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Abstract

Online bipartite matching and allocation models are widely
used to analyze and design markets such as Internet advertis-
ing, online labor, and crowdsourcing. Traditionally, vertices
on one side of the market are fixed and known a priori, while
vertices on the other side arrive online and are matched by a
central agent to the offline side. The issue of possible conflicts
among offline agents emerges in various real scenarios when
we need to match each online agent with a set of offline agents.
For example, in event-based social networks (e.g., Meetup),
offline events conflict for some users since they will be unable
to attend mutually-distant events at proximate times; in ad-
vertising markets, two competing firms may prefer not to be
shown to one user simultaneously; and in online recommen-
dation systems (e.g., Amazon Books), books of the same type
“conflict” with each other in some sense due to the diversity
requirement for each online buyer.

The conflict nature inherent among certain offline agents raises
significant challenges in both modeling and online algorithm
design. In this paper, we propose a unifying model, gener-
alizing the conflict models proposed in (She et al., TKDE
2016) and (Chen et al., TKDE 16). Our model can capture
not only a broad class of conflict constraints on the offline
side (which is even allowed to be sensitive to each online
agent), but also allows a general arrival pattern for the online
side (which is allowed to change over the online phase). We
propose an efficient linear programming (LP) based online
algorithm and prove theoretically that it has nearly-optimal
online performance. Additionally, we propose two LP-based
heuristics and test them against two natural baselines on both
real and synthetic datasets. Our LP-based heuristics experi-
mentally dominate the baseline algorithms, aligning with our
theoretical predictions and supporting our unified approach.

1 Introduction
Online bipartite matching problems are primarily motivated
by the Internet advertising business. In the basic setting,
we have a set of offline advertisers and online keywords
(impressions). Each time a keyword v arrives online, a central
clearinghouse (such as a search engine or other matchmaking
platform) must make an instant and irrevocable decision to
either reject v or assign v to an advertiser showing interest
toward v: the clearinghouse will obtain a profit wu,v as a
result. Each advertiser has a unit capacity (can be matched
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only once) and we aim to design an efficient online algorithm
such that the expected total weight (profit) of all matches is
maximized. Following the seminal work of Karp, Vazirani,
and Vazirani (1990), there has been a large body of research
on related variants (see also the survey by Mehta (2013)).

Apart from Internet advertising, online matching and its
variants have wide applications in other domains such as
crowdsourcing marketplaces (Assadi, Hsu, and Jabbari 2015;
Ho and Vaughan 2012) (e.g., Amazon Mechanical Turk, of-
fline tasks vs. online workers), online recommendation sys-
tems (Ahmed, Dickerson, and Fuge 2017; Chen et al. 2016b;
Sha, Wu, and Niu 2016; Qin and Zhu 2013) (e.g., Amazon
Books, offline products vs. online buyers) and ridesharing
platforms (Tong et al. 2016a; Dickerson et al. 2018a) (e.g.,
Uber and Lyft, offline drivers vs. online requests). In many
real applications, we need to match each online agent with
multiple offline agents simultaneously. A generic model is as
follows: we have a set of offline agents U and online agents V ;
each time an online agent v arrives, we need to immediately
and irrevocably decide if we should reject v or assign v to a
set S ⊆ Nv (Nv refers to the set of offline agents interesting
to v). A natural goal is to design an online matching policy
such that the total weight among all matches is maximized
subject to certain kinds of capacity constraints, e.g., each u
can be matched at most cu times while each v can be matched
with a set |S | ≤ cv , where cu and cv are given as input. In
many real applications, there are inherent conflicts among of-
fline agents by nature, which causes significant algorithmic
challenges. Consider the following motivating examples.

Event-Participant Arrangement in Social Networks. Li et
al. (2014) introduced an interesting event-participant match-
ing problem arising in Event-Based Social Networks (EB-
SNs) such as Meetup and Plancast (Liu et al. 2012). In this
case, the two sets are offline events and online users. Each
time a user arrives, we need to match her to some events
she shows interest in. Naturally, there are potential conflicts
among a set of events S with respect to a user if she cannot
attend all events in S on time due to travel/time constraints.

Online Recommendations in E-Commerce. Chen et
al. (2016a) studied online recommendations in E-Commerce
(e.g., Amazon, Netflix) via online matching models where
the two sets are the offline products/items (e.g., books, mu-
sic, movies) and online users/buyers. Each time an online



user comes, the system needs to generate a set of recommen-
dations she has potential interest in. Items naturally conflict
with each other in the sense that we often need to avoid rec-
ommending multiple items of the same type to each buyer
due to diversity concerns (Chen et al. 2016a).

