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Abstract—Linear network coding (LNC) is a promising approach to facilitate anonymity in information diffusion because each packet is

generated by linearly combining multiple incoming packets. Since the coefficients used in the linear combination would reveal the

correlation between incoming and outgoing packets at a node, most existing studies on anonymous LNC design focus on encrypting

these coefficients. Despite the importance of these studies, the correlation of coded content can still be analyzed and the potential of

un-encrypted LNC has not been fully exploited. In this paper, we tackle these issues and we propose a novel ALNCode scheme that

can enhance anonymity by generating outgoing packets that are correlated to incoming coded packets of multiple flows. With solid

theoretical analysis, we first prove the probability that incoming coded packets from different flows are correlated. Then, we prove that,

if such correlation exists, we can design deterministic LNC to obfuscate the correlation of packets. With the same condition, we also

prove the probability that a randomly generated coded packet is correlated to coded packets in other flows. Besides the theoretical

study, we conduct extensive numerical experiments to understand the impacts of various coding parameters and the performance of

ALNCode in real scenarios.

Index Terms—Anonymity, information diffusion, network coding, secure linear network coding, deterministic linear network coding,

random linear network coding, traffic analysis.
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1 INTRODUCTION

IN recent years, privacy and anonymity have become in-
creasingly important for information diffusion and prop-

agation in various network scenarios, e.g., social networks,
content delivery networks, etc. [1]–[6]. In a network, when
an attacker can only observe a snapshot of the spread of
a content at a certain time, information diffusion schemes
have been designed to obfuscate the real source by multiple
pseudo sources [7], [8].

In this paper, we consider a stronger attack model, in
which an attacker can continuously monitor the network
flows within a time period. In this case, to enable anony-
mous communication, a critical issue is how to preserve flow
untraceability, which aims to hide the routing path, source,
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and receiver from malicious attackers with wiretapping and
traffic analysis capabilities.

To provide flow untraceability against traffic analysis
attacks, the basic requirement is to protect the routing infor-
mation using secure routing protocols [9]–[11]. In addition
to that, traditional approaches [12], [13] have to: (1) hide the
content correlation among packets with per-hop encryption,
(2) hide the size correlation of packets by padding packets
with random symbols, and (3) hide the time correlation
among packets of the same flow by mixing the order of
packet transmissions from different flows at intermediate
nodes. Clearly, these schemes are computationally expen-
sive.

To achieve the same objectives with much better effi-
ciency, a promising technology is linear network coding (LNC)
[14], [15]. In LNC, a group of original packets in a flow,
known as a generation, are used to generate coded packets
at the source node. Each coded packet has a Global Encoding
Vector (GEV), which consists of the coding coefficients to
produce the coded packet from the set of original packets.
At an intermediate node, each outgoing packet of a flow
is generated by linearly combining the incoming packets of
the same flow, where we define a Coded Data Vector (CDV)
as a vector that includes both GEV and coded payload.

Therefore, LNC naturally avoids copying packets in the
same flow, which may conceal the content correlation (to be
investigated in this paper) without using computationally
expensive encryption. Moreover, with LNC, coded packets
can have an equal size and are buffered at intermediate
nodes to generate new coded packets, naturally preventing
correlating packet sizes and arrival time patterns. Never-
theless, given the encoding mechanisms of LNC, linear
dependency among GEVs of coded packets may reveal
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(a) A network with three unicast sessions. (b) A GEV generated without considering annonymity. (c) An obfuscated GEV generated.

Fig. 1. ALNCode design: an example.

information of the flow path, if a wiretapper analyzes the
correlation between incoming GEVs and outgoing ones.

We now use an example in Fig. 1 to demonstrate this
problem. In Fig. 1, there are 2 unicast flows in the network,
denoted as fi (i ∈ {1, 2}) with source si and destination
di. We consider that each flow can utilize multiple paths
and we also assume that all packets are generated by LNC
on the finite field F3, with 4 packets in a generation. At
a certain time epoch, we assume that node k buffered a
total of 6 packets, in which there are four coded packets
from flow f1 with GEVs v1,j , j ∈ {1, 2, 3, 4} and two coded
packets from flow f2 with GEVs v2,1 and v2,2. For each flow,
the intermediate node k only buffers coded packets with
linearly independent GEVs and generates new outgoing
coded packets by linearly combining these buffered coded
packets.

In Fig. 1(b), node k can generate a new coded packet
for flow f1 by adding two received packets with linearly
independent GEVs v1,1 and v1,2, and derive the new GEV
as v1,5 = v1,1 + v1,2. In this example, from the attacker’s
point of view, since the intermediate node k only buffers
coded packets with linearly independent GEVs for each
flow and the size of generation is 4, the new GEV, i.e., v1,5, is
generated by no more than four linearly independent GEVs.
Since v1,5 can only be generated by adding v1,1 and v1,2,
the attacker can tell these three packets belong to the same
flow.

To hide the correlation among GEVs, most existing stud-
ies suggest to encrypt GEVs [4]–[6]. In [4], [5], the authors
proposed different schemes to firstly share a secret key
between the source and the destination, then apply a homo-
morphic encryption function that allows intermediate nodes to
produce new encrypted GEVs without knowing the secret
key, and finally let the destination decrypt received GEVs
with the pre-shared secret key. On the other hand, based on
the ideas of shift cipher, Zhang et al. proposed to reorder
the content in a coded packet at the source node such that
the GEV is permutated in coded payload [6]. Although the
existing anonymous LNC schemes can hide the correlation
among GEVs, we note that part of each coded packet is
shown in plaintext, e.g., the payload in [4] or the reordered
GEV and payload in [6]. Clearly, an adversary can analyze
the linear correlation using the whole (or any part of the)
coded packets, i.e., CDVs. Therefore, in this paper, we will
investigate the design of LNC to defend such traffic analysis
attacks, including GEV analysis attack from an attacker with
limited computation capability, and CDV analysis attack
from an attacker with higher computation capability.

Specifically, although the linear correlations of incoming
and outgoing vectors can be utilized by the attacker to infer
the flow path, we can also utilize such linear correlations to
generate obfuscated vectors to make the outgoing vectors
have linear correlations with not only the incoming vectors
from the same flow but also those from other flows, which

can efficiently provide the flow anonymity without using
encryption. Based on this idea, we will propose a novel
anonymous LNC scheme, ALNCode, that can efficiently
achieve flow untraceability in a communication network
with multiple unicast flows.

We now illustrate our idea by using an example in
Fig. 1(c). Different to the case in Fig. 1(b), node k now
generates a new GEV∗ by v1,5 = v1,3 + v1,4. The new
GEV is now obfuscated, because v1,5 = 2v2,1 = 2v1,3 +
v2,2 = 2v1,4 + 2v2,2. As a result, v1,5 is not only correlated
with {v1,3,v1,4}, but also {v2,1}, {v1,3,v2,2}, {v1,4,v2,2}.
It means that the newly generated GEV for flow f1 is
correlated with GEVs in flow f2. Therefore, to any traffic
analysis attacker that tries to correlate the incoming and
outgoing GEVs, it would not be able to tell accurately which
packets belong to the same flow.

Next, we first summarize the main contributions of this
paper and then explain the new contributions by comparing
this paper with its conference version [1].

⊲ We propose a novel anonymous LNC scheme,
ALNCode, based on the idea to generate obfuscated
coded data, i.e, GEVs or CDVs, which can provide
anonymity in networks with multiple unicast flows.

⊲ We theoretically prove the probability that incom-
ing coded data from different flows are correlated.
We also conduct extensive numerical experiments to
evaluate the impact of various LNC parameters.

⊲ We prove that, if there exists correlation between
incoming coded data in different flows, then we can
generate obfuscated coded data using the ALNCode.

⊲ Given the correlation requirement for incoming
coded data, we design an efficient deterministic LNC
scheme such that outgoing coded data are guaran-
teed to obfuscate their correlation with the incoming
coded data in different flows.

⊲ Given the same conditions, we also give theoretical
analysis to show the potential of using the standard
random LNC to thwart traffic analysis attacks.

⊲ We conduct solid security analysis for the ALNCode
against GEV (or CDV) analysis attacks.

Compared with our prior work [1], the new contribu-
tions include: (1) We extend our ideas for defending against
the GEV analysis attack to the case that the attacker has
higher computation capability and thus can analyze the
whole CDVs. To this end, we consider GEVs and CDVs
as vectors in general and conduct theoretical analysis and
numerical experiments to investigate the probability that
there exists an obfuscated vector in Sec. 3. (2) In addition to
designing deterministic LNC, we also theoretically analyze
the lower bound of the probability that a standard random

∗. Here we still use the GEV as example but the same idea can be
applied to CDV as well.



