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Abstract. Tensors of order three or higher have found applications in diverse fields, including image and
signal processing, data mining, biomedical engineering, and link analysis, to name a few. In many
applications that involve, for example, time series or other ordered data, the corresponding tensor has
a distinguishing orientation that exhibits a low tubal structure. This has motivated the introduction
of the tubal rank and the corresponding tubal singular value decomposition in the literature. In
this work, we develop randomized algorithms for many common tensor operations, including tensor
low-rank approximation and decomposition, together with tensor multiplication. The proposed tubal
focused algorithms employ a small number of lateral and/or horizontal slices of the underlying third
order tensor that come with relative error guarantees for the quality of the obtained solutions. The
performance of the proposed algorithms is illustrated on diverse imaging applications, including mass
spectrometry data and image and video recovery from incomplete and noisy data. The results show
both good computational speed-up vis-a-vis conventional completion algorithms and good accuracy.
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1. Introduction. Tensors are multidimensional arrays that have been used in diverse fields
of applications, including chemometrics [45], psychometrics [30], image/video and signal pro-
cessing [24, 25, 35, 44, 54], and link analysis [29]. They have also been the object of intense
mathematical study (see, for example, the review paper by Kolda and Bader [28] and refer-
ences therein).

Analogously to the matrix case, a number of tensor decompositions have been proposed
in the literature, briefly described next for the case of 3-way tensors. Consider a 3-way tensor
Z ∈ Rn1×n2×n3 . The equation

Z =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3

(
u(1)
r1 ◦ u

(2)
r2 ◦ u

(3)
r3

)
= G×1 U

(1) ×2 U
(2) ×3 U

(3)(1.1)

provides the Tucker decomposition [22] of Z, with G ∈ RR1×R2×R3 being the core tensor
associated with this decomposition, and where ×i is the mode-i (matrix) product. For a core
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2630 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

tensor of minimal size, R1 is the column rank (the dimension of the subspace spanned by
mode-1 fibers), R2 is the row rank (the dimension of the subspace spanned by mode-2 fibers),
and so on. A key difference from the matrix case is that the values of R1, R2, R3 can be
different. The 3-tuple (R1, R2, R3) is consequently called the Tucker rank or multilinear rank
of tensor Z [8, 22]. The conventional Tucker decomposition corresponds to the orthonormal
Tucker decomposition, which is also known as the higher-order singular value decomposition
(SVD). De Lathauwer, De Moor, and Vandewalle [10] proposed an algorithm to compute a
higher-order SVD decomposition. Soon afterwards they proposed the higher-order orthogonal
iteration [11] to provide an inexact Tucker decomposition. The CANDECOMP/PARAFAC
(CP) decomposition of a tensor is another important notion of tensor-decomposition, which
leads to the definition of CP rank. The CP model can be considered as a special case of the
Tucker model with a superdiagonal core tensor. Further, the CP rank of a tensor equals that
of its Tucker core [21].

1.1. Third order tensor as operator on matrices. While the Tucker-based factorization
may be sufficient for many applications, in this paper we consider an entirely different tensor
decomposition based on circulant algebra [26]. In this factorization, a tensor in Rn1×n2×n3 is
viewed as a n1×n2 matrix of “tubes,” also known as elements of the ring Rn3 where addition is
defined as vector addition and multiplication as circular convolution. This “matrix-of-tubes”
viewpoint leads to definitions of a new multiplication for tensors (“tubal multiplication”), a
new rank for tensors (“tubal rank”), and a new notion of a SVD for tensors (“tubal SVD”).
The tubal SVD (t-SVD) provides the “best” tubal rank-r approximation to Z, as measured
with respect to any unitary invariant tensor norm.

A limitation of the t-SVD decomposition is that it depends directly on the orientation of
the tensor, whereas the CP and Tucker decompositions do not. This suggests that the latter
decompositions are well suited for data applications where the tensor’s orientation is not
critical, e.g., chemometrics [45] and/or psychometrics [30]. However, in applications involving
time series or other ordered data, the orientation of the tensor is fixed. Examples include, but
not limited to, computed tomography (CT) [44], facial recognition [18], and video compression
[54], where the tensor decomposition is dependent on the third dimension. Analogous to
compressing a two-dimensional image using the matrix SVD (a classic linear algebra example,
with detailed writeup in [23]), the t-SVD decomposition can be used to compress several
images taken over time (e.g. successive frames from a video). Since such images do not change
substantially from frame to frame, we expect tubal compression strategies to provide better
results than performing a matrix SVD on each separate image frame. The former consider
the tensor as a whole object, rather than as a collection of distinct images [27, 26, 54, 44, 35].
Further, t-SVD is essentially based on a group theoretic approach, where the multidimensional
structure is unraveled by constructing group rings along the tensor fibers.1 The advantage of
such an approach over existing ones is that the resulting algebra and corresponding analysis
enjoys many similar properties to matrix algebra and analysis. For example, it is shown
in [20] that recovering a 3-way tensor of length n and Tucker rank (r, r, r) from random
measurements requires O(rn2 log2(n)) observations under a matrix coherence condition on all
mode-n unfoldings. However, the number of samples needed for exact recovery of a 3-way

1We consider the group rings constructed out of cyclic groups, resulting in an algebra of circulants. However,
the results presented in this paper hold true for the general group-ring construction.D
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FAST RANDOMIZED ALGORITHMS FOR TENSOR OPERATIONS 2631

tensor of length n and tensor tubal-rank r is O(rn2 log(n2)) under a weaker tensor coherence
assumption [53]. Further, consider the decomposition X = L + E, where L ∈ Rn1×n2×n3 is
low rank and E is sparse. Let n(1) = max(n1, n2) and n(2) = min(n1, n2). The work in [35]
shows that for tensor L with coherence parameter µ, the recovery is guaranteed with high
probability for the tubal rank of order n(2)n3/(µ(log n(1)n3)2) and a number of nonzero entries
in E of order O(n1n2n3). Hence, under the same coherence condition (see Definitions 2.14
and 2.15), the tubal robust tensor factorization problem perfectly recovers the low-rank and
sparse components of the underlying tensor.

A shortcoming of these three classical decompositions is their brittleness with respect to
severely corrupted or outlier data entries. To that end, a number of approaches have been
developed in the literature to recover a low-rank tensor representation from data subject to
noise and corrupted entries. We focus on two instances of the problem based on the t-SVD
algorithm: (i) noisy tensor completion, i.e., recovering a low-rank tensor from a small subset of
noisy entries, and (ii) noisy robust tensor factorization, i.e., recovering a low-rank tensor from
corrupted data by noise and/or outliers of arbitrary magnitude [35, 54]. These two classes
of tensor factorization problems have attracted significant interest in the research community
[2, 6, 44, 54]. In particular, convex formulations of noisy tensor factorization have been
shown to exhibit strong theoretical recovery guarantees and a number of algorithms has been
developed for solving them [54, 44, 35].

It is frequently mentioned that (noisy) tensor factorization, despite its numerous advan-
tages, also exhibits a number of drawbacks listed below:

• The available methods [4, 27, 26, 54, 44, 35] are inherently sequential and all rely
on the repeated and costly computation of t-SVD factors, discrete Fourier transform
(DFT) and its inverse, that limit their scalability.
• The basis tensor vectors resulting from t-SVD have little concrete meaning, which

makes it challenging for practitioners to interpret the obtained results. For instance,
the vector [(1/2) age − (1/

√
2) height + (1/2)income], being one of the significant

uncorrelated factors from a data set of people’s features is not easily interpretable (see
discussion in [15]). Kuruvilla, Park, and Schreiber in [31] have also claimed that “it
would be interesting to try to find basis vectors for all experiment vectors, using actual
experiment vectors and not artificial bases that offer little insight.”
• The t-SVD decomposition for sparse tensors does not preserve sparsity in general,

which for large size tensors leads to excessive computations and storage requirements.
Hence, it is important to compute low-rank tensor factorizations that preserve such
structural properties of the original data tensor.

1.2. Main contributions. In this paper, we study scalable randomized tensor multiplica-
tion (rt-product algorithm) and tensor factorization (rt-project) operations and extend the
matrix CX and CUR type decompositions [12, 13, 15, 36] to third order tensors using a cir-
culant algebra embedding. To that end, we develop a basic algorithm (t-CX), together with a
more general one (t-CUR) based on tensor slice selection that come with relative error guar-
antees. Finally, we propose a new tensor nuclear norm minimization method, called CUR
t-NN, which solves the noisy tensor factorization problem using a small number of lateral
and/or horizontal slices of the underlying tensor. Specifically, CUR t-NN uses an adaptive
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2632 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

technique to sample slices of the tensor based on a leverage score for them and subsequently
solves a convex optimization problem followed by a projection step to recover a low rank
approximation to the underlying tensor. Advantages of CUR t-NN include the following:

• Contrary to nuclear norm minimization based approaches, which minimize the sum of
the singular values of the underling tensor, our approach only minimizes the sum of
singular values of the set of sampled slices corresponding to the largest leverage scores.
Thus, we obtain a more accurate and robust approximation to the rank function.
• Using subspace sampling, we obtain provable relative-error recovery guarantees for

tubal product based tensor factorization. This technique is likely to be useful for
other tensor approximation and data analysis problems.
• The proposed algorithm for noisy tensor factorization tasks has polynomial time

complexity.