Task Assignment in Spatial Crowdsourcing Markets.
Tong et al. (2016b; 2016a; 2017) considered task assign-
ment problems in spatial crowdsourcing markets where the
two sides are the respective set of offline tasks and online
workers. In this context, each worker has to travel to the
location of a task to complete it and the traveling time dom-
inates the total completion time (e.g., online food delivery
services such as Uber Eats). In this case, two offline tasks
may conflict for a worker v if she cannot complete the two
tasks before the respective deadlines.

Conflicting relations among offline agents can be very
complicated, causing significant challenges in the modeling.
Here are two examples. She et al. (2016) characterized the
conflict among events in EBSNs as a collection C of conflict-
ing pairs of events. They assume that no user can be assigned
to any pair of conflicting events in C. Chen et al. (2016a)
modeled the conflict in a similar but more soft way: each
time an online agent can be assigned a set of offline agents S,
where the number of conflicting pairs from S in C should be
below a given threshold. Both papers are tightly related and
address a common use case—inter-agent conflict—found in
many applications; yet, as discussed below, both approaches
cannot model the full complexity of many real-world settings.

Both approaches assume that the conflict nature among
offline agents applies uniformly to all online agents. This
assumption greatly limits the applications. Consider the sce-
nario of event-participant arrangement in EBSNs for exam-
ple. It is possible that two events conflict for some user v

but not for v′ due to the different schedules of v and v
′ or

different relative distances from v and v
′ to the two events.

The same issue exists in the spatial crowdsourcing markets as
well. Another drawback of the state-of-the-art models (She et
al. 2016; Chen et al. 2016a) is that they can only capture pair-
wise conflict relations: what if potential conflicts exist only
among at least three offline agents? Consider the scenario of
online recommendations and suppose we define a set of of-
fline items as conflicting if it includes more than two items of
a single type (thus, we see that no pair of conflicting offline
agents exists). Motivated by the wide-ranging applications
of those two recent conflict-aware models, in this paper, we
propose a unifying model that can help overcome the above
two limitations. Next, we briefly discuss our approach (1.1),
our contributions (1.2), and additional related work (1.3).

1.1 Preliminaries & Brief Overview of our Model

Collection of Admissible Sets. We assume that for each on-
line agent v, it has a specific collection Av of admissible
subsets of offline agents. Thus, each time v comes online, we
need to make an instant and irrevocable decision, either to
reject v or assign v a subset S ∈ Av . We assume Av is given
as part of input, which can be obtained by integrating all
information from v with that of offline agents. For example,
consider the event-participant arrangement. For each user v,

Av (the collection of feasible sets of events) can be com-
puted after considering her capacity (cv), the distance from
v to Nv (the set of events interesting to v), schedules of v
and events in Nv , and the travel options available to v. In real
applications, cv captures the “patience” of the online user v
toward the offline agents, e.g., the number of recommenda-
tions to receive from the system and that of events to attend
in EBSNs, which is typically very small.1 The property of
small cv values greatly limits the size of Av; we will leverage
this for model flexibility and algorithmic tractability.

Known Adversarial Distributions (KAD). Assume that we
have T online rounds and a set of online agent types V (both
T and V are known as input). For each round t ∈ [T] 2,
an online agent v is sampled from V with probability pv,t
such that

∑
v∈V pv,t ≤ 1 for all t. Note that the sampling

distributions {pv,t } are independent and allowed to change
over time. Current online matching models attacking con-
flict issues (She et al. 2016; Chen et al. 2016a) both as-
sume adversarial arrival (i.e., the full arrival sequence is
completely unknown), which we believe is too conserva-
tive. In fact, in many real scenarios, we can predict the ar-
rival patterns of online agents via exploiting historical data
(Li et al. 2018; Wang, Fu, and Ye 2018; Yao et al. 2018;
Rzeszotarski and Kittur 2011). Note that KAD is a gener-
alization of another well-studied online arrival assumption,
Known Identical Independent Distributions (KIID), where
the arrival distributions are assumed the same throughout the
online phase (Dickerson et al. 2018b; Singer and Mittal 2013;
Singla and Krause 2013).

