis of genotype networks—the vast networks 

of genetic variants that produce the same phenotype. Innovations can occur at the intersec- 

tion of two different genotype networks. However, the experimental characterization of 

genotype networks has been hindered by the vast number of genetic variants that need to 

be functionally analyzed. Here, we use high-throughput sequencing to study the fitness 

landscape at the intersection of the genotype networks of two catalytic RNA molecules (ribo- 

zymes). We determined the ability of numerous neighboring RNA sequences to catalyze 

two different chemical reactions, and we use these data as a proxy for a genotype to fitness 

map where two functions come in close proximity. We find extensive functional overlap, and 

numerous genotypes can catalyze both functions. We demonstrate through evolutionary 

simulations that these numerous points of intersection facilitate the discovery of a new func- 

tion. However, the rate of adaptation of the new function depends upon the local ruggedness 

around the starting location in the genotype network. As a consequence, one direction of 

adaptation is more rapid than the other. We find that periods of neutral evolution increase 

rates of adaptation to the new function by allowing populations to spread out in their geno- 

type network. Our study reveals the properties of a fitness landscape where genotype net- 

works intersect and the consequences for evolutionary innovations. Our results suggest 

that historic innovations in natural systems may have been facilitated by overlapping geno- 

type networks. 
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Introduction 

The mechanisms by which evolution produces new functions have intrigued biologists since 
the earliest formulations of evolutionary theory [1,2]. From one perspective, random genetic 
changes and natural selection for an existing function could prevent novelty if this process 
were to keep populations near genotypes at the peaks of fitness landscapes and preserve 
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existing forms at the expense of novel mutants [3–6]. Models to explain the origins of new 
functions often invoke gene duplication events, which create the redundancy needed to allow 
either copy to eventually evolve toward a new function [7–10]. However, the fitness 
landscape between old and new functions has been difficult to study largely because of the 
vast number of possible genetic variants for any given gene. As a result, models of innovation 
differ in the relative importance of neutral drift, environmental changes, the timing and type 
of selection pressure, and the high-dimensional nature of sequence space [11]. Our 
understanding of inno- vations will benefit from direct observations of the evolution of new 
structures and functions [12–18]. 

Macromolecular phenotypes such as the activity of enzymes can tolerate changes to their 
primary sequence (mutations) without necessarily changing structure or function. Many geno- 
types (sequences) have the same phenotype (enzymatic activity) [19,20]. Natural populations 
of both organisms and macromolecules that appear the same phenotypically still harbor many 
genetic differences. Genotype networks are the collection of all genotypes with the same phe- 
notype that are interconnected by mutational steps [21]. The expansiveness of genotype net- 
works provides robustness because mutations are likely to preserve the existing phenotype. 
However, it has also been argued that genotype networks can facilitate evolutionary innovation 
because different regions of the vast genotype networks provide mutational access to new 
structures and functions. Populations occupy finite regions of these vast networks, and it has 
been suggested that innovations can occur when populations encounter regions of genotype 
space where two different genotype networks are in close proximity [22] (Fig 1A). In recent 
years, experimental advancements have enabled extensive mapping of genotype to phenotype. 
However, with few exceptions, these mappings have been used to understand the fitness land- 
scape of a single function. In order to evaluate the innovation potential of genotype networks, 
it is necessary to characterize the number of mutations that separate two different genotype 
networks and the fitness consequences of the mutational changes needed to move from one 
network to the other. 

Here, we report an experimentally constructed “ribozyme fitness” landscape at the intersec- 
tion of two genotype networks. For our study system, we have chosen two distinct RNA phe- 
notypes. The RNA molecules are ribozymes, structured noncoding RNA molecules that 
catalyze chemical reactions. One ribozyme phenotype is the naturally occurring self-cleaving 
Hepatitis Delta Virus (HDV) ribozyme. The second phenotype is the class III Ligase ribozyme 
that was discovered through artificial selection in a lab [23,24]. The two ribozymes fold into 
very different structures (Fig 1A) and catalyze different chemical reactions (Fig 1D). Despite 
the differences between the two ribozymes, it was previously shown that the two genotype 
net- works come in close proximity, and very few mutations could convert one ribozyme into 
the other [24]. This provides an experimentally tractable example of a molecular innovation. 
To characterize the effects of mutations required to move between the two genotype networks, 
we developed two high-throughput-sequencing–based assays to quantify both ribozyme 
pheno- types. Although the two prototype ribozyme sequences are separated by 67 mutations, 
we identified two reference genotypes with approximately “wild-type” levels of activity that 
con- tained 14 mutational differences between them. We synthesized DNA templates needed 
to transcribe the RNA molecules that contain all the combinations of these mutational differ- 
ences. We analyzed the 2

14
 = 16,384 neighboring RNA sequence variants using both ribozyme 

assays (S1 Fig). For each sequence, we determined the ribozyme fitness for both activities, 
defined as the performance of the sequence in our assays relative to a reference sequence. For 
the HDV phenotype, our ribozyme fitness is defined by the fraction of the sequence that self- 
cleaves during transcription. For the Ligase phenotype, ribozyme fitness is defined as the 

https://doi.org/10.1371/journal.pbio.3000300
http://www.swgc.org/
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Fig 1. The experimental fitness landscape at the intersection of two genotype networks. (A) Overlay of the HDV and Ligase genotype networks. Nodes represent 
individual genotypes that are connected by an edge if they are different by a single nucleotide change. Nodes are colored based on their dominant activity (red = HDV; 
blue = Ligase). For each genotype, “ribozyme fitness” is defined as the relative ribozyme activity determined by high-throughput sequencing and is indicated by the size of 
the node and the color saturation. Genotypes with fitness below 0.07 are excluded for visualization purposes. Boxes on the left (HDV reference) and right (Ligase 
reference) show the secondary structure for the reference genotypes and all the mutational changes that were analyzed. The mutations in blue boxes convert the HDV 
reference to the Ligase reference. The mutations in red boxes convert the Ligase reference to the HDV reference. (B) Distance-based layout of the two fitness 
landscapes. Each sequence is positioned on the x-axis according to its mutational distance from the HDV reference genotype. HDV fitness (red) and Ligase fitness (blue) 
are indicated by the y-axis value. The number of genotypes (n) increases in the middle of the plot, and the total number of genotypes at each position is indicated about the 
graph. The number of dual-function intersection sequences (i) at each mutational distance is also indicated. Inset text “peaks” and “ruggedness” describe quantitative 
characteristics of 

https://doi.org/10.1371/journal.pbio.3000300
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the landscapes. Data and Python scripts used to construct fitness landscapes can be found on GitLab. (C) Distributions of the magnitude of epistatic values found in each 
landscape. Data and Python scripts used to calculate and graph epistasis can be found on GitLab. (D) Representation of the chemical reactions catalyzed by each ribozyme. 
HDV, Hepatitis Delta Virus. 

 

https://doi.org/10.1371/journal.pbio.3000300.g001 

 

change in abundance of each sequence from a single round of selection for Ligase activity 
(see Materials and Methods). 

We, like others, use performance in an in vitro assay as a proxy for fitness [25–28], and we 
do not provide experimental confirmation that the ribozymes studied here alter the fitness of 
any organism. We note that there are several examples of a simple correlation between 
enzyme activity and organismal fitness [29,30], and our simulation based analysis that follows 
assumes such. However, the relationship between the properties of gene products and 
organismal fit- ness is typically complex, often environmentally dependent, and the subject of 
numerous lines of investigation [31,32]. Because of the vastness of sequence space, the ability 
to predict evolu- tionary outcomes in the lab and in natural environments will require 
advancements in high- throughput in vivo and in vitro assays, as well as in computational 
approaches to merge data across scales. In this spirit, we used our in vitro determined 
ribozyme fitness values to analyze the billions of mutational trajectories between the two 
genotype networks and use computa- tional simulations to explore how these proximal 
genotype networks might impact evolution- ary innovations. 

 

Results 

Empirical ribozyme fitness landscape at the intersection of two 
genotype networks 

We obtained ribozyme fitness measurements for all 16,384 RNA sequences for both RNA 
phe- notypes. For visualization of the resulting genotype networks, we plot the data as a 
network graph, in which each node is a unique sequence, nodes are connected if they differ by 
a single mutation, and the fitness is represented by the size and color saturation of the node 
(Fig 1). 
Each node is colored based on the dominant activity, with HDV in red and Ligase in blue. Fit- 
ness values were normalized such that fitness = 1 for the reference ribozyme, previously 
referred to as the “prototype” [24]. This representation of the data allows a visual appraisal of 
the proximity of the two genotype networks. In general, both networks are characterized by a 
decrease in fitness with distance from the reference. The region where the two networks are in 
closest proximity contains sequences with low activity for both functions. Still, we find that 
numerous genotypes in the two networks are proximal, creating numerous mutational trajec- 
tories between the two functions. Characterizing the mutational distance between the two net- 
works requires numerous distance measurements. 