3

LNC can produce an obfuscated GEV or CDV in Sec. 3.4.
(3) We provide new theoretical analysis and simulation
results to evaluate the performance of the proposed schemes
against traffic analysis attack in Sec. 4.1 and Sec. 4.2, for
which we introduce a new concept, i.e., anonymity level, in
Sec. 2. (4) We add discussions on the impact of parameters
selection in Sec. 4.3 and discussions on the implementation
of the ALNCode scheme in Sec. 4.4. (5) We discuss the
relationships of our work with more related work from
different aspects in Sec. 5, which covers the state-of-the-art.

The rest of the paper is organized as follows. We formally
present the models of linear network coding and traffic
analysis attacks in Sec. 2. In Sec. 3, we first prove the proba-
bility that incoming coded packets from different flows are
correlated. Then, we prove that, if such correlation exists,
we can design deterministic LNC such that the outgoing
coded packets of a flow are guaranteed to be correlated to
incoming coded packets in other flows, which can obfuscate
the correlation of packets in a flow. With the same condition,
we also prove the probability that a randomly generated
coded packet is correlated to coded packets in other flows.
Sec. 4 discusses how our mechanism can efficiently defend
against both GEV analysis attack and CDV analysis attack.
We discuss related work in Sec. 5 and conclude the paper in
Sec. 6.

2 ANONYMOUS COMMUNICATION MODEL WITH

LNC

In this section, we present the network, LNC model, and the
traffic analysis attacks studied in this paper.

2.1 Network and Linear Network Coding Models

We consider a communication network with multiple uni-
cast flows between multiple pairs of source and destination
nodes. We assume that the network topology for transmis-
sion is fixed, and we assume that an LNC scheme (e.g.,
the scheme in [14]) is already used in the network to
deliver multiple unicast flows, so most functions in existing
LNC schemes, including routing, will be used. Specifically,
each flow has a unique flow number and may go through
multiple simple paths, where a simple path consists of a
sequence of links with no duplicated link. For each unicast
flow, the existing LNC scheme can determine all the simple
paths and the number of CDVs transmitted on each path.
Usually, edge-disjoint is not required when the LNC selects
paths. The paths of different flows may intersect at common
intermediate nodes (e.g., node k in Fig. 1(a)).

With LNC, a source node partitions the data flow into
data blocks of the fixed size H , and every h consecutive
data blocks in the flow form a generation. LNC is performed
among data blocks in the same generation of a flow. A coded
packet transmitted on each link consists of the coded data
block and the GEV representing the coding coefficients to
produce the coded data block from the original data blocks.

Source encoding: Given original blocks {m1, · · · ,mh} in
generation j of flow i, the source node selects h linearly
independent GEVs, {v1, · · · ,vh}, over vector space F

h
q , and

generates h coded data blocks {m′
1, · · · ,m

′
h} using these

GEVs. The h coded data blocks are generated as follows,
shown together with the GEVs:

[

vn m′
n

]

=

[

vn

h
∑

l=1

vn,lmn

]

, (1)

where 1 ≤ n ≤ h and vn,l is the lth element of vector vn.
Intermediate node encoding: Each intermediate node

buffers coded packets received for a generation of a flow
for T time slots, and produces new coded packets for this
generation from the buffered packets. Suppose the node
has received r coded data blocks {m′

1, · · · ,m
′
r} for gen-

eration j of flow i during time T , corresponding to r GEVs
{v′

1, · · · ,v
′
r}. To generate a new coded packet, it produces a

local encoding vector c = [c1, · · · , cr] from vector space F
r
q ,

and then generates the new coded data block m′′ together
with a new GEV v′′ as:

[

v′′ m′′
]

=

[

r
∑

l=1
clv

′
l

r
∑

l=1
clm

′
l

]

. (2)

Destination decoding: After receiving h coded data blocks
{m′′

1 , · · · ,m
′′
h} from generation j of flow i with linearly

independent GEVs {v′′
1 , · · · ,v

′′
h}, a destination node recov-

ers the original data blocks {m1, · · · ,mh} by inverting the
matrix composed by the GEVs:







m1

...
mh






=







v′′
1
...
v′′
h







−1 





m′′
1

...
m′′

h






. (3)

In this paper, we use intra-session LNC, in which the out-
going vectors for a flow are generated by linearly combining
the incoming vectors from the same flow. The design objec-
tive is different to the objectives in existing inter-flow LNC
[16]. Specifically, our design aims to protect the anonymity
of information diffusion by generating outgoing vectors for
a flow that have linear dependency with incoming vectors
from other flows.

In a practical communication network, each coded data
block to be delivered is tagged with its routing information,
flow number, generation number, and the GEV, which to-
gether is referred to as a coded packet and all coded packets
in the network have an equal size [14], [15]. We also assume
that a secure and anonymous routing protocol [9]–[11] is in
place (similar to the assumptions made in [4] and [6]). With
such a protocol, the routing information, flow and genera-
tion numbers attached to each coded packet are protected.
On the other hand, GEVs and CDVs are not encrypted.

2.2 The Attack Model

We consider a passive wiretapping attacker with traffic
analysis abilities from outside of the network. We assume
that it can continuously monitor the network state within a
time period. Specifically, it can observe all the packets along
all the links in the network and analyze them, attempting
to identify sources, destinations, and paths of the flows [4],
[12], [13].

For the attacker, routing, flow, and generation infor-
mation for each coded packet sniffed is hidden (by the
secure and anonymous routing protocol), but GEVs and
coded data blocks, i.e., the payload of the coded packet, are
open. The coded data blocks of each coded packet and its
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TABLE 1
Notations

Symbol Definition
Symbol in
bold font

Vectors, matrixes and linear spans

Symbol T transpose of a matrix or a vector

Fq
a finite field of size q, over which the LNC is
defined.

h the number of data blocks in each generation of
a flow

H the size of each data block
t the number of elements in each vector. For

GEVs, t = h. For CDVs, t = h+H.

A

the set of GEVs (or CDVs) received by node k
from generation j of flow i in the past T time
slots

B
the set of GEVs (or CDVs) received by node k
from flows other than i in the past T time slots

R dim(L(A ∪B))
f1, f2 f1 = |A|; f2 = |B|

F
the total number of GEVs (or CDVs) received by
node k from all the flows in the past T time slots

L(·)
linear span of a set of vectors. For a matrix Y,
L(Y) is the row vector space of Y

rank(Y) the rank of a matrix Y

ri r1 =dim(L(A)),r2 =dim(L(B))
P (A) the probability that condition A is satisfied

P (A|B) the probability that condition A is satisfied when
condition B is satisfied

C
the matrix formed by nonzero vectors in the set
of vectors C as its rows

Ni,j,k the basis of vector space L(A) ∩ L(B)
N N = |Ni,j,k| =dim(L(A) ∩ L(B))

Θi,j,k
the obfuscated basis of L(A) which is the basis
of L(A) extended from Ni,j,k

corresponding GEV is referred as coded data vector (CDV). In
this paper, we consider two kinds of attackers: the first kind
attacker has limited computation capability which can only
analyze the GEVs of each coded blocks, the second kind
attacker has high computation capability which can fully
analyze the CDVs.

In this paper, we will design an LNC scheme to enhanced
anonymity against traffic analysis and flow tracing. Specifi-
cally, the flow untraceability objective studied in this paper
is to hide the linear correlations of incoming and outgoing
GEVs (or CDVs) for each flow at each intermediate node, i.e.,
each newly generated outgoing GEV (or CDV) is linearly
dependent with multiple incoming GEVs (or CDVs) from
other sources.

To measure the anonymity, we define the anonymity level
for each outgoing GEV (or CDV) as the number of incoming
GEVs (or CDVs) linearly correlated with the outgoing GEV
(or CDV), i.e., the number of incoming GEVs (or CDVs)
should be traced back from one outgoing GEV (or CDV).
In the following sections, we will show that the increased
number of incoming GEVs (or CDVs) linearly correlated
with the outgoing GEV (or CDV) not only increases the
computational complexity of traffic analysis attack, but also
decreases the probability that the attacker traces the flow
back (forth) to the multiple sources (destinations), and
consequently the attacker cannot identify the real source
(destination).

To facilitate further discussions, we summarize impor-
tant notations in the paper for ease of reference in Table I.

3 ALNCode: A NOVEL ANONYMOUS LINEAR

NETWORK CODING AGAINST TRAFFIC ANALYSIS

ATTACKS

We now present our Anonymous Linear Network Coding
(ALNCode) mechanism to provide flow untraceability. We
firstly give theoretical analysis to acquire the sufficient and
necessary condition that the correlation of packets in a flow
can be obfuscated. Then, we prove that, if the sufficient and
necessary condition is satisfied, we can design deterministic
LNC such that the outgoing coded packets of a flow are
guaranteed to be correlated to incoming coded packets
in other flows. With the same condition, we also prove
the probability that a randomly generated coded packet is
correlated to coded packets in other flows. These theoretical
results show that the proposed ALNCode can achieve anony-
mous communication even without encrypting the packet.