In addition to the above two features, we assume that each
offline agent u has an integral capacity cu , the maximum
number of times u can be matched. This is consistent with
most current literature. We call our new model Online Match-
ing with Conflict-Aware Constraints under Known Adversar-
ial Distributions (OM-CC-KAD).

Competitive Ratio. Let ALG(I,D) denote the expected
value obtained by an online algorithm ALG on an input I
and arrival distribution D. Let OPT(I) denote the expected
offline optimal, which refers to the optimal solution when
we are allowed to make choices after observing the entire
sequence of online arrivals. Then, the competitive ratio is

defined as minI,D
ALG(I,D)

OPT(I) . A common technique is to use

a benchmark LP to upper bound OPT(I), and hence get a
valid lower bound on the target competitive ratio.

1.2 Our Contributions

First, we propose a unifying model OM-CC-KAD, which
can capture very general conflicting relations among offline
agents (which can even be sensitive to each online agent) and
also general arrival distributions of online agents (which is
allowed to change throughout the online phase).

Second, we show how this model can be cleanly analyzed
under a theoretical framework. We first construct a linear
program (LP henceforth) LP (1) which we show is a valid

1Direct evidence can be seen in Table 1: the median number of
events attended by users is 2 within three months.

2Throughout this paper, we use [N] to denote the set
{1,2, . . . ,N}, for any integer N .



upper-bound on the expected offline optimal (note that the
latter is hard to characterize). Next, we propose an efficient
LP-based online algorithm that achieves a competitive ratio

of at least 1
e(∆+1) , where ∆ is the maximum size of any ad-

missible set. We give a tight online analysis and show further
that it has a nearly optimal performance among all possible
LP-based online algorithms by presenting relevant hardness
results.

Theorem 1. LP (1) is a valid benchmark for OM-CC-KAD.
There exists an online algorithm based on LP (1), which
achieves an online competitive ratio of at least 1

∆+1
(1 −

1
∆+1

)∆ ≥ 1
e(∆+1) . The online competitive raito analysis is

tight.

Theorem 2. No online algorithm can achieve a ratio bet-
ter than 1

∆−1+1/∆ for OM-CC-KAD, if using LP (1) as the

benchmark.

To prove Theorem 1, we need to lower bound Pr[∧u SFu]
for a certain family of negatively correlated events {SFu} (an
upper bound follows directly from the FKG inequality (For-
tuin, Kasteleyn, and Ginibre 1971)). For the simple case of
unit capacities, we decompose (∧u SFu) into an intersection
of independent events and hence obtain an exact value for
Pr[∧uSFu]. For the case of general integral capacities, we
propose a shadow auxiliary arrival process which is equiv-
alent to the original arrival process but much simpler to
analyze. We then try to identify the worst-case scenario on
this shadow process where Pr[∧u SFu] is minimized. Note
that our final ratio result has completely removed the de-
pendency on the maximum weight over all possible online
assignments, which appears in the online competitive-ratio
results of both She et al. (2016) and Chen et al. (2016a). This
is the exact theoretical evidence showing the advantage of
shifting from adversarial arrivals to KAD by exploiting his-
torical data—which can be done in many real-world settings.

Third, we propose two LP-based heuristics and test them
against two natural baselines, Greedy and Uniform Sampling,
on both real (Meetup, (Liu et al. 2012)) and synthetic data.
Our experimental results confirm our theoretical predictions
about the LP-based heuristics and also show that they can
achieve not only significantly better average performances
(effectiveness) than the two baselines but also maintain rela-
tive low variances (robustness).

1.3 Additional Related Work

Online matching models and related variants have been inten-
sively studied during the last decade under different arrival
assumptions, including adversarial arrivals, random arrival
order and known distributions such as KIID. See the survey
(Mehta 2013). The KAD arrival assumption, which is a gen-
eralization of KIID, has attracted an increasing number of
theoretical and empirical investigations (Alaei, Hajiaghayi,
and Liaghat 2012; Alaei, Hajiaghayi, and Liaghat 2013;
Dickerson et al. 2018a; Xu et al. 2017).

There are several interesting works which have studied
other kinds of constraints imposed on offline agents in dif-
ferent online matching models. Xu et al. (2017) introduced
the multiple-budgeted assignment problem arising in crowd-

sourcing markets, where each assignment of a task to a
worker will consume multiple offline resources. Wang and
Wong (2016) introduced the Matroid Online Bipartite Match-
ing model, where the set of all matched offline agents is
required to be independent in a given matroid. Kell and Pan-
igrahi (2016) considered Online Budgeted Allocation with
General Budgets, where offline agents have multiple tiers
of budget constraints forming a laminar structure. There are
several interesting matching problems with constraints with
applications in the AI and game theory community, which
studied the stability and strategic issues, see, e.g., (Kawase
and Iwasaki 2018; Goto et al. 2016; Kurata et al. 2017;
Aziz et al. 2018).