 

Proximity and functional overlap of the two genotype networks 

To quantify the average distance between the two genotype networks, we measured the muta- 
tional distance between every genotype on one network and the nearest genotype on the other 
network with equivalent or greater fitness (Fig 2A). We found that this distance depends upon 
whether or not a lower bound is set for genotypes to be considered a member of the genotype 
network. We found that the average distance between the networks decreased as the fitness 

cutoff is lowered (Fig 2A). For example, if “wild-type” activity is required (fitness > 1), the 
two networks are separated by approximately 7 mutations on average (S2 Fig). However, if 
mole- cules with 10% of wild-type activity or better are considered part of the network, then 
most genotypes are only 1–2 mutations from the other network. We found that the number of 

https://doi.org/10.1371/journal.pbio.3000300
https://doi.org/10.1371/journal.pbio.3000300.g001
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Fig 2. Proximity and overlap of the two genotype networks. (A) Distributions of shortest mutational 
distance (x-axis) between genotypes on different networks as a function of fitness cutoff (y-axis; blue = Ligase 
to HDV 
distances; red = HDV to Ligase distances). For each genotype with a fitness above the cutoff value for one function, 
the distance to the nearest genotype with the other function was determined. The distribution of these distances 
determined for all genotypes are plotted as violin plots. The diagram (above, left) illustrates the measurement of 
distance between the two functions. Inset (above, right) shows the distribution at fitness cutoff = 1.3 as histograms, and 
dashed lines indicate the sample means. Data and Python scripts used to plot distributions can be found on Gitlab. (B) 
Intersection sequences with detectable activity for both functions. For each genotype, the HDV fitness is plotted on the 
x-axis, and Ligase fitness is plotted on the y-axis. Color indicates the ratio of Ligation fitness (blue) to HDV fitness 
(red). The size of the node is scaled to the higher of the two fitness values. Fitness values are log10 transformed. 
Dashed lines indicate wild-type level activity with fitness = 1 (log10 fitness = 0). Data and Python scripts used to 
plot intersection sequences can be found on Gitlab. HDV, Hepatitis Delta Virus. 

 

https://doi.org/10.1371/journal.pbio.3000300.g002 

 

connections between the two networks was also dependent upon the fitness cutoff. 
Specifically, decreasing the fitness cutoff increased the connectivity between the networks (S3 
Fig). 

Interestingly, when no minimal fitness cutoff is imposed, we find that numerous genotypes 
appear to catalyze both reactions, each representing a point of intersection between the two 
genotype networks (Fig 2B). We expected to find some dual-function intersection sequences 
because we intentionally designed our library around the sequence space of a previously dis- 
covered dual-function sequence. With a maximum of 14 mutations between all the sequences, 
it was not surprising that most sequences maintained one of the functions. However, the num- 
ber of potential dual-function sequences in our data was surprising. Admittedly, the precise 
number of these dual-function intersection sequences is difficult to determine because many 
sequences show very low activity for one of the functions that is near the limits of our 
detection at the sequencing depth achieved. We therefore set a cutoff that each specific 
sequence must be detected as active at least 3 times in our data, once in each replicate. Based 
on the high quality of our sequence data (S4B Fig), we predict that it is very unlikely that 
sequencing errors from mutational neighbors could produce a false positive with this cutoff 
because it would require a precise sequence error 3 separate times. Based on this cutoff, we 
find that over half the geno- types (9,032) can perform both functions (Fig 2B). Specifically, 
we detected HDV activity for 9,032 of the genotypes and Ligase activity for 16,384 
genotypes. 

We took several steps to confirm that low-fitness genotypes were in fact active ribozymes. 
First, we carried out in vitro assays of self-cleavage and ligation activity for several 
genotypes. We determined self-cleavage activity by gel electrophoresis and Ligase activity 
by quantitative PCR (see Materials and Methods). Both assays supported our sequence-based 
fitness measure- ments (S5 Fig). However, these in vitro methods are less accurate for low-
fitness sequences, which required further investigation. Therefore, we also compared the read 
counts of the low- est-fitness sequences to counts of spurious sequences that were not 
intentionally synthesized in our library. These spurious genotypes had mutations outside the 
14 variable nucleotide positions. The least frequent HDV genotypes in our data that showed 
self-cleavage activity were observed as cleaved more than once in all 3 replicates and 
uncleaved more than 108 times (S6 Fig). In contrast, spurious reads were typically only 
observed once, either as cleaved or uncleaved (S7 Fig). We note that genotypes that were not 
detected as cleaved in any individual replicate were not considered active. The lowest-fitness 
Ligase genotype was observed as ligated more than 4 separate times in a given replicate and 
more than 32 times across all 3 rep- licates, again in contrast to the rarity of spurious reads. 
Further, for all sequences, we also esti- mated enzymatic ligation rates from our fitness 
measurements and compared these rates to reported nonenzymatic ligation rates. To 
accomplish this, we identified a genotype that was in the original intersection sequence study 
[24] and in our current data and assumed that this ribozyme had the same enzymatic rate in 
both studies. We then converted our fitness values to rates using a linear transformation. This 
estimated ligation rate indicated that all of the Ligase 

https://doi.org/10.1371/journal.pbio.3000300
https://doi.org/10.1371/journal.pbio.3000300.g002
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measurements in our study were above the template-directed, nonenzymatic oligonucleotide 
ligation rate (S8C Fig). Finally, a positive correlation between frequency and fitness would be 
expected if our selection for ligation activity allowed random sequences to pass through with- 
out actually catalyzing a ligation (often termed a “leaky” selection). However, we found no 
cor- relation (S8 Fig). 

Most of the identified dual-function intersection sequences have very low fitness for both 
functions, and not surprisingly, no single sequence had higher than wild-type fitness for both 

functions (log10(fitness) > 0). However, several sequences did show detectable levels of 
activity for one function and higher than wild-type fitness for the other function. Under many 
evolu- tionary scenarios, these genotypes could be the most likely to facilitate a molecular 
innovation because they could persist in a population if selection was acting on only one 
function yet would already provide the new function as a suboptimal promiscuous function 
[33,34]. 

 
Computational simulations of evolutionary innovation on the 
empirical fitness landscape 

Next, we set out to evaluate the implications of these genotype networks for the evolution of 
molecular innovations. The networks are high-dimensional, which limits any intuitive inter- 
pretation. We therefore turned to computational simulations of populations of RNA molecules 
evolving on the networks. We modeled evolution using a Wright–Fisher model [35] with a 
fixed population size, a fixed mutation rate, and a probability of survival determined by the 
experimental relative ribozyme fitness values for each genotype (see Materials and Methods). 
For these simulations, it is useful to visualize the genotype networks as a landscape where the 
height of the landscape is determined by the fitness (Fig 3A and S1 Movie). In our 
simulations, evolving populations will tend to move uphill toward peaks, defined as sequences 
where all 

1-mutation neighbors have lower fitness. The crossing of fitness valleys to get from low-
fitness peaks to higher-fitness peaks is allowed in our simulations but requires a stochastic 
series of less likely events. We applied this evolutionary simulation to three scenarios of 
evolutionary innovation: 1) immediate selection for the new function following gene 
duplication, 2) neutral evolution prior to selection for the new function, and 3) simultaneous 
selection for both func- tions. This last scenario represented evolutionary innovation prior to 
gene duplication. 

 

Immediate selection for the new function following gene duplication 

The first scenario modeled evolution following a gene duplication event, in which a new copy 
of a gene was under selection for a new function and the other copy simply maintained the 
original function. We therefore only followed the evolution of the new function for this sce- 
nario. We applied immediate selection pressure for the new function, with no consequence for 
the changes in the initial function. This scenario was simulated in both directions, with either 
Ligase or HDV functions representing the new function. 

We started multiple simulations, each from different genotypes on the HDV network, and 
challenged the populations to evolve on the Ligase fitness landscape. The starting genotypes 
selected all had above wild-type HDV fitness and therefore would be likely to persist in a popu- 
lation under selection for the HDV function. We recorded these simulations as movies to 
observe the process of evolution toward the new Ligase function (Fig 3B and S2–S5 Movie). 

We noticed that many of the individual simulations had periods during which the mean fitness 
of the population plateaus at a specific, often low value for many generations (Fig 3B). To 
eval- uate the average contribution of these periods of stasis, we repeated the simulation 100 
times and plotted the average fitness of the evolving population over time (Figs 4A and S9). 
We car- ried out 100 replicates each for all of the different starting genotypes (Fig 4B and S2 
Table). We 

https://doi.org/10.1371/journal.pbio.3000300


PLOS Biology | https://doi.org/10.1371/journal.pbio.3000300 May 28, 2019 8 / 29 

Genotype network intersections promote evolutionary innovation 

 

 

 
 

 

Fig 3. Periods of evolutionary stasis revealed by computational simulation of evolutionary innovation. (A) A landscape visualization of the two genotype 
networks. The height of each node (z-axis) indicates the relative fitness for the HDV phenotype (red) and the Ligase phenotype (blue). Nodes represent genotypes and are 
connected by an edge if they are different at one nucleotide position. Fitness is indicated by the height (z-axis), the size of the node, and the color saturation. Fitness 
values are normalized so that both graphs are similar heights. Genotypes used to start evolutionary simulations are labeled with lower case for the genotypes with the 
highest HDV fitness (a–p) and capital letters for genotypes with the highest Ligase fitness (A–Q). (B) Frames from simulations of evolving populations. Several 
examples are shown to illustrate different rates of increase of “population fitness” over simulation time (“generations”). Each row shows the progress of a single 
simulation. The starting genotype is indicated to the left. Each plot shows the genotypes present in the population with the number of generations of evolution labeled at 
the bottom. Genotypes present in the population are indicated by yellow nodes and edges. The corresponding mean fitness of each population over time is shown in the 
plots to the right. During simulations, the population size (N = 1,000) and mutation rate (μ = 0.01) were constant. HDV, Hepatitis Delta Virus.  

https://doi.org/10.1371/journal.pbio.3000300.g003 
 

found that different genotypes on the HDV network resulted in consistently different average 
rates of adaptation to the new Ligase function (Fig 4E). The maximum growth rate derived 
from the regression analysis for each starting genotype found similar results (S10 Fig). It is 
important to note that the rate of adaptation was not dependent or correlated with the muta- 
tional distance between the starting and summit genotypes (S11 Fig). 