1.3. Related work on randomized tensor factorization. Note that there has been prior
work on the topic of randomized methods for tensor low rank approximations/decompositions.
For example, recent work includes [37, 5]. Our methods are different from these studies, since
we rely on the t-product construct in [4, 26, 27] to provide tubal tensor multiplication and
low rank approximation. In [37], the proposed tensor-CUR algorithm employs a CUR matrix
approximation to one of the unfolding matrix modes (the distinguished mode) providing an
approximation based on few tube fibers and few slices. Hence, that algorithm achieves an
additive error guarantee in terms of the flattened (unfolded) tensor, rather than the original
one. However, the algorithms presented in this work offer relative error guarantees for the
obtained approximations, in terms of the original low tubal rank tensor. Further, we propose
a new tensor nuclear norm minimization method, which solves the noisy tensor factorization
problem in the fully and partially observed setting using a small number of lateral and/or
horizontal slices of the underlying tensor. It is worth mentioning that randomized algorithms
were used to efficiently solve the robust matrix principal component analysis (PCA) problem
using small sketches constructed from random linear measurements of the low rank matrix
[43, 55, 34, 36, 39]. Our proposed nuclear norm minimization approach is different from these
studies, since we relay on slice selection and projection (mainly t-CUR factorization). Further,
our proposed algorithm uses an adaptive sampling strategy and provides high probability
recovery guarantees of the exact low rank tensor approximation under a weaker coherence
assumption.

The remainder of the paper is organized as follows. In section 2, we review some relevant
mathematical concepts including the tensor circulant algebra, basic definitions and theorems
of tensors, and the t-SVD decomposition based on the t-product concept. In section 3, we
provide the randomized tensor decompositions and provide their relative error guarantees and
introduce the concept of slice selection and projection. In section 4, we introduce, evaluate
and analyze our proposed algorithm (CUR t-NN) for large scale noisy tensor decomposition.
Experimental results are presented in section 5 and some concluding remarks are drawn in
section 6.

The detailed proofs of the main results established are delegated to the Appendix.

2. Mathematical preliminaries. Next, we introduce key definitions and concepts used in
subsequent developments.
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FAST RANDOMIZED ALGORITHMS FOR TENSOR OPERATIONS 2633

(a) horizontal slices (b) lateral slices (c) frontal slices

Figure 2.1. Slices of an n1 × n2 × n3 tensor X.

Tensor indexing. We denote tensors by Euler script letters, e.g., X; matrices by capital
letters, e.g., X; vectors by lowercase letters, e.g., x. The order of a tensor is the
number of dimensions (also refereed to as ways or modes). In this work, we focus on
3-way tensors.

Fibers and slices [51]. A fiber of tensor X is a one-dimensional array defined by fixing two
of the indices. Specifically, X:jk is the (j,k)th column fiber, Xi:k is the (i,k)th row fiber,
and Xij: is the (i,j)th tube fiber. A slice of tensor X is a two-dimensional array defined
by fixing one index only. Specifically, Xi:: is the ith horizontal slice, X:j: is the jth
lateral slice, and X::k is the kth frontal slice (see Figure 2.1). The vectorization of X is
denoted by vec(X). For a 3-way tensor X ∈ Rn1×n2×n3 , we denote its (i, j, k)th entry
as Xijk.

Norms. We denote the `1 norm as ‖X‖1 :=
∑

ijk |xijk|, the infinity norm as ‖X‖∞ :=

maxijk |xijk|, and the Frobenius norm as ‖X‖F :=
√∑

ijk |xijk|2. The above norms

reduce to the vector or matrix norms if X is a vector or a matrix.
Operators. For X ∈ Rn1×n2×n3 and using the Matlab commands fft,ifft, we denote by X̂

the result of applying the DFT on X along the third dimension, i.e., X̂ = fft(X, [], 3).
Analogously, one can also compute X from X̂ via the inverse DFT, using ifft(X̂, [], 3).
In particular, we denote by X̂ the block diagonal matrix with each block corresponding
to the frontal slice X̂::k of X̂. That is,

X̂ = bdiagk∈[n3](X̂::k) :=


X̂::1

X̂::2

. . .

X̂::n3

 .

2.1. Tensor basics. Next, we review relevant mathematical concepts including the tubal
SVD (t-SVD), basic definitions and operations, and other technical results of tensors [27, 44,
53] that are used throughout the paper.
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2634 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

Definition 2.1 (tensor product). Given two tensors Z ∈ Rn1×n2×n3 and X ∈ Rn2×n4×n3,
the t-product Z ∗X is the n1 × n4 × n3 tensor,

C = Z ∗X = fold (circ (Z)) .unfold (X) ,(2.1)

where

circ (Z) :=


Z::1 Z::n3 . . . Z::2

Z::2 Z::1 . . . Z::3
...

...
. . .

...
Z::n3 Z::n3−1 . . . Z::1


and

unfold (X) :=


X::1

X::2
...

X::n3

 , fold (unfold (X)) = X.

Because the circular convolution of two tube fibers can be computed by the DFT, the
t-product can be alternatively computed in the Fourier domain, as shown in Algorithm 2.1.

Algorithm 2.1. t-product C = Z ∗X in the Fourier domain.

1: Input: Z ∈ Rn1×n2×n3 ; X ∈ Rn2×n4×n3

2: Ẑ← fft(Z, [], 3);
3: X̂← fft(X, [], 3);
4: for k = 1, . . . , n3 do
5: Ĉ::k = Ẑ::kX̂::k;
6: end for
7: C← ifft(Ĉ, [], 3);
8: return C

Definition 2.2 (conjugate transpose). The conjugate transpose of a tensor X ∈
Rn1×n2×n3 is tensor X∗ ∈ Rn2×n1×n3 obtained by conjugate transposing each of the frontal
slices and then reversing the order of transposed frontal slices 2 through n3.

Definition 2.3 (identity tensor). The identity tensor I ∈ Rn×n×n3 is the tensor whose first
frontal slice is the n× n identity matrix, and whose other frontal slices are all zeros.

Definition 2.4 (orthogonal tensor). A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies
Q∗ ∗Q = Q ∗Q∗ = I.

Definition 2.5 (f-diagonal Tensor). A tensor is called f−diagonal if each of its frontal slices
is a diagonal matrix.

Theorem 2.6 (t-SVD). Let X ∈ Rn1×n2×n3. Then, it can be factored as

X = U ∗ Σ ∗VT ,(2.2)

where U ∈ Rn1×n1×n3, V ∈ Rn2×n2×n3 are orthogonal and Σ ∈ Rn1×n2×n3 is a f-diagonal
tensor.
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Note that t-SVD can be efficiently computed based on the matrix SVD in the Fourier
domain. This is based on the key property that the block circulant matrix can be mapped to
a block diagonal matrix in the Fourier domain, i.e.,

(Fn3 ⊗ In1) · circ (X) · (F−1
n3
⊗ In2) = X̂,(2.3)

where Fn3 denotes the n3 × n3 DFT matrix and ⊗ denotes the Kronecker product.

Definition 2.7 (tensor multi and tubal rank). The tensor multirank of X ∈ Rn1×n2×n3 is a
vector υ ∈ Rn3 with its ith entry being the rank of the ith frontal slice of X̂, ri = rank(X̂::i).
The tensor tubal rank, denoted by r = rankt(X), is defined as the number of nonzero singular
tubes of Σ, where Σ is obtained from the t-SVD of X = U ∗ Σ ∗VT . That is,

r = card{i : Σii: 6= 0} = max
i
ri,(2.4)

where card denotes the cardinality of a set.

The tensor tubal rank shares some properties of the matrix rank, e.g.,

rankt(X ∗Z) ≤ min(rankt(X), rankt(Z)).

Many tensor completion and decomposition techniques for video and seismic noise reduc-
tion rely on a low-rank factorization of a time-frequency transform. Further, certain energy
methods broadly used in image processing, e.g., PDEs [1] and belief propagation techniques
mainly focus on local relationships. The basic assumption is that the missing entries de-
pend primarily on their neighbors. Hence, the further apart two pixels are, the smaller their
dependance is. However, for video and time series of images the value of the missing entry
also depends on entries which are relatively far away in the time/sequence dimension. Thus,
it is necessary to develop a tool to directly capture such global information in the data. Using
(2.4), r1 is the rank of the “mean image” across the video sequence. Meanwhile, r2 is the rank
of the next frequency’s content across frames, etc. Under a smoothness assumption that cap-
tures global information at given pixels across time, the frontal slices (after FFT) for bigger
i have smaller singular values.

Definition 2.8 (tensor nuclear norm). The tensor nuclear norm of a tensor X ∈ Rn1×n2×n3,
denoted by ‖X‖~, is defined as the average of the nuclear norm of all frontal slices of X̂, i.e.,

‖X‖~ :=
1

n3

n3∑
k=1

‖X̂::k‖∗.(2.5)

The above tensor nuclear norm is defined in the Fourier domain. It is closely related to
the nuclear norm of the block circulant matrix in the original domain. Indeed,

‖X‖~ =
1

n3

n3∑
k=1

‖X̂::k‖∗ =
1

n3
‖X̂‖∗

=
1

n3
‖(Fn3 ⊗ In1) · circ (X) · (F−1

n3
⊗ In2)‖∗

=
1

n3
‖circ (X) ‖∗.

D
ow

nl
oa

de
d 

08
/2

8/
19

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2636 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

Figure 2.2. The lateral basis e̊3 and the tube basis ė5. The black cubes are 1, gray and white cubes are 0.
The white cubes stand for the potential entries that could be 1.

The above relationship gives an equivalent definition of the tensor nuclear norm in the
original domain. Thus, the tensor nuclear norm is the nuclear norm (with a factor 1/n3) of a
new matricization (block circulant matrix) of a tensor.

Definition 2.9 (tensor spectral norm). The tensor spectral norm of X ∈ Rn×n×n3, denoted
as ‖X‖, is defined as

‖X‖ := ‖X̂‖2 = ‖(Fn3 ⊗ In1) · circ (X) · (F−1
n3
⊗ In2)‖2,

where ‖ · ‖2 denotes the spectral norm of a matrix.

Definition 2.10 (inverse of tensor). The inverse of X ∈ Rn×n×n3, denoted by X−1, satisfies

X−1 ∗X = X ∗X−1 = I,(2.6)

where I is the identity tensor of size n× n× n3.

