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Abstract. Database driven dynamic spectrum sharing is one of the
most promising dynamic spectrum access (DSA) solution to address
the spectrum scarcity issue. In such a database driven DSA system, the
centralized spectrum management infrastructure, called spectrum access
system (SAS), makes its spectrum allocation decisions to secondary users
(SUs) according to sensitive operational data of incumbent users (IUs).
Since both SAS and SUs are not necessarily fully trusted, privacy pro-
tection against untrusted SAS and SUs become critical for IUs that have
high operational privacy requirements. To address this problem, many
IU privacy preserving solutions emerge recently. However, there is a lack
of understanding and comparison of capability in protecting IU opera-
tional privacy under these existing approaches. In this paper, thus, we fill
in the void by providing a comparative study that investigates existing
solutions and explores several existing metrics to evaluate the strength of
privacy protection. Moreover, we propose two general metrics to evaluate
privacy preserving level and evaluate existing works with them.

Keywords: Dynamic spectrum access · Privacy preserving technology.

1 Introduction

Using geolocation databases is one of the most practical approaches for enabling
spectrum sharing. For example, to achieve dynamic spectrum access between Cit-
izens Broadband Radio Service (CBRS) and government and non-government
incumbents in 3.5 GHz band, a Spectrum Access System (SAS) is required to
coordinate CBRS devices (CBSDs). Under SAS’s coordination, CBSDs can sat-
isfy the varying interference protection requirements of incumbent users (IUs),
while maximizing the utilization of spectrum.

The operational privacy of IUs is crucial in this DSA paradigm, especially
when IUs are federal government and military systems [9]. The Federal Com-
munications Commission (FCC) and wireless innovation forum (WINNF) have
regulatory requirements that the retention and disclosure of information related
to IU operational privacy should be limited.
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To satisfy these regulations of IU operational privacy, a few IU privacy pre-
serving schemes have been proposed recently. These schemes can be divided into
two categories. The first category, including [2–4, 11, 12], achieve their goals by
obfuscating IUs’ inputs to SAS. The second category achieves provable security
through secure multi-party computation (MPC) protocols [7, 8], where IU inputs
are encrypted before being sent to SAS and SAS performs spectrum computation
on ciphertext domain without seeing the plaintext of IU operational data.

In this paper, we present a comparative study on the two existing categories of
proposals, and we explore different existing security metrics for evaluating these
existing works. Furthermore, we propose two new and generic metrics, named
minimum adversarial estimation error and indistinguishable input, to evaluate
IU privacy preserving level that can be applied across different schemes.

Through simulation study, we show that data obfuscation-based solutions
provide better protection against adversarial SUs, yet offer worse spectrum
utilization. Secure MPC-based solutions provides better protection against un-
trusted SAS and offer worse protection against adversarial SUs.

The rest of the paper is organized as follows: Section 2 presents the general
system model and attack model. Section 3 introduces existing works. Section 4
proposes our security metrics evaluating IU privacy protection strength. Section
5 presents the comparison on privacy preserving strength for existing works and
section 6 concludes the paper.

2 System model

In this section, we introduce the general system model and attack model for an
IU privacy preserving DSA system.

2.1 Model of Database driven dynamic spectrum access system

In this paper, we assume a general DSA service model, which consists of three
entities: incumbent users (IUs, also known as “primary users” in some litera-
ture), Spectrum Access System (SAS), and secondary users (SUs). IUs update
their operational status to SAS. SAS handles spectrum request from SUs by run-
ning a spectrum computation functionality f(·) that performs admission control
for SUs. f(·) may also include channel assignment and/or power assignment op-
erations. This system model summarizes the system models used in all existing
privacy-protection works, including [2–4, 7, 8, 11, 12].

2.2 Attack models

There exist several types of attackers focusing on breaking IU operational privacy
in a database driven DSA system:

A1: (Intruders) the attacker is an intruder, which is not any entity in the
DSA system. It can overhear, intercept, and synthesize any message exchanged
across the network. Specifically it may directly extract IU operational status by
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looking at the messages sent from IUs to SAS. This threat model is also referred
to as “Dolev-Yao model” [6]. Under this threat model, exchanging all messages
under secure channels (e.g using TLS) can provide confidentiality, which ensures
IU privacy. Thus, existing works are not focusing on proposing countermeasures
towards this type of attack.

