Online Resource Allocation with Matching Constraints”

John P. Dickerson

College Park, MD, USA

Karthik Abinav Sankararaman
University of Maryland, College Park University of Maryland, College Park
College Park, MD, USA

Kanthi Kiran Sarpatwar
IBM Research Al
Yorktown Heights, NY, USA

john@cs.umd.edu kabinav@cs.umd.edu sarpatwa@us.ibm.com
Aravind Srinivasan Kun-Lung Wu Pan Xu
University of Maryland, College Park IBM Research Al University of Maryland, College Park

College Park, MD, USA
srin@cs.umd.edu

ABSTRACT

Matching markets with historical data are abundant in many appli-
cations, e.g., matching candidates to jobs in hiring, workers to tasks
in crowdsourcing markets, and jobs to servers in cloud services. In
all these applications, a match consumes one or more shared and
limited resources and the goal is to best utilize these to maximize
a global objective. Additionally, one often has historical data and
hence some statistics (usually first-order moments) of the arriving
agents (e.g., candidates, workers, and jobs) can be learnt. To model
these scenarios, we propose a unifying framework, called Multi-
Budgeted Online Assignment with Known Adversarial Distributions.
In this model, we have a set of offline servers with different deadlines
and a set of online job types. At each time, a job of type j arrives.
Assigning this job to a server i yields a profit w; ; while consuming
a, € [0,1]X quantities of distinct resources. The goal is to design
an (online) assignment policy that maximizes the total expected
profit without violating the (hard) budget constraint. We propose
and theoretically analyze two linear programming (LP) based algo-
rithms which are almost optimal among all LP-based approaches.
We also propose several heuristics adapted from our algorithms and
compare them to other LP-agnostic algorithms using both synthetic
as well as real-time cloud scheduling and public safety datasets.
Experimental results show that our proposed algorithms are ef-
fective and significantly out-perform the baselines. Moreover, we
show empirically the trade-off between fairness and efficiency of
our algorithms which does well even on fairness metrics without
explicitly optimizing for it.

“Part of this work is done when Pan Xu was an intern at the IBM T.]. Watson Research
Center during the summer of 2016. Aravind Srinivasan’s research was supported in part
by NSF Awards CNS-1010789, CCF-1422569 and CCF-1749864, and by research awards
from Adobe, Inc. Karthik Sankararaman’s research was supported in part by NSF
Awards CNS-1010789 and CCF-1422569. John Dickerson’s research was supported by
NSF IIS RI CAREER Award #1846237. Pan Xu’s research was supported by NSF Awards
CNS-1010789, CCF-1422569 and NSF IIS RI CAREER Award #1846237. The authors
also like to thank Google for a generous gift support. We thank Aditya Parameswaran
and Xingjie Liu for useful discussions on datasets related to our problem.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Yorktown Heights, NY, USA
klwu@us.ibm.com

College Park, MD, USA
panxu@cs.umd.edu

CCS CONCEPTS

» Theory of computation — Scheduling algorithms; Packing
and covering problems; Stochastic approximation; Online al-
gorithms; - Mathematics of computing — Matchings and fac-
tors;

KEYWORDS

Online Scheduling, Online Matching, Randomized Algorithms, Fair-
ness

ACM Reference Format:

John P. Dickerson, Karthik Abinav Sankararaman, Kanthi Kiran Sarpatwar,
Aravind Srinivasan, Kun-Lung Wu, and Pan Xu. 2019. Online Resource
Allocation with Matching Constraints. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13-17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

Large-scale matching markets are abundant in many modern ap-
plications. A canonical example is the online advertising market,
which is the main source of revenue for internet companies like
Google. Online bipartite matching models and their variants pro-
vide mathematical insight into the design and analysis of these
ubiquitous markets. In the basic version, we are given a bipartite
graph G = (U, V,E) where U and V represent sets of advertisers
and keywords, respectively. There is an edge e = (u, v) if and only if
the advertisement of u is relevant to a keyword v. Keywords arrive
one-by-one in an online manner and must be matched to a potential
advertiser immediately and irrevocably. Matching a keyword v to
an advertiser u gives a profit of wy, 5.

However, the above abstraction for online advertising can be
used to model the more general assignment problem in various
emerging applications, ranging from crowdsourcing marketplaces
(e.g., Amazon Mechanical Turk [49], matching online workers to
offline tasks), ride-sharing platforms (e.g., Uber, matching online
requests to drivers [40]), to assignment of jobs to servers in cloud
services [27]. There are several other applications of online match-
ing models in advance admission scheduling and online recommen-
dations (e.g., matching online users to service providers or offline
products [17, 42, 52]). These problems can be abstracted as a variant
of online bipartite matching where (1) there are two sets of agents
with at least one coming online; in any online step an immediate
and irrevocable decision has to be made; (2) there is a set of offline

(limited) resources with each having a given total budget; every
match consumes a subset of these resources.

Assadi et al. [9] considered the Online Task Assignment (OTA)
problem arising in crowdsourcing marketplaces. They assumed a
global budget on a single resource. Each match of an online worker
to an offline task will require a payment to the worker. The goal is
to design an online matching policy such that the expected num-
ber of tasks completed is maximized without violating the budget
constraint. Ho and Vaughan [32] studied a capacitated OTA where
every task has several copies and thus can be matched multiple
times. Hence the number of copies of each task is an offline re-
source. Huang et al. [33], Ma et al. [40], Tong et al. [51] considered
OTA emerging in the real-time spatial crowdsourcing platforms
(e.g., Grubhub in the online food-ordering business). In this con-
text, we can assign multiple online orders to a single worker where
each worker has two kinds of budgets: the number of orders they
can handle in each trip and the total working hours and/or travel
distance over all trips.

In this paper, we propose a unifying framework to handle the var-
ious budget constraints in the above applications. Additionally, we
consider a realistic arrival assumption inspired from real datasets;
these help us get much better provable performance. The following
are the two distinctive features in the model.

Multi-Budgeted Constraints. We have a set of K resources with
each resource having a known total budget. Each online match (or
assignment) is associated with a vector-valued cost of dimension
K with the k" element denoting the amount of resource k the
match consumes. We call a resource integral if and only if the
value consumed by all possible matches is integral (e.g., number of
sub-jobs); otherwise we call it non-integral (e.g., the total running
time).