Additionally, we found that there exist specific genotypes on the Ligase fitness landscape 
that caused these periods of stasis and slower average rates of adaptation (Figs 4F and S12 
and S13). These genotypes are local peaks that are characterized by very few pathways to 
higher fit- ness. Importantly, the genotypes that caused the longest periods of stasis and 
slowest rates of adaptation are characterized by extensive reciprocal sign epistasis, meaning 
that achieving higher fitness requires two or more mutational steps, but every initial step is 
deleterious. Spe- cific starting genotypes on the HDV network frequently stalled at the same 
intermediate fitness level, indicating that they were likely to encounter a specific stasis-
causing fitness peak. It is important to note that the dynamics of our simulations are not 
significantly altered by the accuracy of low-fitness sequences. This is because the rate of 
adaptation is dominated by the local fitness peaks that are surrounded by genotypes with very 
low fitness, but the precision of our fitness measurements for these low-fitness genotypes 
does not alter our evolutionary dynamics. As evidence, we observed nearly identical 

evolutionary outcomes when simulations were repeated after 7,015 genotypes with fitness < 
0.005 were converted to fitness = 0 (S14 Fig). Overall, the consistent rates of adaptation from 
multiple simulations are encouraging for efforts aimed at forecasting evolutionary outcomes, 
especially in cases in which the underlying fitness landscape can be measured or accurately 
estimated [26,36]. 

https://doi.org/10.1371/journal.pbio.3000300
https://doi.org/10.1371/journal.pbio.3000300.g003
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Fig 4. Starting genotypes result in different rates of evolutionary adaptation. (A) Rates of Ligase adaptation from a single HDV genotype. Each trace shows the 
average population fitness as a function of generation time for a separate simulation of 1,000 individuals each. The traces from 100 separate simulations are shown. Inset 
shows minor fluctuations during periods of stasis. Data and Python scripts for evolutionary simulations can be found on GitLab. (B) Average rates of evolutionary 
adaptation of Ligase activity starting from 17 genotypes. Each trace represents a different starting genotype (a–p and HDV reference) and shows the mean fitness of 100 
simulations as a function of time (“generation”). The y-axis is scaled to the maximum fitness on this landscape (“summit,” horizontal dashed line). The vertical dashed 
line marks generation 200. Data and Python scripts for evolutionary simulations can be found on GitLab. (C) Rates of HDV adaptation from a single Ligase genotype. 
Data and Python scripts for evolutionary simulations can be found on GitLab. (D) Average rates of evolutionary adaptation of HDV activity starting from 17 genotypes. 
Each trace represents a different starting genotype (A–Q) and shows the mean fitness of 100 simulations as a function of time (“generation”). The y-axis is scaled to the 
maximum fitness on this landscape (“summit,” horizontal dashed line). Data and Python scripts for evolutionary simulations can be found on GitLab. (E) Distributions of 
initial rates of adaptation during simulations on the Ligase landscape. Initial rate is determined as the population fitness divided by the generations at 200 generations. Each 
violin plot represents the distribution of 100 simulations starting from the same genotype, which is indicated on the x-axis. Maximum growth rate, determined from a 
cubic spline regression, is also reported. Growth rate calculations and plots are reported in S10 Fig. Data and Python scripts for evolutionary simulations can be found on 
GitLab. (F) Sign epistasis in the local fitness landscape of genotypes that cause periods of stasis in the Ligase landscape. The fitness of the stasis genotype is plotted at 
mutations = 0, and this starting fitness is marked with a dashed line. The fitness of neighboring genotypes that differ by 1 or 2 mutations are shown. Distributions of 
initial rates of adaptation during simulations on the HDV landscape. Data and Python scripts for plotting local fitness landscapes can be found on GitLab. (G) 
Distributions of initial rates of adaptation during simulations on the HDV landscape. Growth rate calculations and plots are reported in S16 Fig. Data and Python scripts 
for evolutionary simulations can be found on GitLab. (H) Sign epistasis in the local fitness landscape of genotypes that cause periods of stasis in the HDV landscape. 
Data and Python scripts for plotting local fitness landscapes can be found on GitLab. HDV, Hepatitis Delta Virus; REF, reference. 

 

https://doi.org/10.1371/journal.pbio.3000300.g004 
 

We next repeated the evolutionary simulations from the opposite perspective, starting with 
genotypes from the Ligase side of the landscape with selection for improved HDV function. 
This scenario models Ligase as the original function and HDV self-cleavage as the new func- 
tion that is under selection following gene duplication. Surprisingly, we found that all of these 
simulations got stuck at very low fitness for the full 1,000 generations (Figs 4C and 4D and 
S15), resulting in significantly slower rates of adaptation (Fig 4G). The maximum growth rate 
derived from the regression analysis for each starting genotype found similar results (S16 Fig). 
We note that the simulations were done under identical population size and mutation rate, and 
we therefore attribute the different evolutionary dynamics to properties of the fitness land- 
scapes. The property identified that was likely to dictate evolutionary dynamics was the 

https://doi.org/10.1371/journal.pbio.3000300
https://doi.org/10.1371/journal.pbio.3000300.g004
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ruggedness of the landscape. We find that the HDV landscape is much more rugged than the 
Ligase landscape, with more peaks and more extensive sign epistasis. The HDV landscape 
has 982 peaks, while the Ligase landscape has only 68, which is caused by more frequent 
instances of sign epistasis in the HDV landscape. The severity of sign epistasis is also higher 
on the HDV landscape, which can be seen in the extreme values in Fig 1C. 

 

Neutral evolution model of evolutionary adaptation 

The fact that some genotypes promoted very rapid adaptation supports the idea that neutral 
evolution that enables a population to explore a genotype network can facilitate evolutionary 
innovations [22,37]. We next modeled a period of neutral evolution prior to selection for the 
new function. For these simulations, we allowed increasing amounts of neutral evolution from 
0 to 1,000 generations at 100 generation increments. We simulated neutral evolution on both 
the Ligase and HDV landscape starting from the summit genotype (Fig 4, genotypes a and A) 
of one landscape prior to evolving under selection for the other function. 

As expected, the mean fitness of the populations did not improve during periods of neutral 
evolution, as indicated by the lag at the beginning of each simulation (Fig 5A and 5B and S17 
and S18). However, we found that this period of neutral evolution increased the rate of adapta- 
tion toward the new function when selection pressure was applied. We measured this increase 
in adaptation as either the population fitness in the first 100 generations of selection for the 
new function (termed adaptation rate) (Fig 5C and 5D) or as the maximum growth rate from a 
nonlinear regression (S19 and S20 Fig). The adaptive advantage increased with longer peri- 
ods of neutral evolution. We also found a corresponding increase in the final population fit- 
ness obtained (Fig 5C and 5D). Interestingly, following as few as 400 generations of neutral 
evolution, populations on the HDV landscape were able to reach the HDV summit (S18 Fig 
and S7 and S9 Movie), which we did not observe without neutral evolution (S15 Fig). As 
gen- erations of neutral evolution increased, the probability of a population reaching the HDV 
sum- mit also increased. This trend was also observed on the Ligase landscape, where 
populations often reach the summit without neutral evolution (S17 Fig and S10 Movie). 
Although neutral evolution on the HDV landscape allowed some populations to reach the 
summit, it also trapped some populations at suboptimal peaks with lower fitness than was 
reached by simula- tions without neutral evolution. We also found that the neutral evolution 
increased the num- ber of unique sequences explored by the population (Fig 5C and 5D). We 
conclude that the period of neutral evolution improved adaptation rates because it allowed the 
population to for- tuitously discover genotypes with easier paths to higher fitness. 

 

Coselection model of evolutionary adaptation 

We also modeled a scenario in which both functions were simultaneously under selection and 
each function contributed to fitness (S21 and S22 Figs). For these simulations, we assigned 
each genotype a fitness that was calculated by summing the HDV and Ligase fitness values, 
each mul- tiplied by an adjustable weighting parameter. Before summing, we normalized the 
data by dividing each fitness values by the maximum fitness value in that landscape such that 
the maxi- mum fitness of both functions was fitness = 1. We found that under this scenario, the 
function that was weighted more heavily would be optimized at the expense of the function 
with lower weighting. Interestingly, when both functions were given equal weight, the result 
was stochastic, and either HDV or Ligase could be optimized. We did not observe any 
instances in which the population remained split with some genotypes being selected for high 
HDV fitness and others with high Ligase fitness. This suggests that prior to gene duplication, a 
given population is likely to have genes that are optimized for one function or the other but not 
both. 

https://doi.org/10.1371/journal.pbio.3000300
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Fig 5. The effects of neutral evolution on evolutionary adaptation. (A) Average rates of evolutionary adaptation of Ligase activity starting from the summit genotype 
of the HDV landscape. Each trace represents a different number of generations of neutral evolution and shows the mean fitness of 100 simulations as a function of time 
(“generation”). The y-axis is scaled to the maximum fitness on this landscape (“summit”). The vertical dashed line marks generation 200. Data and Python scripts for 
evolutionary simulations can be found on GitLab. (B) Average rates of evolutionary adaptation of HDV activity starting from the summit genotype of the Ligase 
landscape. Data and Python scripts for evolutionary simulations can be found on GitLab. (C) Distributions of rates of adaptation, final population fitness, and the 
number of unique genotypes explored following generations of neutral evolution during simulations on the Ligase landscape. Each violin plot represents the distribution 
of 100 simulations following the same length of neutral evolution, which is indicated on the x-axis. Adaptation rate is determined as the rate of population increase for 
the first 100 generations following the neutral evolution. Final fitness is the mean population fitness at the end of 1,000 generations of evolution. Maximum growth rate, 
derived from a cubic spline regression, is also reported. Growth rate calculations and plots are reported in S19 Fig. Data and Python scripts for evolutionary simulations 
can be found on GitLab. (D) Distributions of rates of adaptation, final population fitness, and the number of unique genotypes explored following generations of neutral 
evolution during simulations on the HDV landscape. Growth rate calculations and plots are reported in S20 Fig. Data and Python scripts for evolutionary simulations 
can be found on GitLab. HDV, Hepatitis Delta Virus. 

