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Abstract

We consider the problem of unconstrained online convex optimization (OCO) with sub-

exponential noise, a strictly more general problem than the standard OCO. In this setting, the

learner receives a subgradient of the loss functions corrupted by sub-exponential noise and

strives to achieve optimal regret guarantee, without knowledge of the competitor norm, i.e., in a

parameter-free way. Recently, Cutkosky and Boahen (COLT 2017) proved that, given unbounded

subgradients, it is impossible to guarantee a sublinear regret due to an exponential penalty. This

paper shows that it is possible to go around the lower bound by allowing the observed subgradients

to be unbounded via stochastic noise. However, the presence of unbounded noise in unconstrained

OCO is challenging; existing algorithms do not provide near-optimal regret bounds or fail to have

a guarantee. So, we design a novel parameter-free OCO algorithm for Banach space, which we call

BANCO, via a reduction to betting on noisy coins. We show that BANCO achieves the optimal

regret rate in our problem. Finally, we show the application of our results to obtain a parameter-free

locally private stochastic subgradient descent algorithm, and the connection to the law of iterated

logarithms.

1 Introduction

In this paper, we are interested in the problem of unconstrained Online Convex Optimization (OCO)

with sub-exponential noise. In the standard unconstrained OCO problem, at each round t, an algorithm

chooses an iterate wt ∈ Rd and then receives a negative subgradient gt ∈ −∂ℓt(wt) of a convex loss

function ℓt(x) given by an adversary.1 The goal of the learner is to minimize the regret defined by the

difference between the cumulative loss of the learner and that of the unknown, arbitrary comparator u:

RegretT (u) =
T

∑
t=1
ℓt(wt) −

T

∑
t=1
ℓt(u) .

Departing from the standard setup, we consider a game where the learner receives a noisy version ĝt of

gt. Specifically, we assume that the noise ĝt − gt is sub-exponential. Note that such a setting nicely

mirrors the one of optimization of a fixed convex function with a stochastic first-order oracle.

The presence of noise implies that wt, a function of the past noisy subgradients, is also stochastic.

Thus, it is natural to minimize the expected regret:

E[RegretT (u)] = E [ T

∑
t=1
ℓt(wt) − T

∑
t=1
ℓt(u)] . (1)

1 The notation gt is a mnemonic for “gain” since the subgradients correspond to losses in online linear games.
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We will define more formally the setting and noise in Section 2. Our goal is to achieve expected regret

bounds that have optimal dependency on ∥u∥ and T , that is the so-called parameter-free or adaptive

OCO algorithms (Foster et al., 2015; Orabona and Pál, 2016; Foster et al., 2017; Cutkosky and Boahen,

2017; Kotłowski, 2017; Cutkosky and Orabona, 2018; Foster et al., 2018).

Our problem is motivated by a recent lower bound result on the unconstrained OCO showing that,

without prior information on the largest subgradient, parameter-free algorithms are doomed to suffer an

exponential penalty exp(maxtLt/Lt−1), where Lt is dual norm of the largest subgradient up to time

t (Cutkosky and Boahen, 2017). Given such a catastrophic negative result that implies the excessive

power of the adversary, one may ask the following question: under what condition on the game can the

learner minimize regret efficiently with unbounded subgradients? Our study provides a positive answer

by allowing subgradients observed by the learner to be unbounded via stochasticity, which limits the

adversarial power without restricting observed subgradients to be bounded.

In order to develop low-regret algorithms for noisy OCO, it is tempting to directly use existing

algorithms and their guarantees. However, these attempts either result in a suboptimal dependence on

∥u∥ in the regret, namely ∥u∥2, or do not lead to nontrivial regret bounds (see Section 3 for details).

This motivates the following question: does there exist an unconstrained noisy OCO algorithm whose

expected regret scales as optimally with ∥u∥ and T ? We answer this question in the affirmative by

proposing a new Betting Algorithm for Noisy COins (BANCO). BANCO enjoys expected regret

O (∥u∥√(G2 + σ2)T log(1 + ∥u∥T ))
in a smooth Banach space, whereG is the bound on the expected negative subgradients gt and σ2 is the

variance of the noisy negative subgradients ĝt. Our result reveals that, despite the noisy and unbounded

nature of the feedback, it is possible to adapt to the unknown and best-in-hindsight comparator just as

in the noise-free environments, in expectation.

BANCO is constructed via a natural extension of the coin betting framework (Orabona and Pál,

2016), where we reduce noisy OCO to a 1-d game of betting money on noisy coin flips to maximize

one’s expected wealth. The noisy OCO in Banach space is then reduced to the 1-d coin betting,

equipped with any constrained noisy OCO learner in a black-box manner. We describe the coin betting

view and its extension to Banach OCO in Section 4 and 5 respectively. Furthermore, we further show

that the dependence on the variance σ2 cannot be improved, also matching the dependence on ∥u∥
up to logarithmic factors. We stress that, combining our lower bound and the existing ones in the

literature, our regret upper bound is unimprovable. We discuss details on lower bounds in Section 6.

Finally, in Section 7, we show some consequences of our results. Indeed, the noisy OCO problem

and its algorithms have numerous applications as learning with noisy observations is a dominating

paradigm of machine learning. First, we show that our noisy OCO algorithm can be directly used

for locally differentially-private stochastic subgradient descent (SGD). In fact, in private SGD noise

is added on the subgradients to guarantee privacy, perfectly fitting our framework. In particular, we

achieve the first parameter-free locally private SGD algorithm. Second, we show that our algorithmic

construction reveals a tight connection to concentration inequalities. Specifically, we show that our

algorithm implies a Banach valued concentration inequality that matches the rate of the law of the

iterated logarithm. The connection is made through a simple observation that a noisy coin betting

potential directly implies a supermartingale, which is then combined with Doob’s inequality to show

concentration inequalities that hold for any time step t.

We conclude our paper with open problems in Section 8.
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2 Problem Definition and Preliminaries

In this section, we describe our notations, formally define the problem, and provide background on

coin betting.

Notations. The dual of a Banach space V over a field F , denoted by V ⋆, is the set of all continuous

linear maps V → F . We use the notation ⟨v,w⟩ to indicated the application of a dual vector v ∈ V ⋆
to a vector w ∈ V . V ⋆ is also a Banach space with the dual norm: ∥v∥⋆ = supw∈V,∥w∥≤1⟨v,w⟩. We

abbreviate x1, . . . ,xt by x1∶t.

Online convex optimization with noise. In OCO with noise, as introduced in the introduction, the

learner receives a noisy version ĝt ∈ V ⋆ of the negative subgradient gt ∈ V ⋆. Since the learner’s

predictions wt ∈ V are a function of past noisy subgradients, the regret is also stochastic. Therefore,

our goal is the minimize the expected regret defined in (1).

We assume that the true subgradients are bounded by G: ∥gt∥∗ ≤ G. Furthermore, the noise

ξt ∶= ĝt −Et[ĝt] is conditionally zero-mean and has conditional finite variance measured with the dual

norm:

E [∥ξt∥2

∗ ∣ ξ1∶t−1] ≤ σ2,∀t, (2)

for some σ > 0. Hereafter, we use the notation Et to denote E[⋅ ∣ ξ1∶t−1]. We also assume a tail

condition such that ξt is conditionally sub-exponential with parameters (σ2

1D, b):2
max

a∶∥a∥≤1
Et [exp(β⟨ξt,a⟩)] ≤ exp(β2σ2

1D

2
) , ∀∣β∣ ≤ 1

b
. (3)

One can show that, when (3) is achieved with equality, we have σ2

1D ≤ σ2. The intuition of the condition

above is that the tail of the noise ξt behaves well in any direction; a similar form of condition for

sub-Gaussian vectors can be found in Hsu et al. (2012). This noise definition covers a wide range of

distributions, including Gaussian and Laplace. Consider the L2 norm for simplicity. If d = 1, we have

σ2 = σ2

1D. This is not true in general and the relationship depends on the noise distribution and the

norm being considered. If ξt ∼ N(0, s2
I), then one can see that σ2

1D = s2 and σ2 = ds2. As another

example, the Laplace mechanism noise used in differentially-private learning satisfies the tail condition

above; see Section 7.1.