Known Adversarial Distributions. Common assumptions on the
arrival sequence include Adversarial Order (AO) where the arrival
sequence is fixed by an adversary (e.g., [9]), Random Arrival Order
(RAO) where the arrival sequence forms a random permutation
over the set of online agents (unknown but fixed) (e.g., [50, 56])
and Known Independent and Identical Distribution (KIID) where
online agents present themselves, in every time-step, as a sam-
ple (with replacement) from a known and identical distribution
(e.g., [24, 47, 48]). In this paper, we consider a generalization of KIID,
called Known Adversarial Distributions (KAD), where the arrival
distributions are allowed to change over time [23]. We motivate
KIID and its generalization KAD as follows. In practice, allocation
algorithms are implemented in episodes. We have L episodes (where
an episode could last a few hours as in cloud platforms to a day as in
ride-sharing). Within each episode, algorithms use the information
from the past episodes to “learn” the arrival patterns which are
then used as an estimate for the current episode. This model has
a two-fold challenge; first is to learn the patterns across episodes
and the second is to have an efficient allocation mechanism within
an episode (which is the focus of this paper).

We now give a few concrete examples and show how our model
can be used to capture these with experiments on real world datasets
in the experiments section.

Resource allocation in datacenters. In modern data centers, one
of the challenges is to allocate various resources such as CPU,
memory, clusters, to various heterogenous tasks with different re-
quirements. The tasks usually fall into broad categories with very
structured demands for various resources [36]. A number of recent
works in the systems literature have empirically studied both ef-
ficient allocation as well fair division of resources [20, 26, 27, 35].
Our model can efficiently capture this multi-resource setting where
we have multiple shared resources with high sparsity (e.g., every
computer is associated with its CPU, while the set of resources are
CPU’s for all computers). The tasks arrive online and should be
allocated to a machine immediately and irrevocably. We look at
a small time-span of one-two minutes where multiple tasks are
run simultaneously on a machine with hard constraints on lim-
ited resources (i.e., every machine has a finite amount of CPU and
memory to simultaneously be utilized). The goal is to maximize
the number of tasks performed and/or to drop as few requests as
possible.

Public safety. Law enforcement in a given city or region is an
important task for any government. The challenge is to allocate
limited resources such as cops, vehicles, breath analyzers, etc. to
various regions where potential violations can occur while reducing
the response time and maximizing the efficiency (see, e.g., [16, 28,
39, 46] for some work in this area). This general problem can be
captured as an online resource allocation problem and naturally fits
in our model. We have a set of offline vertices which corresponds
to patrol team with multiple resources (e.g., number of cops, type
of vehicle, chase capabilities) stationed at various locations. When
a potential violation occurs, it has to immediately be matched to a
certain patrol team where the match fetches a reward proportional
to the nature of the violation.

Hiring candidates to jobs. Consider the scenario where an HR
division wants to hire new employees for a set of job positions
(see, e.g., [19, 54]). In practice they can hire at most one or two
new employees per post (due to a total budget) and need to train
each new employee to acquire the other skills needed. The training
process demands several kinds of related resources such as expe-
rienced staff, time, money (paid to trainers), machines, to name a
few. Suppose we have a finite budget allotted for each resource and
every successful hire fetches a monetary reward to the HR. Then
the problem facing the HR division can be precisely captured by
our model: each match of a candidate j to a post i will consume
various related resources due to the training process for j to acquire
skills required by i while absent from j.

Our contributions. We make several contributions in this paper.
First, we propose a general model that effectively captures the
online resource allocation problems in various matching markets
with historical data. Our model exploits the fact that historical data
can be used to learn the arrival distributions of online agents at
various times (e.g., [19] in case of hiring). Second, we present algo-
rithms that are provably correct and yield improved performance
over models where distributions are assumed to be unknown. In
particular, we first consider the simple case when only integral
resources are involved with sparse resource consumption. We show

k1| ko| kalka|ks
Shared Resources [1[8].1].5].3 €1

[8[3[1[3]7) ez
B,

Figure 1: Five shared resources with budgets By, By, . . ., Bs.

that in this case, our algorithms are near-optimal among all LP-
based algorithms. Next we consider the general case when both
integral and non-integral resources are involved. We show that to
achieve a target competitive ratio, our model admits algorithms
which have significantly improved lower-bound requirements over
the budgets of non-integral resources, compared to previous ones
when arrival distributions are unknown. In particular, our results
completely eliminate the dependence on the ratio of largest to the
smallest bid [9]. This is crucial since this ratio can typically be very
large if the bids are non-uniform. Third, we consider a special case
when each assignment consumes a single non-integral resource
with no assumptions on its budget. We devise an algorithm with
theoretical guarantees and also show hardness results. Finally, we
give an empirical study of our algorithms and compare them with
natural heuristics on real datasets to validate and complement our
theoretical results. We also define two natural metrics for fairness
for this setting and explore how efficiency maximizing algorithms
perform on these fairness metrics.

2 PRELIMINARIES

We first formally define the model considered in this paper and then
describe the required background for the technical sections of this
paper. As a notation, denote [k] := {1,2,...,k} for any positive
integer k.

Multi-Budgeted Online Assignment (MBOA-KAD). Let! = {i €
[m]} be the set of (offline) servers, | = {j € [n]} be the set of types
of (online) jobs and T be the time horizon. Every server i has a
(hard) time-out d; € [T] after which it shuts down. Let G = (I, J, E)
be the bipartite graph with an edge e = (i, j) iff job-type j can be
run on server i. Let N(j) = {i : (i,j) € E} be the set of servers
that can handle job-type j and N(i) = {j : (i,j) € E} be the set of
job-types that can run on server i. Each edge e = (i, j) has a weight
we denoting the profit obtained by allocating server i to job-type j.
Each assignment e = (i, j) consumes one or more of a given set of
K resources. The cost of an allocation e is given by a K-dimensional
vector a, € [0, 1]X, where the k! dimension ac, i represents the
amount of resource k consumed by assignment e. Each resource k
has a budget B, € R, that must not be exceeded. For each e, let
Se = {k € [K] : a, > 0}, ie, the set of resources it consumes.
At any instant t € [T], a job of type j arrives with a probability
pjt such that }; pjr < 1 (thus, with probability 1 - 3; pj, no job
arrives at time t). Let Ej; = {e = (i,),i € N(j) : d; > t} denote the
set of available assignments (i.e., the corresponding servers should

be active at time £) for the job-type j at time t.! For each e € E jt, We
say e is safe or valid iff for each k € S, resource k has a remaining
budget larger or equal to a, . When a job of type j arrives at ¢, we
have to make an immediate and irrevocable decision: either reject it
or choose a safe option e € Ej; and get a resultant profit w. Once a
safe assignment e is scheduled, the budget of each resource k € S,
will be reduced by a, . Our goal is to design an online assignment
policy such that the expected profit is maximized.