 

https://doi.org/10.1371/journal.pbio.3000300.g005 
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Discussion 

The goal of this study was to characterize the ribozyme fitness landscape at the intersection 
of two genotype networks in order to advance our understanding of the challenges to 
evolution- ary innovations at the molecular level. Until recently, the study of genotype 
networks was mostly based on computational experiments, such as the thermodynamic 
prediction of RNA secondary structures [38–40] or simplified models of protein structures 
[41]. These founda- tional experiments established that there are numerous genotypes that 
can produce the same phenotype, and these genotypes are connected by small mutational 
changes to produce net- works that cover vast regions in the space of all possible genotypes. 
These networks were often referred to as “neutral networks” because they did not assign a 
fitness value to each genotype and only predicted a structure or “shape.” However, evolution 
does not act on shape alone. A large body of research has used mathematical models to 
assign fitness values to genotypes in order to evaluate evolution across genotype networks. 
Researchers can now use high-through- put assays to assign experimentally determined 
fitness values to genotypes in order to study the pathways to higher fitness [42–47]. The vast 
majority of experimental fitness landscapes have focused on a single function. Our results 
build upon efforts toward looking at the inter- face of different genotype networks. We can 
only evaluate how fitness landscapes contribute to evolutionary innovation by focusing on 
multiple functions [24,48,49]. 

Using computational simulations, we found several differences in the evolutionary dynam- 
ics on each landscape that have implications for evolutionary innovations. For example, our 
results indicate that the order in which new functions arise can alter evolutionary dynamics 
because optimizing HDV activity from sequences with high Ligase activity was much more 
challenging than evolving in the reverse order. In addition, we found that specific properties of 
the genotype networks dictated the rate of evolutionary adaptation of a new function. The 
Ligase landscape was less rugged with fewer peaks, which allowed the more rapid 
evolutionary adaptation of the new function in our simulations. Interestingly, we found that 
these differ- ences in adaptation rates hold over a range of population sizes and mutation rates 
(S24 and S25 Figs). This highlights that the severe ruggedness of the HDV landscape cannot 
be easily overcome by changing model parameters. Periods of neutral evolution may be 
critical for evo- lutionary optimization on severely rugged landscapes such as the HDV 
landscape [50,51]. Sev- eral laboratory and theoretical studies have also found that periods of 
genetic drift or nearly neutral evolution can improve adaptation rates [37,52]. On the other 
hand, it has been argued that neutral drift is not necessary for crossing valleys in a fitness 
landscape, and the contribu- tion of neutral drift becomes less significant for the evolution of 
complex traits involving mul- tiple genes [53]. We observe that the ribozyme innovation 
studied here can evolve without neutral evolution. Our results support the view that both 
neutral drift and directional selection play important roles in the evolution of innovation [22], 
and their relative contribution will depend on specific parameters such as time scales, 
population sizes, mutation rates, and the underlying fitness landscape [50]. 

It is important to reiterate that it is difficult to predict how the relative activity of a protein 
or RNA enzyme will translate to organismal fitness, especially when multiple enzymes 
interact and are exposed to environmental changes. When experimental and computational 
advance- ments enable more extensive mappings of genotype to fitness at the organismal level 
and across multiple environments, these landscapes may or may not show properties similar to 
protein and RNA fitness landscapes. We therefore see our evolutionary simulations as a way 
to characterize multidimensional experimental fitness landscapes that allows for the stochastic 
events needed to cross fitness valleys. As compared to previous analyses that predict the 
avoid- ance of pathways with fitness valleys, our simulations emphasize that fitness peaks, not 
valleys, 

https://doi.org/10.1371/journal.pbio.3000300
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dominate adaptation rates. We predict that identifying and characterizing the sequence space 
around fitness peaks will be necessary to move toward evolutionary predictions at the organis- 
mal level [36,54]. 

Our results provide a glimpse into how intersection sequences promote the evolution of 
new functions and enable the expansion of biodiversity. The high frequency of dual-function 
intersection sequences in our data supports the idea that ancient genes that duplicated and 
enabled radiation events [55] may be characterized by both significant functional overlaps and 
a robust genotype network. Further investigations into intersection sequences and fitness land- 
scapes will be required to fully evaluate this scenario. For example, our current library design 
only investigates two nucleotides at each variable position, which represent the parsimonious 
or “direct” pathways between the two reference genotypes. However, recent experimental 
evi- dence from a protein enzyme supports the idea that higher-dimensional “indirect” 
pathways can bypass epistasis and facilitate adaptation [56]. Further experiments with 
different library designs will be required to determine how higher-dimensional landscapes 
contribute to evolu- tionary innovations [38]. 

Our results support insights gained from earlier computational studies. For example, one 
prior computational study of simple RNA secondary structures, termed “shapes,” looked at the 
most probable new shapes that are 1 mutation away from sequences that form a canonical 
tRNA structure [39]. The authors found that most single mutations produce very similar 
shapes. However, they also found that there exist some single mutations that produce shapes 
with considerable differences. The HDV and Ligase structures in the current study do not 
share any structural similarity, but our results show that the shapes overlap extensively in 
sequence space such that there is a high probability of finding one ribozyme in the neighbor- 
hood of the other. This similarity between computational and experimental data is somewhat 
surprising because the ribozyme phenotypes studied here require a precise tertiary structure to 
achieve catalysis that is not taken into account by secondary structure prediction. Nevertheless, 
the canonical base pairing interactions that are computationally predicted make up a large 
component of the structural interactions needed for ribozyme folding, which may account for 
the similarity between the results. Regardless, our results support the long-standing use of 
computational prediction of RNA structures as a realistic model of the genotype-to-phenotype 
relationship, which continues to inspire experiments. This also provides motivation for con- 
tinued efforts to use experimental structure probing methods to improve the blind prediction 
of RNA tertiary structure [57]. 

The decrease in the fitness of both functions at the intersection suggests that intermediate 
forms are evolutionarily disfavored over the sequences that can do one function well [11]. The 
evolution of innovation in this sequence space is therefore not only possible but probable 
because, once a population discovers this region of sequence space, selection is likely to favor 
a genotype with one function or the other. For example, we found that populations were about 
equally likely to optimize either function when both functions were simultaneously under 
selection and contributed equally to fitness. The importance of environmental changes should 
not be overlooked. A sudden environmental shift could quickly favor one function over the 
other, and a fluctuating environment could alter selection pressures and help maintain both 
functions [58,59]. 

It remains unknown whether these characteristics are common or peculiar to the specific 
phenotypes investigated here. Further research advancements will be required to study larger 
expanses of genotype space needed to cover more mutational positions and the resulting 
higher dimensionality. It will also be important to investigate whether historic evolutionary 
innovations found in natural systems have properties like the model system studied here. The 
high probability of finding dual-function sequences in our current data encourages the search 

https://doi.org/10.1371/journal.pbio.3000300
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for more genotype network intersections and motivates future research on the forecasting of 
evolutionary innovations. 

 

Materials and methods 

Library design 

For our experiments, we first identified an HDV and a Ligase reference sequence (Fig 1A). For 
this purpose, we chose sequence variants that were expected to have near wild-type ribozyme 
fitness and that were 14 mutations apart [24]. We then set out to construct a library of ribozyme 
sequences that contained all the possible presence–absence combinations of these 14 nucleotide 
differences. These sequence variants represent all the parsimonious intermediates on the evolu- 
tionary trajectories between the two reference sequences. Library construction was accom- 
plished by chemically synthesizing a degenerate DNA oligonucleotide that would serve as a 
template for in vitro transcription with T7 RNA polymerase. At each position where the Ligase 
and HDV reference ribozymes differed, the synthesis used equal mixtures of two nucleotide 
phosphoramidites, generating approximately equal probability of both sequence variants. This 
creates 2

14
 = 16,384 ribozyme variants. We synthesized two such libraries, one “HDV 

library” with a 5
0
-leader sequence that is cleaved by variants with the HDV phenotype and a 

second “Ligase library” that begins at the 5
0
-end of the Ligase ribozyme so that variants with the 

Ligase phenotype could react with a separate substrate oligonucleotide [23]. A common 
sequence was added to the 3

0
-end of both libraries to serve as a universal primer binding site for 

reverse tran- scription [60]. Oligonucleotides used in this experiment are listed in S1 Table. 
 

Co-transcriptional cleavage assay 

The sample preparation was done entirely in triplicate, yielding 3 biological replicates. The 
ssDNA ultramer cleavage library used for in vitro transcription of the ribozyme mutants was 
annealed to the T7-TOP+ primer. 20 picomoles each of DNA template and primer were heated 
for 5 min at 98˚C in 10 μL final volume of custom T7 Mg10 buffer (500 μL 1 M Tris [pH 
7.5], 50 μL 1 M DTT, 20 μL 1 M spermidine, 100 μL 1 M MgCl2, 330 μL RNase-free water). 
The template and primer were then diluted 10-fold and cooled to room temperature. 2 μL of 
tem- plate and primer were then transcribed in vitro in a 50 μL reaction with 5 μL T7 Mg10 
buffer, 1 μL rNTP (25 mM; New England Biolabs, Ipswich, MA, USA), 1 μL T7 RNA 
polymerase (200 units; Thermo Fisher Scientific, Waltham, MA, USA) and 41 μL RNase-
free water (Ambion, Foster City, CA, USA) at 37˚C for 20 min. The transcription was then 
terminated by adding 