Definition 2.11 (standard tensor basis). The lateral basis e̊i, is of size n1 × 1 × n3 with
only one entry equal to 1 and the remaining equal to zero, in which the nonzero entry 1 will
only appear at the first frontal slice of e̊i. Normally its transpose e̊>i is called the horizontal
basis. The other standard tensor basis is called tube basis ėi, and corresponds to a tensor of
size 1 × 1 × n3 with one entry equal to 1 and the rest equal to 0. Figure 2.2 illustrates these
bases.

2.2. Linear algebra with tensors: Free submodules. The set of complex numbers C with
standard scalar addition and multiplication is a field and Cn3 forms a vector space over this
field. However, as pointed out in [25, 27], the set of tubes C1×1×n3 equipped with the tensor
product form a ring with unity. A module over a ring can be thought of as a generalization
of a vector space over a field, where the corresponding scalars are the elements of the ring. In
linear algebra over a ring, the analog of a subspace is a free submodule. Our algorithm relies
on submodules and the following theorem.

Theorem 2.12. The set of slices

Υ := {X:j: | X:j: ∈ Cn1×1×n3 , j ∈ [n2]}(2.7)

forms a free module over the set of tubes C1×1×n3.
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Proof. A detailed proof is provided in [4].

Using Theorem 2.12, Υ has a basis so that any element of it can be written as a “t-linear
combination” of elements of a set of basis slices. A t-linear combination is defined as a sum
of slices multiplied, based on the t-product, by coefficients from C1×1×n3 .

Definition 2.13 (slice-wise linear independence). The slices in a subset Λ = {X:1:, . . . ,X:n:}
of Υ are said to be linearly dependent if there exists a finite number of distinct slices
X:1:, . . . ,X:m: in Λ, and tubes C11:, . . . ,Cmm:, not all zero, such that

m∑
j=1

X:j: ∗ Cjj: = O(2.8)

where O denotes the lateral slice comprising of all zeros.
The slices in a subset Λ = {X:1:, . . . ,X:n:} of Υ are said to be linearly independent if the

equation
n∑
j=1

X:j: ∗ Cjj: = O

can only be satisfied by all zero tubes Cjj:, j = 1, . . . , n.

Based on the computable t-SVD, the tensor nuclear norm [44] is used to replace the tubal
rank for low-rank tensor recovery (from incomplete/corrupted tensors) by solving the following
convex program:

min
L
‖L‖~ such that (s.t.) ‖PΩ(X−L)‖ ≤ ∆,(2.9)

where ‖L‖~ denotes the tensor nuclear norm and

(PΩ(X)ij = Xij if (i, j) ∈ Ω and (PΩ(X))ij = 0 otherwise.

Similarly to the matrix completion problem, recovery of tensor X from its observed entries
is essentially infeasible if the large majority of the entries are equal to zero [7]. For the
tensor completion case, it is the case that if tensor X only has a few entries which are not
equal to zero, in its t-SVD U ∗ S ∗ V> = X, the singular tensors U and V will be highly
concentrated. Indeed, not all tensors can be recovered from data sets with missing entries
and/or large outliers. Hence, in analogy to the main idea in matrix completion [7], tensor
slices U(:, i, :) and V(:, i, :), i = 1, 2, . . . , r, need to be sufficiently spread out, which in turn
implies that they should be uncorrelated with the standard tensor basis. Our analysis in
section 4 will focus on noisy tensor completion based on a robust factorization algorithm
whose estimation/recovery guarantees are expressed in terms of the coherence of the target
low-rank tensor L. It establishes that lower values of tensor coherence provide better recovery
results. In addition, we propose a randomized approximation algorithm, whose guarantees are
also related to the notion of tensor coherence. The following three notions of tensor coherence
are defined next.
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2638 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

Definition 2.14 (tensor µ0-coherence). Let V ∈ Rn×r×n3 contain orthonormal lateral basis
with r ≤ n. Then, the µ0-coherence of V is given by

µ0(V) :=
nn3

r
max

1≤i≤n
‖V> ∗ e̊i‖2F =

nn3

r
max

1≤i≤n
‖Vi::‖2F ,

where e̊i is standard lateral basis.

Definition 2.15 (tensor µ1-coherence). For a tensor L ∈ Rn1×n2×n3 assume that rankt(L) =
r. Then, the µ1-coherence of L is defined as

µ1(L) :=
n1n2n

2
3

r
‖U ∗VT ‖2∞,

where L has the skinny t-SVD L = U ∗ S ∗V>.

Definition 2.16 (tensor (µ, r)-coherence). For any µ > 0, we call a tensor L (µ, r)-coherent
if

rankt(L) = r,

max{µ0(U), µ0(V)} ≤ µ,
µ1(L) ≤ µ.

Note that the standard tensor coherence condition is much weaker than the matrix weak
coherence one for each frontal slice of X̂ [53]. Hence, in the analysis of the proposed randomized
algorithms, we will use the standard tensor coherence condition.

3. Approximate tensor low rank decompositions. We develop extensions of the matrix
CX and CUR decompositions [13, 15] to third-order tensors. The proposed algorithms result
in computing low-rank tensor approximations that are explicitly expressed in terms of a small
number of slices of the input tensor. We start by introducing a basic computational tool—a
randomized tensor multiplication procedure—that is used in subsequent developments.

3.1. Approximate tensor multiplication. Next, we present a randomized tensor-product
and provide key results on the quality of the resulting approximation. Given two tensors A

and B, using Definition 2.1, the t-product may be written as follows:

A ∗B =

n2∑
t=1

A:t: ∗Bt::,(3.1)

where ∗ denotes the tensor product.
It can be easily shown that the left-hand side of (3.1) is equivalent to the block multipli-

cation and then summation in the Fourier domain. When tensor multiplication is formulated
as (3.1), we can develop a randomized algorithm to approximate the product A ∗B.

Algorithm 3.1 takes as input two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , a positive
integer c ≤ n2, and a probability distribution {pi}n2

i=1 over [n2]. It returns as output two
tensors C and R, where the lateral slices of C correspond to a small number of sampled
and rescaled slices of A, and similarly the horizontal slices of R constitute a small number of
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FAST RANDOMIZED ALGORITHMS FOR TENSOR OPERATIONS 2639

sampled and rescaled slices of B. Specifically, consider at most c lateral slices (in expectation)
of A selected, with the ith lateral slice of A in C be chosen with probability pi = min{1, cpi}.
Then, define the sampling tensor S ∈ Rn2×n2×n3 to be binary where Sii1 = 1 if the ith slice is
selected and Sij2:n3 = 0 otherwise. Define the rescaling tensor D ∈ Rn2×c×n3 to be the tensor
with Dij1 = 1/

√
cpj if i−1 of the previous slices have been selected and Dij2:n3 = 0 otherwise.

Analogously, the rt-product samples and rescales the corresponding horizontal slices of tensor
B. In both cases, C = A ∗ S ∗D is an n1 × c× n3 tensor consisting of sampled and rescaled
copies of the lateral slices of A, and R = (S ∗ D)> ∗ B = D ∗ S> ∗ B is a c × n4 × n3

tensor comprising of sampled and rescaled copies of the horizontal slices of B. For the case
of n3 = 1, the algorithm selects column-row pairs in Algorithm 3.1 and is identical to the
algorithm in [13].

Algorithm 3.1. (rt-product), a fast Monte Carlo algorithm for approximate tensor multi-
plication.

1: Input: A ∈ Rn1×n2×n3 , B ∈ Rn2×n4×n3 , pi ≥ 0, i ∈ [n2] s.t.
∑

i∈[n2] pi = 1, positive
integer c ≤ n2.

2: Initialize S ∈ Rn2×n2×n3 and D ∈ Rn2×c×n3 to the all zeros tensors;
3: t = 1;
4: for i = 1, . . . , n2 do
5: Pick i with probability min{1, cpi};
6: if i is picked then
7: Sit1 = 1, Sit2:n3 = 0;
8: Dtt1 = 1/min{1,√cpi}, Dtt2:n3 = 0;
9: t = t+ 1;

10: end if
11: end for
12: C = A ∗ S ∗D, R = D ∗ S> ∗B;
13: Ĉ← fft(C, [], 3), R̂← fft(R, [], 3);
14: for k = 1, . . . , n3 do
15: Ẑ::k = Ĉ::kR̂::k;
16: end for
17: Z← ifft(Ẑ, [], 3);
18: return Z

3.2. Running time of rt-product. The rt-product is computationally efficient, has small
memory requirements, and is well suited for large scale problems. Indeed, the rt-product
algorithm can be implemented without storing tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3

and uses O(max(n1, n4)cn3 log(n3)) flops to transform the input to the Fourier domain and
O(c(n1 + n2 + n4)n3) flops to construct C ∈ Rn1×c×n3 and R ∈ Rc×n4×n3 , where

A ∗B ∼ C ∗R.(3.2)

It is worth mentioning that we do not require storing the sampling and rescaling tensors S

and D in our implementation.
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2640 DAVOUD ATAEE TARZANAGH AND GEORGE MICHAILIDIS

Next, we provide the main result on the quality of the approximation obtained by
Algorithm 3.1 that specifies the assumptions under which (3.2) holds. The most interesting
of these assumptions is that the sampling probabilities used to randomly sample the lateral
slices of A and the corresponding horizontal slices of B are nonuniform and depend on the
product of the norms of the lateral slices of A and/or the corresponding horizontal slices of B.
Following [13], we consider two examples of nonuniform sampling probabilities:

i. If we would like to use information from both tensors A and B, we consider sampling
probabilities {pi}n2

i=1 such that

pi ≥ β
‖A:i:‖F ‖Bi::‖F∑n2
i=1 ‖A:i:‖F ‖Bi::‖F

, β ∈ (0, 1].(3.3)

ii. If only information on A is easily available, then we use sampling probabilities {pi}n2
i=1

such that

pi ≥ β
‖A:i:‖2F
‖A‖2F

, β ∈ (0, 1].(3.4)

The following theorem gives the main result for Algorithm 3.1 and generalizes Theorem 6
in [15] to third order tensors.