Note that all algorithms presented in this paper are applicable
to a more general setting where each successful match e yields a
random profit W, (independent from others). All the algorithms
need to know is we = E[W,] for each e 2.

The performance of online algorithms is usually measured using
the notion of competitive ratio (see [13]). For our problem, we
define the competitive ratio as follows.

Definition 2.1 (Competitive Ratio). Let ALG denote a given online
algorithm whose performance we want to measure. Consider an
instance 7 of the problem. Let E[ALG(Z)] denote the expected
profit obtained by ALG for this instance (here expectation is over the
randomness in the input as well as any randomness the algorithm
uses). Similarly, let E[OPT(Z)] denote the expected value of the
optimal offline solution (i.e., the expected value of the optimal
solution on seeing the entire arrival sequence). The competitive
ratio is defined as inf 7 E[ALG(Z)]/E[OPT(Z)].

For any maximization problem like the one studied here, we say
ALG achieves a ratio at least & € (0, 1) if for any instance of the
problem the expected profit obtained by ALG is at least a fraction
a of the offline optimal solution. Typically computing the value
of E[OPT(Z)] directly is hard. A common methodology to bypass
this is to construct a linear program (called benchmark LP) whose
optimal value is an upper bound on E[OPT(J)]. Hence comparing
E[ALG(J)] to the optimal value of this LP gives a lower bound on
the competitive ratio. We will now describe the benchmark LP used
in this paper.

Recall Ej; be the set of available assignments for a job of type
Jj arriving at time-step t. For any ¢, let E; = UJ; Ej¢ be the set
of all possible assignments (a-priori before the execution of any
online algorithm) at ¢. Further, for each t and e € E;, let x¢,; be the
probability that an assignment e is made at round ¢ in an offline
optimal algorithm. Then the benchmark LP we use is as follows.

maximize), Zj ZeeEj,, WeXe, t ¢))
subject to Yo e, Xe,t < pjt Vje] telT] 2)
2t 2iecE, Xe,tae k < B Vk € [K] 3

0<xer <1 Ve € E,t € [T] (4)

This LP can be interpreted as follows. Constraint (2) — for any
given job of type j and time ¢, the probability that we assign a server
to j is at most the probability that j arrives at step ¢. Constraint (3) —
for any (integral or non-integral) resource k, the expected consump-
tion cannot be larger than its budget (By). The last constraint (4)
!n this paper, we assume w.l.o.g. that each server can be allocated for an arbitrary
number of times before its shutdown. Any potential restriction on the number of
allocations can easily be modeled by an additional budget constraint.

2 An allocation does not imply a completion of a job, hence this uncertainty can be
handled in our model.

is due to the fact that all {x,, ;} are probability values and hence
should lie in the interval [0, 1]. The above analysis suggests that
any offline optimal solution {x¢, ;} should be feasible for the above
LP. Formally, we have Lemma 2.2 which claims that the optimal so-
lution of this LP is an upper bound on the expected offline optimal
value.

LEmMA 2.2. The optimal value to LP-(1) is a valid upper bound
for the offline optimal solution.

The benchmark LP-(1) has previously been used in [7] and the
proof of Lemma 2.2 can be found there.

Integral and non-integral resources. For an integral resource
k, we have that for any e € E, a, € {0,1} while for a non-
integral resource k, we have that for any e € E, a,; € [0,1].
For any integral resource k, WLOG we assume that By € Z,. Let
K1 ={1,2,--- ,Ki} and Ky = {K; + 1,--- ,K; + K2} denote the
set of integral and non-integral resources respectively. For any
assignment e, we assume [Se NK7| < €1 and |Se N K| < €o, where
{1 and £y are the integral and non-integral sparsity respectively.

Adaptive and non-adaptive algorithms. For an LP-based ALG,
we say ALG is non-adaptive if for a given LP solution, the computa-
tion of strategy in each round ¢ does not depend on the strategies
in the previous rounds from 1,2,...,t — 1. Otherwise, we call it
“adaptive”. Here we distinguish “adaptive” and “non-adaptive” to
highlight the computations of strategies in the “online” phase.

3 OTHER RELATED WORK

We now describe some related works other than those already
described. Our problem falls under the online packing family of
problems. Some representative works on this include [4, 6, 14, 15,
22, 37]. The most relevant to this paper is that of Devanur et al. [22]
who study it in the unknown i.i.d. setting. We have the following
important distinctions. First, our work assumes the known i.i.d.
setting. Second, Devanur et al. [22] study this problem in the large
budget regime (i.e, B > Q(é)) and obtain 1 — € approximation.
This paper however considers regimes where the lower bound
on the budget is only Q(ﬁ). We circumvent the necessity for a
large lower-bound on the budget is by assuming sparsity in the
packing program. Closely related to the online packing problems
literature is another line of work on a family of problems called
bandits with knapsacks [2, 3, 5, 10, 11, 45]. These works consider
the learning variant of the online packing problems and obtain
approximation ratios that are comparable to [22]. Many special
cases of online packing problems and bandits with knapsacks have
been studied across communities including dynamic pricing ([21]
and references within), network routing and optimization ([10]
and references within), network revenue management ([12] and
references within).

4 ALGORITHMS

In this section, we describe our two main algorithms NADAP and
ADAP.

Non-adapative algorithm (NADAP). Algorithm NADAP is a non-
adaptive algorithm based on LP. Suppose {x; ,|t € [T], e € E;} is
an optimal solution to the LP-(1). The main idea behind NADAP

(described in Algorithm 1) is as follows. Suppose a job of type
Jj arrives at time t: sample a server i from E;; with probability
ax, ,/pjt, where a € (0, 1] is a parameter optimized in the analysis.
Make the assignment e = (i, j) iff e is safe (i.e., it will not violate
any budget constraint at ¢).