15 μL of 50 mM EDTA. Although the total amount of cleaved RNA increases during 
transcrip- tion, the ratio of cleaved to uncleaved remains the same as long as the rate of 
transcription is constant, which is true for moderately short transcription times before 
reagents become lim- ited [61]. 20 min was determined to be the optimal time for 
transcription by transcribing the library at multiple time points and measuring RNA levels 
using denaturing PAGE (S23A Fig). 20 min was selected as optimal because it was still 
during linear growth before reaching a pla- teau. The transcription reaction was then cleaned 
and concentrated with Direct-zol RNA MicroPrep w/ TRI-Reagent (Zymo Research, Irvine, 
CA, USA) to 7 μL. The concentration of the RNA sample was then determined using a 
spectrophotometer (ThermoFisher NanoDrop; Thermo Fisher Scientific), and the samples 
were normalized to 5 μM. The transcribed and cleaned RNA (5 picomoles) was mixed with 
20 picomoles of RT library primer (S1 Table) in a volume of 10 μL and was heated at 72˚C 
for 3 min, then cooled on ice. 4 μL SMARTScribe 5× First-Strand Buffer (Clontech, Takara 
Bio, Mountain View, CA, USA), 2 μL dNTP (10 mM), 

2 μL DTT (20 mM), 2 μL phased template-switching oligo mix (10 μM), 1 μL water, and 1 
μL SMARTScribe Reverse Transcriptase (10 units; Clontech) were then added to the RNA 

https://doi.org/10.1371/journal.pbio.3000300
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template and RT primer. The phased template-switching oligo mix consisted of 4 oligonucleo- 
tides that were phased by the addition of 9, 12, 15, or 18 nucleotides (S1 Table). The mixture 
was then incubated at 42˚C for 90 min. The reaction was stopped and the RNA degraded by 
heating the sample to 72˚C for 15 min. The cDNA was then purified using DNA Clean & 
Con- centrator-5 (Zymo Research) and eluted into 7 μL water. 

 

Ligation assay 

The ssDNA ultramer ligation library used for in vitro transcription of the ribozyme mutants 
was annealed to the T7-TOP+ primer. 20 picomoles each of DNA template and primer were 
heated for 5 min at 98˚C in 10 μL water. The template and primer were then transcribed in 
vitro in a 30 μL reaction with 12 μL rNTP (25 mM; New England Biolabs), 3 μL 
MEGAshort- script T7 Reaction Buffer (10×, Thermo Fisher Scientific), and 3 μL 
MEGAshortscript T7 RNA Polymerase (Thermo Fisher Scientific) at 37˚C for 2 hours. The 
DNA was then degraded using 2 μL TURBO DNase (2 units/μL; Thermo Fisher Scientific) 
and incubating at 37˚C for 15 min. The transcription reaction was then cleaned and 
concentrated with Direct-zol RNA MicroPrep with TRI-Reagent (Zymo Research) to 7 μL. 
The concentration of the RNA sample was then determined using a spectrophotometer 
(ThermoFisher NanoDrop; Thermo Fisher Scientific), and the samples were normalized to 5 
μM. To assess the starting abundance of each genotype prior to in vitro selection, a portion of 
each sample was aliquoted and reverse transcribed using the template-switching protocol 
identical to what was used for the HDV library. The transcribed and cleaned RNA (25 
picomoles) was mixed with 200 mM Tris (pH 7.5) in a vol- ume of 10 μL and heated at 65˚C 
for 2 min and then cooled to room temperature. 500 pico- moles of ligation substrate (S1 
Table) were then added with 4 μL MgCl2 (50 mM) for a total volume of 20 μL. The mixture 
was then incubated for 2 hours at 37˚C. To reverse transcribe the samples, 10 μL of the 
ligation reaction was heated with 40 picomoles of RT library primer and heated to 72˚C for 3 
min, then cooled on ice. 4 μL SMARTScribe 5× First-Strand Buffer (Clontech), 2 μL dNTP 
(10 mM), 2 μL DTT (20 mM), 1 μL water, and 1 μL SMARTScribe Reverse Transcriptase 
(10 units; Clontech) were then added to the RNA template and RT primer. The mixture was 
then incubated at 42˚C for 90 min. The reaction was stopped and the RNA degraded by 
heating the sample to 72˚C for 15 min. The cDNA was then purified using DNA Clean & 
Concentrator-5 (Zymo Research) and eluted into 10 μL water. To amplify the cDNA that had 
performed the ligation reaction, a mix of phased selective-ligation PCR prim- ers were used. 
The PCR reaction consisted of 1 μL purified cDNA, 12.5 μL KAPA HiFi Hot- Start 
ReadyMix (2×; KAPA Biosystems, Wilmington, MA, USA), 2.5 μL selective-ligation 
primer, 2.5 μL RT primer, and 5 μL water. To prevent bias during the PCR amplification, mul- 
tiple cycles of PCR were examined using gel electrophoresis, and an appropriate PCR cycle 
was chosen because it was still in linear growth (S8B Fig). Each PCR cycle consisted of 98˚C 
for 10 s, 63˚C for 30 s, and 72˚C for 30 s. The PCR cDNA product was then cleaned using 
DNA Clean & Concentrator-5 (Zymo Research) and eluted in 12 μL water. 

 

Illumina adapter PCR 

In preparation for high-throughput sequencing, Illumina adapter sequences were added to the 
cDNA using PCR. Each of the 9 samples (3 HDV, 3 ligated, 3 unligated) were each assigned 
a unique combination of sequencing indices. The PCR reaction consisted of 1 μL purified 
cDNA, 
12.5 μL KAPA HiFi HotStart ReadyMix (2×, KAPA Biosystems), 2.5 μL forward primer, 2.5 
μL reverse primer (Illumina Nextera Index Kit; San Diego, CA, USA), and 5 μL water. To 
prevent bias during the PCR amplification, multiple cycles of PCR were examined using gel 
electropho- resis, and an appropriate PCR cycle was chosen because it was still in linear 
growth (S23B Fig). 

https://doi.org/10.1371/journal.pbio.3000300
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Each PCR cycle consisted of 98˚C for 10 s, 63˚C for 30 s, and 72˚C for 30 s. The PCR 
cDNA product was then cleaned using DNA Clean & Concentrator-5 (Zymo Research) and 
eluted in 30 μL water. The final product was then verified using gel electrophoresis. 

 

High-throughput sequencing 

In preparation for high-throughput sequencing, the 3 cleavage replicates, 3 ligated replicates, 
and 3 unligated replicates, each with unique Illumina adapter barcodes, were pooled and sent 
to the University of Oregon Genomics and Cell Characterization Core Facility (University of 
Oregon, Eugene, OR, USA). The samples were sequenced using Illumina NextSeq 500 
Single End 150 with 25% PhiX addition. This generated approximately 125 million reads 
(Cluster PF Yield) across the 9 samples. 

 

Data analysis 

Sequencing data were analyzed using custom Python scripts that are available on GitLab, and 
all analyses were performed with Python software (Version 3.7.0). For each sequencing read, 
these scripts identified a universally conserved 3

0
 handle, determined the reacted state (ligated/ 

unligated or cleaved/uncleaved), and isolated the 14 mutational nucleotides to determine 
genotype. This process was repeated for each experimental replicate. The uncatalyzed 
cleavage rate was estimated to be 7 × 10

−7
 min

−1
 [62]. The rates of template-directed, 

nonenzymatic oli- gonucleotide ligation were estimated to be 2.4 × 10
−10

 min
−1

 for 2
0
,5

0
-

linkage and 1.5 × 10
−8

 min
−1

 for 3
0
,5

0
-linkage [63,64]. Correlation coefficients were 

determined between pairs of rep- licates (S4A Fig). The distribution of HDV and Ligase 
sequencing read counts were also deter- mined to verify sequencing quality (S6 Fig). The 
distribution of sequencing read counts for genotypes that were not expected to be in the 
libraries but were found in our sequencing data was also determined (S7 Fig). 

 

Ribozyme fitness calculations from sequence data 

Fitness values for each genotype were determined from the sequence data. Fitness values for 
the HDV genotypes were calculated from the fraction of each genotype found in the cleaved 
form divided by the total reads of that genotype in that sample. These fraction cleaved values 
were normalized by dividing by the fraction cleaved of a HDV genotype that was in the origi- 
nal intersection paper [24], resulting in the HDV fitness values reported. This resulted in nor- 
malizing the data such that the original prototype HDV ribozyme sequence (which is not 
included in our library) would be equal to 1. The Ligase fitness was determined by the level 
of enrichment following a round of selection for Ligase activity. The relative abundance of 
each genotype was determined by dividing the reads corresponding to that genotype by the 
total number of reads in that replicate sample. The change in abundance was determined by 
taking the relative abundance of a specific genotype in the sample selected for ligation 
activity and dividing it by the relative abundance in the initial library before selection. This 
value was nor- malized by dividing by the change in abundance for a Ligase genotype that 
was in the original intersection paper, resulting in the Ligase fitness values reported. This 
resulted in normalizing the data such that the original prototype Ligase ribozyme sequence 
(which is not included in our library) would be equal to 1. 

 

Validation of sequencing-based assays 

In order to validate the high-throughput sequencing fitness measurements for HDV (self- 
cleaving) and Ligase (self-ligation) functions, we developed in vitro biochemical assays. 
For 

https://doi.org/10.1371/journal.pbio.3000300
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the HDV activity, we used a gel-based assay (PAGE). Thirteen sequences were ordered as 
oli- gos, transcribed, and run on a polyacrylamide gel. Samples were run on 10% denaturing 
poly- acrylamide gel, visualized with GelRed (Biotium, Fremont, CA, USA), and quantified 
by densitometry. The cleaved and uncleaved products separate in the gel and allow for a 
calcula- tion of percent cleaved (S5A Fig). Because of the difficulty of getting accurate 
measurements for Ligase activity using a gel-based assay, we developed a qPCR assay to 
detect low rates of self-ligation. We cloned several sequences from our library, representing a 
random sampling of sequences. Each sequence was sequenced to determine the genotype and 
transcribed to 

RNA. The RNA was incubated with the Ligase substrate and was allowed to react under 
identi- cal conditions to the sequencing-based assay. This reaction was reverse transcribed to 
cDNA and PCR amplified with two primer pairs. One pair was specific to the substrate to 
measure ligated RNA, and the other pair was specific to the ribozyme and measured total 
RNA. The ratio of the Cq values of the two PCR signals was used to calculate percent ligated 
(S5B Fig). 
We also ordered 4 specific intersection sequences that had very low Ligase activity to 
validate that low-fitness genotypes are in fact active Ligase ribozymes (S5C Fig). These 
sequences were analyzed using the qPCR assay, and it is important to note that the ligation 
activity is depen- dent on the presence of the substrate. When a control reaction was 
performed with no sub- strate, the percent ligated decreased by over 60,000-fold. 