A2: (Honest but curious SAS, or semi-honest SAS) the adversary is a faithful
SAS. While it performs all spectrum computation faithfully, it is also interested
in discovering the operational parameters of IUs from the information it receives
from IUs. Under this attack model, IU privacy fails if IUs directly send their
plain operational status to SAS. Works [3, 4, 7, 8] consider this attack model.

A3: (Adversarial SU network) the adversary controls a group of compromised
SUs, so that it can obtain their spectrum request results to infer IUs’ operational
parameters. This type of attack is also referred to as “database inference attack”
[2], which is studied in [2–4, 11].

A4: (Malicious colluding SAS) the adversary controls both a group of com-
promised SUs and a malicious SAS. The malicious SAS would deviate from the
protocol to allure SUs to generate other observations to further infer IUs’ oper-
ational status. In [7] such kind of attack is discussed.

3 Existing works

In this section, we will introduce existing solutions for IU privacy protection.

3.1 Overview of existing works

Data obfuscation techniques: When we consider attacks that focus on infer-
ring IU operational status, the straightforward countermeasure is to obfuscate
the inputs from IUs to SAS by adding noise or distortion to the input data.

For example, in order to prevent adversaries from deriving an IU’s location by
the radius of its protection zone, [2, 11] propose to replace k IUs’ individual pro-
tection zones by a super-size protection contour that encloses these k individual
protection zones. Thus, IU location privacy protection in terms of k-anonymity
can be provided under these schemes.

Another approach is to directly add noise to the actual IU operational param-
eters before executing spectrum computation functionality f(·). In [3, 4], such
strategies are briefly discussed. In [12], a structured noise is added to the true
location of IUs, so that differential location privacy is preserved for IUs.

It is also proposed in [3, 4] to add fake IU entries to the database. As a result,
both adversarial SAS and SUs will not be able to distinguish those false entries
from the true IU entries.

Essentially, applying data obfuscation techniques achieves IU privacy pro-
tection at a cost of SU spectrum utility. In [2, 4, 11], simulation results show
that data obfuscation techniques can achieve an advantageous trade-off in their
simulation setup. However, it is not deeply studied on how to choose proper ob-
fuscation techniques and how to set parameters for them. In [4], an optimization
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problem is setup to study this issue, but the authors also claimed it may not be
practical to solve this optimization problem at runtime.

Secure multi-party computation based schemes: The basic idea of a se-
cure multi-party computation (MPC) based solution for DSA system is for IUs
to first encrypt their operational parameters by homomorphic cryptosystems
before sending the encrypted parameters to SAS. SAS then executes spectrum
computation functionality f(·) in ciphertext domain by leveraging the homo-
morphic property of the cryptosystems. The confidentiality properties of the
underlying cryptosystems ensure that a semi-honest SAS is not able to extract
any information from those encrypted messages.

In [8], such an MPC-based solution is proposed, where SAS is assumed to
manage SU interference in “protection zone model”, which ensures the aggre-
gated interference generated from SUs to IUs does not exceed certain threshold.
In [7], another MPC-based solution is proposed, where SAS is assumed to manage
SU interference in “exclusion zone model”, which ensures any spectrum request
from an SU located in an exclusion zone will be declined.

3.2 Privacy metrics in existing works

A few metrics have been used in existing DSA privacy-preserving works. In this
section, we introduce these metrics and discuss whether they are appropriate for
comparative studies of multiple privacy-preserving schemes.

Average expected location estimation error [2, 4, 11]: Assume an attacker
can obtain a probability density function A(loc′|O) as the guess of an IU location
given some observation O. Assuming nI IUs exist in a target region, the actual IU
locations are used to partition the region into nI subregions using the Voronoi
diagram approach. These subregions are denoted as Li. The average expected
location estimation error metric is defined as:

Pri :=
1

nI

nI∑
i=1

∑
loc∈Li

d(loci, loc)
A(loc|O)∑

loc′∈Li
A(loc′|O)

, (1)

where loci is the true location of the ith IU, d(·, ·) is the distance between two
locations. This metric is proposed in [4] and is widely applicable. [2] and [11] use
a special case of the metric that assumes nI = 1.