Theorem 3.1. Suppose A ∈ Rn1×n2×n3, B ∈ Rn2×n4×n3, and c ≤ n2. In Algorithm 3.1, if
the sampling probabilities {pi}n2

i=1 satisfy (3.3) or (3.4), then the following holds:

E[‖A ∗B− C ∗R‖F ] ≤ 1√
βc
‖A‖F ‖B‖F .(3.5)

The following lemma establishes a bound for tensor multiplication with respect to the spectral
norm with improved sampling complexity.

Lemma 3.2. Given a tensor A ∈ Rn1×n2×n3, choose c ≥ 48r log(4r/(βδ))/(βε2). Let C ∈
Rn1×c×n3 and R = C> be the corresponding subtensors of A. If sampling probabilities {pi}n2

i=1

satisfy (3.4), then with probability at least 1− δ, we have

‖A ∗A> − C ∗ C>‖ ≤ max
k∈[n3]

{
‖Â::kÂ

>
::k − Ĉ::kĈ

>
::k‖2

}
≤ ε/2‖Â::kπ‖22,(3.6)

where kπ = k ∈ [n3] is the index of the tensor’s frontal slice with the maximum spectral norm

‖Â::kÂ
>
::k − Ĉ::kĈ

>
::k‖2.

3.3. Slice-based tensor CX decomposition. Next, using the concept of free submodules
and Definition 2.13, we introduce the novel notion of slice selection and projection before
formulating a tensor CX decomposition.

Definition 3.3. Let C ∈ Rn1×c×n3 and X ∈ Rn1×n2×n3. Then, the tensor project (t-project)
operator for X, ΠC(X) is an n1 × n2 × n3 tensor obtained as

ΠC(X) := C ∗ C† ∗X,(3.7)

where ∗ denotes the t-product, ΠC(X) is the projection of X onto the subspace spanned by the
lateral slices of C, and C† is the Moore–Penrose generalized inverse of tensor C [26].
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Because the circulant convolution of two tube fibers can be computed by the DFT, the
t-project can be alternatively computed in the Fourier domain, as shown in Algorithm 3.2.

Algorithm 3.2. t-project ΠC(X) computation in the Fourier domain.

1: Input: X ∈ Rn1×n2×n3 ; C ∈ Rn1×c×n3 .
2: X̂← fft(X, [], 3);
3: Ĉ← fft(C, [], 3);
4: for k = 1, . . . , n3 do

5: Ẑ::k = Ĉ::kĈ
†
::kX̂::k;

6: end for
7: Z← ifft(Ẑ, [], 3);
8: return ΠC(X) = Z

Definition 3.4 (t-CX). Given an n1 × n2 × n3 tensor X, let C be an n1 × c × n3 tensor
whose lateral slices correspond to c lateral slices from tensor X. Then, the n1×n2×n3 tensor

ΠC(X) = C ∗ C† ∗X

is called a t-CX decomposition of X.

The following remarks are of interest for the previous definition.
• The choice for the number of lateral slices c in the t-CX approximation depends on the

application under consideration; neverthelees, we are primarily interested in the case
c� n2. For example, c could be constant, independent of the dimension of tensor, or
logarithmic in the size of n2, or a large constant factor less than n2.
• The t-CX decomposition expresses each X slice in terms of a linear combination of

basis slices (see Definition 2.13), each of which corresponds to an actual lateral slice
of X. Hence, t-CX provides a low-rank approximation to the original tensor X, even
though its structural properties are different than those of the t-SVD.
• Given a set of lateral slices C, the approximation ΠC(X) = C ∗ C† ∗ X is the “best”

approximation to X in the following sense:

‖X− C ∗ (C† ∗X)‖F = min
Y∈Rc×n2×n3

‖X− C ∗ Y‖F .(3.8)

Next, we provide the t-CX decomposition algorithm and provide its relative error. Algo-
rithm 3.3 takes as input an n1 × n2 × n3 tensor A, a tubal rank parameter r, and an error
parameter ε. It returns as output an n1 × c × n3 tensor C comprising of a small number of
slices of A. Let L = U ∗ Σ ∗ V> be a tubal rank-r approximation of tensor A. Central to
our proposed randomized algorithm is the concept of sampling slices of the tensor based on a
leverage score [15], defined by

pi ≥
β

rn3
‖V̂i::‖2F ∀ i ∈ [n2], β ∈ (0, 1],(3.9)

where V̂ = fft(V, [], 3). The goal is to select a small number of lateral slices of A.
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Note that we define rescaling and sampled tensors D̂ and Ŝ in the Fourier domain. This
leads to a significant reduction in time complexity of the FFT and its inverse. For the case
n3 = 1, the algorithm selects column-row pairs in Algorithm 3.3 and is identical to the
algorithm of [15].

Algorithm 3.3. (t-CX), a fast Monte Carlo algorithm for tensor low rank approximation.

1: Input: A ∈ Rn1×n2×n3 , pi ≥ 0, i ∈ [n2] s.t.
∑

i∈[n2] pi = 1, a rank parameter r, positive
integer c ≤ n2.

2: Â← fft(A, [], 3);
3: Initialize Ŝ and D̂ to the all zeros tensors;
4: t = 1;
5: for i = 1, . . . , n2 do
6: Pick i with probability min{1, cpi};
7: if i is picked, then
8: Ŝit1 = 1, Ŝit2:n3 = 0;
9: D̂tt1 = 1/min{1,√cpi}, D̂tt2:n3 = 0;

10: t = t+ 1;
11: end if
12: end for
13: for k = 1, . . . , n3 do
14: Ẑ::k = Â::kŜ::kD̂::k(Â::kŜ::kD̂::k)

†Â::k;
15: end for
16: Z← ifft(Ẑ, [], 3);
17: return Z

Next, we present a lemma of general interest. The derived properties aid in obtaining
tensor based randomized `2 regression and low rank estimation guarantees.

Lemma 3.5. Given a target tensor A ∈ Rn1×n2×n3, let ε ∈ (0, 1] and L = U ∗ Σ ∗ V>
be a rankt-r approximation of A. Let Γ = (V> ∗ S ∗D)† − (V> ∗ S ∗D)>. If the sampling
probabilities {pi}n2

i=1 satisfy (3.9) and if c ≥ 48r log(4r/(βδ))/(βε2), then with probability at
least 1− δ, the following hold:

rankt(V
> ∗ S) = rankt(V) = rankt(L),(3.10a)

‖Γ‖ = ‖Σ−1
V>∗S∗D − ΣV>∗S∗D‖,(3.10b)

(L ∗ S ∗D)† = (V> ∗ S ∗D)†Σ−1U>,(3.10c)

‖Σ−1
V>∗S∗D − ΣV>∗S∗D‖2 ≤

ε
√

2

2
,(3.10d)

where ΣV>∗S∗D is an F-diagonal tensor and contains the r nonzero singular tubes of V>∗S∗D.

Note that (3.10d) shows that in terms of its singular tubes, the tensor V> ∗ S ∗D, i.e.,
the slice sampled and rescaled version of V, is almost an orthogonal tensor. A useful property
of an orthogonal tensor V is that V† = V> (see Definition 2.4). Equation (3.10b) shows that
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although this property does not hold for V> ∗S ∗D, the difference between (V> ∗S ∗D)† and
(V> ∗ S ∗D)> can be bounded.

Using Theorem 3.1 and Lemma 3.5, we provide in proposition 3.6 a sampling complexity
for a tensor based randomized “`2-regression” as in [15]. Indeed, Lemmas 2 and 3 of [15] follow
by using the Frobenius norm bound of Theorem 3.1 and applying Markov’s inequality. The
claim of Lemma 1 of [15] follows by applying Lemma 3.5. If we consider the failing probability
δ = 0.05, the claims of all three lemmas hold simultaneously with probability at least 0.85,
and in the following proposition we condition on this event. The proof follows along similar
lines to the proof of Theorem 5 in [15].

Proposition 3.6. Given a target tensor A ∈ Rn1×n2×n3, let L = U∗Σ∗V> be a rankt-r app-
roximation of A. Choose c = O(r log(r/β)/(βε2)) slices of A with their sampling probabilities
{pi}n2

i=1 satisfying (3.9). Then, with probability at least 0.85, the following holds:

‖A−A ∗ S ∗D ∗ (L ∗ S ∗D)† ∗L‖F ≤ (1 + ε)‖A−A ∗L† ∗L‖F.(3.11)

Let L = U ∗Σ ∗V> be a t-SVD of tensor L ∈ Rn1×n2×n3 . In the remainder of the paper,
we use the following two parameters related to the coherence of tensor L:

% :=
rµ0(V)

n3
,

%c :=
cµ0(Uc)

n3
,(3.12)

where Uc is the left singular tensor of C ∈ Rn1×c×n3 lateral slices of L.
The following theorem shows that projection based on slice sampling leads to near optimal

estimation in tensor regression when the covariate tensor has small coherence, µ0(V).

Theorem 3.7. Given A ∈ Rn1×n2×n3, let L = U ∗Σ ∗V> be a rankt-r approximation of A.
Choose c = O(% log(%)/ε2), and let Ac ∈ Rn1×c×n2 be a tensor of c lateral slices of A sampled
uniformly without replacement. Further, let Lc ∈ Rn1×c×n3 consist of the corresponding slices
of L. Then, with probability at least 0.85, the following holds:

‖A−Ac ∗L†c ∗L‖F ≤ (1 + ε)‖A−A ∗L† ∗L‖F .