2 Main Model

In this section, we present a formal statement of our main
model. Suppose we have a bipartite graph G = (U,V) where
U and V represent the offline and online agents respectively.
(Since we will not use single edges of G explicitly, we just
refer to G as (U,V).) We have a finite time (known) horizon
T and for each time t ∈ [T] � {1,2, · · · ,T}, a vertex v will
be sampled (we also say v arrives or comes) from a known
distribution {pv,t } such that

∑
v∈V pv,t ≤ 1. Thus, with prob-

ability 1 −∑
v∈V pv,t , no vertex from V will come. Note that

the sampling process is independent across different rounds.
For each v, it has an admissible collection of subsets of its
neighbors Av ⊆ 2U 3 such that each S ∈ Av has cardinality
of at most ∆. Each time a vertex v arrives, we need to make
an immediate and irrevocable decision: either to reject v or
assign v an admissible set S ∈ Av . Assume that each u has
a capacity cu ∈ Z+, i.e., u can be included in at most cu
different admissible sets. Each assignment S to v is associ-
ated with a non-negative weight/profit wv(S) and our goal is
to design an online assignment policy such that the expected
total weight of all assignments made is maximized. Note that
wv(S) can be different for distinct v even for the same S.

For an assignment f = (v,S, t) (assignment of S ∈ Av to
v at t), let x f = xv,S,t be the probability that f is made in any
offline optimal algorithm. We use LP (1) as our benchmark
LP.

max
∑

t∈[T ]

∑

v∈V

∑

S∈Av

wv(S)xv,S,t (1)

∑
S∈Av

xv,S,t ≤ pv,t ∀v ∈ V, t ∈ [T] (2)
∑

t∈[T ]
∑

v∈V
∑

S∈Av :S∋u xv,S,t ≤ cu ∀u ∈ U (3)

0 ≤ xv,S,t ≤ 1 ∀v ∈ V,S ∈ Av, t ∈ [T] (4)

This LP can be intuitively interpreted as follows. Con-
straint (2) says that for any given t and v, the probability
that we assign v an admissible set should be no more than
probability that v arrives at time t. Constraint (3) means that
the expected number of times that u is assigned through-
out the T rounds should be no more than its capacity cu .
The last constraint (4) is due to the fact that all {xv,S,t } are
probability values and hence should lie in the interval [0,1].
The above analysis suggests that any offline optimal solution

3The collection Av is usually closed under taking subsets, but
we do not require it here.



{xv,S,t } should be feasible for the above LP. Therefore, we
have Lemma 1, which claims that the optimal solution of this
LP is an upper bound on the expected offline optimal value.

Lemma 1. The optimal value to LP (1) is a valid upper
bound for the offline optimal algorithm.

The whole proof mainly consists of justification that any
offline optimal strategy {xv,S,t } should be feasible for LP (1)
and thus the optimal LP value offers a valid upper bound for
the offline optimal value. We omit the proof here.

3 LP-based Online Sampling Algorithms

In this section, we present a class of parameterized LP-based
online algorithms. Suppose {x∗

v,S,t
} is an optimal solution

to LP (1). The main idea behind SAMP (described in Al-
gorithm 1) is as follows. Suppose a vertex v arrives at time
t: we sample an admissible set S from Av with probability
αx∗

v,S,t
/pv,t , where α ∈ (0,1] is a parameter to be optimized

in the analysis. We say a vertex u is safe at (the beginning
of) time t iff u has at least one remaining capacity at t. Con-
sequently, we say an assignment f = (v,S, t) is safe (or S is
safe at t) iff each vertex u ∈ S is safe at t.

Algorithm 1: An LP-Based Sampling Algorithm
(SAMP(α))
1 Suppose at time t ∈ [T], the vertex v arrives.
2 Sample an admissible set S from Av with

probability αx∗
v,S,t

/pv,t .