Privacy time [3]: Privacy time is a widely applicable metric that measures
the degradation of location privacy level over time. It is the expected time that
it takes for IU location estimation error to fall lower than a certain threshold.

Size of search space [4]: This is the size of search space of possible IU param-
eters. After collecting some observations, an adversarial SAS or SU can exclude
some locations as possible IU locations, which means the search space of true
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IU locations is reduced. This metric is essentially equivalent with a special case
of the “expected location estimation error” metric where A(loc′|O) is set to be
a uniform distribution in the search space area.

ε-Differential privacy [12] : When an attacker obtain observation O and
attempts to distinguish the true location of an IU between l0 and l1 within a
circle with radius r, ε-differential privacy requires the likelihood ratio is lower
than eεr, where ε is the parameter of differential privacy and r can be any radius
value smaller than the radius of service area.

The formal definition is given as follows1:

P (O|l1)

P (O|l0)
≤ eεr ∀r > 0 ∀l1, l0 : d(l1, l0) ≤ r. (2)

This metric, however, cannot be applied in DSA systems where the inter-
ference management policy of SAS protects IUs from harmful interference. For
example, when O is a positive response for an SU query at location l0 and l0
is extremely close to an IU at the same time, it is easy to see that the de-
nominator P (O|l0) in equation (2) must be 0, which makes differential privacy
unachievable. Since most of the existing privacy-preserving works [2–4, 7, 8, 11]
except [12] are designed for systems where harmful interference to IUs is strictly
prohibited, ε-differential is not a suitable metric for comparative study of DSA
privacy schemes.

Provable security with the cryptographic setting [7, 8]: By defining prov-
able security with the cryptographic setting for a privacy preserving DSA system,
we attempt to abstract the attack model and formulate any attacker under this
model as an adversarial algorithm A . When the provable security is achieved,
we expect that any probabilistic polynomial time (PPT) adversarial algorithm
A cannot achieve its goal at a non-negligible probability. Note that we call these
security features “provable” because usually we attempt to prove that it is at
least harder for an adversary to achieve its goal, compared to breaking a secure
cryptosystem or other underlying hard problems.

In [7, 8], provable security feature on IU operational privacy protection is
proposed and proved. However, security definitions in [7, 8] are also tailored
definitions towards a specific interference management policy (“protection zone”
and “exclusion zone” respectively). We hereby propose a general definition of
“indistinguishable input” in section 4 to ensure wider applicability.

4 Proposed security metric

In this section, we propose two additional metrics to evaluate the level of IU op-
erational privacy. These two metrics are named minimum adversarial estimation
error and indistinguishable input.

1 There are three equivalent definitions proposed in [1], and in this paper we show the
third one.
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4.1 Minimum adversarial estimation error

Suppose M IUs are operating with parameter sets P ∗1 , · · · , P ∗M ∈ P , where P
is the set of parameters with all possible values. An adversary A can obtain a
posterior distribution of IUs’ true parameters through its observations O, which
are obtained from compromised SAS or SUs. We denote pA(P) as the posterior
probability and

pA(P) := Pr[IUs’ operational parameter set= P|A observes O ] , (3)

where P := {Pj }Mj=1.
We assume that the adversary would sample a parameter set based on the

posterior distribution pA(P) as its guess of the IUs’ true operational parameter
sets. The privacy preserving level (PPL), thus, can be defined as the expectation
of the minimum estimation error, which is the minimum distance between any
true IU parameters and any adversarial guess. That is,

PPL := E

[
min
i∈[M ]

min
j∈[M ]

d(Pi, P
∗
j )

]
. (4)

The above privacy preserving metric definition extends the “expected lo-
cation estimation error” concept to privacy protection of any IU operational
parameter. In addition, compared to the “average expected location estimation
error” discussed in section 3.2, this metric evaluates the minimum estimation
error among multiple IUs.