OCO as betting on noisy coins. One recent framework for unconstrained OCO is coin betting,

which views the OCO game as maximizing a gambler’s wealth via repeated betting on adversarial

coin flips (McMahan and Abernethy, 2013; Orabona and Pál, 2016). This framework provides a

straightforward way to design algorithms that achieve optimal regret bounds with respect to any

competitor, without imposing a bounded set for the competitor nor any parameter to tune, i.e.,

parameter-free. Consider 1d OCO with G = 1 for simplicity. The gambler starts with the initial

endowment Wealth0 = τ for some τ > 0. In each iteration t, the gambler determines how much money

to bet and whether to bet on heads (+1) or tails (−1), which is encoded as ∣wt∣ and sign(wt) respectively.

After the adversary’s (continuous) coin outcome gt ∈ [−1,1] is revealed, the gambler’s wealth, denoted

by Wealtht, is updated additively: Wealtht =Wealtht−1 +gtwt. That is, the gambler makes (loses)

2β is often qualified as ∣β∣ < 1

b
in the literature. Our qualification is merely for ease of exposition.
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money when she gets the coin side correct (incorrect), and the amount of return (loss) is determined by∣gtwt∣ (respectively). Developing successful strategies critically rely on designing a potential function

Ft(x) and an appropriate betting amount wt such that

Wealth0 = F0(0) and Ft−1(x) + gtwt ≥ Ft(x + gt),∀t . (4)

One can show that the two properties above imply Wealtht ≥ Ft(∑t
s=1 gs) (the derivation is similar

to (7) below). McMahan and Orabona (2014, Theorem 1) show that a lower bound on WealthT is

equivalent to an upper bound on the linearized regret w.r.t. a comparator u, ∑T
t=1 gt(u −wt), which

reveals a tight connection between coin betting and OCO.

In this paper, we extend the coin betting problem to noisy coin outcomes. Specifically, the gambler

observes a noisy version of the coin outcome ĝt ∈ R rather than gt = E[ĝt]. While the extension appears

obvious, the existing coin betting strategies (e.g. Orabona and Pál, 2016; Orabona and Tommasi, 2017)

cannot be applied to the noisy setting; their design ensures that the wealth never goes below 0 w.p. 1,

which cannot be true for our setting as the coin outcome can be arbitrarily bad.

To cope with noisy coins, we develop a noisy coin betting framework. The key idea is that,

although we cannot guarantee the nonnegativity of wealth, we can guarantee it for the expected wealth.

Departing from the conditions for noise-free coin betting (4), we assume that Ft and wt satisfy the

betting relationship in conditional expectation

Ft−1(x) + gtwt ≥ Et[Ft(x + ĝt)] . (5)

This immediately implies that

EWealtht ≥ E [Ft ( t∑
s=1

ĝs)] . (6)

In fact, by induction, assume that (6) holds for t − 1. Then,

EWealtht = E[Wealtht−1 +Etĝtwt] (a)≥ E [Ft−1 (t−1∑
s=1

ĝs) +Etĝtwt]
= E [Ft−1 (t−1∑

s=1
ĝs) + gtwt] (b)≥ E [Ft ( t∑

s=1
ĝs)] ,

(7)

where (a) is by the inductive hypothesis and (b) is by (5).

3 The Devil is in the Details: Failing Approaches

As a warm-up, we discuss how one might attempt to extend existing algorithms for the noisy setting

and why these approaches would fail. For simplicity, consider that V = Rd, the norm is the L2 norm,

and G = 1. For this, we need algorithms that enjoy regret bounds without requiring a subgradient

bound as an input. For example, one can apply online subgradient descent (OGD), which guarantees a

regret bound w.r.t. the noisy subgradients:

R̂Lin
T (u) ∶= T∑

t=1
⟨ĝt,u −wt⟩ = ∥u∥2

2η
+ η

2

T∑
t=1
∥ĝt∥2 .

Notice that R̂Lin
T (u) itself does not bound RegretT (u) and one must turn to either expected or high

probability regret bounds. With the choice of the step size η = 1/√(σ2 + 1)T , we have an expected

regret bound:
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E[RegretT (u)] (a)≤ E [ T∑
t=1
⟨gt,u −wt⟩] (b)= E [ T∑

t=1
⟨ĝt,u −wt⟩] = O ((∥u∥2 + 1)√(σ2 + 1)T) ,

where (a) is by convexity and (b) is by the tower rule. However, the dependence on the unknown

comparator u is ∥u∥2, which is much larger than the best known rate, which is ∥u∥√log(1 + ∥u∥)
(McMahan and Orabona, 2014). While there exist algorithms that almost achieve this rate w.r.t. ∥u∥
without requiring a bound on ĝ1∶T as input (e.g., Cutkosky and Boahen (2017) with γ ≈ 1

2
), the lower

bound of Cutkosky and Boahen (2017) implies that the overall regret bound cannot be sublinear.

Another attempt is to leverage the fact that the noisy subgradients are bounded with high probability.

Consider for example a 1d OCO problem with (σ2

1D,0)-sub-exponential noise in which case σ = σ1D.

Let E1 be the event that ∣ĝt∣ ≤ gt + σ√log(T /δ) for all t ≤ T (omitting constants), which satisfies

P(¬E1) ≤ δ. Using the standard parameter-free OCO algorithms such as the one in McMahan and

Orabona (2014), one may obtain the following bound under the event E1:

R̂Lin
T (u) = O (∣u∣ (G + σ√log(T /δ))√T log(1 + ∣u∣)) ,

which is, again, not an upper bound on RegretT (u), not even under E1.3 Define the linearized regret:

RLin
T (u) = ∑T

t=1⟨gt,u −wt⟩. In a special case where there exists c > 0 such that R̂Lin
T (u)⟩ ≤ c∣u∣T

(though we explain below this is unrealistic), one may have an expected regret bound as follows:

ERegretT (u) ≤ E[RLin
T (u)] = E[R̂Lin

T (u)]
= E[R̂Lin

T (u)∣E1] ⋅ P(E1) +E[R̂Lin
T (u)∣¬E1) ⋅ P(¬E1)

= O (∣u∣ (G + σ√log(T /δ))√T log(1 + ∣u∣)) + c∣u∣Tδ .
Indeed, the assumption R̂Lin

T (u) ≤ c∣u∣T would be true for constrained OCO with bounded noise ξt.

However, our case is neither constrained nor with bounded noise. For a fixed u, if u −wT > 0, then ĝT

can be arbitrarily large, making the regret much larger than c∣u∣T for any c. Such an issue caused by

unbounded noise poses a significant challenge in designing unconstrained algorithms adapting to the

unknown comparator u under noisy feedback.

Finally, we remark that, for linear losses, the standard OGD can have an expected regret that does

not scale with σ. This, however, does not generalize to generic convex losses. In fact, our lower bound

result in Section 6 shows that the factor σ in the expected regret bound cannot be avoided in general.

We elaborate more on this in Appendix A.

4 One-dimensional Betting Algorithm with Noisy Coins

In this section, we show how to construct noisy coin betting potentials. We focus on potential functions

Ft and associated betting strategy wt defined as follows:

Ft(x) = ∫ ft(x,β)dπ(β), and wt = ∫ βft−1 (t−1∑
i=1
ĝi, β)dπ(β),

for some functions ft(x,β), and a prior π(β). This defines a family of noisy coin betting potentials,

parameterized by the prior π. While this kind of potentials have been used by Chernov and Vovk

3 One may attempt to derive a high probability regret bound via a decomposition∑
T
t=1
⟨gt, u −wt⟩ = ∑

T
t=1
⟨gt − ĝt, u −

wt⟩ + ∑
T
t=1
⟨ĝt, u −wt⟩. However, the first summation involves wt that is unbounded, and analyzing the behavior of wt

appears nontrivial. We leave high probability regret bounds as future work.
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Algorithm 1 Betting Algorithm for Noisy COins (BANCO)

Require: sub-exponential parameters (σ2, b), expected subgradient bound G, initial money τ .

for t = 1 to T do

Play wt = τ ∫ a
−a β exp(β∑t−1

s=1 ĝs − β2(t − 1) (σ2

2
+G2))dπ(β) where a =min (k1

G
, 1

b
).