ALGORITHM 1: The non-adaptive algorithm (NADAP)

For each time ¢, let the arriving job be denoted by j.

Let £j; C Ej; be the set of safe assignments available for j.

If Ejt = 0, then reject j; else sample an assignment e € Ejt with
probability ax; ,/pj:.

The last step of Algorithm 1 is well defined since we have
Zeeﬁj, axy 4/pjt < ZeeEj,, x;. ¢ /pjt, which is at most 1.3

Adapative algorithm (ADAP). Algorithm ADAP is an adaptive
algorithm which uses Monte-Carlo simulations. The main idea
is as follows. Suppose we aim to develop an online algorithm
achieving a competitive ratio of y € [0, 1]. Consider an assign-
ment e = (i,j) € E; for a job j at time t. Let Se ; be the event
that e is safe (i.e, we can choose this assignment without budget
violation for all resources) conditioning on the arrival of e at ¢. By
using Monte-Carlo simulation of the strategy up to t, we can get
a sharp estimate of Pr[Se, /], say fe,:, with polynomial number
of samples. Therefore if e is safe at t, we choose it with probabil-

Xe,t Y

ity Pt Ber which implies that e is chosen with probability yx, ;

unconditionally.

The simulation-based attenuation technique has been used pre-
viously in other stochastic optimization problems (e.g., stochastic
knapsack [41], stochastic matching [1]). We assume that the sharp
estimate fe ; of Pr[Se, ;] for all t and e is exact, since the sampling
error can be accounted as a multiplicative factor of (1 — ¢€) in the
competitive ratio by a standard Chernoff bound argument. Formally
our algorithm, denoted by ADAP, is described in Algorithm 2. The
running time of this algorithm is polynomial in 1/e.

ALGORITHM 2: The adaptive algorithm (ADAP)

At time ¢, let j be the job that arrives.
Let l:?jy, C Ej,; be the set of safe assignments available for j.
If Ej,t = (, then reject j; else sample an assignment e € Ej, + with

Xe,r ¥y

probability Pt Bet:

To ensure the above algorithm is mathematically well-defined
with parameter y, we need to show that e ; > y for every t and e.

LEMMA 4.1 (VALIDITY OF ADAP). By choosingy = 1/(€ + 1), we
have Be.; >y forallt € [T] and e € E;.

Both the algorithms presented do not work in the regime when
B is small. To overcome this, we propose a new algorithm with
additional restrictions when B = 1. Consider MBOA-S which
has the following setting: (1) all resources are non-integral and
have a unit budget By = 1; (2) each assignment requires only one

3In other words, with probability 1 — 3 axy ,/pje, we will do nothing and

eeéj,
reject job j.

single resource (¢ = 1); (3) servers have no deadline (d; = T); (4)
the arrival distributions over all job-types are identical across all
rounds, ie., for each job-type j, pj; = pj for all t € [T]. It can be
shown that the performance of ALG; and ALG can be arbitrarily
bad (see full version).

This new setting requires a modified benchmark LP. For each
e € E, let x, be the expected number of times the assignment e
is made in the offline optimal over the T rounds. For each e, we
use a, to denote the cost of e for the unique resource it consumes.
For a given threshold @ = 1/2, we say e is big if a¢ > a and small
otherwise. For each resource k, let BIG(k) (SM(k)) refers to the set
of big assignments (small) participating on constraint (or resource)
k. We use the following benchmark LP.

max), cg WeXe (5)
st Yeep, Xe Spj*T Vjie],te[T] (6)
2eeBIG(k) Xede T XeesM(k) Xede <1 Yk € [K] (7
2eeBIG(k) Xe < 1 Vk € [K] ®)
Constraint (8) is valid since in any offline optimal, at most one
big assignment from BIG(k) can be made, for each k. We design
a new algorithm for this setting, whose main idea is as follows.
We split the whole T rounds into two stages, where the first stage
consists of the first T * rounds and the second stage consists
of the remaining rounds. In the first stage, our algorithm only
considers big assignments and drops any small assignment while in
the second stage it considers only small ones while dropping the big
ones. For each job-type j, let BIG(j) (SM(j)) be the set of big (small)
assignment with respect to j. Suppose {x}} is an optimal solution
to the new benchmark LP (5). We can then formally describe the
algorithm as in Algorithm 3.

ALGORITHM 3: MBOA-S(§, y1, y2)

The first stage:
For each time ¢ € [T * f], assume some job j arrives.

yixe
pj*T'

Sample a big assignment e € BIG(j) with probability

If e is safe, then make it; otherwise reject it.

The second stage:

Foreachtimet € {T+«f+1, T+ f+2, ..., T], assume some job j arrives.
yexe

pj*T"

Sample a small assignment e € SM(j) with probability

If e is safe, then make it; otherwise reject it.

5 MAIN RESULTS AND TECHNIQUES

We now describe the main results and theoretical techniques used.
Detailed proofs are deferred to the full version.

First, we present two algorithms based on LP-(1), NADAP and
ADAP, which are non-adaptive and adaptive respectively. For the
integral MBOA-KAD where all resources are integral, we have the
following theorems.

THEOREM 5.1 (PERFORMANCE OF NADAP FOR INTEGRAL CASE).
For MBOA-KAD when all resources are integral with sparsity ¢,

NADAP witha = ﬁ achieves a competitive ratio of at least ﬁ(l -

ﬁ)ﬁ > ﬁ using LP~(1) as the benchmark. The analysis for this
is tight.

THEOREM 5.2 (PERFORMANCE OF ADAP FOR INTEGRAL CASE). For
MBOA-KAD when all resources are integral with sparsity {, ADAP
withy = ﬁ achieves a competitive ratio of at least ;’_Ti for any
given constant € > 0. Moreover, no adaptive algorithm can achieve a

: 1
ratio better than ((ZSTSTE

From the above two theorems, we have that NADAP and ADAP
are almost optimal among all algorithms that use LP-(1) as bench-
mark, for the integral MBOA-KAD. Additionally, Theorem 5.1 achieves
the best possible ratio that NADAP can get based on LP-(1). For
algorithms which do not use LP-(1) as benchmark, the hardness
result is O(In €/¢) since the inapproxibility result of £-uniform hy-
pergraph matching [30] carries over to this setting.