3 If S is safe at time t (i.e., each vertex in S has at least
one capacity), then assign S to v; otherwise, reject
v.

The second step of Algorithm 1 is well defined since we
have

∑
S∈Av

αx∗
v,S,t

/pv,t ≤ 1 due to constraint (2) in our

benchmark LP.4

A warm-up analysis for SAMP. Now we present a warm-up
analysis for the case SAMP(1/2) and show that it achieves a

ratio at least 1
4∆

.

Theorem 3. By choosing α = 1
2∆

, SAMP(α) achieves an

online competitive ratio of at least 1
4∆

.

The main idea is to prove that each assignment f = (v,S, t)
is successfully made with probability at least

x∗
f

4∆
. Thus by

linearity of expectation and Lemma 1, we get our conclusion.

Proof. Without losing of generality (WLOG) assume that
t = T and consider a given assignment f ∗ = (v∗,S∗

,T).
For each u ∈ S∗, let Au be the (random) number of copies
of u exhausted during the previous T − 1 rounds. Suppose
Hu = { f = (v,S, t)|t < T, v ∈ V,S ∈ Av,u ∈ S}, the set of
assignments during the first T −1 rounds where u is involved.
For each assignment f = (v,S, t), let Xf indicate if f is
successfully made. Thus we see that Au =

∑
f ∈Hu

Xf . Notice

4In other words, with probability 1 −∑
S∈Av

αx∗
v,S,t

/pv,t , we

will do nothing and directly reject vertex v.

that for each f = (v,S, t), we have E[Xf ] ≤
αx∗

f

pv ,t
· pv,t = αx∗

f
,

which is due to the fact that f is successfully made only if v
comes at t and f is sampled. Therefore,

E[Au] = E
[ ∑

f ∈Hu
Xf

]
=

∑
t<T ,v∈V

∑
S:S∈Av ,S∋u E[Xv,S,t ]

≤ ∑
t<T ,v∈V

∑
S:u∈S∈Av

αx∗
v,S,t

≤ αcu due to constraint (3)

Thus by Markov’s inequality, Pr[Au ≥ cu] ≤ α, which im-
plies that Pr[Au ≤ cu −1] ≥ 1−α. Let SF f ∗ be the event that
f ∗ is safe, i.e., all vertices in S∗ has at least one capacity left
at (the beginning of) T . By applying the union bound and
our assumption that |S∗ | ≤ ∆, we have

Pr[SF f ∗ ] = Pr[∧u∈S∗ (Au ≤ cu − 1)] ≥ 1 − ∆α (5)

Therefore, f ∗ will be successfully made with probability at

least
αx∗

f ∗
pv∗ ,T

· pv∗ ,T · (1 − ∆α) = αx∗
f ∗ (1 − ∆α). By setting

α =
1

2∆
, we get that f ∗ is made with probability at least

x∗
f ∗

4∆
.

Thus we get our claim. �

A tight analysis for SAMP. Consider first the following
example which motivates us to obtain the tight analysis.

Example 1. Consider the graph G = (U,V), where U =
{ui |i = 1,2} and V = {vj | j = 1,2,3}. For ease of notation,
we directly use i and j to denote ui and vj respectively. Set
T = 2 and the arrival distributions are as follows: when
t = 1, j = 1,2 arrives with equal probability 1/2 and when
t = 2, j = 3 will arrive with probability 1. Each A j includes
only one single set Sj with 1 ≤ j ≤ 3, where S1 = (u1),
S2 = (u2) and S3 = (u1,u2) with ∆ = 2. Each ui has a unit
capacity ci = 1 for i = 1,2.

Assume all assignments have a unit weight. Let f1 =
(v1,S1, t = 1), f2 = (v2,S2, t = 1) and f3 = (v3,S3, t = 2).
Consider such an optimal solution to LP-(1): x∗

f1
= x∗

f2
=

x∗
f3
= 1/2. Let us analyze the assignment f3 when v3 comes

at t = 2 by running SAMP(α). Observe that f3 is safe iff both
u1 and u2 are safe (i.e., both should have one capacity left
at t = 2). According to SAMP(α), at t = 1 we will choose f1

with probability
αx∗

f1

pv1 ,t=1
= α when v1 comes at t = 1; simi-

larly we will choose f2 with probability α when v2 comes at
t = 1. Notice that at t = 2, u1 and u2 each is safe with proba-
bility 1− α/2, while both u1 and u2 are safe with probability
1 − α.