3.1 Theoretical Analysis

In this subsection, we first prove the sufficient and necessary
condition that outgoing coded packets of a flow can be gen-
erated to be correlated to incoming coded packets in other
flows, which can obfuscate the correlation of packets in a
flow. We then prove the probability that such condition is
satisfied. We also conduct theoretical analysis and extensive
numerical experiments to understand the impacts of LNC
parameters, such as the finite field of LNC, the number of
original data blocks, etc.

3.1.1 Definitions

The key idea in ALNCode is to produce obfuscated GEVs (or
CDVs) at intermediate nodes, which are linearly correlated
not only with received GEVs (or CDVs) from the same flow,
but also those from other flows. Before we give the basic
idea of ALNCode scheme, we first show the definition of
the obfuscated vector. Suppose that A and B are two sets of
vectors, we have the following definition.

Definition 1. u is an obfuscated vector for vector space L(A),
w.r.t B, iff u ∈ L(A) and there exists a maximal linearly
independent set of A ∪ B, denoted as {v1, · · · ,vR}, in which

{vg,vg+1, · · · ,vR} ⊆ B, 1 ≤ g ≤ R, u =
R
∑

l=1
clvl and

[cg, cg+1, · · · , cR] is a nonzero vector.

From the above definition, the obfuscated vector u of
vector space L(A) not only can be generated by the vectors
in A, but also has linear correlations with linearly indepen-
dent vectors in set B. Therefore, if an attacker analyzes the
linear correlations between obfuscated vector u of vector
space L(A) and the set of vectors A∪B, it cannot tell which
set of vectors (i.e., A) are used to generate vector u. Fig. 2
shows the idea.

Accordingly, suppose that A is the set of GEVs (or CDVs)
received at intermediate node k from generation j of flow i
and B is the set of GEVs (or CDVs) received at k from flows
other than i, we have the formal definition of the obfuscated
GEV (or CDV).

Definition 2. ui,j is an obfuscated GEV (or CDV) for gen-
eration j of flow i, iff ui,j ∈ L(A) and there exists a maximal
linearly independent set of A ∪B, denoted as {v1, · · · ,vR}, in
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Fig. 2. Generate an obfuscated vector u for vector set A at node
k, where {v1, · · · ,vR} is a maximum independent set of A ∪ B,

{vg, vg+1, · · · ,vR} ⊆ B, 1 ≤ g ≤ R, u =
R∑

l=1

clvl and

[cg, cg+1, · · · , cR] is a nonzero vector.

which {vg,vg+1, · · · ,vR} ⊆ B, 1 ≤ g ≤ R, ui,j =
R
∑

l=1

clvl

and [cg, cg+1, · · · , cR] is a nonzero vector.

In the above definition, ui,j ∈ L(A) means the new
outgoing GEV (or CDV) ui,j can be generated by incoming
GEVs (or CDVs) from the same generation and flow, which
is the requirement of network coding. Moreover, the second
part condition means the generated GEV (or CDV) ui,j

also has linear correlations with GEVs (or CDVs) received
from other flows, which is the requirement of confusing the
GEV (or CDV) analysis attacker. In this way, if an attacker
attempts to trace back the source of the coded packet with
GEV (or CDV) ui,j , it would fail to identify which flow the
packet actually belongs to.

3.1.2 The Existence of Obfuscated Vector

We next prove the sufficient and necessary condition that an
obfuscated vector does exist.

Theorem 1. Given two sets of vectors A and B, an obfuscated
vector u exists for L(A), iff dim(L(A) ∩ L(B)) 6= 0.

Proof. The proof is shown in Appendix A†.

3.1.3 The Intersection Probability

In this subsection, we will prove the probability that the
sufficient and necessary condition is satisfied.

In practice, the contents of most unicast flows are ran-
domized at the source nodes by using compression and
encryption schemes defined in protocols, such as Hypertext
Transfer Protocol Secure (HTTPS) and Secure Shell (SSH). For
example, a recent study by Google‡ shows that the percent-
age of HTTPS traffic is increasing significantly in the past
three years and now more than 60% Chrome traffic are using
HTTPS.

When LNC is used, the source node usually chooses
every coefficient in GEV randomly from a finite field Fq .
Consequently, the coded vectors (i.e., GEVs and CDVs) sent
from the source node of a flow can be considered as a
sequence of vectors that are randomly and independently
selected from vector space F

t

q , where t is the number of
elements in each vector and t = h for GEV and t = h+H for
CDV, respectively. Similarly, when an intermediate node k

receives some vectors in a generation of a flow, it usually
generates outgoing vectors by randomly choosing coeffi-
cients in Fq to linearly combine incoming vectors. So the
outgoing vectors from node k can be viewed as a sequence

†. All appendixes are in the supplements.
‡. https://www.zdnet.com/article/google-this-surge-in-chrome-

https-traffic-shows-how-much-safer-you-now-are-online/

of vectors that are randomly and independently selected
from the linear span of incoming vectors.

Based on these analyses, we now consider all the incom-
ing vectors from generation j of flow i received by node
k. Let the number of these incoming vectors be f1. Since
these incoming vectors are coming from one or more other
nodes and the vectors generated by each of them may be
selected in different linear spans, the linear span of these
incoming vectors can be very complicated. To address this
issue, we will consider two cases. In the first case, to simplify
the analysis, we assume that node k receives f1 incoming
vectors that are randomly and independently selected from
vector space F

t

q . In the second case, we can assume that node
k can find the linear span of f1 incoming vectors and we let
the dimension of the linear span be r.

Next, we consider the vectors received by node k from
all other flows. Let the number of these incoming vectors
be f2. Since these vectors belong to different flows, we will
assume that node k receives f2 vectors that are randomly
and independently selected from vector space F

t

q .
We now define the intersection probability as the probabil-

ity that the linear span of vectors in one flow has non-empty
intersection with the linear span of vectors from all other
flows. In the first case for incoming vectors in one flow, we
state and prove Lemma 1 to show the probability that the
dimension of the linear span of all incoming vectors equals
to r. We then develop Theorem 2 for the lower bound of the
intersection probability. For the second case, we state and
prove Lemma 2 to show the lower bound of the intersection
probability.

Let A be the set of incoming vectors from generation j
of flow i received by node k and B be the set of incoming
vectors from all other flows received by node k. To simplify
the notations, we also let L1 and L2 be the linear spans for

A and B, respectively. Let

[

m
r

]

q

be the Gaussian binomial

coefficient, i.e.,

[

m
r

]

q

= (qm−1)(qm−1−1)···(qm−r+1−1)
(q−1)(q2−1)···(qr−1) , 0 <

r ≤ m. We set

[

m
0

]

q

= 1, ∀m > 0. We first prove the

following lemma.

Lemma 1. For any m×n dimensional matrix Y whose elements
are randomly selected from finite field Fq , the probability that
rank(Y) = r, 0 ≤ r ≤ min(m,n) is given by:

p1(m,n, r, q) =

[

m
r

]

q

n
∏

l=n−r+1

(ql − 1)q
r(r−1)

2 −mn.

Proof. The proof is shown in Appendix B.

From Lemma 1, we have p1(m,n, r, q) = p1(n,m, r, q).
Next, we develop a lower bound of intersection probability
in the second case for incoming vectors in one flow.

Lemma 2. Given a vector space L1 with dim(L1) = r(r ≥ 0),
if L2 is a vector space spanned by f2 vectors randomly selected
from F

t

q in order, the probability that dim(L1 ∩ L2) 6= 0 is:

p2(r, f2, t, q) ≥ 1−

min(f2,t−r)
∑

g=0

p1(f2, t− r, g, q)q(g−f2)r.

Proof. The proof is shown in Appendix C.
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Fig. 3. Lower bound of intersection probability under different influential
parameters.

Now we prove the lower bound of the intersection
probability in the first case for incoming vectors in one flow.

Theorem 2. Suppose that f1 and f2 received vectors are ran-
domly selected from F

t

q , respectively, for any t, q, f1, f2 ≥ 0, the
probability dim(L1 ∩ L2) 6= 0 satisfies:

P (dim(L1 ∩ L2) 6= 0)

≥

min(f1,t)
∑

r=0

(

[

f1
r

]

q

t
∏

l=t−r+1

(ql − 1)q
r(r−1)

2
−f1t

)

×



1−

min(f2,t−r)
∑

g=0





[

f2
g

]

q

t−r
∏

l=t−r−g+1

(ql − 1)q
g(g−1)

2
−f2t+gr







 .

Proof. The proof is shown in Appendix D.

It shall be noted that, for any distribution of the received
vectors, an intermediate node can always generate new
coded vectors according to the proposed ALNCode (Algo-
rithm 1) or random linear network coding with appropriate
parameters (Theorem 4), because both the schemes are not
based on the assumption of random distribution of received
vectors.