We now show an example to show that the results proved in
Theorem 5.1 is tight.

Example 5.3 (Tight Example for Integral Resources). Consider a
star graph G = (I, J, E) where |I| = 1,|J| = {+1,E = {ej|j € [(+1]}
with T = ¢ + 1. Let d; = T, i.e., no deadline constraints. For each
t € [T],pjr = 1iff j = t and 0 otherwise. We use a; and x; to denote

the terms a; and x:j’t:j. Let K = ¢ with By = 1 for each k € [{]
and a; = e; for each j < £, where e; is the jth standard-basis unit
vector of dimension K, and aj = 1 (of dimension K) for j = £ + 1.
Let the optimal solution to LP-(1) be x;f =1-eforeachj < and
x,, = € for a proper weight vector. Now consider the assignment
e = epyq when j = €+ 1 comes at t = T. Let us compute the
probability Pr[S,, 7] that e is safe at T in NADAP(«). Assignment
e will be safe at t = T iff none of ej, j < £ is made before. At each
time t < T, NADAP(«r) makes the assignment e;-; with probability

*

0:;1 = a(1 —). This implies that Pr[S, 1] = (1 —a(1 - €))!, which
matches the lower bound. O

Next, we consider a general case, where we have both integral
and non-integral resources while making a mild assumption that
the budget of any non-integral resource is large enough. Let B be
the minimum budget for any non-integral resource. We then prove
the following two theorems.

THEOREM 5.4 (PERFORMANCE OF NADAP FOR THE GENERAL CASE).
For MBOA-KAD with integral and non-integral sparsity {1 and (s,

. 1 . . . 1 _
NADAP with a = r2Es achieves a competitive ratio ofm((l

ﬁ){)l - 5),for any e > 0, assuming B > Zln(%)(l + 35(}—1;2) +2.

THEOREM 5.5 (PERFORMANCE OF ADAP FOR THE GENERAL CASE).

For MBOA-KAD with integral and non-integral sparsity €1 and {3,
ADAP withy = (}1_+61 achieves a competitive ratio of Hﬁ for any

given € > 0, assuming B > 3ln(%)(l + {%) + 2.

Our results imply that with the knowledge about arrival distri-
butions we can obtain significant improvements over the results for
the adversarial model. Let us compare our results with those of [9].
The setting in [9] can be viewed as a special case of our model with

{1 = {3 = 1. From Theorem 5.5, we obtain a (% — €) competitive

ratio assuming B > 121In(1/¢) while [9] obtain a ratio of O(Re;),

InR
. bij . . .
assuming B > % andR = % (i.e., the ratio of the largest bid to
LJ
the smallest bid over all possible assignments). Note that our results
completely removes the dependency on R and also significantly relax

the lower bound assumption on B. This is a theoretical evidence to
advocate the use of historical data to learn arrival distributions.

Third, we consider the case of MBOA-KAD when both integral
and non-integral resources are involved but no lower bound is
known for the budgets of non-integral resources. To make the
problem tractable, we make the following three assumptions: (1)
each assignment consumes only a single resource (¢ = 1); (2) dead-
line constraints on all servers are removed; (3) the arrival distribu-
tions over all job types are identical across all rounds. We refer to
MBOA-KAD under these three simplifying conditions as MBOA-S.
Note that MBOA-S still generalizes the well-known online bipar-
tite matching problem and several variants such as Adwords and
Display Ads (e.g., [25, 29, 34, 43]). It can be shown that the perfor-
mance of the two previous algorithms, NADAP and ADAP, can be
arbitrarily bad in this case. We propose a strengthened benchmark
LP and obtain the following theorem.

THEOREM 5.6. There exists an online algorithm which achieves an
online ratio of% for MBOA-S. Meanwhile, no online algorithm can

achieve a ratio better than zeeill ~ 0.387.

6 EXPERIMENTS

In this section we describe our experimental results. We use the
Google cluster trace data [18, 31] which was used by Kash et al.
[36]. This dataset contains traces of job allocation to servers within
Google’s datacenters. We process this dataset for our purposes,
which we describe below. To further show the generality of our
model, we also run additional experiments modeling an allocation
problem in the public safety domain.

Experimental setup. Every machine is characterized by an id, the
total CPU capacity and the total memory capacity. Each sample is
from an interval of 2 minutes in the dataset and hence is a short
enough time-span to consider hard total budget on the resources.
A job type is characterized by the CPU and memory requirements.
Hence there can be multiple jobs of the same type (which we use to
construct our arrivals). Every machine consumes two resources and
these resources are not shared by other machines (this application
has a simpler notion of shared resources compared to the generality
our model can handle). Therefore we have total of 2m resources
with a sparsity £ = 2. We assume that all machines are active
throughout.

Dataset and preprocessing. Our experimental setup is inspired
from the experiments of Kash et al. [36]. We use a random subset
of the dataset by sampling m machines and n jobs randomly for
m = 10 and n = {20, 100}. Our experiments are run for both the
(m, n) pairs. We assign arrival rates randomly to each of the jobs
and use it for all the experiments. For every (m, n) pair we generate
the compatibility graph by choosing 5 machines at random, that
a job j can be run on. All experiments are reported by running
100 independent trials and taking the sample average. Assignment
weights are assigned by generating an independent random number
between 0 and 1.

Algorithms. We compare our main algorithm NADAP with the
following three baselines. These baselines have been used previ-
ously in the literature [23]. The baselines are as follows. Suppose

job j arrives at time ¢. (1) SCALED: sample an assignment e € Ej;

with probability ZXE;’X and assign e iff safe. (2) USamp: sample
ee j[

et

an assignment e € Ej; uniformly from Ej; and assign e iff safe.
(3) Greedy: choose the assignment e € Ej;, which has the largest
weight we among all safe options in Ej;. Finally note that ADAP
had similar performances as NADAP in our experiments and for
clarity we omit those from the figures. Deviating from the conser-
vative estimate predicted by theory for « in NADAP, throughout
the experimental section we set @ = 1. We chose this by tuning for
optimal performance on a small holdout of the dataset. The reason
this value is different from what theory predicts is that, in theory
we are optimizing for the worst case input, while, as will be evident
from the results, these datasets do not represent the worst-case
graphs.