Next, by using Lemma 3.5, we provide a low rank estimation bound for the t-CX algorithm
under the coherence assumption. Indeed, we will take advantage of a constant β in (3.9)
to provide relative error estimation guarantees for the t-CX algorithm under uniform slice
sampling when tensor A under consideration exhibits sufficient incoherence.

Corollary 3.8. Given a target tensor A ∈ Rn1×n2×n3, let L = U ∗ Σ ∗ V> be a rankt−r
approximation of A. Choose c = O(% log(%) log(1/δ)/ε2), and let C be a tensor of c lateral
slices of A sampled uniformly without replacement. Then, the following holds:

‖A− C ∗ C† ∗A‖F ≤ (1 + ε)‖A−L‖F(3.13)

with probability at least 1− δ.
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3.4. Slice-based tensor CUR decomposition. Similar to the matrix case, the t-CX
decomposition suffices when n1 � n2 because C† ∗ A is small in size. However, when n1

and n2 are almost equal, computing and storing the dense matrix C† ∗A in memory becomes
prohibitive. The CUR decomposition provides a very useful alternative. Next, we introduce
a tensor CUR (t-CUR) decomposition based on the rt-product.

Definition 3.9 (t-CUR). Let X be an n1×n2×n3 tensor. For any given C, an n1× c×n3

tensor whose slices comprise of c lateral slices of tensor X, and R, an l×n2×n3 tensor whose
slices comprise of l horizontal slices of tensor X, the n1 × n2 × n3 tensor

C ∗U ∗R

is a lateral-horizontal-based tensor approximation to X for any c× l × n3 tensor U.

The following remarks are of interest regarding the previous definition.
• The t-CUR decomposition is most appropriate as a data analysis tool when the data

consist of one and/or two modes that are qualitatively different than the remaining
ones. In this case, the t-CUR decomposition approximately expresses the original data
tensor in terms of a basis consisting of underlying subtensors that are actual data slices
and not artificial bases.
• The t-CUR approximation is a t-CX approximation, but one with a very special struc-

ture; i.e., every lateral slice of X can be expressed in terms of the basis provided by
C (see Definition 2.13) using only the information contained in a small number of
horizontal slices of X and a low-dimensional encoding tensor.
• In terms of its t-SVD structure, U contains the “inverse-of-X” information. For the

proposed t-CUR decomposition, U will be a generalized inverse of the intersection
between selected tensors C and R.

Note that the structural simplicity of the t-CUR tensor decomposition becomes apparent
in the Fourier domain, as detailed in Algorithm 3.4. The latter takes as input an n1×n2×n3

tensor A, an n1 × c× n3 tensor C consisting of a small number of lateral slices of A, and an

error parameter ε. Letting Ĉ = Û ∗ Σ̂ ∗ V̂>, Algorithm 3.4 uses sampling probabilities

pi ≥
β

cn3
‖Ûi::‖ ∀i ∈ [n1], β ∈ (0, 1],(3.14)

to select a small number of horizontal slices of A. It returns an l×n2×n3 tensor R comprising
of a small number of horizontal slices of A and an c × l × n3 tensor U consisting of the
corresponding slices of C.

Corollary 3.10. Given A ∈ Rn1×n2×n3, let L = U ∗ Σ ∗ V> be a rankt−r approxima-
tion of A. In Algorithm 3.4, choose c = O(% log(%) log(1/δ)/ε2), and let C ∈ Rn1×c×n3

be a tensor of c slices of A sampled uniformly without replacement. Further, choose l =
O(%c log(%c) log(1/δ)/ε2), and let R ∈ Rl×n2×n3 be a tensor of l horizontal slices of A sampled
uniformly without replacement. Then, the following holds:

‖A− C ∗U ∗R‖F ≤ (1 + ε)‖A−L‖F

with probability at least 1− δ.
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Algorithm 3.4. (t-CUR), a fast Monte Carlo algorithm for tensor low rank approximation.

1: Input: A ∈ Rn1×n2×n3 , C ∈ Rn1×c×n3 consisting of c lateral slices of A, pi ≥ 0, i ∈ [n2]
s.t.

∑
i∈[n2] pi = 1, a rank parameter r, and positive integer l ≤ n1.

2: Â← fft(A, [], 3);
3: Ĉ← fft(C, [], 3);
4: Initialize Ŝ and D̂ to the all zeros tensors;
5: t = 1;
6: for i = 1, . . . , n1 do
7: Pick i with probability min{1, lpi};
8: if i is picked, then
9: Ŝit1 = 1, Ŝit2:n3 = 0;

10: D̂tt1 = 1/min{1,
√
lpi}, D̂tt2:n3 = 0;

11: t = t+ 1;
12: end if
13: end for
14: for k = 1, . . . , n3 do

15: R̂::k = D̂::kŜ
>
::kÂ::k;

16: Û::k =
(
D̂::kŜ

>
::kĈ::k

)†
;

17: Ẑ::k = Ĉ::kÛ::kR̂::k;
18: end for
19: Z← ifft(Ẑ, [], 3);
20: return Z

Remark 3.11. In many applications such as tensor completion problems discussed in
section 5.3, it may not be feasible to compute the t-SVD of the entire tensor A due to
either computational cost or large set of missing values. In these cases, algorithms requiring
knowledge of the leverage scores can not be applied. Hence, we may use an estimate where a
subset of the lateral slices are chosen uniformly and without replacement, and the horizontal
leverage scores (3.14) are calculated using the top-r left singular slices of this lateral tensor
instead of the entire A tensor.

Remark 3.12. Note that for any subspace, the smallest µ0 can be is 1. In such case, we
are using the optimal subspace sampling with β = 1. Note also that we have provided
Corollaries 3.8 and 3.10 based on uniform sampling. However, it can be easily seen that the
relative error guarantees hold with nonuniform sampling probabilities (3.9) and (3.14), if we
set c = O(r log(r/β) log(1/δ)/(βε2)), and l = O(c log(c/β) log(1/δ)/(βε2)).

4. Tensor completion and robust factorization. Next, we provide a CUR tensor nuclear
norm minimization (CUR t-NN) procedure that solves a noisy tensor factorization problem,
using a small number of lateral and/or horizontal slices of the underlying tensor and exhibits
favorable computational complexity and in addition comes with performance guarantees.

4.1. Related work on matrix problems. Low rank plus sparse matrix decomposition. In
many image processing and computer vision applications, the given data matrix X can be
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decomposed as a sum of a low-rank and a sparse component. To that end, Candés et al.
proposed robust PCA [6] to model data matrices generated according to the following mech-
anism:

min
L,E

rank(L) + ‖E‖0 s.t. X = L+ E.(4.1)

Note that the solution of (4.1) is an NP-hard problem. It is established in [7] that if L exhibits
a certain degree of low-rankness, while E is sparse enough, then the formulation of (4.1) can
be relaxed into a convex problem of the form:

min
L,E
‖L‖∗ + ‖E‖1 s.t. X = L+ E.(4.2)

This model implicitly assumes that the underlying data structure lies in a single low-rank
subspace. However, in many applications (e.g., image classification) it is more likely that the
data are obtained from a union of multiple subspaces, and hence recovery of the structure
based on the above decomposition would be inaccurate. In order to segment the data into
their respective subspaces, one needs to compute an affinity matrix that encodes the pairwise
affinities between data vectors. Liu et al. [32] proposed a more general rank minimization
problem, where the data matrix itself is used as the dictionary, resulting in the following
convex optimization problem:

min
L,E
‖L‖∗ + ‖E‖2,1 s.t. X = XL+ E, diag(L) = 0.(4.3)

When the subspaces are globally independent, the data are noiseless and sampling is
sufficient; Liu et al. [32] show that the optimal solution, denoted by L∗, to the problem
given by (4.3) corresponds to the widely used shape iteration matrix method [9]. The latter
is a “block-diagonal” affinity matrix that indicates the true segmentation of the data. To
handle data corrupted by noise, the popular low rank representation (LRR) introduced in
[32] adopts a regularized formulation that introduces an extra penalty term to fit the noise
component. Further, after obtaining the self-representation matrix L, the affinity matrix C is
usually constructed as C = 1

2(|L|+ |L>|), where | · | represents the absolute operator. Then,
the obtained affinity matrix C will be processed through a spectral clustering algorithm [40]
to produce the final clustering result and obtain the corresponding data generating subspaces.

It is established in [52, 47] that combining sparse and low-rank regularization can improve
the performance of image classification. The basic objective function of this combination [52]
is as follows:

min
L,E

λ1‖L‖∗ + λ2‖L‖1 + λ3‖E‖` s.t. X = XL+ E, diag(L) = 0,(4.4)

where λ1, λ2, λ3 are tuning parameters and ‖E‖` indicates different norms suitable for different
types for corrupting the data by noise, for example, the squared Frobenius norm for Gaussian
noise and the `1 norm for random spiked noise. Equation (4.4) is similar to the objective
functions in [47, 16], where a detailed explanation of the formulation given in (4.4) is also
provided.
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4.1.1. Low rank tensor decomposition. Lu et al. [35] extended robust PCA [6] to the
third order tensor based on t-SVD and proposed the following convex optimization problem:

min
L,E
‖L‖~ + λ‖E‖1 s.t. X = L + E,(4.5)

where λ is a tuning parameter.
This model implicitly assumes that the underlying data come from a single low-rank

subspace. When the data is drawn from a union of multiple subspaces, which is common
in image classification, the recovery based on the above formulation may lack in accuracy.
To that end, Xie et al. [49] extended LRR based subspace clustering to a multiview one by
employing the rank sum of different mode unfoldings to constrain the subspace coefficient
tensor, resulting in the following convex optimization problem:

min
L,E
‖L‖~ + λ‖E‖2,1 s.t. X = X ∗L + E.(4.6)

Equation (4.6) is similar to the objective functions in [25, 42], and a detailed explanation
of (4.6) is provided in that paper.