 

Genotype network and fitness landscape construction 

Visualizations of fitness landscapes were constructed using Gephi [65]. Each node represents a 
unique genotype and edges connecting genotypes represent a single mutation. ForceAtlas 2 
was used to approximate genotype repulsion using a Barnes–Hut calculation. The z-axis in the 
fitness landscape (Fig 3A) was generated using the Network Splitter 3D plugin. Peaks in each 
fitness landscape were defined as genotypes that were surrounded by mutational neighbors 
with lower relative fitness. This calculation incorporated the measurement error (delta) 
between replicates. Ruggedness for each landscape was calculated as the average number of 
peaks within subgraphs [66]. Each subgraph contains 4 mutational positions with 16 geno- 
types, and every possible subgraph within each landscape was assessed for peaks. Pairwise 

epis- tasis was calculated as ε = log10 (WAB � W0/WA � WB), where WA and WB are the fitness 

of RNA variants with a single mutation, WAB is the fitness of the variant with both mutations, 
and W0 is the fitness of the background genotype with no mutations [6,67]. Epistasis was cal- 
culated for every subgraph of 2 mutational positions containing 4 genotypes. Within each sub- 
graph, there exist equal positive and negative epistatic interactions depending on which 
genotype is used as the background genotype (W0). Therefore, only the magnitude of 
epistasis within a subgraph is reported. 

 

Evolutionary simulations 

Computational simulations of evolution were accomplished using custom Python scripts 
(RiboEvolve.py) that model evolution based on the Wright–Fisher approach [35,67]. Simula- 
tions were performed on the Boise State R2 computer cluster [68]. A range of population sizes 
(25, 50, 125, 250, 500, 1,000) and mutation rates (0.0001, 0.01, 0.1, 1.0) were explored (S24 
and S25 Figs). For simulations on the Ligase and HDV landscapes, the summit genotype of 
the opposing landscape was used as the starting genotype. The results show that very high 
muta- tion rate (1.0) leads to no adaptation. Very low mutation rates (0.0001) result in no 
observable evolution under the time frame of our simulations, which are limited by 
computational expense. We found that mutation rates of 0.01 and 0.1 gave similar results, 
except that 0.1 reached the summits more quickly, providing less resolution between different 
adaptation 
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dynamics from different starting genotypes. We therefore prefer the lower mutation rate of 
0.01, which we used in our analysis. With this mutation rate, there is only a subtle effect of 
population size. Therefore, a population size of N = 1,000 and mutation rate (μ) of 0.01 
were used for the remaining simulations. 

Simulation started with 1,000 individuals of the same genotype. Every generation 
(update), a new population of 1,000 genotypes was generated in the following way. First, a 
parent geno- type from the population was selected at random. The fitness of the genotype was 
compared to a randomly selected value from a fitness range (between 0 and 1). If the 
genotype fitness was less than the random value, the genotype was not placed in the new 
generation. If the genotype fitness was greater than or equal to the random value, it was placed 
in the new generation, with a chance of mutating at a single, randomly chosen nucleotide 
position. Mutations occurred if a randomly generated number was lower than the mutation rate 
set at the beginning of the sim- ulation and remained constant (μ = 0.01). This process was 
repeated until 1,000 individuals were placed in the new generation. The simulation then 
repeated this process for 1,000 genera- tions. We carried out the simulations on the Ligase 
landscape starting from the 17 genotypes with HDV fitness � 1 and did so for a total of 100 
replicates for each genotype (S9 Fig). The 100 replicates for each starting genotype were 
averaged (Fig 4B), and the initial rate of adapta- tion and unique genotypes explored for each 
starting genotype were calculated. For each simu- lation, simulation rate was determined by 
subtracting the population fitness at generation = 0 from the population fitness at generation = 
200 and dividing this value by 200 generations. 

Using a cubic spline regression (S10 Fig), we determined the maximum growth rate for the 
mean fitness of the 100 replicates for each starting genotype (Fig 4E and 4G). We also ran 
sim- ulations on the HDV landscape starting from the 17 genotypes with the highest Ligase 
geno- types that also had nonzero HDV fitness. These were repeated for 100 replicates (S15 
Fig) and were averaged (Fig 4D). Rate per simulation for the first 200 generations was also 
calculated for these simulations (Fig 4G). The maximum growth rate for the mean fitness of 
the 100 repli- cates for each starting genotype was also determined (S16 Fig). 

To understand the role that periods of neutral evolution might play in the evolution of 
innovations, simulations were performed that introduced a range of neutral evolution intervals 
(0–1,000 generations). For simulations on the Ligase and HDV landscapes, the summit geno- 
type of the opposing landscape was used as the starting genotype. Following generations of 
neutral evolution, selection pressure was immediately applied for the remainder of the 1,000 
generations. This was repeated in each scenario for 100 replicates (S17 and S18 Figs). Lastly, 
simulations were conducted on an HDV–Ligase coselection landscape that allows selection to 

act upon both functions simultaneously. For this model, the fitness was calculated as WHDV � 

βHDV + WLigase 
� βLigase, where W indicates the fitness of that function and β indicates a 

weight- ing parameter that can be adjusted (S21 and S22 Figs). Otherwise, simulations were 
the same as above. 

 

Supporting information 

S1 Fig. Overview of high-throughput ribozyme functional assays. Detailed approach used 
to assess the relative fitness of each of the 16,384 genotypes for two functions: self-cleavage 
(HDV) and self-ligation (Ligase). Note that in order to assess the preselection frequency of 
genotypes in the self-ligation assay, a portion of the RNA library is processed using the proto- 
col used in the self-cleavage assay (dotted line). HDV, Hepatitis Delta Virus. 

(PNG) 

S2 Fig. Overlay of HDV and Ligase genotype networks with varying fitness cutoffs. 
Each plot indicates the overlay of the two networks with all genotypes with fitness values 
below the 

https://doi.org/10.1371/journal.pbio.3000300
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cutoff removed. The size of the node indicates relative fitness, and nodes are colored based 
on their dominant activity (red = HDV, blue = Ligase). Below each plot is the range of 
mutations needed to go from one network to the other. The distribution of the number of 
mutations required is displayed for each fitness cutoff in Fig 2A. HDV, Hepatitis Delta Virus. 

(PNG) 

S3 Fig. Correlation between mutational distance from the opposing genotype network 
and active connections. The mutational distance was calculated from varying the fitness 
cutoff for each landscape as in Fig 2A. As the mutational distance for genotypes shifted, we 
calculated the number of active connections on the initial function landscape, as well as 
connection to the new function landscape. This was repeated using the HDV and the Ligase 
function as the initial function. Data and Python scripts for connection calculations can be 
found on GitLab. HDV, Hepatitis Delta Virus. 

(PNG) 

S4 Fig. High-throughput sequencing results for HDV and Ligase. (A) Correlation of total 
HDV and Ligase reads for each of the 3 replicates. Each figure consists of all 16,384 
genotypes presented in this study. Each data point represents the frequency that a specific 
sequence was observed in a particular replicate (y-axis) versus another replicate (x-axis). 
Sequence kernel density estimation is also reported from each replicate in the jointplot 
(Seaborn python pack- age). The number of reads on the x- and y-axis are log10 transformed. 
Pearson (R

2
) and Spear- man (ρ) correlation is reported for each correlation. Data and Python 

scripts for correlations can be found on GitLab. (B) Error rates calculated from base miscalls 
in the PhiX reference genome. Error rate (y-axis) is shown for the 14 positions (x-axis) where 
our genotypes are defined. Each position is read in 4 different sequencing cycles, and error 
rates are reported as the average error rate of these 4 cycles. Dashed blue line indicates the 
average error rate across all 14 mutational positions. Error rates are calculated by aligning 
each PhiX sequence read in our data to the reference PhiX genome and counting mismatches 
at each sequence cycle. Data and Python scripts for the calculation of sequencing error rates 
can be found on GitLab. HDV, Hepatitis Delta Virus; PhiX, phi X bacteriophage genome 
control. 

(PNG) 

S5 Fig. Validation of high-throughput-sequencing–based assays. (A) Correlation of 
fitness values for 13 unique ribozyme genotypes assessed by high-throughput sequencing 
and gel- based assay (PAGE). Both methods assessed the fraction cleaved (fitness) of each 
genotype. Pearson and Spearman correlations are reported. Data and Python scripts for 
correlation can be found on GitLab. (B) Correlation of fitness values for 19 unique ribozyme 
genotypes assessed by high-throughput sequencing and qPCR assays. Data and Python 
scripts for corre- lation can be found on GitLab. (C) qPCR measurements of 4 low-fitness 
intersection sequences. The 4 intersection sequences were determined to have low fitness 

(<0.03) by the high-throughput sequencing assay. qPCR, quantitative Polymerase Chain 
Reaction. 