Receive ĝt ∈ R.

end for

(2010); Koolen and van Erven (2015) for parameter-free algorithms for learning with expert advice,

our key novelty lies in blending the effect of sub-exponential noise into the potential naturally, making

it amenable to analysis.

Our construction is based on the following key inequality for sub-exponential random variables.

Lemma 1. Let ĝ be a (σ2, b)-sub-exponential random variable, with mean g such that ∣g∣ ≤ G. Let k1

satisfy

1 − k1 = exp(−k1 − k2

1), (8)

that is k1 = 0.683803 . . . . Then, for any β such that ∣β∣ ≤min(k1/G,1/b), we have

1 + βEĝ[ĝ] ≥ Eĝ exp(βĝ − β2 (σ2

2
+G2)) . (9)

Proof. Given that ∣β∣ ≤min(k1/G,1/b), we have βg ≥ −k1 and 1 + βg ≥ eβg−β2g2

. Then,

1 + βEĝ[ĝ] = 1 + βg ≥ exp(βg − β2g2) ≥ Eĝ exp(βĝ − β2 (σ2

2
+ g2))

≥ Eĝ exp(βĝ − β2 (σ2

2
+G2)) ,

where the second inequality is due to E exp(β(ĝ − g)) ≤ exp(β2σ2/2) for all ∣β∣ ≤ 1

b
.

From this lemma, multiplying the right hand side of the equation for i = 1 to t, it is natural to define

our noisy coin betting potential as

Ft(x) ∶= τ ∫ a

−a
exp(βx − β2t(σ2

2
+G2))dπ(β), (10)

and associated prediction strategy

wt = τ ∫ a

−a
β exp(β t−1∑

s=1
ĝs − β2(t − 1)(σ2

2
+G2))dπ(β),

where a ≤min(k1/G,1/b) and π has support in [−a, a]. In this way, we obtain our Betting Algorithm

for Noisy COins (BANCO) and summarize it in Algorithm 1. In the following theorem we show that

(10) satisfy our assumptions.

Theorem 2. Let wt be computed by Algorithm 1. Then Ft in (10) is a noisy betting potential.
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Proof. From the definition it is obvious that F0(0) = τ . We then have to show that EtFt(x + ĝt) ≤
Ft−1(x) + gtwt. Hence, consider

EtFt(x + ĝt) = τEt∫ a

−a
exp (β(x + ĝt) − β2t (σ2/2 +G2))dπ(β)

= τEt∫ a

−a
exp (βĝt − β2 (σ2/2 +G2)) exp (βx − β2(t − 1) (σ2/2 +G2))dπ(β)

(a)≤ τ ∫ a

−a
(1 + βEtĝt) exp (βx − β2(t − 1)(σ2/2 +G2))dπ(β) (b)= Ft−1(x) + gtwt,

where (a) is due to (9) and (b) is by Fubini’s theorem.

In the standard coin betting, a lower bound on the wealth is equivalent to an upper bound on the

regret for linearized losses by (McMahan and Orabona, 2014, Theorem 1). We extend this result to the

expected wealth and linearized regret, proof in Appendix B.

Theorem 3 (Reward-Regret relationship). Let V,V ⋆ be a pair of dual vector spaces. Let F ∶ V ⋆ →
R ∪ {+∞} be a proper convex lower semi-continuous function and let F ⋆ ∶ V → R ∪ {+∞} be its

Fenchel conjugate. Let τ ∈ R. Consider the σ-algebra Ft = σ(ĝ1, . . . , ĝt−1). Let wt be Ft-measurable,∀t ∈ {1, . . . , T}. Then,

τ +E [ T∑
t=1
⟨ĝt,wt⟩]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E[WealthT ]

≥ E [F ( T∑
t=1

ĝt)] Ô⇒ ∀u ∈ V, E [ T∑
t=1
⟨ĝt,u −wt⟩]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E[R̂Lin

T
(u)]

≤ F ⋆(u) + τ .

Hence, to obtain a regret bound from the above theorem, we just need to compute the Fenchel

conjugate of the noisy coin betting potential FT . We remark that in the standard non-noisy setting the

reward-regret relationship holds for both directions (i.e., wealth bound iff regret bound) rather than one

direction only. It remains unclear to us whether such a direction is true or not.

To construct a specific algorithm, it remains to choose the prior π. While one can choose any

prior, it is preferred to have a closed form expression for wt. We choose Uniform[−a, a] for simplicity,

which results in

wt = τ
√
π exp( (∑t−1

s=1
ĝs)2

4t(σ2/2+G2))[erf(2at(σ2/2+G2)−∑t−1

s=1
ĝs

2
√

t(σ2/2+G2) ) + erf(2at(σ2/2+G2)+∑t−1

s=1
ĝs

2
√

t(σ2/2+G2) )]
4a
√
t(σ2/2 +G2) .

Note that a similar prediction strategy was also proposed in Koolen and van Erven (2015). It is easy to

verify that another choice that results in a closed form update with an equivalent wealth guarantee is

with a Gaussian prior centered at zero. For improving numerical precision for computing wt above, we

refer to (Koolen, 2015).

In the following theorem we calculate the Fenchel conjugate of of this potential function from

which the regret bound immediately follows by Theorem 3, proof in Appendix C.

Theorem 4. Let F (x) = τ ∫ a
−a exp(βx − β2S)dπ(β) where π(β) is Uniform[−a, a]. Then,

F ⋆(u) ≤max{∣u∣√2S ln (1 + 16ea2S2u2

τ2 ), 8

3a
∣u∣ ln( 32

3eaτ
∣u∣)} .
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Algorithm 2 BANCO in Banach Spaces

Require: Banach space V , learner AD with domain being the unit ball S ⊂ V
for t = 1 to T do

Get point wt ∈ R from BANCO, Algorithm 1

Get point yt ∈ S from AD

Play xt = wtyt ∈ V
Receive a noisy negative subgradient ĝt such that E[ĝt] ∈ −∂ℓt(xt)
Set st = ⟨ĝt,yt⟩
Send st to BANCO, Algorithm 1

Send ĝt as the t-th negative subgradient to AD

end for

Applying the two theorems above with S = T (σ2/2 +G2) and a =min(k1/G,1/b), where k1 is

defined in (8), we have the expected regret guarantee of BANCO:

E[RegretT (u)] ≤ τ + ∣u∣max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¿ÁÁÁÀ2(G2 + σ2

2
)T ln

⎛⎝1 + 16emin(k1

G
,
1

b
)2

T 2 (G2 + σ2

2
)2
u2

τ2

⎞⎠,
8

3
max (G

k1

, b) ln(32 max (G
k1

, b) ∣u∣
3eτ
)⎫⎪⎪⎬⎪⎪⎭ .

5 Banach Online Convex Optimization with Noise

In this section, we extend the parameter-free algorithm, BANCO, to Banach spaces. Attempting to

extend the 1d algorithm to higher dimensional spaces would require an ad hoc analysis specialized to

the particular algorithm. Instead, we leverage a black-box reduction: we take any constrained noisy

OCO algorithm for Banach space and turn it into an unconstrained one via BANCO.