3.1.4 The Influential Parameters

We next conduct theoretical analysis and extensive numeri-
cal experiments to understand the impacts of LNC parame-
ters, such as the finite field of LNC, the number of original
data blocks, etc.

To provide a better idea of the intersection probability
with its deciding parameters, we show the lower bound
derived in Theorem 2 at different values of f1, f2, t, and
q. Fig. 3(a) and (b) show that the probability increases
with the increase of f1 and f2, respectively. The reason is
straightforward: when t and q are fixed, the more coded
packets a node receives in the current flow and in other
flows, the larger probability that the two vector spaces L1

and L2 have nonzero intersection.

Corollary 1. Suppose that Y is an m× t dimensional matrix in
which the elements are randomly selected from Fq , the probability
that Y is full rank is:















t
∏

i=t−m+1
(1− 1

qi
), when m ≤ t;

m
∏

i=m−t+1
(1− 1

qi
), when m > t;

Proof. From Lemma 1, it holds obviously.

From Corollary 1, we can conclude that the full rank
probability of m × t-dimensional matrix Y increases as
the increase of q. Moreover, the full rank probability also
increases as the increase of t when m ≤ t, and increases as
the decrease of t when m > t.

An m × t dimensional matrix can be formed by the
received m vectors as its rows, i.e., the ith row vector of
the matrix is the ith received vector. Therefore, the m × t

dimensional matrix, in which each element is randomly
selected from Fq , and the m vectors randomly selected from
F
t

q has one to one correspondence.
Fig. 3(c) shows that the probability decreases with the

increase of t, while Fig. 3(d) demonstrates different trends
with the increase of q in different cases. In particular, for
∀f1, f2 > 0, we show below with analysis that: when
f1 + f2 ≤ t, this lower bound probability decreases with the
increase of q and t; otherwise, it increases with the increase
of q and decreases with the increase of t.

When f1 + f2 ≤ t, from Corollary 1, the probability that
the (f1 + f2)× t dimensional matrix formed by the received
vectors (i.e., GEVs or CDVs) as its rows has full rank, is
higher with larger q and t. When the (f1+f2)×t dimensional
matrix has full rank, the f1 + f2 vectors are linearly inde-
pendent (since f1+f2 ≤ t), i.e., dim(L1∩L2) = 0. Thus, the
intersection probability decreases with the increase of q and
t. Similar results are presented in [17], [18], which show the
probability that the received GEVs are independent grows
to 1, when q and t grow to infinity if the number of received
coded packets are no more than t.

When f1 + f2 > t, let V3 =

[

A

B

]

. The analysis is

shown below:
Given two groups of vectors A and B over a vector

space F
t

q , L1 and L2 are subspaces of F
t

q . Then both their
intersection L1∩L2 and their sum L1+L2 are also subspaces
of Ft

q . We have [19]:

dim(L1) + dim(L2) = dim(L1 + L2) + dim(L1 ∩ L2) (4)

where dim(L1 + L2) = dim(L(A ∪B)).
Given a set of vectors V, let V be the matrix formed by

nonzero vectors in V as its rows. We have:

dim(L1) = rank(A),dim(L2) = rank(B) and

dim(L(A ∪B)) = rank(

[

A

B

]

)

Therefore, we have:

dim(L1 ∩ L2) = dim(L1) + dim(L2)− dim(L(A ∪B))

= rank(A) + rank(B)− rank(V3).

When the f1 vectors received from generation j of flow i are
linearly independent, and the f2 vectors received from other
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flows are linearly independent, then rank(A) = min(f1, t),
rank(B) = min(f2, t), and rank(V3) ≤ t. In this case, we
have

dim(L1 ∩ L2) = rank(A) + rank(B)− rank(V3)

≥ min(f1, t) + min(f2, t)− t

> 0. (since f1 + f2 > t and f1, f2 > 0)

Therefore, if the probability that A and B have full ranks
increases, the probability that dim(L1 ∩ L2) > 0 increases.
From Corollary 1, the former probabilities increase with the
increase of q and the decrease of t.

The above results shows that obfuscated vectors (GEVs
or CDVs) exist with high probability when appropriate
coding parameters are selected. Moreover, it can guide the
practical selection of field size (q), the number of data
blocks per generation (h), and the number of packets to
buffer before recoding (f1) received coded packets, given
the routes of flows decided by the routing protocol (which
determines f2). In general, an intermediate node may buffer
sufficient number of linearly independent coded packets in
generation j of flow i to produce different newly coded
packets. When dividing a flow into generations, a reason-
ably small h should be chosen to guarantee a good inter-
section probability, as well as low decoding complexity. The
finite field size q can then be set accordingly: if many coded
packets can be received at each node such that f1+f2 > t, a
relatively large q can be used, but not too large considering
the communication overhead (the ratio of GEV length and
packet length) and decoding complexity (Gaussian elimina-
tion); if few coded packets can be received, we can simply
select q = 2 for the best intersection probability.

3.2 The Basic Idea

In this subsection, we show the basic ideas to generate ob-
fuscated vectors for vector space L1 when dim(L1∩L2) 6= 0.

Suppose Ni,j,k = {n1, · · · ,nN} denotes the basis of vec-
tor space L1∩L2, Ni,j,k can be extended to the basis of vec-
tor space L1 (with methods described in Sec. 3.3), i.e., letting
r1 = dim(L1), there exist r1−N vectors, {αl1 , · · · ,αlr1−N

},
in A, such that Θi,j,k = {n1, · · · ,nN ,αl1 , · · · ,αlr1−N

}
forms the basis of L1. Θi,j,k is referred to as the obfuscated
basis of L1. Let Θi,j,k be the matrix formed by vectors in
Θi,j,k as its rows, and ρ = [ρ1, · · · , ρr1 ] be a vector in F

r1
q .

Set vi,j = ρΘi,j,k. Next, we prove the sufficient condition
under which vi,j produced above is an obfuscated vector.

Theorem 3. When dim(L1 ∩ L2) 6= 0, the vector vi,j is an
obfuscated vector, if not all the first N elements of ρ are zero.

Proof. The proof is shown in Appendix E.

3.3 A Deterministic Linear Network Coding Scheme

Based on Definition 2, Theorems 1 and 3, we now design
a detailed LNC scheme, by which r1 new coded packets
with linearly independent obfuscated vectors (i.e., GEVs or
CDVs) can be generated at each intermediate node k, after
it receives r1 linearly independent vectors (i.e., GEVs or
CDVs) in the past T time slots from generation j of flow
i, as long as dim(L1 ∩ L2) 6= 0 is satisfied.

According to the basic ideas illustrated in the previous
section, we firstly summarize the steps to obtain the ob-
fuscated r1 new coded packets with linearly independent
obfuscated vectors as follows:

⊲ Obtain L1 ∩ L2 from the received vectors at node k

from generation j of flow i and other flows.
⊲ Derive Ni,j,k, i.e., the basis of L1 ∩ L2, and extend it

to Θi,j,k, i.e., the basis of vector space L1.
⊲ Select r1 linearly independent vectors ρ1, · · · ,ρr1

, in
which ρm ∈ F

r1
q with the first N elements not all

zero, m ∈ {1, · · · , r1}.
⊲ Generate the mth obfuscated vector for generation j

of flow i: vm = ρmΘi,j,k.

We next detail these procedures, as well as how local
encoding vectors are formed at k to generate these new
vectors from received vectors.

1) Derive Θi,j,k

Let Λ = {α1, · · · ,αr1} be the maximal linearly inde-
pendent set of A. Λ is the basis of L1. Let Λ be the matrix
formed by vectors in Λ as its rows. Let Γ = {β1, · · · ,βr2

}
be the maximal linearly independent set of B. Γ is the basis
of L2. We compute the basis of L1 ∩ L2 and extend it to the
basis of L1 following a general method [20]:

i) Construct a matrix X = [αT
1 , · · · ,α

T
r1
,βT

1 , · · · ,β
T
r2
]

and then reduce X to its reduced row-echelon form rref(X)
by Gaussian elimination. Note that if a row of rref(X) is
nonzero, the first nonzero element of this row is refereed
to as the pivot of the row. A non-pivotal column refers to a
column no elements of which is a pivot.

ii) Let N ′ be the number of non-pivotal columns of
rref(X). Then N ′ = N = dim(L1 ∩L2) [20]. We can obtain

N linear combinations
r1
∑

l=1

an,lαl, 1 ≤ n ≤ N , where an,i is

the ith element of the nth non-pivotal column of rref(X).
These linear combinations form the basis of L1 ∩ L2, i.e.,
Ni,j,k.

iii) To derive Θi,j,k, a basis of L1 which contains Ni,j,k,
we first construct a matrix

Φ =

[

r1
∑

l=1

a1,lα
T
l , · · · ,

r1
∑

l=1

aN,lα
T
l , αT

1 , · · · , αT
r1

]

.