(PNG) 

S6 Fig. Distribution of expected sequencing read counts. (A) Histograms indicating the 
average read counts for each individual genotype in the designed HDV library for all 3 repli- 
cates. The mean read count for each genotype across HDV replicates was 369. Dashed line 
indicates the mean within a replicate. Data and Python scripts for the calculation and plotting 
of the read counts can be found on GitLab. (B) Histograms indicating the average read counts 
for each individual genotype in the designed Ligase library for all 3 replicates. The mean read 
count for each genotype across Ligase replicates was 230. Dashed line indicates the mean 
within a replicate. Data and Python scripts for the calculation and plotting of the read counts 

https://doi.org/10.1371/journal.pbio.3000300
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can be found on GitLab. HDV, Hepatitis Delta Virus. 
(PNG) 

S7 Fig. Distribution of unexpected sequencing read counts. (A) Histograms indicating the 
average read counts for each unexpected genotype found in the HDV sequencing samples. 
Unexpected genotypes were those that were not expected in our sequencing library but were 
found in the sequencing data. Dashed line indicates the mean within a replicate. Data and 
Python scripts for the calculation and plotting of the read counts can be found on GitLab. (B) 
Histograms indicating the average read counts for each unexpected genotype found in the 
Ligase sequencing samples. Dashed line indicates the mean within a replicate. Data and Python 
scripts for the calculation and plotting of the read counts can be found on GitLab. HDV, Hepa- 
titis Delta Virus. 

(PNG) 

S8 Fig. Evaluation of Ligase fitness measurements. (A) Correlation of Ligase fitness and 
the relative frequency preselection. Each figure consists of all 16,384 genotypes presented in 
this study. Each data point represents the frequency that a specific sequence was observed in a 
par- ticular replicate preselection (y-axis) versus the average calculated Ligase “fitness.” Data 
and Python scripts for correlation can be found on GitLab. (B) Correlation of Ligase fitness 
and relative rank preselection. Each data point represents the relative rank (1–16,384) based 
on the average number of reads per replicate preselection (y-axis) versus the average 
calculated Ligase “fitness.” Data and Python scripts for correlation can be found on GitLab. 
(C) Ligase fitness landscape depicted as a function of estimated “ligation rate.” Ligation rate 
was estimated using a reference genotype that was found in our data set and the original 
intersection study [24]. 

The ligation rates for template-directed, nonenzymatic oligonucleotide ligation are estimated 
as 2.4 × 10

−10
 min

−1
 for 2

0
–5

0
 ligation [64] and 1.5 × 10

−8
 min

−1
 for 3

0
–5

0
 ligation [63]. Data 

and Python scripts for the calculation and plotting of relative ligation rate can be found on 
GitLab. 

(PNG) 

S9 Fig. Rate of adaptation for populations starting from different genotypes on the 
Ligase landscape. Each trace shows the increase in population fitness over generation time for 
a sin- gle simulation of 1,000 individuals. Each plot shows 100 simulations starting from the 
same genotype. All starting genotypes has HDV fitness � 1. The letter above each subplot 
indicates the starting point from the network, as shown in Fig 3A. Letters were assigned 
alphabetically based on highest to lowest HDV fitness, and genotype a represents the genotype 
with the high- est measured HDV fitness. The graphs are ordered from fastest to slowest initial 
rates (Fig 4D). Data and Python scripts for evolutionary simulations can be found on GitLab. 
HDV, Hepatitis Delta Virus. 

(PNG) 

S10 Fig. Regression analysis of average rates of fitness optimization on the Ligase land- 
scape. Regression was performed for each starting genotype (REF–p). Solid points are the 
average of 100 replicates of simulated evolution and correspond to the data from Fig 4B. 
Dashed black lines are the fitted regression line. The maximum growth rate (μ) derived from 
the regression is reported on each plot. Data and Python scripts for the regression analysis can 
be found on GitLab. REF, reference. 

(PNG) 

S11 Fig. Relationship between maximum growth rate and mutational distance. 
Mutational distance is calculated as the number of mutations between the summit genotype 
and a given 

https://doi.org/10.1371/journal.pbio.3000300
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starting genotype for the evolutionary simulations (Fig 4). Data and Python scripts for the rela- 
tionship can be found on GitLab. 

(PNG) 

S12 Fig. Trajectories away from stasis genotypes. (A) Each line leads from the stasis 
genotype (mutations = 0) to 1 and 2 mutations away. All 69 stasis genotypes (peaks) in the 
Ligase fitness landscape are depicted. The number on each graph represents the number of 2-
mutation path- ways to higher fitness from each stasis genotype. The yellow box indicates the 
genotype with the highest measured Ligase fitness. Data and Python scripts for calculation 
and plotting of mutational pathways can be found on GitLab. (B) The distribution of 2-
mutation pathways to higher-fitness genotypes from each stasis genotypes in the Ligase 
landscape. The dotted verti- cal line indicates the mean of the distribution. 

(PNG) 

S13 Fig. Characterization of stasis genotype I. Stasis genotype I from Fig 4F is depicted in 
the center with each of the 2 mutation trajectories. None of the 182 2-mutation trajectories 
lead to higher fitness than the stasis genotype (mutation = 0). The pathways 2 mutations from 
each of the 14 genotypes that are a single mutation away from the stasis genotype are individu- 
ally depicted. In total, 42 out of a possible 2,184 3-mutation trajectories yield a higher fitness 
than the initial stasis genotype (dashed line). Data and Python scripts for calculation and plot- 
ting of mutational pathways can be found on GitLab. 

(PNG) 

S14 Fig. Rates of adaptation are not altered by fitness precision of low-fitness genotypes. 
Final fitness of 100 replicate simulations on the original Ligase landscape (red) or a 
landscape where the lowest-fitness genotypes were converted to fitness = 0 (gray), if fitness 
was less than 
0.005 (7,015 genotypes converted to fitness = 0). Simulations were carried out as in Fig 4 of 
the main text, with 1,000 individuals and 1,000 generations each. Data and Python scripts for 
evo- lutionary simulations can be found on GitLab. 

(PNG) 

S15 Fig. Rate of adaptation for populations starting from different genotypes on the 
HDV landscape. Each trace shows the increase in population fitness over generation time for 
a sin- gle simulation of 1,000 individuals. Each plot shows 100 simulations starting from the 
same genotype. The letter above each subplot indicates the starting point from the network, as 
shown in Fig 3A. Letters were assigned alphabetically based on highest to lowest Ligase 
fitness, and genotype A represents the genotype with the highest measured Ligase fitness. The 
graphs are ordered from fastest to slowest initial rates (Fig 4E). Data and Python scripts for 
evolution- ary simulations can be found on GitLab. 

(PNG) 

S16 Fig. Regression analysis of average rates of fitness optimization on the HDV land- 
scape. Regression was performed for each starting genotype (A–Q). Solid points are the 
aver- age of 100 replicates of simulated evolution and correspond to the data from Fig 4D. 
Dashed black lines are the fitted regression line. The maximum growth rate (μ) derived from 
the regression is reported on each plot. Data and Python scripts for the regression analysis 
can be found on GitLab. HDV, Hepatitis Delta Virus. 

(PNG) 

S17 Fig. Rate of adaptation for populations following different lengths of neutral 
evolution on the Ligase landscape. Each trace shows the increase in population fitness over 
generation time for a single simulation of 1,000 individuals. Each plot shows 100 simulations 
starting 

https://doi.org/10.1371/journal.pbio.3000300
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from the summit genotype of the HDV landscape. The number above each subplot indicates 
the number of generations of neutral evolution before selection was applied as shown in Fig 5. 
Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis 
Delta Virus. 

(PNG) 

S18 Fig. Rate of adaptation for populations following different lengths of neutral 
evolution on the HDV landscape. Each trace shows the increase in population fitness over 
generation time for a single simulation of 1,000 individuals. Each plot shows 100 simulations 
starting from the summit genotype of the Ligase landscape. The number above each subplot 
indicates the number of generations of neutral evolution before selection was applied as 
shown in Fig 5. Data and Python scripts for evolutionary simulations can be found on GitLab. 
HDV, Hepatitis Delta Virus. 

(PNG) 

S19 Fig. Regression analysis of average rates of fitness optimization on the Ligase land- 
scape following neutral evolution. Cubic spline regression was performed for the range of 
periods of neutral evolution (0–1,000). Solid points are the average of 100 replicates of simu- 
lated evolution and correspond to the data from Fig 5A. Dashed black lines are the fitted 
regression line. The maximum growth rate (μ) derived from the regression is reported on each 
plot. Data and Python scripts for the regression analysis can be found on GitLab. 

(PNG) 

S20 Fig. Regression analysis of average rates of fitness optimization on the HDV 
landscape following neutral evolution. Cubic spline regression was performed for the range 
of periods of neutral evolution (0–1,000). Solid points are the average of 100 replicates of 
simulated evolution and correspond to the data from Fig 5B. Dashed black lines are the fitted 
regression line. The maximum growth rate (μ) derived from the regression is reported on each 
plot. Data and Python scripts for the regression analysis can be found on GitLab. HDV, 
Hepatitis Delta Virus. (PNG) 

S21 Fig. Evolutionary simulations on the HDV–Ligase coselect fitness landscapes. (A) 
The starting population that was randomly selected from the 3,432 genotypes that are 7 
mutations from HDV reference and Ligase reference. (B) Average rates of evolutionary 
adaptation on the HDV–Ligase coselect fitness landscapes with varying weighted parameters 
(β) for each func- tion. Line indicates the average of 100 replicates (S22 Fig). Total 

population fitness indicates the fitness resulting from the following equation, WHDV � βHDV + 

WLigase 
� βLigase, where W indicates the fitness of that function and β indicates a weighting 

parameter that was adjusted. The HDV and Ligase population is also plotted independently to 
indicate which function is the dominant contributor to the total fitness. Line color indicates 
the weighting parameters used in the simulation as indicated in the top-right inset. Data and 
Python scripts for evolu- tionary simulations can be found on GitLab. HDV, Hepatitis Delta 
Virus. 