Let V be a Banach space and the negative subgradients ĝt ∈ V ⋆ satisfy ∥Et ĝt∥⋆ ≤ G. Define S

to be the unit ball in V . We summarize our reduction in Algorithm 2, which is a direct extension

of Cutkosky and Orabona (2018) for noisy subgradients. The key feature of the algorithm is a black-box

reduction that takes two learners: (i) the 1d coin-betting that predicts the magnitude wt ∈ R and (ii) a

d-dimensional learner AD that predicts the direction yt ∈ S. The reduction then makes the combined

prediction by xt = wtyt After receiving the noisy negative subgradient ĝt evaluated at xt, we feed

st = ⟨ĝt,yt⟩ into the coin-betting algorithm and ĝt into AD as the subgradient.

Theorem 5 below shows that the expected regret of Algorithm 2 is nicely decomposed into two

expected regrets, each from the noisy coin betting algorithm and AD. The fact that we require the

expected regret of AD w.r.t. the unit norm comparator frees us from tuning the parameter of AD for

the optimal step size, delegating the burden of adaptation to the noisy coin betting algorithm. The

proof is simple and immediate from Cutkosky and Orabona (2018), but for completeness we report it

in Appendix D.

Theorem 5. Suppose AD obtains expected regret RD
T (u) ∶= ∑T

t=1⟨ĝt,u − yt⟩ for any competitor u in

the unit ball S ⊂ V and the coin betting algorithm obtains expected regret RM
T (v) ∶= ∑T

t=1 st ⋅ (v −wt)

8



for any competitor v ∈ R. Then, Algorithm 2 guarantees

ERegretT (u) ≤ RM
T (∥u∥) + ∥u∥RD

T (u/∥u∥),
where we define u/∥u∥ = 0 when u = 0.

Note that the loss ⟨ĝt,yt⟩ = ⟨gt,yt⟩ + ⟨ξt,yt⟩ fits the 1d noisy OCO setting exactly. To see this,∣⟨yt,gt⟩∣ ≤ ∥gt∥⋆ ≤ G. Furthermore, the random variable ⟨yt,ξt⟩ ∣ ξ1∶t−1 is (σ2

1D, b)-sub-exponential

since

∀∣ν∣ ≤ 1/b, Et exp(ν⟨ξt,yt⟩) ≤ exp(ν2σ2

1D/2),
where we use the fact ∥yt∥ ≤ 1 and our noise assumption (3).

For AD, one can invoke any algorithm for the Banach space of interest (Srebro et al., 2011). In

particular, if V is (2, λ)-uniformly convex (Pinelis, 2015), we can use online mirror descent with

stepsizes ηt =
√

λ√
∑t

s=1
∥ĝs∥2⋆

and predictions projected onto the unit ball S. One can then immediately

obtain the expected regret bound with noisy subgradients:

RD
T ( u∥u∥) ≤ E [

T∑
t=1

⟨gt,
u∥u∥ − yt⟩] = E [ T∑

t=1
⟨ĝt,

u∥u∥ − yt⟩] = O⎛⎜⎝E
⎡⎢⎢⎢⎢⎣

1√
λ

¿ÁÁÀ T∑
t=1

∥ĝt∥2⋆

⎤⎥⎥⎥⎥⎦
⎞⎟⎠

(a)≤ O
⎛⎜⎝

1√
λ

¿ÁÁÀ T∑
t=1

(E ∣∣gt∣∣2⋆ + σ2)⎞⎟⎠ ,
where (a) uses Jensen’s inequality and the fact that E[∥ĝt∥2

⋆] ≤ 2E[∥gt∥2
⋆] + 2σ2.

Finally, Algorithm 2 equipped with the uniform prior in the noisy coin betting algorithm and AD

chosen as above enjoys the following expected regret bound:

ERegretT (u) = O⎛⎝∥u∥max

⎧⎪⎪⎪⎨⎪⎪⎪⎩(G + b) ln ∥u∥(G + b)
τ

,

¿ÁÁÀ(G2 + σ2

1D
)T ln(∥u∥(G2 + σ2

1D
)T

τ
+ 1)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ ∥u∥√
λ

¿ÁÁÀ T∑
t=1
(E∥gt∥2⋆ + σ2) + τ⎞⎠ .

Examples of (2, λ)-uniformly convex Banach space include Hilbert spaces with 2-norm (in which case

λ = 1), as well as with p-norm with p ∈ (1,2] (in which case λ = p− 1). The runtime of Algorithm 2 is

dominated by the direction learner AD since the runtime of BANCO does not scale with d. In other

words, the black-box reduction adds little computational overhead while adapting to the unknown

best-in-hindsight comparator from noisy feedback.

6 Lower bound

In this section, we investigate lower bounds on the noisy OCO problem. Theorem 6 shows that our

dependence on the noise variance σ2 is unimprovable in general.
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Theorem 6. Let σ ≥ 2, p ≥ 1. Let q satisfy 1/q = 1 − 1/p. Denote by ∇ℓ̂t(x) a noisy subgradient

of ℓt(x). For any algorithm, there exists a noisy OCO instance with 1-Lipschitz loss functions w.r.t.

p-norm and E ∣∣∇ℓ̂t(x) − ∇ℓt(x)∣∣2q ≤ σ2 and a comparator u s.t.

p ≥ 2 Ô⇒ ERegretT (u) ≥min{c0σ∣∣u∣∣pd 1

2
− 1

p

√
T ,

1

18
∣∣u∣∣pd− 1

pT} and

p ∈ [1,2] Ô⇒ ERegretT (u) ≥min{c0σ∣∣u∣∣p√T , 1

18
∣∣u∣∣pT} ,

where c0 is a universal constant.

The main argument of the proof is based on a carefully constructed stochastic optimization instance,

which is connected to online convex optimization through the online-to-batch conversion (Littlestone,

1989); see Appendix E for details.

Note that our lower bound’s dependence on ∥u∥ mismatches our upper bound by a factor of√
log(1 + ∥u∥). The reason is that the constructed problem class for the proof is an easier optimization

problem where the learner knows the norm of the best competitor u. One may attempt to extend the

lower bound of Orabona (2013) to the noisy setting, which has the right dependence on ∥u∥. However,

their construction is based on linear losses in which there exists a learner whose expected regret does

not scale with σ, as we show in Appendix A.

Nevertheless, we claim that the expected regret of the noisy OCO is

Ω (G∥u∥√T log(1 + ∥u∥) + σ∥u∥√T) ,
which does include the extra logarithmic factor in ∥u∥. The claim is based on the lower bound

Ω(G∥u∥√T log(1 + ∥u∥)) for noise-free unconstrained OCO (Orabona, 2013, Theorem 2). Specif-

ically, suppose there exists an algorithm A achieving a strictly better order of regret bound than

G∥u∥√T log(1 + ∥u∥) in the noisy setting. We can then solve the standard noise-free problem by

adding some infinitesimal noise to the observed (non-noisy) gradients by ourselves and feeding that

noisy gradients to A. This leads to a better regret bound than the lower bound for the noise-free

problem, which is a contradiction.

7 Applications

We discuss two applications of our results to domains beyond the one of online learning.

7.1 Parameter-Free Locally Differentially Private SGD

In this section, we describe the application of our algorithm to the locally differentially private

SGD (Duchi et al., 2014; Song et al., 2015). An ǫ-differentially private algorithm must guarantee

that the log-likelihood ratio of the outputs of the algorithm under two databases differing in a single

individual’s data is smaller than ǫ (Dwork et al., 2006). In the stricter definition of local differential

privacy (Wasserman and Zhou, 2010; Kasiviswanathan et al., 2011; Duchi et al., 2014; Song et al.,

2015) instead an untrusted algorithm is allowed to access a perturbed version of a sensitive dataset

only through a sanitization interface. In particular, the sanitization mechanism must guarantee that the

log-likelihood ratio of the data of two individuals i and j is smaller than ǫ.

10



Definition 1 (Local Differential Privacy (Duchi et al., 2014; Song et al., 2015)). LetD = (X1, . . . ,Xn)
be a sensitive dataset where eachXi corresponds to data about individual i. A randomized sanitization

mechanism M which outputs a disguised version S = (U1, . . . Un) of D is said to provide ǫ-local

differential privacy to individual i, if

sup
S

sup
x,x′∈D

P[Ui ∈ S∣Xi = x]
P[Ui ∈ S∣Xi = x′] ≤ exp(ǫ),

where the randomization is taken over the randomization in the sanitization mechanism.