4.2. Proposed algorithm. Next, we propose an algorithm for large scale tensor decom-
position of noisy data. Our proposal, called CUR t-NN, extends Algorithm 3.4 to the noisy
tensor factorization. The main steps are outlined in Algorithm 4.1.

Note that CUR t-NN can be used in combination with an arbitrary optimization algorithm.
In this paper, we have chosen to solve the noisy tensor factorization formulations (2.9), (4.5),
and (4.6) using an alternating direction method of multiplier (ADMM) algorithm [3]. ADMM
is the most widely used approach for robust tensor PCA in both the fully and partially observed
settings. Indeed, ADMM achieves much higher accuracy than (accelerated) proximal gradient
algorithm using fewer iterations. It works well across a wide range of problem settings and does
not require careful tuning of the regularization parameters. Further, the following empirical
finding has been frequently observed: namely, the rank of the iterates often remains bounded
by the rank of the initializer, thus enabling efficient computations [6]. This feature is not
shared by the block coordinate decent algorithm. We provide a variant of ADMM for solving
problem (4.5) in the Appendix (see Algorithm A.1). With a small modification, Algorithm A.1
can be also used to solve the tensor completion problem (2.9), and tensor subspace clustering
problem (4.6). In the following algorithm, ADMM(X, λ) denotes the ADMM algorithm for
solving regularized tensor nuclear norm minimization problems (2.9), (4.5), and (4.6), where
X is the (sampled) data tensor and λ is a regularization parameter.

4.3. Running time of CUR t-NN. Algorithm 4.1 significantly reduces the per-iteration
complexity of nuclear norm minimization problems. Indeed, in each iteration, a base ten-
sor nuclear norm minimization algorithm requires O(n1n2n3 log(n3)) flops to transform the
tensor to the Fourier domain, O(n1n2n3 min(n1, n2)) flops for the t-SVD computation and fac-
torization, and O(n1n2n3 log(n3)) flops to transform it back to the original domain. On the
other hand, Algorithm 4.1 only requires O(max(cn1, ln2)n3 log(n3)), O(max(n1c, ln2)n3r), and
O(max(cn1, ln2)n3 log(n3)) flops for the respective steps. Further, Algorithm 4.1 can be imp-
lemented without storing the data tensor X and can be advantageous when r � min(n1, n2),
which occurs frequently in real data sets.
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Algorithm 4.1. CUR t-NN, tensor nuclear norm minimization based on CUR factorization.

1: X ∈ Rn1×n2×n3 , positive integer c and l, and a regularization parameter λ;
2: Let C be a tensor of c selected lateral slices of X using probabilities (3.9);
3: C̃← ADMM(C, λ);
4: Let R be a tensor of l selected horizontal slices of X using probabilities (3.14);
5: R̃← ADMM(R, λ);

6: Let Ũ = W̃
†
, where W̃ is the l × c × n3 tensor formed by sampling the corresponding l

horizontal slices of C̃;
7: L̃ = C̃ ∗ Ũ ∗ R̃;
8: return L̃

4.4. Theoretical guarantees. Next, using Lemma 3.5, we establish that Algorithm 4.1
exhibits high probability recovery guarantees comparable to those of the exact algorithms that
use the full data tensor. Our first result bounds the µ0 and µ1-coherence (see Definitions 2.14
and 2.15) of a randomized tensor in terms of the coherence of the full tensor.

Lemma 4.1. Let Lc be a tensor formed by selecting c slices of a rankt−r tensor L =
U ∗Σ ∗V that satisfy the probabilistic conditions in (3.9). If c ≥ 48r log(4r/(βδ))/(βε2), then
with probability at least 1− δ,

• µ0(ULc) = µ0(U),

• µ0(VLc) ≤
1

1− ε/2
µ0(V),

• µ1(Lc) ≤
r

1− ε/2
µ0(U)µ0(V),

where ε ∈ (0, 1].

Our next theorem provides a bound for the estimation error of the CUR t-NN algorithm.

Theorem 4.2. Under the notion of Algorithm 4.1, choose c = O(% log(%) log(1/δ)/ε2) and
l = O(%c log(%c) log(1/δ)/ε2). Let C∗ and R∗ be the corresponding lateral and horizontal sub-
tensors of the exact solution L∗. If L∗ is (µ, r)-coherent, then with probability at least 1− δ,
C∗ and R∗ are ( rµ2

1−ε/2 , r)-coherent and

‖L∗ − L̃‖F ≤ (2 + ε)

√
‖C∗ − C̃‖2F + ‖R∗ − R̃‖2F ,

where L̃ is a solution obtained by Algorithm 4.1.

5. Experimental results. Next, we investigate the efficiency of the proposed randomized
algorithms on both synthetic and real data sets. The results are organized in the following
three subsections: in section 5.1, we compare the performance of the rt-product to that of
the t-product using synthetic data. In section 5.2, we use the proposed t-CX and t-CUR
algorithms for finding important ions and positions in two mass spectrometry imaging (MSI)
data sets. Finally, in section 5.3, we apply the proposed tensor factorization CUR t-NN
algorithm on data sets related to image and video processing.

All algorithms have been implemented in the MATLAB R2018a environment and run on
a Mac machine equipped with a 1.8 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3
of memory.D
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Table 5.1
Relative errors and running times of tensor multipication algorithms.

t-product rt-product
Rank, selected slices Nonuniform sampling Uniform sampling

Time (s) Time(s) RFE RSPE Time(s) RFE RSPE

r=100, l=460 9.09 8.13 70e-3 43e-4 1.03 39e-2 11e-2
r=200, l=1000 36.36 14.27 64e-3 25e-4 1.08 12e-2 82e-2
r=300, l=1700 162.99 34.89 56e-3 29e-4 1.39 41e-2 34e-2
r=400, l=2500 321.43 41.04 31e-3 13e-3 1.64 90e-2 38e-3
r=500, l=3100 684.01 67.07 71e-3 12e-4 3.09 23e-2 43e-3

5.1. Experimental results for fast tensor multipication. A random data tensor X ∈
Rn1×n2×n3 of dimension n1 = 105, n2 = 103, and n3 = 5 is generated as follows: the first frontal
slice of X is set to X(:, :, 1) = sprandn(n1, n2, 1), i.e., comprising of n1 × n2 sparse normally
distributed random matrix. The remaining frontal slices are generated by sprandn(X(:, :, 1)),
which results in the same sparsity structure as X(:, :, 1), with normally distributed random
entries with mean 0 and variance 1.

We perform a t-SVD decomposition on X and select the left singular slices U for our
experiments. We consider both uniform and nonuniform sampling schemes. For nonuniform
sampling, we use a randomized approach (similar to Algorithm 4 in [14]) to obtain normalized
leverage scores of U. Further, the Frobenius and spectral bounds given in (3.5) and (3.6),
respectively, are used as performance metrics for Algorithm 3.1. Table 5.1 shows the relative

Frobenius error (RFE)—‖U>r Ur − Ũ
>
r Ũr‖F /‖Ur‖2F—and relative spectral error (RSPE)—

‖U>r Ur − Ũ
>
r Ũr‖2/‖Ur‖22—for the rt-product algorithm to recover Ũ

>
r Ũr = U>r ∗ S ∗D ∗D ∗

S> ∗ Ur based on l ≈ r log(r) slices and its deterministic counterpart. The depicted results
are averaged over 10 independent replications.

Very large improvements in computational speed can be seen when using the rt-product,
especially when coupled with a nonuniform sampling scheme. Further, the gains become more
pronounced for larger number of slices sampled and larger rank.

5.2. Finding important ions and positions in MSI. MSI is used to visualize the spa-
tial distribution of chemical compounds, such as metabolites, peptides or proteins by their
molecular masses. The ability of MSI to localize panels of biomolecules in tissue samples
has led to a rapid and substantial impact in both clinical and pharmacological research,
aided in uncovering biomolecular changes associated with disease and finally provided low
cost imaging of drugs. Typical techniques used require finding important ions and positions
from a three-dimensional image: ions to be used in fragmentation studies to identify key
compounds and positions for follow-up validation measurements using microdissection or other
orthogonal techniques. Unfortunately, with modern imaging machines, these must be selected
from an overwhelming amount of raw data. Existing popular techniques used to reduce the
volume of data include PCA and nonnegative matrix factorization, but they return difficult-
to-interpret linear combinations of actual data elements. A recent paper [50] shows that CX
and CUR matrix decompositions can be used directly to address this selection need. One
major shortcoming of CX and/or CUR matrix decompositions is that they can only handle
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Figure 5.1. Sample ions in the brain data set.

2-way (matrix) data. However, MSI data form a multidimensional array. Hence, in order
to use CX/CUR matrix decompositions, one has first to reformulate the multiway array as
a matrix. Such preprocessing usually leads to information loss, which in turn could cause
significant performance degradation.

By using instead the t-CX and t-CUR decompositions (Algorithms 3.3 and 3.4, respec-
tively) one can obtain good low-rank approximations of the available data, expressed as
combinations of actual ions and positions, as opposed to difficult-to-interpret eigen-ions and
eigen-positions produced by matrix factorization techniques. We show that this leads to eff-
ective prioritization of information for both actual ions and actual positions. In particular,
important ions can be discovered by using leverage scores as the importance sampling distri-
bution. Further, selection of important positions from the original tensor can be accomplished
based on the random sampling algorithm in [50], since the distribution of the leverage scores
of positions is uniform. To this end, we consider the following two ways of computing leverage
scores of a given data set.

• Deterministic: Compute the normalized tensor leverage scores exactly using probabil-
ities (3.9) and (3.14).
• Randomized: Compute an approximation to the normalized leverage scores of tensor

(mapped to a block diagonal matrix in the Fourier domain) by using Algorithm 4
of [14].