Remarks. (1) The key inequality (5) in the proof of Theorem
3 obtained via Markov’s inequality and the union bound is not
tight. Consider f3 in the above example, Pr[SF f3 ] = 1 − α >
1−∆α. (2) Unfortunately, the events that different u are safe
are not positively correlated as desired (in which case we
can replace the RHS of inequality (5) with the product of
probabilities of all u is safe). Let SFi be the event that ui
is safe at t = 2 in the above example for i = 1,2. We have
shown that Pr[SF1 ∧ SF2] = 1 − α < Pr[SF1] · Pr[SF2].

Next, we prove Theorem 1. Due to space limitations, we
present only the proof for the simple case of unit capaci-
ties and show that it is the exact case when SAMP achieves



the worst performance. The full proof of the general case is
highly technically involved, which we defer to the supple-
mentary materials. The high-level idea for the case of unit
capacities is as follows: we try to decompose the event that
a given assignment f = (v∗,S∗

, t∗) being safe along the di-
mension of online time-steps t = 1,2, · · · , t∗ − 1 instead of
each u ∈ S∗ is safe.

Proof. WLOG consider the case t = T and a given assign-
ment f ∗ = (v∗,S∗

,T). For each t < T , let Ft = { f = (v,S, t) :
v ∈ V,S ∈ Av, |S ∩ S∗ | ≥ 1} be the set of assignments at t in
which the admissible set has at least one element in S∗. Let
SFt be the event that f ∗ is safe at (the beginning of) t. Thus
we have Pr[SF1] = 1 and Pr[SFt+1 |SFt ] = 1 − ∑

f ∈Ft
αx∗

f
.

Therefore,

Pr[SFT ] = Pr[∧t<TSFt ] =
∏T−1

t=1 Pr[SFt+1 |SFt ] (6)

=

∏T−1
t=1

(
1 −∑

f ∈Ft
αx∗

f

)
(7)

Here are two useful observations. First, for each t < T ,
∑

f ∈Ft
αx∗

f
≤ ∑

v∈V
∑

S∈Av
αx∗

v,S,t

≤ ∑
v∈V αpv,t ≤ α (due to constraint (2))

Second,
∑

t<T , f ∈Ft
αx∗

f
≤ ∑

u∈S∗

( ∑
t<T ,v∈V ,S∈Av ,S∋u αx∗

v,S,t

)

≤ ∑
u∈S∗ α ≤ α∆ (due to constraint (3))

The first observation says that each term after the minus
symbol in the product (7) is at most α while the second
indicates the sum of all those terms (after the minus) over
t ∈ T is at most α∆. Therefore, we claim that the product (7)
has a minimum value of (1−α)∆. This implies that f ∗ will be
successfully made with probability at least αx∗

f ∗ · (1−α)∆. By

choosing α = 1/(∆ + 1) and using linearity of expectation,
we prove our claim. �

The example below shows that the above analysis is tight.

Example 2 (Tight Example). Consider the graph G = (U,V)
where U = {ui |i ∈ [m]},V = {vj | j ∈ [n]} with m = ∆,n =
T = ∆ + 1. For ease of notation, let us use i and j to denote
ui and vj respectively for i ∈ [m], j ∈ [n]. For each t ∈ [T],
pj ,t = 1 iff j = t and 0 otherwise (hence at time t, vertex
j = t arrives surely). For each vertex vj , its corresponding
admissible collect A j includes only one single subset Sj ,
where Sj = (ui, i = j) for each j ∈ [n − 1] and Sn = U and
thus the largest size of {Sj | j ∈ [n]} is equal to ∆. Set ci = 1
for all i ∈ [m] (all ui have a unit capacity).

For each j ∈ [n], let fj = (vj,Sj, t = j) be the only possible
assignment associated with vj when it comes at t = j. Set
xj = x fj and consider such an optimal solution to LP (1):
x∗
j
= 1− ǫ for each j ≤ ∆ and x∗

∆+1
= ǫ (we can always make

such a feasible solution to be optimal by arranging a proper
weight vector).

Now consider the assignment fn = (vn,Sn, t = T)when the
last vertex vn comes at t = T . Let us compute the probability
Pr[SF fn ] that fn is safe in SAMP(α). Observe that assignment
fn will be safe iff none of fj, j < n is successfully made before.

Notice that at each time t < T , SAMP(α) will successfully

make the assignment fj=t with probability
αx∗

j

p j
·pj = α(1−ǫ).

This implies that Pr[SF fn ] = (1−α(1−ǫ))∆, which essentially
matches the lower bound we compute for Pr[SF fn ] in the proof
of Theorem 1.