The local differential setting can be specialized to SGD (Song et al., 2015). Consider the

minimization of function H(w) = Ex∼ρX
[h(w,x)], where h(w,x) is convex in the first argument

and x represents sensitive data about one individual. The sanitization mechanism becomes the noisy

subgradient oracle that returns G(w) ∈ ∂h(w,x) + ξt when queried on w, where x is coming i.i.d.

from ρX and the noise ξt guarantees the local differential privacy (Song et al., 2015).

We now apply the results from Section 5, to show a parameter-free locally differential private

SGD algorithm. Consider the Laplace sanitization mechanism that adds noise with probability density

function ρξ(z) ∝ exp(− ǫ
2
∥z∥2). In words, the noise added to the subgradients makes them very

similar to one another. Song et al. (2015) proved that this mechanism is ǫ-local differentially private.

Also, the noise is zero-mean and they proved that E [∥ξt∥2
2
] ≤ 4(d2+d)

ǫ2 , satisfying (2). We now prove

that the Laplace mechanism also satisfies the sub-exponential noise assumption (3). The proof is rather

technical, hence we defer it to Appendix F.

Lemma 7. Let ξ ∈ Rd a random variable drawn from the density ρξ(z)∝ exp(− ǫ
2
∥z∥2). Then

max
∥a∥≤1

Et [exp(β⟨ξt,a⟩)] ≤ exp(9d2β2

ǫ2
) , ∀∣β∣ ≤ ǫ

4
.

Theorem 5 in conjunction with the online-to-batch conversion (Littlestone, 1989) directly implies

the convergence guarantee of a differentially private version of BANCO as stated in the following

corollary.

Corollary 1. Assume h(w,x) convex in the first argument w ∈ Rd and with its subgradients have L2

norm bounded by 1, where the subgradient is with respect to the first argument. Set the uniform prior in

BANCO, Algorithm 1, andAD being projected OGD with stepsizes ηt = 1/√∑t
s=1 ∥ĝs∥2

2
in Algorithm 2

for T iterations on the sequence of losses ℓt(w) = h(w,xt), where xt are coming i.i.d. from a

distribution ρX . Set ĝt = gt + ξt, where ξt ∈ Rd is drawn from the density ρξ(z) ∝ exp(− ǫ
2
∥z∥2).

Then, for any w⋆ ∈ Rd, we have

E [H ( 1

T

T∑
t=1

wt)] −H(w⋆) ≤ O (d∥w⋆∥2

ǫ
√
T

√
ln (1 + d2∥w⋆∥2T

ǫ2τ
) + τ

T
) .

This convergence rate matches the one for locally private SGD in Wu et al. (2017) up to

polylogarithmic terms, with the important difference that we do not need to assume the knowledge of

the norm of the optimal solution w⋆ to tune the stepsizes.
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7.2 Noisy Coin Betting Implies the Law of Iterated Logarithms in Banach Spaces

There is tight connection between concentration inequalities in Banach spaces and online linear

optimization algorithms unveiled by Rakhlin and Sridharan (2017). They showed that online mirror

descent with adaptive stepsizes gives rise to self-normalized concentration inequality for martingales.

Hence, it is natural to ask what kind of concentration can be derived from the noisy coin betting

algorithms. Here, we show that there is a connection between the law of iterated logarithms for sub-

Gaussian RVs in Banach spaces and Algorithm 2. The exact same reasoning holds for sub-exponential

RVs, but we consider the sub-Gaussian case for ease of exposition.

First, consider the one-dimensional case. It is immediate to see that, setting gt = 0, we have that (5)

implies that Et[Ft(∑t
i=1 ĝi)] ≤ Ft−1(∑t−1

i=1 ĝi), that is Ft(∑t
i=1 ĝi) is a supermartingale. Hence, we can

use Doob’s inequality (Durrett, 2010, Exercise 5.7.1) to have

P [max
t
Ft ( t∑

i=1
ĝi) ≥ 1

δ
] ≤ δE[F0(0)] = τδ . (11)

This inequality allows immediately to derive a concentration inequality. The only missing ingredient is

the correct prior on the betting fraction β that gives us the optimal bound. We derive it in the following

lemma, whose proof is in Appendix G.

Lemma 8. Set τ = 1 and let π(β) = 1

2π∣β∣(ln2(σ1D∣β∣)+1) be the prior. Assume d = 1, gt = 0,∀t. Let ξt

be sub-Gaussian (i.e., b = 0). Then,

Ft ( t∑
s=1

ĝs) ≥ exp( (∑t
s=1

ĝs)2
2tσ2

1D

)
2π
√
e
∑t

s=1
ĝs√

tσ2

1D

(ln2 ∑t
s=1

ĝs

tσ1D
+ 1) .

Furthermore, the noisy coin betting potential Ft implies

P

⎛⎜⎜⎝sup
t
∣ t∑
s=1

ĝs∣ ≥ σ1D

¿ÁÁÁÀ2t ln
⎛⎝(6π

√
e

δ
)3/2 ⋅ (ln2(√t) + 1)⎞⎠

⎞⎟⎟⎠ ≤ δ .
We remark that the choice of prior in Lemma 8 resembles 1

β ln
2(β) used by Chernov and Vovk

(2010) and Koolen and van Erven (2015), but their choice does not work when the range of β is

unbounded.

We now show that the reduction in Algorithm 2 implies a Banach-valued martingale concentration

inequality. Specifically, for the Banach space being (2, λ)-uniformly convex and with the choice of

OMD described in Section 5 as AD, we have ∑t
s=1⟨ĝs,u − ys⟩ ≤√ 2

λ ∑t
s=1 ∥ĝs∥2⋆ for all u in the unit

ball S ⊂ V w.p. 1. This implies, by the definition of the dual norm,

∥ t∑
s=1

ĝs∥
⋆
≤
¿ÁÁÀ2

λ

t∑
s=1

∥ĝs∥2⋆ + t∑
s=1
⟨ĝs,ys⟩ .

Since ⟨ĝs,ys⟩ is the feedback given to BANCO, Lemma 8 implies that

P

⎛⎜⎜⎝max
t

∥ t∑
s=1

ĝs∥
⋆
≥
¿ÁÁÀ2

λ

t∑
s=1

∥ĝs∥2⋆ + σ1D

¿ÁÁÁÀ2t ln
⎛⎝(6π

√
e

δ
)3/2 (ln2(√t) + 1)⎞⎠

⎞⎟⎟⎠ ≤ δ .
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8 Conclusion and Future Work

In this paper, we introduced the unconstrained OCO problem with subgradients corrupted by sub-

exponential noise, motivated by a recent pessimistic results on learning with unbounded subgradients.

Straightforward extensions of existing algorithms do not result in optimal regret rates. Hence, we

proposed a new algorithm called BANCO via the noisy coin betting framework, which achieves the

same optimal minimax regret rate as in the noise-free unconstrained OCO w.r.t. the comparator ∥u∥
and the horizon T . Our lower bound on the noise level σ implies that the regret bound of BANCO is

optimal up to constant factors. Numerous applications follow naturally including differential privacy,

which provides the first parameter-free subgradient descent algorithm for differential privacy.

Our study opens up numerous research directions. First, one immediate difference in our upper

bound from the standard noise-free OCO algorithms is that we do not have a data-dependent regret

bound; we have (G2 + σ2)T rather than E[∑T
t=1 ∥ĝt∥2⋆]. It would be interesting to investigate whether

data-dependent bounds are possible. Second, it would be desirable not to require the knowledge of

the noise through (σ2, b). While there are cases where the noise is known ahead of time, such as in

private SGD, in the vast majority of applications data arrives through a noisy channel with an unknown

noise. Third, it would be interesting to consider more general noise conditions such as heavy-tailed

distributions. Finally, high probability regret bounds would be a straightforward research direction.
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Appendices

A OGD with linear losses

We show that for linear losses OGD’s expected regret does not scale with the noise level σ.