5.2.1. Description and analysis of MSI data sets. Next, we use the following two data
sets for illustration purposes that are publicly available at the OpenMSI Web gateway.2 They
represent two diverse acquisition modalities, including one mass spectrometry image of the
left coronal hemisphere of a mouse brain (see Figure 5.1) acquired using a time-of-flight mass
analyzer and one MSI data set of a lung acquired using an Orbitrap mass analyzer. These
data sets form a 122×120×80339 and a 122×120×500000 tensor, respectively. As described
in [50], the brain data set is processed using peak-finding to identify the most intense ions.
Using this technique, the original brain data is reduced from 122 × 120 × 80339 values to a
data set of size 122 × 120 × 2000. To compute the CX decomposition, we reshape the MSI

2https://openmsi.nersc.gov/openmsi/client/.
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data cube into a two-dimensional (14640× 2000) matrix, where each row corresponds to the
spectrum of a pixel in the image, and each column to the intensity of an ion across all pixels,
thus describing the distribution of the ion in physical space. No peak-finding was applied to
the lung data set.

For the brain data set, we evaluate the quality of the approximation of the leverage
scores based on a rank r = 5 approximation. The distribution of the deterministic leverage
scores for the ions and pixels is shown in Figure 5.2. Table 5.2 shows the relative square error
(RSE) ‖X−X̃‖F /‖X‖F using t-CX decomposition to recover rank −5 tensor X̃ for selection of
c = 25, 35, 45, and 55 ions, using both randomized and deterministic leverage scores. Table 5.3
provides the reconstruction errors to the best rank−5 approximation, based on the t-CX
decomposition coupled with horizontal slice selection. The results obtained running both
randomized and deterministic CX and t-CX algorithms are based on 10 independent replicates

Figure 5.2. Distribution of leverage scores of tensor X, relative to the best rank-5 space for the brain data
set. Left: Horizontal scores. Right: Lateral scores. Bottom: Frontal scores.

Table 5.2
RSE of matrix and tensor low rank decomposition relative to the best rank-5 space for identifying important

ions in the brain data set.

Number of CX t-CX
selected slices Randomized Deterministic Randomized Deterministic

RSE Time RSE Time RSE Time RSE Time

25 19.13e-2 4.56 18.84e-2 8.46 13.65e-2 4.13 16.05e-2 4.47
35 17.24e-2 5.12 17.59e-2 8.95 17.43e-2 4.87 13.13e-2 5.99
45 16.35e-2 7.01 16.93e-2 14.99 11.32e-2 6.14 11.01e-2 7.01
55 15.14e-2 8.16 16.52e-2 15.86 16.26e-2 6.63 10.16e-2 8.99
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Table 5.3
RSE of matrix and tensor low rank decomposition relative to the best rank-5 space for finding important

pixels in the brain data set.

Number of CX t-CX
selected slices Randomized Deterministic Randomized Deterministic

RSE Time RSE Time RSE Time RSE Time

25 45.24e-2 3.15 46.03e-2 7.41 37.65e-2 3.01 16.05e-2 4.06
35 35.87e-2 3.81 35.68e-2 7.63 28.00e-2 3.19 13.13e-2 4.55
45 24.13e-2 5.29 24.19e-2 11.89 23.98e-2 4.15 21.01e-2 5.59
55 23.16e-2 5.83 24.39e-2 12.93 15.23e-2 4.23 15.17e-2 5.71

Table 5.4
RSE of matrix and tensor low rank decomposition relative to the best rank-15 space for finding important

ions and pixels in the lung data set.

Number of Decomposition using ions Decomposition using ions and pixels
selected slices CX t-CX CUR t-CUR

RSE Time RSE Time RSE Time RSE Time

25 40.82e-2 3.31 46.89e-2 3.05 59.76e-2 2.89 24.67e-2 2.14
35 41.98e-2 4.13 29.63e-2 3.24 42.57e-2 3.16 22.71e-2 2.67
45 30.16e-2 5.78 22.35e-2 3.36 12.18e-2 4.25 18.15e-2 3.13
55 30.74e-2 6.67 20.81e-2 4.05 19.00e-2 5.47 18.15e-2 3.26

and then averaging them. Note that for pixel selection, the deterministic CX decomposition
results in larger reconstruction errors than its randomized CX counterpart. The reason for
this behavior lies in the distribution of the leverage scores for the pixels, which are fairly
uniform (see Figure 5.2).

For the lung data set, reconstruction errors to the best rank r = 15 approximation based
on randomized t-CX and t-CUR decompositions are given in Table 5.4 based on averages over
10 independent replicates. It can be seen that the t-CX and t-CUR match or outperform their
matrix variants in terms of accuracy, while improving on computing time.

These results introduce the concept of t-CX/ t-CUR tensor factorizations to MSI,
describing their utility and illustrating principled algorithmic approaches to deal with the
overwhelming amount of data generated by this technology and their ability to select impor-
tant and intepretable ions/pixels.

5.3. Robust PCA (RPCA) in the fully and partially observed settings. Many images
exhibit an inherent low rank structure and are suitably denoised by low-rank modeling meth-
ods, such as RPCA [6]. In this section, we assess the performance of the CUR t-NN on two
popular data sets and for the typical use cases they represent. We compare the performance
of the proposed CUR t-NN algorithm to the following techniques:

• EXACT NN, the exact matrix completion [7];
• RPCA NN, the robust matrix completion [6];
• E-TUCKER NN, the TUCKER based tensor completion [33];
• R-TUCKER NN, the robust TUCKER based tensor completion [20];
• EXACT t-NN, the t-SVD based tensor completion [53];
• RPCA t-NN, the robust t-SVD based tensor completion [35].
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All algorithms are terminated either when the relative square error (RSE),

RSE :=
‖L∗ − L̃‖F
‖L∗‖F

≤ 10−3,

or the number of iterations and CPU times exceed 1,000 and 20 minutes, respectively.

5.3.1. CUR t-NN on the Extended Yale B data set. We apply the CUR t-NN on the
Extended Yale B data set to evaluate the accuracy of the proposed low-rank representations,
as well as its computation time. The database consists of 2,432 images of 38 individuals, each
under 64 different lighting conditions [17]. We used 30 images from each subject and kept
them at full resolution. Each image comprises of 192× 168 pixels on a grayscale range. The
data are organized into a 192 × 1140 × 168 tensor that exhibits low tubal rank, which is an
expected feature due to the spatial correlation within lateral slices [18]. Laplacian (salt and
pepper3) noise was introduced separately in all frontal slices of the observation tensor for 20%
of the entries.

We provide visualizations of the reconstructed first image from the first subject at the
20% noise level in Figure 5.3. We compare the performance of the CUR t-NN, RPCA t-NN,
R-TUCKER NN, and RPCA NN for solving the robust tensor low rank approximation prob-
lem (4.5). Table 5.5 shows the accuracy of the CUR t-NN together with that of competing
algorithms for the Extended Yale B data set. As shown in Figure 5.3 and Table 5.5, CUR
t-NN estimates nearly the same face model as the RPCA t-NN requiring only a small fraction
of time. On the other hand, all algorithms exhibit small RSE, but the CUR t-NN proves
essentially as competitive as the best method RPCA t-NN, but achieves almost the same
performance at approximately 1/4 of the time.

Beyond just speed-ups and/or accuracy improvements of the CUR t-NN algorithm, its
output can be directly used in place of the singular slices and tubes that standard methods
provide. The latter represent linear combinations of the slices of the tensor, which for an image
data set capture an “average eigenface.” On the other hand, CUR t-NN reconstructs the ten-
sor through selection of real faces in the data set, thus giving the opportunity for researchers
to inspect them and examine their representativeness. Hence, similar to the original CUR
decomposition of matrices, CUR t-NN enhances the interpretability of the tensor decomposi-
tion [18, 48, 41].

5.3.2. CUR t-NN on a video data set. Next, we compare the CUR t-NN to the afore-
mentioned listed competing methods for video data representation and compression from ran-
domly missing entries. The video data, henceforth referred to as the basketball video (source:
YouTube) is mapped to a 144× 256× 80 tensor, obtained from with a nonstationary panning
camera moving from left to right horizontally following the running players. We randomly
sampled 50% entries from the basketball video (Figure 5.4). We compare the performance
of the CUR t-NN, EXACT t-NN, E-TUCKER NN, and EXACT NN for solving the tensor
completion problem (2.9).

3This noise can be caused by sharp and sudden disturbances in the image signal. It demonstrates itself as
sparsely occurring white and black pixels.
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(a)

(b)

Figure 5.3. The first frame of the noisy tensor factorization result for the Extended Yale B data set. (a)
Left: The original frame. (a) Right: Noisy image (20% pixels corrupted). (b) Left: RPCA t-NN [35]. (b)
Right: CUR t-NN.

Table 5.5
RSE of tensor robust completion methods on Extended Yale B dataset.

Robust completion approach RSE Time(s)

RPCA NN [6] 0.0056 417

R-TUCKER NN [20] 0.0034 513

RPCA t-NN [35] 0.0021 495

CUR t-NN 0.0026 136

The result is shown in Table 5.6. It can be seen that the CUR t-NN outperforms almost
all its competitors in terms of CPU running time and accuracy and essentially matches that
of EXACT t-NN.

6. Conclusion. This paper introduced two randomized algorithms for basic tensor ope-
rations—rt-product and rt-project—and then used in tensor CX and CUR decomposition
algorithms, whose aim is to select informative slices. The randomized tensor operations to-
gether with the tensor decompositions algorithms comes with relative error recovery guaran-
tees. These algorithms can be effectively used in the analysis of large scale tensors with small
tubal rank.