4 Hardness Results
In this section, we prove Theorem 2. The big idea is to reduce
the classical k-uniform hypergraph matching to a special case
of OM-CC-KAD with ∆ = k.

Proof of Theorem 2. Consider a given k-uniform hypergraph
H = (U,E), whereU and E are the respective set of vertices
and hyperedges with |U| = m and |E | = n. Thus we have that
each hyperedge has a cardinality of k. A hypermatching onH
is a set of hyperedges which is mutually disjoint. Based onH ,
we create an instance I(H) of OM-CC-KAD as follows. Set
the offline and online sets of vertices asU and E respectively.
Let E = { fj | j ∈ [n]} and we view each hyperedge as an
online vertex in our case. Set T = n and for each t ∈ [T],
p fj ,t = 1 iff j = t and 0 otherwise. In other words, at time
t, fj=t comes surely and no other vertex will come. For each
fj , it has a single admissible set Sj = fj ⊆ U (recall that
fj is a hyperedge, i.e., a subset of U). Thus in our case
∆ = maxj |Sj | = k. Assume all admissible sets have a unit
weight and set cu = 1 for all u ∈ U.

Let LP(H) be the standard relaxed LP for H (we use
LP(H) to denote the optimal LP value as well). Similarly,
assume LP(I(H)) as the benchmark LP (1) for I(H). We
can verify that LP(H) is essentially the same as LP(I(H))
and thus the optimal values are the same. Note that any fea-
sible set of assignments { fj} collected by any online algo-
rithm surely form a hypermatching over H . Thus, we claim
that OPT(I(H)) ≤ OPT(H), where the former is the op-
timal online performance while the latter is the maximum
size of matching over H . From (Füredi, Kahn, and Sey-
mour 1993) we see that there does exist some H ∗ such

that
OPT(H∗)
LP(H∗) ≤ 1

k−1+1/k . Thus we claim that
OPT(I(H∗)
LP(I(H∗)) ≤

OPT(H∗)
LP(H∗) ≤ 1

k−1+1/k . �

5 Experiments

In this section, we present our experimental results. We test
SAMP against several natural heuristic baselines on both the
Meetup dataset (Liu et al. 2012) and synthetic datasets. The
details of our datasets and experimental setup are as follows.

Meetup dataset and experimental setup. We use the
Meetup dataset from (Liu et al. 2012) collected between Oct.
2011 to Jan. 2012. Meetup5 is a social platform which facil-
itates pairing users with their target events. In this dataset,
there are three entities: users, events and groups. Every user
and event is associated with a geographic coordinate. Users
and groups are associated with tags which show the corre-
sponding features. Every event inherits the tags of the group
hosting the event. In our experiment, we focus on the city
of San Francisco, and extract users and events with lon-
gitude and latitude in ranges (−122.3475,−122.5201) and

5https://www.meetup.com/



(37.7112,37.8153) respectively. Table 1 presents the statis-
tics of the extracted data. The number of events attended by
users and that of users admitted by events both follow Pareto
distributions (visualized in the supplementary materials).

# users 13492

# events 13596

Avg. # events per user 6.02

Median # events per user 2

Avg. # users per event 5.97

Median # users per event 3

Table 1: Statistics of the Meetup dataset (Liu et al. 2012) in
San Francisco from Oct. 2011 to Jan. 2012.

In our experimental setup, we randomly sample 50 events
(U) and 100 users (V) from the extracted data. We compute
the weight/profit of each assignment similar to (She et al.
2016). First, we manually cluster tags with similar meanings
and select the 20 most popular tags. Then, we represent each
user u and event v as a canonical binary vector of dimension
20 over the selected tags (denote by lu and lv respectively).
For each pair of event u and user v, we define the similarity

between u and v as w(u, v) � 1 − | |lu−lv | |√
20

, where | |lu − lv | |
denotes the Euclidean distance and the denominator

√
20 is to

ensure that w(u, v) ∈ [0,1]. For each subset S ⊆ U, we define
wv(S) =

∑
u∈S w(u, v). For each event u and user v, let ĉu

and ĉv be the respective number of users that u admitted and
number of events that v attended. We set capacity cu = ĉu and

choose cv ∈ {⌈ 1
3
ĉv⌉, ⌈ 2

3
ĉv⌉, ĉv} (since the dataset is collected

over 3 months we offset user’s capacity accordingly). The
dataset does not include, explicitly, the conflict information
over events and we generate the collection of admissible sets
Av for each user v as follows. We set Nv = 2cv and Av = 2Nv .
Select Nv nearest events to v from U as the neighbors of v
(denoted by Nv). We sample cv events from Nv uniformly
with replacement and set an admissible set S as the set of all
distinct events sampled. We repeat this process until we get
min(Av,2

Nv −1) different admissible sets. Set T = 1000 and
for each time t ∈ [T], we generate a random vector {pv,t }
such that each pv,t takes a uniform value from [0,1] and∑

v pv,t = 1.