Consider the linear losses ℓt(x) = −⟨gt,x⟩. Let G = 1 for simplicity. Assume that the loss

functions are set before the game starts. That is, gt’s are deterministic. The standard OGD makes

predictions by wt = η∑t−1

s=1 ĝs. Let w⋆t be the prediction that OGD would have made in the noise-free

setting: w⋆t = η∑t−1

s=1 gs. It is easy to see that Ewt = Eη∑t−1

s=1 ĝs = η∑t−1

s=1 gs = w⋆t . Therefore, the

expected regret of OGD satisfies

E

T∑
t=1
⟨ĝt,u −wt⟩ = E T∑

t=1
⟨gt,u −wt⟩ = T∑

t=1
⟨gt,u −w⋆t ⟩ .

Therefore, let alone the data-dependent regret, OGD has a regret bound of O((∥u∥2 + 1)√T ) with a

tuned η. Interestingly, the regret bound does not involve σ. However, one cannot expect to be free from

σ in general. Indeed, our lower bound in Theorem 6 shows that the factor σ must be present in general.

B Proof of Theorem 3

The proof follows from the fact that the expected wealth is underapproximated by the potential function

F (x), together with the definition of the Fenchel conjugacy:

E[R̂Lin
T (u)] = E [ T∑

t=1
⟨ĝt,u −wt⟩] = E [ T∑

t=1
⟨ĝt,u⟩ −WealthT +τ]

≤ E [ T∑
t=1
⟨ĝt,u⟩ − F ( T∑

t=1
ĝt) + τ]

≤ E [max
x∈V ⋆

⟨x,u⟩ − F (x) + τ] = F ⋆ (u) + τ .
C Proof of Theorem 4

From the definition of the Fenchel duality we have

f⋆(u) =max
θ

uθ − f(θ) = uθ⋆ − f(θ⋆),
where θ⋆ = arg maxθ uθ − f(θ). Define β⋆ = arg maxβ exp(βθ⋆ − β2S), that is β⋆ = θ⋆

2S
. Assume

that θ⋆ ≥ 0. The reasoning is analogous for θ⋆ < 0. In fact, one can show that the function is even.

We perform a case-by-case analysis. We first assume that θ⋆ ≤√2S. Then,

f⋆(u) ≤ uθ⋆ − f(θ⋆) ≤ ∣u∣√2S,

from which the stated bound follows. Hence, we can safely assume θ⋆ >√2S, which is equivalent to

β⋆ ≥ 1√
2S

. Let [v1, v2] ⊆ [−a, a ∧ β⋆]. Recall that we use the uniform prior: π(β) = 1/(2a),∀β ∈[−a, a]. The following inequality becomes useful:

f(θ⋆) = τ

2a
∫ a

−a
exp(βθ⋆ − β2S)dβ ≥ τ

2a
∫ v2

v1

exp(βθ⋆ − β2S)dβ (12)
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≥ v2 − v1

2a
τ exp(v1θ

⋆ − v2

1S) .
Case 1: β⋆ ≤ a.

Using (13) with v1 = β⋆ − 1√
2S

and v2 = β⋆, we have

f(θ⋆) = τ

2a
∫ a

−a
exp(βθ⋆ − β2S)dβ ≥ τ

2a
√

2S
exp((θ⋆)2

4S
− 1

2
) .

Hence, we have

f⋆(u) ≤ ∣u∣∣θ⋆∣ − τ

2a
√

2S
exp((θ⋆)2

4S
− 1

2
)

≤max
x

x∣u∣ − τ

2a
√

2S
exp( x2

4S
− 1

2
) .

To solve the problem above, we consider the following stylized problem:

max
x

x∣u∣ −A exp(Bx2 −C) .
We see by setting the gradient to zero that A(2Bx) exp(Bx2 −C) = ∣u∣ Ô⇒ 4A2B2x2 exp(2Bx2 −
2C) = u2. Letting z = 2Bx2 and D = u2

2A2Be−2C , we have z exp(z) =D. Using Lambert function, we

have z =W0(D) and so x =
√

W0(D)
2B

, which we call x⋆. We use the upper bound onW0(y) ≤ ln(1+y)
for y > 0 by Orabona and Pál (2016, Lemma 17). Then, plugging in A = τ

2a
√

2S
, B = 1/(4S), and

C = 1/2,

f⋆(u) ≤ x⋆∣u∣ ≤ ∣u∣
¿ÁÁÀ2S ln(1 + 16ea2S2u2

τ2
) .

Case 2: β⋆ > a.

In this case, we have θ⋆ > 2Sa. Then, choose v1 = a − c and v2 = a to arrive at

f(θ⋆) = 1

2a
∫ a

−a
τ exp(βθ⋆ − β2S)dβ ≥ v2 − v1

2a
τ exp(v1θ

⋆ − v2

1S)
≥ c

2a
τ exp(v1θ

⋆ − v2

1

θ⋆

2a
) = c

2a
τ exp(θ⋆Q),

where Q = v1 − v2

1

2a
. Using θ⋆ > 0,

f⋆(u) ≤ uθ⋆ − c

2a
τ exp(θ⋆Q) ≤max

θ
∣u∣θ − c

2a
τ exp(θQ) = ∣u∣

Q
ln(∣u∣ 2a

ecτQ
) .

Setting c = a/2, we have Q = 3

8
a, which leads to f⋆(u) = 8

3a
∣u∣ ln ( 32

3eaτ
∣u∣).

17



D Proof of Theorem 5

Observe that ∣st∣ ≤ ∥ĝt∥⋆∥yt∥ ≤ ∥ĝt∥⋆ since ∥yt∥ ≤ 1 for all t. Furthermore,

ERegretT (u) ≤ E [ T∑
t=1
⟨gt,u −xt⟩] = E [ T∑

t=1
⟨ĝt,u −xt⟩]

= E [ T∑
t=1
⟨ĝt,u⟩ − ⟨ĝt,wtyt⟩]

= E [ T∑
t=1
⟨ĝt,u⟩ − ⟨ĝt,yt⟩∥u∥ + ⟨ĝt,yt⟩∥u∥ − ⟨ĝt,yt⟩wt]

≤ ∥u∥E [ T∑
t=1
⟨ĝt,u/∥u∥⟩ − ⟨ĝt,yt⟩] +RM

T (∥u∥)
≤ ∥u∥RD

T (u/∥u∥) +RM
T (∥u∥) .

E Proof of Theorem 6

It is not hard to see that a stochastic optimization lower bound imply an online learning lower bounds.

This is due to the online to batch conversion (Littlestone, 1989) which implies stochastic optimization

is “not harder” than online learning. Specifically, suppose we have a lower bound on the convergence

of stochastic optimization for convex functions: EF (xT ) − F (x⋆) ≥ c/√T . Then, we can claim

a lower bound in the online convex optimization: E∑T
t=1 ft(x′t) − ft(u) ≥ c/√T . Here is a proof:

Suppose a better rate is possible in online learning with some method: E∑T
t=1 ft(x′t)− ft(u) < c/√T .

One can then perform online learning with ft = F where the online learner acquires noisy version

f̂t. With the online-to-batch conversion, this solves the stochastic optimization with a better rate:

EF ( 1

T ∑T
t=1 x′t) − F (x⋆) < c/√T , which is a contradiction.

Therefore, it suffices to show a lower bound on stochastic optimization. Before presenting the

lower bound statement, we describe the problem setup. We closely follow the setup of Agarwal et al.