Throughput experiments. We compare the total weight of all the
assignments made by each of these algorithms. The first column
in Figure 2 describes the details. It is clear that our main algorithm
NADAP performs the best. Among the baselines Greedy is better
than the other algorithms. Despite SCALED having the information
of the optimal solution from the LP, it is not able to perform as good
as Greedy. This shows the inherent power of adaptive algorithms.

Fairness experiments. We run further additional experiments to
study the fairness of these algorithms. Fairness is a broad topic
and our goal in this paper is to show that despite not explicitly
optimizing for it, NADAP performs well compared to the baselines.
We discuss two notions of fairness which are inspired from the
max-sum and max-min fairness of Kash et al. [36]. Our setting dif-
fers from theirs and hence we cannot directly use their definitions.
However we define two notions, namely drop-sum and drop-max
fairness. For a give type j, let ds; be defined as the expected differ-
ence between the number of times this type appears in an arrival
sequence and the number of times an algorithm assigns it success-
fully. Drop-sum metric calculates the sum of ds; for every type j
while drop-max calculates the maximum over all types j of ds;.
Intuitively, higher the value of either of these metrics, the more
unfair the algorithm is. In the second column of Figure 2 we show
how the baselines and our algorithm performs on the drop-sum
metric. Our algorithm once again comes on top with almost no
difference among the other three baselines. On the drop-max metric
in the third column of Figure 2, however, we see an interesting
result where our algorithm is slightly worse than the three base-
lines. However the difference is not too significant, suggesting that
alongside maximizing throughput, NADAP is also inherently fair.

Does graph sparsity matter? * We further study if either through-
put or the two fairness metrics significantly change for the algo-
rithms when the graph sparsity is varied. We use the setup of 10
machines, 20 jobs types and 1000 arrivals as the underlying pa-
rameters. Graph sparsity is varied by controlling the number of
neighbors each job-arrival can be assigned to. Figure 3 shows the
results for this experiments. As evident, there is some variation
in the absolute numbers, but these are not significant enough in

4Term sparsity is overloaded. Here it refers to the number of edges, which is different
from sparsity of resources used throughout the paper.

10 machines and 20 job types 10 machines and 20 job types 10 machines and 20 job types

0.800 2000 120
2 M 3 2
- Q Q
S 0600 £ 1500 £ 90
2 g g
E 0.400 £ 1000 x 60
® 3 S
g a =
g 0.200 g 500 2 30
3 2
o a a
0.000 0 0
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000

Number of requests Number of requests Number of requests

10 machines and 100 job types 10 machines and 100 job types 10 machines and 100 job types

0.800 1800 40

& 0.600 £ 1350 £ 30
fe——o——0——0—0———0——O0——0 - =
Q i P

£ 0.400 £ 900 x 20
- 5 ©
2 @ :
Q

E 0.200 g 450 g 1
o a o

0.000 0 0

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Number of requests Number of requests Number of requests
O NADAP Uniform SCALED GREEDY

Figure 2: Allocation experiments on the Google cluster trace dataset. The upper row corresponds to 10 machines and 20 job types, while the
lower row corresponds to 10 machines and 100 job types. First column is the results for Throughput experiments, second column is the results

for the drop-sum fairness experiments and the third column is the results for the drop-max fairness experiments.

absolute terms. Additionally, these numbers do not change the rel-
ative ordering for the performance of the algorithms in either of
the three metrics.

Discussion. The main experiments suggest that NADAP performs
well in practice, alongside having good theoretical guarantees. In
fact, the throughput experiments indicate that the performance
guarantee is far better than the theoretical prediction of around 0.3.
We also show that for a reasonable definition of fairness metrics,
our algorithm performs as good or better than the baselines. This
suggests that our model and algorithm is suitable for scenarios
where we want to maximize both throughput and fairness proper-
ties. It is also an interesting future direction to explicitly account
for fairness to further improve the performance of NADAP.

6.1 Additional Experiments for the Public
Safety Application

We use a large-scale policing dataset [44] for the public safety
application.

Dataset and assumptions. The policing dataset [44] contains
records from the Texas state since 2010. Every record in this dataset
contains the following: County, Latitude and Longitude, Time, Vi-
olation, Officer id, whether there was a search, stop outcome and
driver details such as gender, age, race (which we do not require for
our purposes). We use this information to create offline and online
vertices as well as the graph as follows. For every county we create
one offline vertex and pick one of the locations within this county
as the station (we assume that dispatch for this county is from this
station). For the online side, we create one online vertex for every
pair of (location, offense).’ For each vertex or type (offline and

SLocation is a latitude longitude pair rounded to the nearest integer.

online), the set of neighbors is the set of 5 counties that are within
aradius r = 2 (in terms of differences in latitude and longitude) of
the location associated with this vertex. The dataset provides the
time rounded to the nearest minute. We regard every minute as a
time-step and set the time horizon T = 24 * 60 = 1440 (24-hour
period). We sample 20 frequently appearing counties for the offline
side, 120 frequently appearing (location, offense) pairs for the on-
line types. To learn pj;’s, we average the arrival frequencies in a
randomly chosen 90-day period and use another randomly chosen
14-day period for testing. We consider the unweighted case and
are only interested in maximizing the total number of unlawful
activities handled.

We assume that there are 7-types of resources, namely, total
travel distance, officers, patrol vehicles and equipments for speed-
ing, search, citation and arrest. The first 3 resources are owned by
each offline vertex (station) while the last four are shared across
vertices (therefore a total of 3 = |I| + 4 resources). The first resource
captures the total working hours each station can continuously be
engaged in and account for it as the total travel distance travelled.
The last four represent the resources involved for detecting and issu-
ing a speeding violation, for conducting a search on the vehicle, for
issuing a citation and for making an arrest on the spot respectively.
Each match e = (i, j) (assignment of online offense type j to station
i) will consume 7 resources; the consumption of the first three re-
sources is jointly determined by the pair (i, j) (denoted by a,, 1) and
the consumption of the last four resources is determined by type j
(denoted by a,2). By averaging over all records from the dataset, we
compute and normalize such that ac 1 € [0, 1]% and ag 2 € [0, 1]4.
To make a2 depend on station i, we uniformly sample a number
A; from [0, 1] and set the final cost a. as (ae, 1, A; * ae,2).

