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Abstract—Robots must exercise socially appropriate behavior
when interacting with humans. How can we assist interaction
designers to embed socially appropriate and avoid socially
inappropriate behavior within human-robot interactions? We
propose a multi-faceted interaction-design approach that inter-
sects human-robot interaction and formal methods to help us
achieve this goal. At the lowest level, designers create interactions
from scratch and receive feedback from formal verification, while
higher levels involve automated synthesis and repair of designs.
In this extended abstract, we discuss past, present, and future
work within each level of our design approach.

Index Terms—Interaction Design; Formal Methods

I. INTRODUCTION

Designing a human-robot interaction from the ground-up re-
quires programming expertise and familiarity with behavioral
conventions. Expert programmers may have difficulty enumer-
ating the breadth of social norms the robot should adhere to,
how these norms interact with each other, and how the robot
should change its behavior to suit different contexts [1]. Failure
to embed optimal social behavior within robots can result in
interaction breakdowns, such as when initiating interactions
[2]. Conversely, behavioral experts may not have programming
experience. There exist design interfaces for social robots that
emphasize usability [3], but programming constructs such as
“loops” remain difficult for non-programmers [4].

We propose a multi-level human-robot interaction design
approach that integrates formal methods to optimize design
feasibility and robot social effectiveness. At the lowest level
of design, interaction verification, the designer manually pro-
grams an interaction and receives feedback on the robot’s
adherence to social norms. This level maximizes the designer’s
control over the end product, but requires a pre-specified set of
social norms for checking the design. In the middle level of our
approach, interaction synthesis, designers specify constraints
that bound the interaction, and the interaction is synthesized
automatically. This level removes some designer control, but
may be more approachable for non-programmers. Lastly, in the
highest level of our approach, interaction repair, observations
of an interaction are collected from a real-world context and
an algorithm modifies, or repairs, the interaction design to fit
the social expectations of that context.
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Fig. 1. Bottom: Verification software checks manually-created interactions for
social norm violations. Center: Designers specify constraints for synthesis of
new interactions. Top: Existing interactions are adapted to social context.

II. INTERACTION VERIFICATION

At this level of interaction design, shown in Figure 1,
Bottom, designers program an interaction and receive feedback
from formal verification on social norm violations. Our exist-
ing work on this level of design includes RoVer, an authoring
environment that allows designers to program interactions
graphically [1]. The environment encodes interaction designs
as transition systems and formulates social norm properties
in linear temporal logic (LTL) [5]. The transition systems
and LTL properties are fed into a model checker [6], which
performs formal verification and returns whether the property
is satisfied or not within the interaction design. The complexity
of social norms that RoVer can verify is tied to the complexity
of interactions modeled as transition systems.

We evaluated RoVer with non-expert users to test the effects
of whether or not the participants received feedback from
formal verification on design quality and subjective designer
experience. Design quality was computed as the sum of
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social norm violations within each design. We found that
feedback from formal verification improves designers’ ease
of finding, ease of understanding, and awareness of social
norm violations. We found the effects on design quality to
be inconclusive, due possibly to low sample size [1].

We plan on building on this work to provide more nuanced
feedback to designers in the form of execution traces that lead
to social norm violations. We will also enable RoVer to model
interactions in higher detail, which will allow more meaningful
social norms to be checked. Additionally, more work is needed
to evaluate the objective quality of interactions designed with
and without verification. In a separate preliminary evaluation,
we attempted to evaluate subjective design quality by deploy-
ing interactions designed with and without verification into a
real robot and asking end users to interact with the robot. The
results of this evaluation were inconclusive, suggesting that a
stronger mapping is needed between the social norms analyzed
by RoVer and those of the real world.

III. INTERACTION SYNTHESIS

At this level of interaction design, rather than creating
a design by hand, the design task involves specifying the
constraints of the interaction, and an algorithm synthesizes
the interaction from scratch. We have developed two solutions
for interaction synthesis, shown in Figure 1, Middle.

Trace Synthesis—In this method, designers specify a set
of example interaction traces, or execution paths, that the
interaction should support. The traces are input into a Sat-
isfiability Modulo Theories (SMT) solver which computes a
full interaction program subject to each trace being attainable
from the starting state. With trace synthesis, designers can
rely on natural behavioral intuition to derive examples for
how a socially appropriate interaction should proceed without
needing to manually specify a logically correct program.
We have implemented and are currently evaluating a proto-
type authoring environment for specifying interaction traces.
Preliminary results show that non-programmers can create
complete, correct interaction designs using this approach.

Property Synthesis—In this method, designers specify a set
of social norm properties in LTL that the robot should adhere
to. The properties serve as input to an algorithm that searches
the space of all possible interactions for one that satisfies the
properties. Although it may be challenging for designers to
manually specify the social norms relevant to an interaction,
the key insight behind property synthesis is the reusability
of LTL social norms for other designs. We are augmenting an
existing random walk algorithm that synthesizes an interaction
from pre-specified properties [7]. The current version of our
algorithm, however, cannot synthesize an interaction from
scratch, but can only modify an existing interaction.

IV. INTERACTION REPAIR

In this level of interaction design, shown in Figure 1, Top,
we can observe and automatically modify an existing interac-
tion while the interaction is deployed in the real world. One
potential solution to acheiving effective interaction repair is to

assign reward values to different states within the interaction
based on positive and negative verbal and nonverbal cues
elicited by the humans that interact with the robot. Then,
the program will be modified using the algorithm proposed
by Schkufza et al. [7] to maximize the expected reward
accumulated from the starting state, while continuing to adhere
to the baseline social norms and task expectations.

Rather than learning a new interaction from reward values,
an alternative solution to repair may instead involve learning
new LTL social norms. This solution could use a method
based on the Boolean Satisfiability Problem (SAT) to derive
social norms from a set of paths that resulted in the same
interaction breakdown. Once an LTL formula is learned, it can
be added to the set of social norms and task expectations that
the interaction must adhere to, and a new interaction can be
synthesized using our proposed property synthesis approach.

V. CASE STUDY

Figure 2 presents a short case study, in which a designer
is tasked with building a simple robot that must wait for the
human to acknowledge it before making a delivery, or in LTL,
“Wait W humanReady.” Figure 2a shows how the interac-
tion can be constructed with verification or synthesis. With
verification, designers manually create the program shown in
figure 2b and verify their design against the property, whereas
with synthesis, designers supply the property and a trace and
the design is automatically created. Figure 2c shows a hypo-
thetical execution trace collected from deploying the robot in
the wild, in which attempting to give the package to a non-
attentive human results in decreased interaction experience.
The repair level incorporates the feedback from the execution
trace and modifies the interaction design accordingly.
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Fig. 2. A case study of a delivery interaction where (a) designs are created
with verification or synthesis, (b) resulting in a complete interaction (c) that
is later repaired after the robot attempts to give the delivery to a non-attentive
human (error state shown in red).
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