(2012). Let S ⊆ Rd. Let the function class F consists of functions f ∶ S → R that are convex and

1-Lipschitz w.r.t. ℓp-norm: ∣f(x) − f(y)∣ ≤ L∥x − y∥p,∀x,y ∈ S. An algorithm M has access to T

calls of the first order oracle and outputs xT after T calls to the oracle (hereafter, we color definitions

with light blue for the benefit of readers). The oracle ψσ(x, f) takes x ∈ S and returns (f̂(x), ẑ(x))
where f̂(x) is the noisy function value and ẑ(x) is a noisy subgradient such that E ẑ(x) ∈ ∂f(x).
The oracle guarantees a noise condition E ∥ẑ(x)−E ẑ(x)∥2q ≤ σ2. Our goal is to find a lower bound on

ǫ⋆ ∶= inf
M

sup
f∈F

E [f(xT ) − f(x⋆f)] ,
where x⋆f is the minimizer of f . The quantity ǫ⋆ depends on d, T ,σ, and S.

Let B∞(r) be the ∞-norm ball with radius r. We present our stochastic optimization lower bound

in Theorem 9 below. The difference from the lower bound in Agarwal et al. (2012) is that the bound

therein is that (i) they obscure the dependence on the noise σ by equating it to the Lipschitz constant

and (ii) they assume uncentered second moment noise bound E ∥ẑ(x)∥2q ≤ σ2 rather than the variance

of ∥ẑ(x)∥q. Departing from the prior work, we consider a different function class that keeps the

Lipschitz constant at 1 while allowing the noise level σ to be arbitrarily large.
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Theorem 9. Let r be the largest number such that B∞(r) ⊆ S. Let σ ≥ 2. Then, there exists a universal

constant c0 such that

q ∈ [1,2] Ô⇒ ǫ⋆ ≥ min{c0σ
r
√
d√
T
,
r

18
} and

q ≥ 2 Ô⇒ ǫ⋆ ≥ min{c0σ
rd1/q−1√

T
,
rd1/q−1

18
} .

Proof. The proof closely follows Agarwal et al. (2012), but we consider a different function class. The

key idea is to construct a function class such that identification of the target function is equivalent to

identification of coefficients {αi ∈ [0,1]}, i ∈ {1, . . . , d}, on a set of basis functions. Furthermore,

the construction defines an oracle such that each query amounts to revealing a coin outcome {0,1} ∼
Bernoulli(αi) for some i’s (details vary for different q’s). Then, the number of observations in statistical

estimation is directly connected to the number of oracle calls, allowing a statistical lower bound to

imply an iteration complexity of stochastic optimization.

Let V ⊆ {±1}d has M distinct vertices of d-dimensional hypercube such that (i) V is d
4
-packing

w.r.t. hamming distance (i.e., ∑i 1{αi ≠ βi} ≥ d
4
,∀α ≠ β ∈ V) and (ii)M ≥ (2/√e)d/2 ≈ 1.1d. Such

a packing is known to be possible (Matoušek, 2002). We define the function class G(δ) that consists of

∀α ∈ V, gα(x) ∶= c
d
∑
i

((1

2
+ αiδ)f+i (x) + (1

2
− αiδ)f−i (x)) where

f+i (x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−xi + r(−σ − 1) if xi ≤ −r
σxi if − r ≤ xi ≤ r
xi + r(σ − 1) if r ≤ xi

and f−i (x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−xi + r(σ − 1) if xi ≤ −r−σxi if − r ≤ xi ≤ r
xi + r(−σ − 1) if r ≤ xi

.

We assume that δ ≤ 1

2σ
, which ensures the convexity of gα.

Case 1: q ∈ [1,2].
For this case, we assume an oracle that first chooses I ∈ [d] uniformly at random, draw bI ∈ {0,1}
with Ber(1/2 + αIδ), and then return the function value and the subgradient of

ĝα(x) = c (bIf
+
I (x) + (1 − bI)f−I (x)) .

Thus, the learner only sees either cf+I (x) or cf−I (x), and the function value and the subgradient

are unbiased. Denote by ẑα(x) be the noisy subgradient returned by the oracle such that zα(x) ∶=
E[ẑα(x)] ∈ ∂gα(x).

Some facts on the subgradient norms:

• ∥zα(x)∥2q ≤max{ c2

d2 ,
4c2δ2σ2

d2 }∥1∥2q = c2d(2/q)−2.

• E ∥ẑα(x)∥2q ≤ c2σ2.

• E ∥ẑα(x) − zα(x)∥2q ≤ 2E[∥ẑα(x)∥2q] + 2∥zα(x)∥2q ≤ 2(c2σ2 + c2d(2/q)−2).
By setting c = 1/2, gα(x) is 1-Lipschitz and the noise variance is bounded: E ∥ẑα(x)− zα(x)∥2q ≤ σ2.

We define a premetric ρ:

ρ(f, g) ∶= inf
x∈S

f(x) + g(x) − f(x⋆f) − g(x⋆g)
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which is 0 if and only if x⋆f = x⋆g (assuming f and g have a unique minimizer). Define ψ(δ) ∶=
minα≠β∈V ρ(gα, gβ). We study ρ(gα, gβ) where α,β ∈ V such that α ≠ β. By examining the function

carefully, one can show that ρ(gα, gβ) ≥ c
d
(∑i 1{αi ≠ βi})4δrσ. Since ∑i 1{αi ≠ βi} ≥ d

4
,∀α ≠ β ∈V , we have

ψ(δ) =min
α≠β

ρ(gα, gβ) ≥ cδrσ . (13)

Now, the main argument is as follows. If ǫ⋆ ≥ cr
18

, then we have the half of the theorem statement.

Therefore, it suffices to consider the regime ǫ⋆ < cr
18

.

In this regime, we consider the function class G(δ) with δ = 9

crσ
ǫ⋆. This implies that (i)

δ ≤ 9

crσ
cr
18
= 1

2σ
≤ 1

4
and that (ii) there exists a method M⋆ such that supf∈G(δ)E[f(xT ) − f(x⋆f)] ≤

ǫ⋆ = cδrσ
9
≤ ψ(δ)/9 by the definition of ǫ⋆ and (14).

By Agarwal et al. (2012, Lemma 2), these two conditions, δ ≤ 1/4 and supf∈G(δ)E[f(xT ) −
f(x⋆f)] ≤ ψ(δ)/9, imply the following: For any α⋆ ∈ V , facing to solve the optimization problem with

the function gα⋆ , one can invoke M⋆ to construct an estimator α̂ ∈ V of the true α⋆:

∀α⋆ ∈ V,P(α̂ ≠ α⋆) ≤ 1/3 .
On the other hand, Agarwal et al. (2012, Lemma 3) use Fano’s inequality to show that

P(α̂ ≠ α⋆) ≥ 1 − 2
16Tδ2 + ln 2

d ln(2/√e) .

Combining these two results, we have 1 − 216T δ2+ln 2

d ln(2/√e) ≤ 1

3
Using δ = 9

crσ
ǫ⋆, one can show that, for

d ≥ 11,

ǫ⋆ = Ω(cσr√d√
T

) .
For d ≤ 10, simply consider a reduction to d = 1 case and use the Le Cam’s bound (Agarwal et al.,

2012, Lemma 4). This completes the first part of the proof.

Case 2: q ≥ 2.

For the second part, we consider a different oracle that chooses d independent coin flips bi ∼
Bernoulli(1

2
+ αiδ), i ∈ {1, . . . , d}, and return the function value and the subgradient of

ĝα(x) = c
d
∑
i

(bif
+
i (x) + (1 − bi)f−i (x)) .

This provides unbiased function values and subgradients, and corresponds to revealing one coin

outcome for each dimension. While this provides more information for the coin tossing (easier

problem), but it allows steeper per-coordinate subgradients than the oracle A (harder problem), given

the same Lipschitz constants.

The difference of the proof is just on the subgradient norms and how we set c. Recall that ∥zα(x)∥2
q ≤

max{ c2

d2 ,
4c2δ2σ2

d2 }∥1∥2
q = c2d(2/q)−2. One can see that E ∥ẑα(x)∥2

q = c2

d2σ
2∥1∥2

q = c2σ2d
2

q
−2

. Then,

the subgradient noise variance is bounded:

E ∥ẑα(x) − zα(x)∥2

q ≤ 2E[∥ẑα(x)∥2

q] + 2∥zα(x)∥2

q ≤ 2(c2σ2d
2

q
−2 + c2d

2

q
−2) ≤ 4c2σ2d

2

q
−2
.
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By setting c = 1

2
d
−( 1

q
−1)

, we satisfy 1-Lipschitz (∥zα(x)∥q ≤ 1) and the noise level controlled:

E ∥ẑα(x) − zα(x)∥2
q ≤ σ2.