Since different privacy preserving techniques have different format of obser-
vations and will result in different posterior distribution of IU parameters from
the adversary’s point of view, it is not efficient or possible to derive a closed-form
math expression of the PPL. Thus, we choose to use numerical method to obtain
PPL value. Specifically, note that given the specification of a privacy-preserving
system, it is straightforward to generate a large set of possible adversary obser-
vations O for any given IU parameter set P ∗. We can therefore employ Markov
Chain Monte Carlo(MCMC) [10] method to generate samples of posterior dis-
tribution of IU parameters, and use them to obtain an approximate PPL.

4.2 Indistinguishable Input

We introduce the new metric called indistinguishable input to extend the concept
of provable IU operational security, so that it can be applied on evaluating more
privacy preserving DSA solutions under different attack models. Indistinguish-
able input requires that an adversary is not able to extract much information
about an IU’s operation parameters (e.g. location, transmit power, etc.) from
this IU’s input to SAS. In other words, indistinguishable input says that when
SAS receives a message from an IU, the likelihoods that the message is generated
under two different IU operational parameter settings are almost the same.

To formally define this metric, we setup the following guessing game:

– Initialization phase: setup the DSA system faithfully.
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– Challenge phase: an adversary (e.g. a compromised SAS) chooses two ar-
bitrary different IU operational parameters P0 and P1 on its will. IU picks
a random bit b←$ {0, 1} and sends the corresponding IU input Ib to the
adversary.

– Finalization phase: the adversary attempts to find out the secret bit b and
return its guess b∗. We say the adversary wins the game if b∗ = b.

Indistinguishable input means that any adversary cannot win the above
game with an effectively higher probability than randomly guessing. Formally,
if for any polynomial time algorithm A through which the adversary wins the
above game at a probability εA(λ) (λ is the security parameter of underlying
cryptosystem), a design that has indistinguishable input property must ensure
maxA

∣∣εA(λ)− 1
2

∣∣ is negligible. Here, “negligible” means that for any integer c,
there exists some λ∗ such that ∀λ ≥ λ∗,

max
A

∣∣∣∣εA(λ)− 1

2

∣∣∣∣ < 1

λc
. (5)

5 Comparisons on privacy preserving strength

In this section, we compare the security strength for existing works [2–4, 7, 8,
11]. We analyze the indistinguishable input property for all these works, and
evaluate the average expected error, minimum adversarial estimation error and
privacy time for all of them under attack model A2 and A3.

As we have discussed in section 3.2, “search space size” metric is essentially
equivalent to a special case of “expected location estimation error” metric, and
ε-Differential privacy is not a suitable metric since it is not applicable to most
of the existing works. Therefore, we are using these two metrics for evaluation.

Note that as we have discussed in section 2.2, the security threat in attack
model A1 can be thwarted by using secure channel, and the security threats in
attack model A4 has not been deeply studied in existing works. Therefore, we
are not evaluating existing works under these two attack models.

5.1 Comparison based on indistinguishable input property

Under attack model A2, indistinguishable input property is only achieved for
secure MPC protocol based schemes [7, 8]. This is because the obfuscated IU
operational status still leaks non-negligible information. In the challenge phase
of guessing game, a semi-honest SAS can generate two IU parameter sets that
lead to different obfuscated results and directly distinguish them.

Under attack mode A3, when adversarial SUs are taken into consideration,
indistinguishable input property is not expected to be achieved for all existing
schemes. Under this attack model, what an adversary can obtain includes the
final spectrum allocation results. Meanwhile under any DSA service model, the
spectrum allocation result changes if the IU operational status changes. Hence,
by synthesizing the spectrum allocation results, an adversary is able to distin-
guish IU operational statuses under different scenarios.
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5.2 Comparison using adversarial estimation error and privacy time

The comparative study in this subsection is based on simulation. In the simula-
tion setting, IUs are deployed in a 20 km by 20 km rectangular region and there
is one channel centered at frequency 3600MHz. The IUs are military radars with
50m height and -80 dBm interference threshold; SUs are assumed to be outdoor
CBSD devices and their antenna heights are 6m and transmission powers are
24 dBm. ECC-33 model [5] is used to formulate the path loss. The adversary
collects two SU observations per minute.