Synthetic datasets. We set |U | = 50 and |V | = 100, i.e., 50
events and 100 user types. For each user v, we generate its
neighbor Nv by independently sampling each u with proba-
bility p, where p is a given parameter. Let Nv = |Nv |; we set

cv = max(5, Nv

2
) and Av = 2Nv . After obtaining Nv, cv and

Av , we generate the collection of admissible sets Av for each
user v similar to that in the real dataset. Thus each S ∈ Av

has size at most cv and Av has at most Av sets. Let CU be an
upper bound of the capacity for all events and for each event
v, we sample a value from [CU ] according to the distribution
learned from the extracted dataset (with appropriate scaling
such that the total sum is 1). For each pair (u, v), we sample a
uniform value w(u, v) in [0,1] and set wv(S) =

∑
u∈S w(u, v)

for each S ∈ Av . The generation of arrival distributions of
{pv,t } is the same as that in the real dataset. In our experi-
mental setup, we have three parameters (CU,T, p), where T is
the number of online rounds. We generate a set of instances

by varying one single parameter over a range and fixing all
other parameter on the default value. Table 2 summarizes the
details.

Factors Setting

CU 6,8,10,12,14,16,18,20

T 100,200,300,400,500,600,700,800,900,1000

p 0.05,0.1,0.15,0.2,0.25

Table 2: Synthetic dataset, the default settings are marked as
bold.

LP-based heuristics and baselines. We propose two LP-
based heuristics—SAMP(1) and SAMP(0.8)—and test these
two against two other baselines, namely Greedy and Uniform
Sampling. The details of these algorithms are as follows.
Consider a user v arriving at time t.

• SAMP(1): Samples an admissible set S ∈ Av with proba-
bility x∗

v,S,t
/pv,t and assigns S to v if S is safe.

• SAMP(0.8): Samples an admissible set S ∈ Av with prob-
ability 0.8x∗

v,S,t
/pv,t and assigns S to v if S is safe.

• Greedy. Assigns v a safe admissible S ∈ Av which has
the maximum weight wv(S) among all safe choices at time
t (breaking ties arbitrarily).

• Uniform. Samples a set S ∈ Av uniformly and assigns S
to v if S is safe.

Note that among the above four algorithms, only Greedy is
adaptive in the sense that its strategy responds to the outcome
of previous strategies. We test the algorithm SAMP(α) as

suggested by Theorem 1 with α = 1
1+∆

where ∆ = maxv cv is
the largest possible size over all possible admissible sets. On

practical instances, we find SAMP( 1
1+∆

) is too conservative
and works optimally only for the theoretical worst case as
shown in Example 2. As shown in Figures 1 and 2, heuristics
of SAMP(α), with larger α values, (e.g., 1 and 0.8 here) work
much better in both real and synthetic datasets.

Methodology. We solve all LPs via the Glop Linear Solver6
on commodity hardware: an Intel Core i7-7700 (2.80 GHz)
machine with 16GB of main memory. For most of the in-
stances on both real and synthetic datasets, the LPs can be
solved within 30 seconds. For each generated instance (syn-
thetic and real), we run each of the four algorithms for 1000
independent trials. For the real case, we output the maximum,
third quartile, median, first quartile, minimum (the four lines
from top to down) and average (the cross) among the 1000
trials in a box plot. For the synthetic case, we simply take
the average as the final performance. We compute the ratio
of the performance of each algorithm to the optimal value
of the corresponding LP as the final competitive ratio. The
results of the four algorithms on the different settings of the
real and synthetic datasets are summarized respectively in
Figures 1 and 2.

Discussion. Overall, our LP-based heuristics work much bet-
ter than the two baselines. We observe that SAMP(1) >
SAMP(0.8) > Greedy > Uniform overall. Notably,
SAMP(1) can beat the rest two baselines by a non-trivial

6https://developers.google.com/optimization/lp/glop
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