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Abstract—Subgraph matching query is to find out the sub-
graphs of data graph G which match a given query graph Q.
Traditional methods can not deal with big data graphs due to
their high computational complex. In this paper, we propose a
distributed top-k subgraph search method over big graphs. The
proposed method is designed at the level of single vertex and all
vertices obtain their matching state separately without requiring
global graph information. Therefore, it can be easily deployed
in distributed platform like Hadoop. The evaluations of running
time, number of messages and supersteps show the efficiency and
scalability of the proposed method.

I. INTRODUCTION

Graph matching has been widely used in many real-world
applications [1]. Due to the excessive number of matched
subgraphs, it is difficult for the users to select the best results
in subgraph matching query over big graphs. Top-k subgraph
matching is proposed as a typical graph pattern matching to
find out top-k matching subgraphs over a data graph [2]-[5].
Given a query graph @, top-k matching query reports the top-k
matches in a data graph G with the k largest matching “scores”
[2]. Therefore, the first step is to define the matching score
for top-k matching query. Recently, a similarity measurement
method is proposed in [6]. Denote data graph G(Vi, Eq)
and query graph Q(Va, Es, f), where V4 and Vs are sets of
vertices, F; and E5 are sets of edges, and f is the function
to get the weight of a edge e € Es. For a subgraph G’ C G,
the matching score of G’ is:

Score(G') = Z f(e),

ecE/,

(D

where FE! is the set of edges of Q which are matched by the
edges of G'. The set of top-k approximate matching subgraphs
is denoted as T'op(G, @, k) and formulated as:
k
Top(G,Q, k) = {G'|G" € arg maxz Score(G'(7))}, (2)
i=1

where G’ is a subgraph of G, and G'(i) # G'(j) if i # j.

Given a query graph @) and a data graph G, top-k subgraph
matching query is to find k£ matching subgraphs which have the
top-k highest matching scores. In real world applications, data
graph is typically large, even including billions of nodes [4].
The large scale graphs give rise to the serious problems with
the subgraph query algorithms such as computing complexity.
Therefore, it is urgent to develop distributed method for
subgraph matching over big graphs.
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II. DISTRIBUTED TOP-K SUBGRAPH MATCHING
ALGORITHM

For query focus based approximate graph simulation, the
top-k subgraph search can be simplified as finding the cor-
responding vertices of query focus in top-k approximate
matching subgraphs [5]. To implement top-k subgraph search,
the key point is to design algorithm for any vertex which can
run simultaneously. Bulk synchronous parallel (BSP) model
is adopted for distributed top-k subgraph search. In BSP
model, a computation proceeds in a series of global supersteps,
which consists of three components: concurrent computation,
communication and barrier synchronisation. In a superstep, a
vertex not only sends message, but also receives messages. All
vertices must stop and wait for a synchronization before next
superstep. In the following, the supersteps for top-k subgraph
matching query is designed.

These supersteps consist of initial supersteps, iterative su-
persteps, and terminated supersteps. At the initial supersteps,
each vertex exchanges messages with its parent nodes and
child nodes to build the topological view. They also compare
their labels with that of the query graph. If there is no
matched label in the query graph, the corresponding vertex of
data graph is set as inactive and will not attend the further
operations. In iterative supersteps, each vertex updates its
matching score according to the receiving messages from their
parent nodes nodes and child nodes. Due to the limited view
of each vertex, it needs multiple supersteps to get the subgraph
matching score. With the iterative supersteps, vertex has the
overview of subgraph. Therefore, query focus can get the final
matching score of subgraph as the proceed of supersteps. In
the iterative supersteps, there are mainly two operations. One
is to update the matching score and the current state of vertex.
If the matching score does not change again, the state of
the vertex will become in-active. The other is to aggregative
messages by sending their matching score to an aggregative
center. In the aggregative center, the current top-k matching
scores are kept and updated in each superstep. When all
vertices become in-active, it enters terminated supersteps. The
list in the aggregative center is the results of top-k matching
subgraphs.

In these supersteps, all vertices can run simultaneously in-
cluding sending messages, receiving messages, and computing
according to the received messages. Therefore, the algorithm
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Fig. 1: The runtime, messages, and supersteps vs. the sizes of query graph |Q)|

can be deployed in distributed systems and speeded up the
subgraph matching query.

ITII. EXPERIMENTS

The experiments are conducted on a distributed system,
which consists of six nodes. Each node has 1286GB RAM, 16
CPUs. Hadoop and HAMA [7] are deployed on the platform.
One real world dataset (Named Linkedin in the following) is
used in the experiments [8]. The Linkedin data graph is with
2,985,414 vertices and 25,965,384 edges. The other dataset
(Named Custom in the following) is generated by Hama with
10,000,000 vertices.

The size of query graph |@| is an important parameter in
the real graph query. Firstly, we evaluate the running time,
number of messages, and supersteps with respect to various
sizes of query (), and different k£ values. In the evaluations,
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the size of query graph |@Q| varies from 5,10, 15,20, to 25.
Fig. 1 shows the results of running time, number of messages,
and number of supersteps. The runtime increases as the sizes
of |Q| for both datasets. With the same dataset, larger top-k
needs more runtime. For number of messages, the sizes of
|Q| affect the results greatly. Larger sizes of ) cause more
messages because of more comparisons in data graph. An
interesting observation is that k& value of top-k almost has the
same number of messages for the same size of |Q)|. At last, the
supersteps are related to the sizes of |@)|. But the supersteps
will not increase any more after () reaches a certain value.

We also evaluate the scalability by setting various tasks
on a real distributed computation platform. Fig. 2 shows the
results of the scalability by changing launched tasks. For
both datasets, the overall trend of runtime is declining as
the increase of the task number which can be seen in Fig.
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Fig. 2: The scalability evaluation by changing launched tasks

2(a),(b). When the number of tasks reach a certain degree, the
runtime can not be reduced because of the increase cost of
communication between nodes as can be seen in Fig. 2(c),(d).
The superstep has little relationship with the number of tasks
as can be seen in Fig. 2(e),(f). It verifies the concurrent
operations at vertex level in a distributed system.

IV. CONCLUSION

We propose a distributed subgraph matching query algo-
rithm at the level of single vertex. Each vertex can obtain its
matching score in an independent manner without requiring
global graph information. Therefore, the algorithm can be run
concurrently and it is suitable for big graphs due to the strong
scalability. The experiment results with real-life and custom
datasets show that the proposed algorithm is very efficient
with respect to runtime and scalability.
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