(PNG) 

S22 Fig. Individual traces of evolutionary adaptation on HDV–Ligase coselect fitness 
land- scapes. (A–C) Left plot indicates the architecture of the fitness landscape for each 

combination of weighting parameters (β). Total fitness (calculated as WHDV � βHDV + WLigase 
� 

βLigase), HDV fitness, and Ligase fitness are shown for each individual simulation replicate. 

Color of lines correspond to the weighting parameters discussed in S21 Fig. Data and Python 
scripts for evo- lutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(PNG) 

https://doi.org/10.1371/journal.pbio.3000300
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S23 Fig. Time courses for sample optimization and validation of sequencing fitness 

values. 

(A) Time-course transcription for total RNA yield using the developed co-transcriptional 
cleavage assay. Data points indicate the mean RNA yield of 5 replicates. Error bars are stan- 
dard error of the mean. Samples were run on 10% denaturing polyacrylamide gel, visualized 
with GelRed (Biotium), and quantified by densitometry. The time chosen as optimal (20 min) 
is indicated with a box. (B) Time-course PCR was performed for the selective-ligation PCR 
and each Illumina adapter PCR for each replicate (blue, green, red). Samples were run on 
2% agarose gel, visualized with GelRed (Biotium), and quantified by densitometry. The 
black 

box indicates the PCR cycle that was determined to be optimal for each PCR 
reaction. (PNG) 

S24 Fig. Rate of adaptation for populations using a range of population sizes and 
mutation rates. Average rates of evolutionary adaptation of HDV and Ligase activity starting 
from the summit genotype of the opposing landscape. Trace color indicates the varying 
population sizes (25–1,000) as indicated in the legend. Each plot indicates a different mutation 
rate (0.0001– 1.0). Each trace shows the mean fitness of 100 simulations as a function of time 
(generation). The vertical dashed line marks generation 200. Data and Python scripts for 
evolutionary simu- lations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(PNG) 

S25 Fig. Initial rates of adaptation for populations using a range of population sizes and 
mutation. Distributions of initial rates of adaptation on the Ligase and HDV landscape. Initial 
rate is determined as the rate of population increase for the first 200 generations. Each violin 
plot represents the distribution of 100 simulations using the same population size and muta- 
tion rate. Plot color indicates the varying population sizes (25–1,000) as indicated in the leg- 
end. Mutation rate (0.0001–1.0) is indicated on the x-axis. Data and Python scripts for 
evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(PNG) 

S1 Table. Oligonucleotides used in this study. 

(PNG) 

S2 Table. Starting genotypes used in evolution simulations. Genotypes are represented by 
the unique combination of nucleotides in the 14 variable positions of the library. Starting 
point letters correspond to Fig 3A. HDV and Ligase fitness are colored with bar graphs indicat- 
ing the relative fitness. HDV, Hepatitis Delta Virus. 

(PNG) 

S1 Data. HDV–Ligase fitness measurements from high-throughput sequencing assays. 
The fitness measurements for each of the 16,384 unique genotypes presented in this study. 
The genotypes are displayed as the 14 mutational positions. HDV and Ligase fitness values 
are col- ored according to the relative fitness for easier interpretation. Delta values were 
calculated as the standard error between the 3 sequencing replicates for each function. HDV, 
Hepatitis Delta Virus. 

(XLSX) 

S1 Movie. Aerial overview of the HDV–Ligase fitness landscape. Overview of the 
empirical HDV–Ligase fitness landscape presented in Fig 3A. Each node represents an 
individual geno- type, and edges connect nodes that differ by a single nucleotide. The size 
and height of each node indicates the relative genotype fitness (HDV = red, Ligase = blue). 
Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, 
Hepatitis Delta Virus. (AVI) 
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S2 Movie. Simulated evolution on Ligase landscape starting at genotype k. White nodes 
are genotypes in the fitness landscape. Genotypes are connected by light blue edges if they differ 
by a single nucleotide change. The size of the blue circles depicts the relative proportion of the 
simu- lated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is number 
of nucleotide differences from the HDV reference sequence (mutational distance). The number 
above the graph represents the generation number. The population average is also depicted with 
the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the 
population diversity at a given generation is plotted as a function of generational time. Population 
diversity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(MP4) 

S3 Movie. Simulated evolution on Ligase landscape starting at genotype a. White nodes 
are genotypes in the fitness landscape. Genotypes are connected by light blue edges if they differ 
by a single nucleotide change. The size of the blue circles depicts the relative proportion of the 
simu- lated population at that genotype. The y-axis is relative Ligase fitness. The x-axis is number 
of nucleotide differences from the HDV reference sequence (mutational distance). The number 
above the graph represents the generation number. The population average is also depicted with 
the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the 
population diversity at a given generation is plotted as a function of generational time. Population 
diversity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(MP4) 

S4 Movie. Simulated evolution on Ligase landscape starting at genotype b. White nodes 
are genotypes in the fitness landscape. Genotypes are connected by light blue edges if they 
differ by a single nucleotide change. The size of the blue circles depicts the relative proportion 
of the simulated population at that genotype. The y-axis is relative Ligase fitness. The x-axis 
is num- ber of nucleotide differences from the HDV reference sequence (mutational 
distance). The number above the graph represents the generation number. The population 
average is also depicted with the number of generations on the x-axis and mean population 
fitness on the y- axis. Lastly, the population diversity at a given generation is plotted as a 
function of genera- tional time. Population diversity indicates the number of unique genotypes 
present in the pop- ulation. Data and Python scripts for evolutionary simulations can be found 
on GitLab. HDV, Hepatitis Delta Virus. 

(MP4) 

S5 Movie. Simulated evolution on Ligase landscape starting at genotype m. White nodes 
are genotypes in the fitness landscape. Genotypes are connected by light blue edges if they 
dif- fer by a single nucleotide change. The size of the blue circles depicts the relative 
proportion of the simulated population at that genotype. The y-axis is relative Ligase fitness. 
The x-axis is number of nucleotide differences from the HDV reference sequence (mutational 
distance). 
The number above the graph represents the generation number. The population average is 
also depicted with the number of generations on the x-axis and mean population fitness on the 
y-axis. Lastly, the population diversity at a given generation is plotted as a function of 
genera- tional time. Population diversity indicates the number of unique genotypes present in 
the pop- ulation. Data and Python scripts for evolutionary simulations can be found on 
GitLab. HDV, Hepatitis Delta Virus. 

(MP4) 

https://doi.org/10.1371/journal.pbio.3000300
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S6 Movie. Simulated evolution on HDV landscape starting at genotype A. White nodes 
are genotypes in the fitness landscape. Genotypes are connected by light red edges if they differ 
by a single nucleotide change. The size of the red circles depicts the relative proportion of the 
simu- lated population at that genotype. The y-axis is relative HDV fitness. The x-axis is number 
of nucleotide differences from the HDV reference sequence (mutational distance). The number 
above the graph represents the generation number. The population average is also depicted with 
the number of generations on the x-axis and mean population fitness on the y-axis. Lastly, the 
population diversity at a given generation is plotted as a function of generational time. Population 
diversity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 

(MP4) 

S7 Movie. Simulated evolution on HDV landscape following 300 generations of neutral 
evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land- 
scape. Genotypes are connected by light red edges if they differ by a single nucleotide change. 
The size of the blue circles depicts the relative proportion of the simulated population at that 
genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences 
from the HDV reference sequence (mutational distance). The number above the graph repre- 
sents the generation number. The population average is also depicted with the number of gen- 
erations on the x-axis and mean population fitness on the y-axis. Lastly, the population 
diversity at a given generation is plotted as a function of generational time. Population diver- 
sity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 
(MP4) 

S8 Movie. Simulated evolution on HDV landscape following 600 generations of neutral 
evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land- 
scape. Genotypes are connected by light red edges if they differ by a single nucleotide change. 
The size of the blue circles depicts the relative proportion of the simulated population at that 
genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences 
from the HDV reference sequence (mutational distance). The number above the graph repre- 
sents the generation number. The population average is also depicted with the number of gen- 
erations on the x-axis and mean population fitness on the y-axis. Lastly, the population 
diversity at a given generation is plotted as a function of generational time. Population diver- 
sity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 
(MP4) 

S9 Movie. Simulated evolution on HDV landscape following 900 generations of neutral 
evolution. Simulations started at genotype A. White nodes are genotypes in the fitness land- 
scape. Genotypes are connected by light red edges if they differ by a single nucleotide change. 
The size of the blue circles depicts the relative proportion of the simulated population at that 
genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide differences 
from the HDV reference sequence (mutational distance). The number above the graph repre- 
sents the generation number. The population average is also depicted with the number of gen- 
erations on the x-axis and mean population fitness on the y-axis. Lastly, the population 
diversity at a given generation is plotted as a function of generational time. Population diver- 
sity indicates the number of unique genotypes present in the population. Data and Python 
scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis Delta Virus. 
(MP4) 

https://doi.org/10.1371/journal.pbio.3000300
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S10 Movie. Simulated evolution on Ligase landscape following 300 generations of 
neutral evolution. Simulations started at genotype a. White nodes are genotypes in the fitness 
land- scape. Genotypes are connected by light blue edges if they differ by a single nucleotide 
change. The size of the blue circles depicts the relative proportion of the simulated population 
at that genotype. The y-axis is relative Ligase fitness. The x-axis is number of nucleotide 
differences from the HDV reference sequence (mutational distance). The number above the 
graph repre- sents the generation number. The population average is also depicted with the 
number of gen- erations on the x-axis and mean population fitness on the y-axis. Lastly, the 
population diversity at a given generation is plotted as a function of generational time. 
Population diver- sity indicates the number of unique genotypes present in the population. 
Data and Python scripts for evolutionary simulations can be found on GitLab. HDV, Hepatitis 
Delta Virus. (MP4) 
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