Again, the oracle here is equivalent to discovering all the d coin outcomes in each iteration rather

than one. By Agarwal et al. (2012, Lemma 3) with ℓ = d, we have that P(α̂ ≠ α⋆) ≥ 1 − 216T dδ2+ln 2

d ln(2/√e) .

With the same logic, we have 1 − 216T dδ2+ln 2

d ln(2/√e) ≤ 1

3
. Again, by δ = 9

crσ
ǫ⋆, one can show that, for d ≥ 11,

ǫ⋆ = Ω(c σr√
T
) = Ω(d1−1/q σr√

T
) .

For d ≤ 10, the same argument as the case 1 can be made.

To prove Theorem 6, it suffices to notice that the largest r such that B∞(r) ⊆ S with S being the

ℓp-norm ball of radius U is r = Ud−1/p.

F Proof of Lemma 7

The Laplace mechanism noise can be obtained by multiplying independent random variables z and m,

where z is a drawn uniformly over the L2 ball, and m is an Erlang distribution with shape equal to d

and rate ǫ
2

(Wu et al., 2017). This implies that

Eξ[exp(β⟨ξ,a⟩] = Ez,m [exp (βm⟨z,a⟩)] = Eα,m[exp(βmα)] .
where α is a random variable that model the cosine of the angles between z a. In the one-dimensional

case, it is easy to see that α is a Rademacher variable. Hence, we have

Eξ[exp(β⟨ξ,a⟩] = 1

2
Em[exp(βm) + exp(−βm)] .

Instead, for d ≥ 2, we the calculation is more involved, but we show that we still get the same result. In

particular, observing that ⟨z,a⟩ is the cosine of random angles distributed uniformly between −π and

π, we have that α is drawn from the distribution ρα(x) = 1

π
√

1−x2
. The expectation Eα[exp(βmα)]

can be computed in a closed form, being equal to modified Bessel function of the first kind I0(βm).
From Luke (1972, Formula 6.25), we use the inequality

Γ(ν + 1) (2

x
)ν

Iν(x) < 1

2
(exp(x) + exp(−x)) , ∀x > 0, ν > −1

2
,

that implies

Eα,m[exp (βmα)] < 1

2
Em [exp(βm) + exp(−βm)] ,

as in the one-dimensional case.

Hence, taking the expectation with respect to m and using the formula for the moment generating

function of the Erlang distribution, we get

Eα,m[exp(βmα)] < 1

2
[(1 − 2β

ǫ
)−d + (1 + 2β

ǫ
)−d]
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= 1

2

⎡⎢⎢⎢⎢⎣exp
⎛
⎝d ln

1

1 − 2β
ǫ

⎞
⎠ + exp

⎛
⎝d ln

1

1 + 2β
ǫ

⎞
⎠
⎤⎥⎥⎥⎥⎦

= 1

2
[exp(d ln(1 + 2β

ǫ − 2β
)) + exp(d ln(1 − 2β

ǫ + 2β
))]

≤ 1

2
[exp(d 2β

ǫ − 2β
) + exp(d 2β

ǫ + 2β
)] ,

where in the last inequality we used the elementary ln(1 + x) ≤ x, ∀x > −1. We now observe that

1

2
[exp(d 2β

ǫ − 2β
) + exp(d 2β

ǫ + 2β
)] = 1

2
exp

d (2β
ǫ
)2

1 − (2β
ǫ
)2

⎡⎢⎢⎢⎢⎢⎣
exp

d2β
ǫ

1 − (2β
ǫ
)2

+ exp
−d2β

ǫ

1 − (2β
ǫ
)2

⎤⎥⎥⎥⎥⎥⎦
≤ exp

d (2β
ǫ
)2

1 − (2β
ǫ
)2

exp
d2 2β2

ǫ2

(1 − (2β
ǫ
)2)2

,

where we used the elementary inequality exp(x) + exp(−x) ≤ 2 exp(x2/2), ∀x. Overapproximating

and using the assumption on β, we have the stated bound.

G Proof of Lemma 8

Proof. It suffices to consider σ1D = 1 since the result for σ1D ≠ 1 can be obtained by replacing S below

with∑t
s=1 ĝs/σ1D. Let S = ∑t

s=1 ĝs. Define β⋆ = S/t and u = β⋆− 1√
t
. Then, exp(βS −β2t/2) is max-

imized at β = β⋆ and increasing in [u,β⋆]. Recall that Ft (∑t
s=1 ĝs) = ∫ ∞−∞ π(β) exp(βS − β2t

2
)dβ.

To evaluate the integral, it suffices to assume S ≥ 0 since the integrand is symmetric. Using the fact

that the prior is nonincreasing in (0,∞),
Ft ( t∑

s=1
ĝs) ≥ 1

2π
∫ β⋆

u

1

β⋆(ln2 β⋆ + 1) exp(uS − u2t/2)dβ

= 1

2π

1/√t
β⋆(ln2 β⋆ + 1) ⋅ exp(uS − u2t/2)

= 1

2π

1
S√

t
(ln2 S

t
+ 1) ⋅ exp(S2

2t
− 1

2
) .

By (11),

P
⎛⎝max

t

1

2π
√
e

1
S√

t
(ln2 S

t
+ 1) ⋅ exp(S2

2t
) ≥ 1

δ

⎞⎠ ≤ P(max
t
Ft(S) ≥ 1

δ
) ≤ δ .

Rearranging the inequality in the LHS above, we have

max
t
S2 ≥ 2t ln(2π

√
e

δ
⋅ S√

t
(ln2 S

t
+ 1)) .
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To complete the proof, it suffices to find a tighter and simpler inequality. This is equivalent to assuming

S2 ≤ [the RHS above] and deriving an upper bound on S2, then inverting it. Therefore, it suffices to

show

S2 < 2t ln(2π
√
e

δ
⋅ S√

t
(ln2 S

t
+ 1)) Ô⇒ S2 < 2t ln

⎛⎝(6π
√
e

δ
)3/2 ⋅ (ln2(√t) + 1)⎞⎠ . (14)

Let A = 2π
√
e/δ. Using ln2(x) + 1 ≤ x,∀x ≥ 1, and x ≤ (1/2) lnx,∀x > 0,

S2 < 2t ln(A ⋅ S√
t
(ln2 S

t
+ 1))

≤ 2t ln(A ⋅ S2

t3/2
) = 4t ln(√A ⋅ S

t3/4
)

≤ 2t ⋅√A ⋅ S
t3/4Ô⇒ S ≤ 2t1/4

√
A

(a)Ô⇒ S2 < 2t ln(2
A3/2

t1/4
(ln2 S

t
+ 1)) ,

where (a) is by the first inequality.

It suffices to assume the regime S2 > t since S2 ≤ t trivially implies the RHS of (15). Since ln2 x

is decreasing up to 1 and then increasing, we perform a case by case analysis.

Case 1: S ≤ t.
Since ln2(S/t) = ln2(t/S) and t/S ≥ 1, we need to upper-bound t/S. Using S2 > t, we have

ln2(t/S) ≤ ln2(√t), which implies the RHS of (15).

Case 2: S > t.
With a similar derivation as above, we have S2 < 6t ln(A1/3S2/3t−1/2) ≤ 3t1/2A1/3S2/3, which implies

S < 33/4t3/8A1/4. Then,

S2 < 2t ln(A ⋅ S2

t3/2
) ≤ 2t ln(A ⋅ 33/2t3/4A1/2

t3/2
) ≤ 2t ln((3A)3/2

t3/4
) ,

which implies the RHS of (15).
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