We know the basis of the column space of Φ can be
derived as follows: reduce Φ to its reduced row-echelon
form rref(Φ), and then those column vectors in Φ, that
correspond to the columns in rref(Φ) containing piv-
ots, form the basis. The column space of Φ is indeed
L(Ni,j,k ∪ A) = L1, and thus we have derived a basis of
L1. In addition, since the set of vectors in Ni,j,k are linearly
independent, all the column vectors in the Ni,j,k part of Φ
correspond to columns in rref(Φ) containing pivots. Thus,
the basis of L1 derived above is composed of all the vectors
in Ni,j,k, as well as r1 − N other vectors in A, which we
denote as {αL1 , · · · ,αlr1−N

}. Θi,j,k, the basis of L1 which
contains Ni,j,k, is thus derived as

{
r1
∑

l=1

a1,lαl, · · · ,
r1
∑

l=1

aN,lαl,αl1 , · · · ,αlr1−N
}. (5)

2) Generate r1 linearly independent obfuscated vectors
The vectors in Θi,j,k form the basis of L1 and the first

N vectors in Θi,j,k are the basis of L1 ∩ L2. In general, to
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produce r1 linearly independent obfuscated vectors, we left-
multiply Θi,j,k by a nonsingular matrix composed by r1 lin-
early independent vectors from F

r1
q , the first N elements of

each of which are not all zeros. We can select a nonsingular
lower triangular matrix C1 as follows:

C1 =











c1,1
c2,1 c2,2

0
...

...
. . .

cr1,1 cr1,2 · · · cr1,r1











,

where each ci′,j′ , 1 ≤ j′ ≤ i′ ≤ r1 is randomly selected
from {1 · · · q − 1}. Since dim(L1 ∩ L2) 6= 0 and the leading
element of each row of C1 is nonzero, each row vector of
C1Θi,j,k is an obfuscated vector; since matrix C1 has full
rank, these r1 obfuscated vectors are linearly independent.

3) Construct local encoding vectors
Recall the intermediate node encoding model described

in Sec. 2.1: after receiving coded packets corresponding to r1
linearly independent GEVs (or CDVs) Λ = {α1, · · · ,αr1},
node k selects r1 coding coefficients from F

r1
q . Then accord-

ing to these local encoding vectors, it does linear combina-
tions of the r1 received coded packets to produce r1 coded
packets with r1 obfuscated GEVs (or CDVs). We can derive
the local encoding vectors as follows.

Let Ω denote the r1 × r1 dimensional local encoding
matrix, whose rows are the local encoding vectors. It should
satisfy ΩΛ = C1Θi,j,k. Since the matrix Θi,j,k is formed
by the obfuscate basis as its rows, it can be represented as
Θi,j,k = C2Λ, where C2 is a r1 × r1 dimensional matrix as
follows:

C2 =





















a1,1 · · · a1,r1

...
...

...
aN,1 · · · aN,r1

Ir1,l1
...

Ir1,lr1−N





















(according to Eq. (5)),

where Ir1,ln is the lnth row of a r1 × r1 identity matrix.
Since ΩΛ = C1Θi,j,k = C1C2Λ, we derive Ω = C1C2,

i.e., each row of Ω is a local encoding vector, which node k
should use to generate r1 independent obfuscated GEVs (or
CDVs) according to the intermediate node encoding model
described in Sec. 2.1.

Algorithm 1 shows how to calculate the local encoding
matrix. In this algorithm, there are a few important features:
(1) when dim(L1 ∩ L2) > 0, the proposed algorithm gives
the local encoding vector to generate each outgoing vector to
make sure it is obfuscated, and (2) if an intermediate node
receives r1 linearly independent incoming packets from a
flow, the proposed Algorithm 1 can generate r1 linearly
independent local encoding vectors for it. With these elegant
designs, the proposed algorithm can guarantee that, when
dim(L1 ∩ L2) > 0, if an intermediate node receives r1
linearly independent incoming packets in a flow, it can
generate r1 linearly independent outgoing coded packets
and all of them are obfuscated.

Next, we will show the computational complexity of
generating r1 linearly independent coded packets with ob-
fuscated GEVs (or CDVs). Suppose the length of each vector
in sets A and B is t. The total computational complexity is
shown as follows: Let f1 = |A| and f2 = |B|. Since the

Algorithm 1 Local Encoding Matrix Computing in ALNCode

1: Find the maximal linearly independent set of A and B

by Gaussian elimination which are {α1, · · · ,αr1} and
{β1, · · · ,βr2

} respectively.
2: Construct a matrix X = [αT

1 , · · · ,α
T
r1
,βT

1 , · · · ,β
T
r2
].

3: Compute reduced row-echelon form matrix rref(X) by
Gaussian elimination. Let the number of non-pivotal
columns of rref(X) be N .

4: for n from 1 to N do

5: θn =
r1
∑

l=1

an,lαl where an,i is the ith element of the nth

non-pivotal column of rref(X). The nth row of C2 is set
to [an,1, · · · , an,r1 ].

6: end for

7: Ni,j,k =
N
⋃

n=1

θn.

8: Find r1 − N vectors in A, {αl1 , · · · ,αlr1−N
}, such that

GEVs in set {θ1, · · · ,θN ,αl1 , · · · ,αlr1−N
} are linearly in-

dependent.
9: for n from 1 to r1 −N do

10: θN+n = αln . The (N + n)th row of C2 is set to Ir1,ln .
11: end for
12: The obfuscated basis of L1 is Θi,j,k = {θ1, · · · ,θr1}.
13: for l from 1 to r1 do
14: select l numbers from {1, · · · , q−1} as the first l elements

of the lth row of matrix C1. The remaining r1−l elements
are set to 0.

15: end for
16: return local encoding matrix Ω = C1C2.

computational complexity of Gaussian elimination applied
to an m × n dimensional matrix is O(mnmin(m,n)) and
that of matrix multiplication between an m×n dimensional
matrix and a n × l dimensional matrix is O(mnl), the
computational complexity of each line in Algorithm 1 can
be derived as follows ( N ≤ r1 ≤ h) :

1) line 1: O(tf1 min(t, f1)+ tf2 min(t, f2)) = O(t2(f1+
f2)).

2) line 3: O(t(r1+r2)min(t, r1+r2)) = O(t2(r1+r2)).
3) line 4-6, 9-11: O(Nr1t) = O(hr1t).
4) line 8: O(t(N + r1)min(t, N + r1)) = O(t2r1).
5) line 13-16: O(r31) = O(h2r1).

Since r1 ≤ f1, r2 ≤ f2 and h ≤ t, the total computa-
tional complexity to compute local encoding matrix Ω is
O(t2(f1 + f2)). To further calculate r1 new coded packets,
the total computational complexity is O(t2(f1 + f2) + r21H).
To generate obfuscated GEVs, t = h; while to generate
obfuscated CDVs, t = h +H . Note that to generate r1 new
coded packets without considering anonymity, the compu-
tational complexity of network coding is O(h2f1 + r21H).

In both expressions, the first part in the computa-
tional complexity (i.e., O(h2f1) for traditional LNC and
O(t2(f1 + f2)) for ALNCode) is introduced by Gaussian
eliminations. The second part O(r21H) is introduced by
matrix multiplication. By comparing the complexity of tra-
ditional LNC and ALNCode, we note that the ALNCode
needs more computation in the first part but the asymptotic
behavior could be the same as that of the traditional NC.
Moreover, the computational complexity can be further
reduced because both the Gaussian elimination and the
matrix multiplication can be implemented by using parallel
computing or hardware on today’s routers [21]. Therefore,
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Fig. 4. ALNCode at different nodes.

we believe that the proposed ALNCode scheme can be
efficiently implemented.

At the source and destination. Our previous discussions
have been focusing on recoding at intermediate nodes to
hide relationship of its incoming and outgoing packets.
Since the source or destination node of one flow can be an
intermediate node for other flows, we next show that, with
a similar scheme, the source and destination of a flow can
also hide themselves, as long as there are other flows going
through them.

For the source node s of flow i, if s also receives other
flows, it can also try to produce obfuscated vectors (i.e.,
GEVs or CDVs) for generation j of flow i, which is linearly
correlated with other flows. Generally, if dim(L2) = r2, the
source can generate r2 linearly independent vectors from
L2, all of which are obfuscated vectors for generation j of
flow i. By analyzing the linear correlation of the obfuscated
vectors and incoming vectors, the attacker cannot identify
that the node is the source node of flow i because the
outgoing vectors have linear correlation with the incoming
vectors, i.e., the behavior of node s is the same as other
intermediate nodes. Since the source node needs to generate
h linearly independent GEVs (or CDVs) for generation j of
flow i, we will show in the following sections that if the
number of packets from other flows passing through s is
larger than h, s has high probability to generate h linearly
independent obfuscated vectors.