10 machines and 20 job types

10 machines and 20 job types

10 machines and 20 job types

0.800 900 60
2 2 3
S 0,600 € 675 g 58
g 3 o\o———o\o___o s
£ 0.400 E 450 5%
H a H
g 0.200 5 225 5 54
© o a

0.000 0 52

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of Neighbors Number of Neighbors Number of Neighbors
O NADAP Uniform SCALED GREEDY

Figure 3: Varying the graph sparsity for instance with 10 machines, 20 job types and 100 arrivals of jobs. First, second and third column

corresponds to throughput, drop-sum and drop-max metrics respectively.

Same budget for all resources

1.000 W

0.750
0.500
0.250
0.000

1 2 4 5 6 8 10 25 50 100

‘O NADAP Uniform SCALED GREEDY

Different budgets for different resources

1.000

0.750

0.500

0.250

0.000 . .
Il NADAP M Uniform SCALED M GREEDY

(a) Comparing algorithms when all resources have a uniform budget.(b) Comparing algorithms when different resources have different
x and y-axises represent the budget value and competitive ratio re-budgets

spectively.

Experimental parameters and baselines. First, we conduct ex-
periments by choosing a unform budget for all resources. In particu-

lar we choose the budget value in the range {1, 2, 4, 5, 6, 8, 10, 25, 50,100}

We also run an experiment with different budgets for different re-
sources. For every resource we choose a random integer between 1
and 100 as the budget. The value of these budgets are chosen to en-
sure that it accounts for both the small budget (i.e., optimal solution
is much smaller than T) and the large budget (i.e., optimal is very
close to T) case. For each given experiment and algorithm, we run
10 independent runs on each of the 14-day testing period and take
the average. We use the following parameters for the algorithms.
For NADAP, we set « = 1 (which is higher than the theoretical
value which was fine-tuned via standard cross-validation approach)
and set y = 1 for ADAP.

Results and discussion. Figures 4a and 4b describe the respective
experimental results when the total budget takes a uiform value or
different values among resources. From the results we can observe
that our algorithms ADAP and NADAP significantly out-perform
all our natural baselines. Among the baselines the LP-based base-
line (SCALED) beats the LP-agnostic baselines (albeit by a small
amount). Additionally, our algorithms almost approach the optimal
on this dataset which is far better than the theoretical guarantee
(around 1/8 = 0.125). Hence experimentally we show that our algo-
rithms are useful, beat the natural baselines comprehensively and
achieve near optimal in practice.

7 CONCLUSIONS & FUTURE RESEARCH

In this paper, we studied the multi-budgeted allocation problem in
the context of matching markets such as crowdsourcing, candidate
hiring, etc. In this context, we proposed a novel model and provided
efficient LP-based algorithms with improved competitive ratios. In
particular, we showed two algorithms and analyzed their perfor-
mance formally. In the theoretical analysis of these algorithms, we
used novel ideas which can potentially be of independent interest
in both the analysis of online matching and allocation algorithms.
Finally, our algorithms were compared against several heuristic
baselines experimentally on a real-world dataset to validate our
theoretical results. We also explored properties of our algorithms
in the context of tradeoffs in economic efficiency and fairness.

In addition to further exploration of the interplay between vari-
ous fairness objectives and the traditional efficiency-maximizing
objective used in many settings, we believe that the inclusion of
incentives in our models would be of future interest. For example,
Kash et al. [36] explore various design desiderata in their dynamic
fair divison (of divisible tasks) model; similar qualitative steps could
be taken in our model (which focuses on indivisible allocation). As
another example, resource allocation in the security games set-
ting [38], limited resources are deployed to prevent a strategic ad-
versary from attacking targets. Recent work has explored security
games under various forms of dynamism [8, 53, 55].

REFERENCES

(1]

[11]
[12]

(13

[14]

[15

[16]

[17]

(18]

[19

[21

[22

[23]

[24

oo
)

[26

[27]

[28]

[29]

[30

[31

[32

Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. 2015. Improved
approximation algorithms for stochastic matching. In ESA.

Shipra Agrawal and Nikhil Devanur. 2016. Linear contextual bandits with knap-
sacks. In NIPS.

Shipra Agrawal and Nikhil R Devanur. 2014. Bandits with concave rewards and
convex knapsacks. In EC.

Shipra Agrawal and Nikhil R Devanur. 2014. Fast algorithms for online stochastic
convex programming. In SODA.

Shipra Agrawal, Nikhil R Devanur, and Lihong Li. 2016. An efficient algorithm
for contextual bandits with knapsacks, and an extension to concave objectives.
In COLT.

Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. 2014. A dynamic near-optimal
algorithm for online linear programming. Operations Research 62, 4 (2014).
Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. 2013. The online
stochastic generalized assignment problem. In APPROX-RANDOM.

Tansu Alpcan and Sonja Buchegger. 2011. Security games for vehicular networks.
IEEE Transactions on Mobile Computing 10, 2 (2011), 280-290.

Sepehr Assadi, Justin Hsu, and Shahin Jabbari. 2015. Online Assignment of
Heterogeneous Tasks in Crowdsourcing Markets. In AAAI-HComp.
Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. 2013.
Bandits with knapsacks. In FOCS.

Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. 2014. Re-
sourceful contextual bandits. In COLT.

Omar Besbes and Assaf Zeevi. 2012. Blind network revenue management. Oper-
ations research 60, 6 (2012), 1537-1550.

Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. 2007. Online primal-dual
algorithms for maximizing ad-auctions revenue. In ESA.

Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for cover-
ing and packing. Mathematics of Operations Research 34, 2 (2009), 270-286.

Niv Buchbinder, Joseph Seffi Naor, et al. 2009. The design of competitive online
algorithms via a primal-dual approach. Foundations and Trends® in Theoretical
Computer Science 3, 2-3 (2009), 93-263.

Jan M. Chaiken and Peter Dormont. 1978. A Patrol Car Allocation Model: Back-
ground. Management Science 24, 12 (1978).

Xi Chen, Will Ma, David Simchi-Levi, and Linwei Xin. 2016.
namic recommendation at checkout under inventory
http://dx.doi.org/10.2139/ssrn.2853093 (2016).

Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H Katz.
2010. Analysis and lessons from a publicly available google cluster trace. (2010).
V.E. Chenthamarakshan, N. Kambhatla, R.C. Kanjiranthinkal, A K.R. Singh, and
K. Visweswariah. 2012. Systems and methods for matching candidates with
positions based on historical assignment data. (May 17 2012). https://www.
google.com/patents/US20120123956 US Patent App. 12/944,868.

Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and simula-
tion of a fair queueing algorithm. In ACM SIGCOMM.

Arnoud V den Boer. 2014. Dynamic pricing with multiple products and partially
specified demand distribution. Mathematics of operations research 39, 3 (2014),
863-888.

Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A
Wilkens. 2011. Near optimal online algorithms and fast approximation algo-
rithms for resource allocation problems. In EC.

John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan
Xu. 2018. Allocation Problems in Ride-Sharing Platforms: Online Matching with
Offline Reusable Resources. In AAAL

John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan
Xu. 2018. Assigning Tasks to Workers Based on Historical Data: Online Task
Assignment with Two-sided Arrivals. In AAMAS. 318-326.

Jon Feldman, Nitish Korula, Vahab Mirrokni, S Muthukrishnan, and Martin Pal.
2009. Online ad assignment with free disposal. In WINE.

Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-resource fair
queueing for packet processing. ACM SIGCOMM (2012).

Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2013. Choosy: Max-min
fair sharing for datacenter jobs with constraints. In ACM ECCS.

R. Guedes, V. Furtado, and T. Pequeno. 2014. Multiagent models for police
resource allocation and dispatch. In 2014 IEEE Jjoint Intelligence and Security
Informatics Conference.

Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. 2011.
Online stochastic weighted matching: Improved approximation algorithms. In
WINE.

Elad Hazan, Shmuel Safra, and Oded Schwartz. 2006. On the complexity of
approximating k-set packing. computational complexity 15, 1 (2006).

J. L. Hellerstein. 2010. Google Cloud Trace Dataset. (2010). https://github.com/
google/cluster-data

Chien-Ju Ho and Jennifer Wortman Vaughan. 2012. Online Task Assignment in
Crowdsourcing Markets.. In AAAL

Dy-
constraint.

™
=

(39]

[40]

[41

[42]

[44]

[45

[46

[47]

(48

N
X2

[50

[51

[52

[53]

[55

[56]

Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large
Scale Real-time Ridesharing with Service Guarantee on Road Networks. VLDB
Endow. 7, 14 (2014).

Patrick Jaillet and Xin Lu. 2013. Online stochastic matching: New algorithms
with better bounds. Mathematics of Operations Research 39, 3 (2013).

Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. 2013. Multiresource
allocation: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM TON
(2013).

Tan Kash, Ariel D Procaccia, and Nisarg Shah. 2014. No agent left behind: Dynamic
fair division of multiple resources. JAIR (2014).

Thomas Kesselheim, Andreas T6nnis, Klaus Radke, and Berthold Vécking. 2014.
Primal beats dual on online packing LPs in the random-order model. In STOC.
Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordoéfiez,
and Milind Tambe. 2009. Computing optimal randomized resource allocations
for massive security games. In AAMAS.

Sang M. Lee, Lori Sharp Franz, and A. James Wynne. 1979. Optimizing State
Patrol Manpower Allocation. Journal of the Operational Research Society 30, 10
(01 Oct 1979).

S. Ma, Y. Zheng, and O. Wolfson. 2013. T-share: A large-scale dynamic taxi
ridesharing service. In ICDE.

Will Ma. 2014. Improvements and generalizations of stochastic knapsack and
multi-armed bandit approximation algorithms. In SODA.

Will Ma and David Simchi-Levi. 2017. Online resource allocation un-
der arbitrary arrivals: Optimal algorithms and tight competitive ratios.
http://dx.doi.org/10.2139/ssrn.2989332 (2017).

Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. 2012. Online
stochastic matching: Online actions based on offline statistics. MOR (2012).
Emma Pierson, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Vignesh
Ramachandran, Cheryl Phillips, and Sharad Goel. 2017. A large-scale analysis
of racial disparities in police stops across the United States. arXiv preprint
arXiv:1706.05678 (2017).

Karthik Abinav Sankararaman and Aleksandrs Slivkins. 2018. Combinatorial
Semi-Bandits with Knapsacks. In AlStats.

Robert P Shumate and Richard F Crowther. 1966. Quantitative methods for
optimizing the allocation of police resources. J. Crim. L. Criminology & Police Sci.
57 (1966).

Yaron Singer and Manas Mittal. 2013. Pricing mechanisms for crowdsourcing
markets. In WWW.

Adish Singla and Andreas Krause. 2013. Truthful incentives in crowdsourcing
tasks using regret minimization mechanisms. In WWW.

Aleksandrs Slivkins and Jennifer Wortman Vaughan. 2014. Online decision mak-
ing in crowdsourcing markets: Theoretical challenges. ACM SIGecom Exchanges
12, 2 (2014).

Ashwin Subramanian, G Sai Kanth, Sharayu Moharir, and Rahul Vaze. 2015.
Online incentive mechanism design for smartphone crowd-sourcing. In WiOPT.
Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen, Jieping Ye, and
Ke Xu. 2017. Flexible Online Task Assignment in Real-time Spatial Data. Proc.
VLDB Endow. (2017).

Xinshang Wang, Van-Anh Truong, and David Bank. 2018. Online advance
admission scheduling for services with customer preferences. arXiv preprint
arXiv:1805.10412 (2018).

Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. 2014. Adaptive
resource allocation for wildlife protection against illegal poachers. In AAMAS.
Xing Yi, James Allan, and W Bruce Croft. 2007. Matching resumes and jobs based
on relevance models. In SIGIR.

Yue Yin, Haifeng Xu, Jiarui Gan, Bo An, and Albert Xin Jiang. 2015. Computing
Optimal Mixed Strategies for Security Games with Dynamic Payoffs.. In IJCAL
Dong Zhao, Xiang-Yang Li, and Huadong Ma. 2014. How to crowdsource tasks
truthfully without sacrificing utility: Online incentive mechanisms with budget
constraint. In INFOCOM.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Other Related Work
	4 Algorithms
	5 Main Results and Techniques
	6 Experiments
	6.1 Additional Experiments for the Public Safety Application

	7 Conclusions & Future Research
	References