We firstly compare the privacy preserving strength under attack model A3,
i.e. attacker is an adversarial SUs network. Figure 1 compares the privacy pre-
serving strength of MPC-based schemes [7, 8], obfuscation-based schemes de-
signed for k-anonymity [2, 11], and obfuscation-based schemes that add false IU
entries [3, 4]. MPC-based schemes behave the worst in this case since essentially
in the perspective of an adversarial SU network, the secure MPC protocols in
[7, 8] do not affect the spectrum computation result and hence introduce no
additional confusion for the adversary to infer IU’s operational parameters.
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Fig. 1: Privacy preserving strength evaluation under attack model A3.

We then compare the privacy preserving strength under attack model A2,
i.e. attacker is a semi-honest SAS. Table 1 shows the privacy preserving strength
against semi-honest SAS between different approaches. For MPC-based schemes
in [7][8], we assume that an adversary cannot break a cryptographic system and
can only obtain inferred IU locations by randomly guessing.

In the table, we see that MPC-based schemes provide strong IU privacy pro-
tection against semi-honest SAS. Obfuscation schemes designed for k-anonymity
do not grant strong privacy protection under attack model A2, compared to the
same simulation setting under attack model A3. This is because when a semi-
honest SAS has the full knowledge on k-anonymity algorithm and the equivalent
protection zone information, it can estimate the true IU locations with much
smaller error. For obfuscation-based schemes that add false IU items, it can be
observed that the privacy preserving strength increases with more false IUs. Yet,
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intuitively we also expect the spectrum utility will decrease in this case, which
will be analyzed in the next subsection.

Table 1: Privacy preserving strength under attack model A2.
Minimum estimation error(m) Average estimation error(m)

MPC-based schemes 1743.02 4006.33
k-anonymity 509.52 2394.24

Obfuscation(2 false IUs) 0 599.83
Obfuscation(10 false IUs) 71.07 2618.74
Obfuscation(50 false IUs) 701.96 3453.90

5.3 Comparison based on spectrum utilization

In this subsection we compare the spectrum utilization for different privacy-
preserving approaches. Table 2 shows the privacy preserving strength measured
in minimum estimation error and spectrum utilization between different pri-
vacy preserving solutions. We observe that MPC-based schemes provide highest
spectrum utilization and they also grant strong privacy protection against semi-
honest SAS. For obfuscation-based schemes, we observe a trade-off between pri-
vacy protection and spectrum utilization under both A2 and A3 attack models.
We also observe that schemes designed for k-anonymity sacrifice most spectrum
utilization to achieve strong privacy protection under attack model A3.

Table 2: Spectrum utilization and privacy protection.

Spectrum utilization(%)
Minimum estimation error(m)

Attack model A2 Attack model A3, 120 queries

MPC-based schemes 95.56 1743.02 249.14
k-anonymity 51.68 509.52 1478.35

Obfuscation(2 false IUs) 93.89 0 622.07
Obfuscation(10 false IUs) 87.92 71.07 1054.89
Obfuscation(50 false IUs) 62.67 701.96 1602.70

6 Conclusion and Discussions

In this paper, we present a comparative study on existing solutions that preserves
incumbent user’s operational privacy. We additionally propose minimum adver-
sarial estimation error metric to evaluate privacy preserving strength, and we
propose the indistinguishable input property to generalize the concept of prov-
able security. Our study shows the effectiveness of MPC-based solutions against
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attacks from semi-honest SAS, and the trade-off between spectrum utilization
and privacy preserving strength for obfuscation-based solutions. We also dis-
cover that obfuscation-based scheme provide stronger privacy protection against
malicious SUs compared to MPC-based schemes. Combining both MPC-based
and obfuscation-based schemes so that both adversarial SAS and SUs can be
handled can be an interesting and promising future direction for IU operational
privacy protection.
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