At the destination node d of flow i, if some other flows
go through it, it can also generate obfuscated vectors for
such flows, exploiting the received vectors from flow i.
Therefore, in both cases, the anonymity of source and des-
tination nodes are protected. Moreover, even if an attacker
can distinguish that some nodes are sources or destinations,
it cannot distinguish which node communicates with which
other node with high probability (to be shown in Sec.4).

Fig. 4 gives an example, where solid directed lines
denote packets of generation j of flow i and dotted di-
rected lines denote packets of other flows. Let h = 3
and LNC is performed over F3. At the source of flow i,
a = [1, 1, 1],b = [2, 2, 0], c = [2, 1, 0] are incoming GEVs
from other flows. The source can generate obfuscated GEVs
such as d = 2b = [1, 1, 0], e = a + 2b = [2, 2, 1], and
f = a+b+c = [2, 1, 1]. At the destination, o = [1, 2, 2],p =
[0, 2, 1] are incoming GEVs from generation j of flow i and
m = [0, 2, 1],n = [1, 1, 0] are from generation j′ of flow i′.
The destination can generate obfuscated GEVs for flow i′,
such as g = m+n = o+2p = [1, 0, 1],h = m+2n = 2o =
[2, 1, 1].

3.4 Random Linear Network Coding Scheme

In the previous subsection, we have discussed how to
construct a secure linear code in a deterministic manner to
implement ALNCode, by which the outgoing vectors (i.e.,

GEVs or CDVs) produced are guaranteed to obfuscate their
correlation with the corresponding incoming vector, under
mild conditions. In this section, we investigate the potential
of using the random LNC to thwart traffic analysis attacks
and analyze the probability that a random LNC can produce
an obfuscated vector (i.e., GEV or CDV).

In practice, random LNC has been widely utilized to
realize LNC [17], [18], [22]. We now investigate the behavior
of random LNC, when it is applied to hide the correlation of
incoming vectors and outgoing vectors. The main difference
of deterministic LNC and random LNC is that deterministic
LNC first computes the obfuscated basis, then generates the
local encoding matrix in a deterministic manner, and finally
generates coded packets with obfuscated vectors, while
random LNC randomly selects a local encoding matrix to
generate new coded packets. Using random LNC without
computing the obfuscated basis to generate the local en-
coding matrix, the computational complexity to generate r1
new coded packets is O(r1f1H), which is lower than the
proposed deterministic LNC scheme in Sec. 3.3.

However, without computing the obfuscated basis for
each generation j of flow i before generating new vec-
tors (i.e., GEVs or CDVs) and corresponding coded pack-
ets, the random LNC scheme cannot guarantee that each
newly generated vector can obfuscate the attacker when
dim(L1 ∩ L2) 6= 0. With regard to the probability that a
randomly generated vector is an obfuscated vector, we have
the following theorem.

Theorem 4. For an intermediate node k, if dim(L1) = r1 and
dim(L1∩L2) = N , with the random LNC scheme, the probability
that k can generate an obfuscated new vector for generation j of

flow i is no less than 1− qr1−N−1
qr1−1 .

Proof. The proof is shown in Appendix F.

Note that, for a given node, the values of q, r1 are the
same in both the case of generating obfuscated GEV and the
case of generating obfuscated CDV. However, the value of
N in the case of generating obfuscated CDV is no more than
the case of generating obfuscated GEV.

The above theorem shows that the lower bound of the
probability that a newly vector generated by node k for
generation j of flow i increases with the increase of N , e.g.,
the dimension of the vector space L1 ∩ L2. We have the
following corollary.

Corollary 2. Given N, r1 and 0 < N < r1, the lower bound
of the probability that a newly generated vector is an obfuscated
vector increases with the increase of q.

Proof. The proof is shown in Appendix G.

According to Theorem 4, we can derive another lower
bound, which is only affected by the size of finite field.

Corollary 3. When dim(L1 ∩ L2) 6= 0, i.e., N > 0, the
probability that a newly generated vector is an obfuscated vector
is larger than 1− 1

q
.

Proof. The proof is shown in Appendix H.

Theorem 4, Corollary 2 and Corollary 3 reveal that (1)
when dim(L1 ∩ L2) > 0, an obfuscated vector can be
generated with certain probability when we use the random
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LNC (Theorem 4), and (2) the probability will become higher
when we select a larger finite field for the random LNC
(Corollary 2 and Corollary 3). Theorem 4 also reveals the
impacts of other parameters to the probability, which are
further studied in the numerical experiments. Overall, our
analysis and experiments show that the legacy random LNC
with appropriate parameters can be adopted to provide
anonymity against traffic analysis attack with sufficiently
high probability.

Finally, when dim(L1 ∩ L2) > 0, the deterministic LNC
designed in Sec. 3.3 can guarantee that all the generated
vectors are obfuscated. To this end, deterministic LNC is
better than random LNC because random LNC may gener-
ate vectors that are not obfuscated. On the other hand, the
computation complexity of random LNC is much smaller
than that of the deterministic LNC.

4 ANALYSIS ON ANONYMITY AGAINST ATTACKS

In this section, we discuss how the proposed ALNCode
can practically provide anonymity against different traffic
analysis attacks. We firstly show that the traffic analysis
attacker can acquire the linear correlations of incoming
vectors and an outgoing vector by exploiting efficient ap-
proaches. Then, we show that even if the attacker can obtain
these correlations, the linear correlations among the vectors
of the same flow can be hidden by selecting appropriate
parameters to generate outgoing vectors which are linear
correlated with a large number of incoming vectors from
other flows. Finally, we illustrate the impacts of parameters
on the system performance.

4.1 Approaches for Analyzing One Outgoing Coded

Packet

In this subsection, we propose two approaches that can be
used by the attacker to analyze the linear correlations of the
incoming vectors and one outgoing vector.

Let the set of incoming vectors be V = {v1, · · · ,vF }
and the outgoing vector be v. Since the flow number and
the generation number of these vectors are hidden, the
attacker can only analyze the linear correlations between v

and vectors in V to distinguish which set of vectors is from
the same flow with v.

To generate an outgoing vector, the intermediate node
linearly combines a set of linearly independent incoming
vectors of the same flow. From the attacker’s point of
view, it wants to distinguish these outgoing vectors and
then traces them back to the source. However, the attacker
cannot uniquely determine these incoming vectors when
vector v can be generated by different linearly independent
sets of incoming vectors. Therefore, by analyzing the linear
correlations between v and V, it only can know which set
of incoming vectors can be used to generate vector v.

We first show an approach for obtaining the exact linear
correlations between an outgoing vector and all incoming
vectors at an intermediate node.

If incoming vector vi is used to generate the outgoing
vector v, then there exists a maximal linearly independent
set of V, denoted as VI , such that vi ∈ VI and the coeffi-
cient of vi to generate v is a nonzero number. Therefore, the

attacker can firstly find all maximal linearly independent
sets of V and then uniquely determine the linear correla-
tions between v and each maximal linearly independent set
of incoming vectors. For F incoming vectors, there are at
most

(

F
R

)

different maximal linearly independent sets, in
which R = dim(L({v1, · · · ,vF })).

Although the above approach can obtain the linear cor-
relations between v and each maximal linearly independent
set of V, it has exponentially computational complexity.
Next, we show an approximation approach, based on which
the attacker can easily determine the incoming vectors that
have no linear correlations with v and find the set of
incoming vectors that can be used to generate vector v.

If an incoming vector vi has linear correlation with

outgoing vector v, then we have v =
F
∑

l=1
αlvl and αi 6= 0.

It means vi = 1
αi
(

∑

l∈{1,··· ,F}−{i}

αlvl − v). Therefore, vi

is a linear combination of {v1, · · · ,vF ,v} − {vi}. There-
fore, according to this necessary condition, the attacker first
generates a matrix M = [vT

1 , · · · ,v
T
F ,v

T ]T ; then for each
i ∈ {1, · · · , F}, generates a new matrix Mi by replacing
the ith row vector in M, i.e., vi, by a zero vector; at
last compares the ranks of matrix M and matrix Mi. If
rank(M) 6= rank(Mi), then the ith incoming vector, i.e.,
vi, does not have linear correlation with outgoing vector
v. After removing all the incoming vectors that have no
linear correlations with v the attacker can find the set of
incoming vectors that may be used to generate vector v.
Since Gaussian elimination method is used for each index
i in {1, · · · , F}, the total computational complexity of this
analysis approach is O(F 2

tmin(F + 1, t)).
We note that there may exist more efficient analysis

approaches to find these linear correlations. However, re-
gardless which approach the attacker will use, the proposed
ALNCode can hide the linear correlations by selecting appro-
priate parameters to generate outgoing vectors which are
linear correlated with a large number of incoming vectors
from other flows.

4.2 Linear Dependence with Multiple Incoming Coded

Packets

In this subsection, we firstly give the theoretical analysis to
show the lower bound of the probability that an outgoing
vector (i.e., GEV or CDV) has linear correlations with multi-
ple subset of incoming vectors. Then, we show the average
number of incoming vectors linearly correlated with the
outgoing vector generated by the proposed ALNCode, i.e.,
the anonymity level.

One outgoing vector can be produced uniquely from
the incoming vectors, i.e., the subset of incoming vectors
linearly correlated with the outgoing vector can be uniquely
found, iff the incoming vectors are linearly independent.
However, we will show that the probability that the set of
incoming vectors is linearly dependent, is not only affected
by the length of data block (H), but also affected by the
size of generation (h), the size of finite field (q) and the
number of coded packets received by the intermediate node
(F ). Moreover, when appropriate parameters are selected,
the generated vector have linear correlations with multiple
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subsets of incoming vectors with high probability even if H
goes to infinite.

When assuming that all the incoming vectors (i.e., GEVs
or CDVs) are randomly selected from vector space F

t

q ,
different incoming vectors, indeed, are linearly independent
with high probability when t is large. Although original
vectors generated at source node for each generation of
a flow can be regarded as being randomly selected from
vector space F

t

q , but, in fact, all the vectors for a cer-
tain generation received by an intermediate node are not
generated from the whole vector space F

t

q , but from the
same set of h original vectors, i.e., a fixed h-dimensional
vector space, which increases the probability that the set
of incoming vectors is linearly dependent. Assume that an
intermediate node receives F incoming vectors, which are
from a set of generations, denoted as I . We denote wi vectors
received from generation i as M′

i = {m′
i,1, · · · ,m

′
i,wi

} and
∑

i∈I

wi = F . We give the lower bound of the probability that

F incoming vectors are linearly dependent as follows.

Theorem 5. The probability that F incoming GEVs (or CDVs)

are linearly dependent, is no less than 1−
∏

i∈I

h
∏

j=h−wi+1
(1− 1

qj
)

when wi ≤ h, ∀i ∈ I . Otherwise, the probability equals to 1.

Proof. The proof is shown in Appendix I.

From the above theorem, the lower bound is only af-
fected by h, q and F . It means that when these parameters
are fixed, the lower bound of the probability is fixed even
when the length of the data block, H , goes to infinite.
Therefore, when appropriate parameters are selected, the
generated vectors have linear correlations with multiple
subsets of incoming vectors with high probability even if the
length of the data block goes to infinite (also to be shown in
Fig. 6 (d)).

If only the set of incoming vectors are linearly depen-
dent, each outgoing vector has linear correlations with mul-
tiple subsets of incoming vectors, which not only increases
the computational complexity of traffic analysis attack, but
also decreases the probability that the attacker traces the
flow back (forth) to the multiple sources (destinations), and
consequently the attacker cannot identify the real source
(destination).

Next, we first conduct two sets of simulations for gener-
ating obfuscated GEVs and CDVs, respectively, at a node to
show the average number of incoming vectors linearly cor-
related with the generated vectors by the proposed ALNCode
at different values of w, |I|, h, H and q, in which w denotes
average number of incoming vectors from each generation
and all the incoming vectors are from |I| generations of
different flows. We generate an outgoing vector (i.e., GEV
or CDV) for different analysis attacks (i.e., GEV or CDV
analysis attack). An incoming GEV is referred as CGEV if it
is linearly correlated with the outgoing GEV. An incoming
CDV is referred as CCDV for an outgoing CDV if it is
linearly correlated with the outgoing CDV. We also test the
ALNCode scheme in a 10-nodes ring network topology with
multiple traffic flows and different transmission rates.
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Fig. 5. Total number of CGEVs and the number of CGEVs from other
flows under different influential parameters.

4.2.1 CGEVs and CCDVs on a Single Node

Fig. 5 shows the anonymity levels of the outgoing GEV for
the GEV analysis attack. Fig. 5 (a) and (b) show that the
anonymity level of the outgoing GEV increases with the
increase of w and |I|, respectively. The reason is straight-
forward: when h and q are fixed, the more GEVs a node
receives in the current flow and in other flows, the larger
number of incoming GEVs have correlations with the gen-
erated outgoing GEV. On the other hand, Fig. 5 (c) shows
that the anonymity level of the outgoing GEV decreases
with the increase of h. The reason is that when the number
of GEVs received is fixed, the increase of length of each
GEV will increase the probability that the incoming GEVs
are linearly independent. Fig. 5 (d) demonstrates different
trends with the increase of q in different cases. In particular,
when w|I| ≤ h, the anonymity level decreases with the
increase of q; when w|I| > h, it increases with the increase
of q. It has similar trends and reasons with the performance
of the intersection probability shown in Fig. 3 (d). We note
that the length of the data block, i.e., H , has no impact on the
anonymity levels of the outgoing GEV for the GEV analysis
attack. However, it has impact on the anonymity levels of
the outgoing CDV for the CDV analysis attack.

We show the anonymity levels of the outgoing CDV for
the CDV analysis attack in Fig. 6. From figures Fig. 6 (a)-(d),
performances of the anonymity levels of the outgoing CDV
have similar trends with the performance of the linearly
dependent probability shown in Fig. 5. From Fig. 6 (e),
when parameters w, |I|, q and h are fixed, the anonymity
levels will be almost fixed even when the length of the
data block goes to infinite, which also reflects the lower
bound proved in Theorem 5. Therefore, when appropriate
parameters are selected, the generated GEVs (or CDVs) have
linear correlations with multiple subsets of incoming GEVs
(or CDVs) with high probability even if H goes to infinite.
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Fig. 6. Total number of CCDVs and the number of CCDVs from other
flows under different influential parameters.

4.2.2 CGEVs and CCDVs in a Ring Network

We next show the simulation results of the ALNCode
scheme in a 10-nodes ring network topology§ with multiple
traffic flows and different transmission rates. Specifically,
there are ten nodes in the ring network. The number of traf-
fic flows is denoted as se. For each traffic flow, we randomly
select two nodes as its source and destination. Moreover,
the transmission rate of each traffic flow is denoted as ra.
Under each combination of parameters, for each node and
each traffic flow passing through it, we randomly select
an outgoing coded packet for the flow and compute the
number of CGEVs and CCDVs, based on which we obtain
the average number of CGEVs and CCDVs per node and
flow, i.e., the anonymity levels, for each combination of
parameters. The simulation results are shown in Fig. 7 (a)-
(g).

From these results, both the number of CGEVs and the
number of CCDVs increase with the increase of session
number se and the transmission rate ra, because the number
of coded data packets passing through each node grows
larger. When parameters se and ra are fixed, the perfor-
mances of the anonymity levels have similar trends with
the performance of CGEVs and CCDVs shown in Fig. 5 and
Fig. 6.

§. We have tested the ALNCode in different topologies. Due to
limited space, we present only the results obtained in a ring topology.

4.3 The Impacts of Parameters on The System Perfor-

mance

Based on the theoretical analysis and simulation results, in
this subsection, we discuss the impacts of parameters on
the system performance including computation complex-
ity, overhead, etc. Specifically, we firstly show Table 2 to
explicitly explain the impacts of various parameters in the
ALNCode scheme and the traditional LNC scheme without
anonymity consideration. The last column of Table 2 shows
the probability that a new outgoing vector generated by
node k is an obfuscated GEV or obfuscated CDV, which has
a positive correlation with the anonymity level.

For the tradeoffs between anonymity, system perfor-
mance, complexity and overheads, we have the following
conclusions.

The decrease of h will (1) increase the anonymity level
(shown in Fig. 5(c), Fig. 6(c), Fig. 7(c) and Fig. 7(d)); (2)
decrease the encoding and decoding complexity (shown in
Table 2); (3) decrease the communication overheads (shown
in Table 2); and (4) decrease network throughput [23].

The decrease of q will (1) decrease the anonymity level
when many coded data packets can be received at each
node (shown in Fig. 5(d), Fig. 6(d), Fig. 7(e) and Fig. 7(f));
(2) increase the anonymity level when few coded data
packets can be received at each node (shown in Fig. 5(d),
Fig. 6(d), Fig. 7(e) and Fig. 7(f)); (3) decrease the decoding
complexity (shown in Table 2); (4) decrease the communi-
cation overheads (shown in Table 2); and (5) decrease the
network throughput because it decreases the probability of
the independence between the coded data packets received
by destination [23].

4.4 Discussions on the Implementation of the

ALNCode Scheme

To implement ALNCode, existing schemes for implement-
ing LNC can be used, including encoding, decoding, rout-
ing, etc. To provide anonymity by using ALNCode, one
action needed is to apply Algorithm 1 on each node so as to
generate local encoding vectors; another additional opera-
tion is to perform flow monitoring. With traffic information,
the ALNCode parameters can be optimized, including q, h,
etc.

Moreover, if there are only few flows in the network,
using ALNCode alone is vulnerable because the number of
coded packets (f1 and f2) received by each node is small.
In this case, to improve the anonymity level, the proposed
ALNCode shall be combined with some existing techniques,
such as dummy traffic [11], [13], [24].

For each node, when dim(L1∩L2) = 0, the node uses the
conventional LNC scheme to generate new coded vectors.
When dim(L1 ∩ L2) > 0, it uses the proposed ALNCode
scheme to generate new obfuscated coded vectors, the
analysis and design show that it does not compromise the
decodability. In particular, if an intermediate node receives
r linearly independent incoming packets from a flow, it can
generate r obfuscated linearly independent outgoing pack-
ets. It means that the span space of these newly generated
vectors is also L1. Therefore, the decodability of ALNCode
is the same as that of the conventional deterministic LNC
scheme. On the other hand, the proposed Algorithm 1



13

8 10 12 14 16 18

2
4
6
8

10
12
14
16
18
20

s
e

#
 o

f 
C

G
E

V
s
 a

n
d

 C
C

D
V

s

 

 

Total # of CGEVs

 # of CGEVs from other flows

Total # of CCDVs

 # of CCDVs from other flows

6 8 10 12 14 16

5

10

15

20

25

30

35

r
a

#
 o

f 
C

G
E

V
s
 a

n
d

 C
C

D
V

s

 

 

Total # of CGEVs

 # of CGEVs from other flows

Total # of CCDVs

 # of CCDVs from other flows

10 11 12 13 14 15

1

2

3

4

5

6

h

#
 o

f 
C

G
E

V
s

 

 

Total # of CGEVs

 # of CGEVs from other flows

3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

h

#
 o

f 
C

C
D

V
s

 

 

Total # of CCDVs

 # of CCDVs from other flows

(a) ra = 5, h = 5, H = 25, q = 2 (b) se = 12, h = 5, H = 25, q = 2 (c) se = 12, ra = 5, H = 25, q = 2 (d) se = 12, ra = 5, H = 25, q = 2

2 4 8 16 32 64

2

4

6

8

10

q

#
 o

f 
C

G
E

V
s

 

 

Case 1: Total # of CGEVs

Case 1: # of CGEVs from 

 other flows

Case 2: Total # of CGEVs

Case 2: # of CGEVs from 

 other flows

2 4 8 16 32 64

1

2

3

4

5

6

7

q

#
 o

f 
C

C
D

V
s

 

 

Case 1: Total # of CCDVs

Case 1: # of CCDVs from 

 other flows

Case 2: Total # of CCDVs

Case 2: # of CCDVs from 

 other flows

5 10 15 20 25 30

1

2

3

4

5

6

7

H

#
 o

f 
C

C
D

V
s

 

 

Total # of CCDVs

 # of CCDVs from 

 other flows

(e) se = 12, h = 5, H = 25, Case 1: (f) se = 12, h = 5, H = 25, Case 1: (g) se = 12, ra = 5, h = 5, q = 2

ra = 7, Case 2: ra = 3 ra = 10, Case 2: ra = 7
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TABLE 2

Encoding complexity for generate r1 new coded
packets

Decoding com-
plexity

Communication
overhead

Probability to generate an ob-
fuscated GEV or obfuscated
CDV when L1 ∩ L2 6= ∅

ALNCode for obfuscated GEV, O(h2(f1 + f2) + r21H);
for obfuscated CDV, O((h+H)2(f1+f2)+r21H)

O(h2H) h
h+H

= 1 (Theorem 3)

Traditional
Random LNC

O(h2f1 + r21H) O(h2H) h
h+H

≥ 1− qr1−N
−1

qr1−1
(Theorem 4)

requires more computation, which is mainly due to the
process about finding the basis of incoming coded vectors.
Nevertheless, since Gaussian elimination is used to find the
basis, the computing task can be done progressively. For
instance, when the first two coded packets are received,
an elimination operation can be performed. In other words,
by the time that the last packet in a generation is received,
the elimination process is almost done. In this manner, the
proposed scheme will not significantly affect the throughput
and latency.

For the traditional random LNC scheme, our analy-
sis shows that it can generate an obfuscated vector with
sufficiently high probability (Theorem 4). In this case, the
traditional random LNC scheme is not changed, but some
parameters (such as the finite field) may be updated, which
may increase the computation overhead.

About the anonymity level, in this paper, we define
the anonymity level as the number of incoming vectors
that are linearly correlated with an outgoing vector. First,
the anonymity level is not considered in the design of the
ALNCode. Second, the anonymity level reflects the com-
plexity and accuracy of traffic analysis, because the higher
anonymity level, the more vectors should be traced back and
analyzed, which leads to higher computational complexity
and lower accuracy of traffic analysis. Third, in this paper,
we have conducted extensive simulation experiments to
demonstrate the anonymity level (i.e., the average number
of CGEV and CCDV) in different scenarios when the pro-
posed ALNCode is used. We will consider the anonymity
level in the design of ALNCode to further improve the

performance of anonymity in our future work.

5 RELATED WORKS

LNC has been widely explored in recent years, which has
been proved to achieve the maximum throughput bound
of a network [14]. If the local encoding vectors can be
randomly selected by each intermediate node, the LNC
scheme is referred to as random LNC [17], [18]. Random LNC
makes LNC more practical. Otherwise, if the local encoding
vector must be selected to achieve some properties, the
LNC scheme is referred to as deterministic LNC [25]–[27]. In
our work, we studied both deterministic and random LNC
schemes.

In addition to achieving the maximum throughput of
a network, the information security also can be provided
by LNC in a content distribution network against active
modification attacks [28] and passive wiretapping attacks
[25]–[27], [29]. With respect to defense against wiretapping
attacks, the main focus has been on exploring the capability
of LNC to provide confidentiality of the packet content [25]–
[27].

Although many works have been done on LNC design
to provide confidentiality, few efforts have been devoted
to utilizing LNC on communication anonymity. Among all
attack models against anonymity, traffic analysis attack is a
major one in traditional networks [11]–[13], [30], [31]. There
mainly exist three representative approaches on defending
against traffic analysis attack in traditional networks: the
Crowds approach, the onion routing approach, and the Mix
approach.
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Crowds [30] provides a centralized service to randomly
select participants of a network into a group (the “crowd”),
which includes the source. Each packet is routed through the
crowd before it is sent to the destination node, such that the
attacker cannot tell which node in the crowd is the original
source. In the onion routing approach [12], [31], the source
establishes a path to the destination through a number of
nodes called onion routers, and encrypts the routing infor-
mation and packet repeatedly with public keys of the onion
routers, in order to prevent any attacker from learning the
path information. With the Mix approach [11], [13], instead
of forwarding each packet as it arrives, an intermediate
node, i.e., the Mix node, waits for a random period of time
and then forwards packets it received in mixed order, so
as to hide the time correlation among packets of the same
flow. These existing approaches either require centralized
services, which is not scalable, or demands encryption of
whole packets, which is computationally expensive. More-
over, these approaches cannot be directly implemented in
the network with LNC because of the coding operations on
each intermediate node.

Among the few proposals which utilize LNC for anony-
mous communication, we have discussed the works by Fan
et al. [4] and Zhang et al. [6] in Sec. 1. Although the existing
anonymous LNC schemes can hide the correlation among
GEVs, an attacker can compromise the flow untraceability
by evaluating the correlation of incoming and outgoing
CDVs. In this paper, we give a novel idea to hide the
correlation among GEVs (or CDVs) of the same flow by fully
utilizing the properties of the LNC itself.

In [32], [33], the authors proposed two Joint FoUntain
coding and Network coding (FUN) schemes to boost infor-
mation spreading over multi-hop lossy networks. The cod-
ing schemes in FUN can significantly increase the through-
put of information spreading by optimally combining foun-
tain coding, intra-session network coding, and cross-next-
hop network coding. Since linearly combining coded vectors
is an essential function in FUN schemes, we believe that our
scheme can be extended to improve the anonymity in FUN-
based networks.

6 CONCLUSION

In this paper, we have systematically investigated the po-
tentials of using linear network coding (LNC) to provide
flow untraceability against traffic analysis attack that is
based on the correlation of incoming and outgoing coded
packets. Specifically, we proposed a novel LNC mechanism,
ALNCode, to protect anonymity of source, destination, and
paths of each flow with a simple but novel idea: the cor-
relation of incoming and outgoing coded packets in one
flow can be hidden by generating coded packets that are
linearly correlated with packets of other incoming flows.
To implement the ALNCode, we designed a deterministic
LNC scheme and investigated how the ALNCode can help
a standard random LNC scheme to thwart traffic analysis
attack. In our study, we developed comprehensive theoret-
ical analysis on the existence of obfuscated coding vectors
(GEVs or CDVs), and we conducted extensive simulation
experiments to evaluate the behaviors of ALNCode in var-
ious networks. Theoretical and simulation results demon-

strate that the ALNCode can effectively defend against traffic
analysis attacks even if the coded packets are not encrypted.
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