In addition, we proposed the CUR t-NN algorithm that exploits the advantages of ran-
domization for dimensionality reduction and can be used effectively for large scale noisy tensor
decompositions. Indeed, CUR t-NN uses an adaptive technique to sample slices of the tensor
based on a leverage score for them and subsequently solves a convex optimization problem
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(a)

(b)

Figure 5.4. The 20th frame of the tensor completion result for the basketball video. (a) Left: The original
video. (a) Right: Sampled video (50% sampling rate). (b) Left: EXACT t-NN based reconstruction [53]. (b)
Right: CUR t-NN based reconstruction.

Table 5.6
RSE of tensor completion results for the basketball video.

Completion approach RSE Time(s)

EXACT NN [7] 0.1001 687

E-TUCKER NN [33] 0.0900 718

EXACT t-NN [53] 0.0715 695

CUR t-NN 0.0850 205

followed by a projection step to recover a low rank approximation to the underlying tensor.
The proposed algorithm has linear running time, and provably maintains the recovery guar-
antees of the exact algorithm with full data tensor.

Appendix A.

A.1. Proof of Theorem 3.1. Let Fn3 denote the discrete Fourier matrix. Then, Defini-
tion 2.1 implies that

(Fn3 ⊗ I)circ(A)(F−1
n3
⊗ I)(Fn3 ⊗ I)unfold(A>) =



Â::1Â
>
::1

Â::2Â
>
::2

. . .

Â::n3Â
>
::n3


= bdiagk∈[n3](Â::kÂ

>
::k).(A.1)
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Using (A.1) and the unitary invariance of the Frobenius norm, we have

‖A ∗B− C ∗R‖2F = ‖(Fn3 ⊗ I)circ(A)(F−1
n3
⊗ I)(Fn3 ⊗ I)unfold(B)

− (Fn3 ⊗ I)circ(C)(F−1
n3
⊗ I)(Fn3 ⊗ I)unfold(R)‖2F

=
1

n3
‖ bdiagk∈n3

(Â::kB̂::k − Ĉ::kR̂::k)‖2F

=
1

n3

n3∑
k=1

‖Â::kB̂::k − Ĉ::kR̂::k‖2F

=
1

n3

n3∑
k=1

‖Â::kB̂::k − Â::kŜ::kD̂::kD̂::kŜ
>
::kB̂::k‖2F .(A.2)

In Algorithm 3.1, we define Ij , j ∈ [n2] as an indicator variable, which is set to 1 if both the
jth lateral slice of A and the jth horizontal slice of B are selected. In this case, the selected
lateral and horizontal slices are scaled by score 1/

√
min{1, cpj}. Note that if min{1, cpj} = 1,

then Ij = 1 with probability 1 and 1− Ij/min{1, cpj} = 0. Then, taking expectation on both
sides of (A.2) and considering the set Υ = {j ∈ [n2] : cpj < 1} ⊆ [n2], we get

E
[
‖A ∗B− C ∗R‖2F

]
=

1

n3

n3∑
k=1

E

‖∑
j∈Υ

(
1− Ij

cpj

)
Â:jkB̂j:k‖2F


=

1

n3

n3∑
k=1

E

 n1∑
i1=1

n2∑
i2=1

∑
j∈Υ

(
1− Ij

cpj

)
Â:jkB̂j:k

2

i1i2


=

1

n3

n3∑
k=1

E

 n1∑
i1=1

n2∑
i2=1

∑
j∈Υ

(
1− Ij

cpj

)
Âi1jkB̂ji2k

2

=
1

n3

n3∑
k=1

E

 n1∑
i1=1

n2∑
i2=1

∑
j1∈Υ

∑
j2∈Υ

p̂i1i2j1j2


=

1

n3

n3∑
k=1

n1∑
i1=1

n2∑
i2=1

∑
j1∈Υ

∑
j2∈Υ

E [p̂i1i2j1j2 ] ,(A.3)

where p̂i1i2j1j2 = (1− Ij1
cpj1

)(1− Ij2
cpj2

)Âi1j1kB̂j1i2kÂi1j2kB̂j2i2k.

Since for j ∈ [Υ], E[1− Ij/cpj ] = 0 and E[(1− Ij/cpj)2] = (1/cpj)− 1 ≤ 1/cpj , we get

E
[
‖A ∗B− C ∗R‖2F

]
=

1

n3

n3∑
k=1

n1∑
i1=1

n2∑
i2=1

∑
j∈Υ

E(1− Ij/cpj)2Â
2

i1jkB̂
2

ji2k

≤ 1

n3

n3∑
k=1

∑
j∈Υ

1

cpj

n1∑
i1=1

n2∑
i2=1

Â
2

i1jkB̂
2

ji2k

=
1

n3

n3∑
k=1

1

c

∑
j∈Υ

‖Â:jk‖22‖B̂j:k‖22
pjD

ow
nl

oa
de

d 
08

/2
8/

19
 to

 1
32

.2
36

.2
7.

11
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST RANDOMIZED ALGORITHMS FOR TENSOR OPERATIONS 2657

=
1

c

∑
j∈Υ

‖A:j1‖22‖Bj:1‖22
pj

+ · · ·+ 1

c

∑
j∈Υ

‖A:jn3‖22‖Bj:n3‖22
pj

=
1

c

∑
j∈Υ

‖A:j:‖2F ‖Bj::‖2F
pj

.(A.4)

Equation (3.5) follows from (A.4) by using Jensen’s inequality and the fact that the sam-
pling probabilities (3.3) and (3.4) are defined in the original domain.

A.2. Proof of Lemma 3.2. Using Definitions 2.1 and 2.9, we have that

‖A ∗A> − C ∗ C‖ = ‖(Fn3 ⊗ I)circ(A)(F−1
n3
⊗ I)(Fn3 ⊗ I)unfold(A>)

− (Fn3 ⊗ I)circ(C)(F−1
n3
⊗ I)(Fn3 ⊗ I)unfold(C>)‖2

= ‖ bdiagk∈n3
(Â::kÂ

>
::k − Ĉ::kĈ

>
::k)‖2

= max
k∈[n3]

{
‖Â::kÂ

>
::k − Ĉ::kĈ

>
::k‖2

}
,(A.5)

where the first equality follows from the unitary invariance of the spectral norm, the second
equality from (A.1), and the third equality follows since the spectral norm of a block matrix
is equal to the maximum of block norms.

Let kπ = k ∈ [n3] be the index of the tensor’s frontal slice with maximum spectral norm

‖Â::kÂ
>
::k − Ĉ::kĈ

>
::k‖2. Using (A.5) and Example 4.3 in [19], we obtain

‖Â::kπÂ
>
::kπ − Ĉ::kπ Ĉ

>
::kπ‖2 ≤

ε

2
‖Â::,kπ‖22(A.6)

with probability at least 1− δ.

A.3. Proof of Lemma 3.5. Let σi,k be the ith largest singular value of slice k. For all
1 ≤ i ≤ r and 1 ≤ k ≤ n3, we have

|1− max
k∈[n3]

σ2
i,k(V

> ∗ S ∗D)| = | max
k∈[n3]

σi,k(V
> ∗V)− max

k∈[n3]
σi,k(V

> ∗ S ∗D ∗D ∗ S> ∗V)|

≤ ‖V ∗V> −V> ∗ S ∗D ∗D ∗ S> ∗V‖2.(A.7)

Using Lemma 3.2 and (A.7), we get

|1− max
k∈[n3]

σ2
i,k(V

> ∗ S ∗D)| ≤ ε/2‖V̂::kπ‖22(A.8)

for all 1 ≤ i ≤ r and an index kπ ∈ [n3].
Since ε ∈ (0, 1], each tubal singular value of V> ∗ S is positive, which implies that

rankt(V
> ∗ S) = rankt(V) = rankt(L).
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To prove (3.10b), we use the t-SVD of V> ∗ S ∗D and note that

‖Ω‖ = ‖
(
V> ∗ S ∗D

)†
−
(
V> ∗ S ∗D

)>
‖

= ‖
(
UV>∗S∗DΣV>∗S∗DV>

V>∗S∗D

)†
−
(
UV>∗S∗DΣV>∗S∗DV>

V>∗S∗D

)>
‖

= ‖VV>∗S∗D

(
Σ−1
V>∗S∗D − ΣV>∗S∗D

)
U>

V>∗S∗D‖

= ‖
(

Σ−1
V>∗S∗D − ΣV>∗S∗D

)
‖.(A.9)

The claim follows since VV>∗S∗D and UV>∗S∗D are orthogonal tensors.
To prove (3.10c), note that

(L ∗ S ∗D)† =
(
U ∗ Σ ∗V> ∗ S ∗D

)†
=
(
U ∗ Σ ∗UV>∗S∗D ∗ ΣV>∗S∗D ∗V

>
V>∗S∗D

)†
= VV>∗S∗D ∗

(
Σ ∗UV>∗S∗D ∗ ΣV>∗S∗D

)† ∗U>.(A.10)

To remove the pseudoinverse in the above derivations, we use the first part of the lemma. In
this case, (

Σ ∗UV>∗S∗D ∗ ΣV>∗S∗D
)†

=
(
Σ ∗UV>∗S∗D ∗ ΣV>∗S∗D

)−1

= Σ−1
V>∗S∗D ∗U

>
V>∗S∗DΣ−1.(A.11)

By combining (A.10) and (A.11), we get the result.
To prove (3.10d), we have that for all 1 ≤ i ≤ r and 1 ≤ k ≤ n3,

‖Ω‖ = ‖Σ−1
V>∗S∗D − ΣV>∗S∗D‖ from (A.9)

= max
i,k

∣∣∣∣∣σi,k(V> ∗ S ∗D)− 1

σi,k(V
> ∗ S ∗D)

∣∣∣∣∣ by definition

= max
i,k

|σ2
i,k(V

> ∗ S ∗D)− 1|
|σi,k(V> ∗ S ∗D)|

by simple manipulation

≤ ε/2√
1− ε/2

from (A.7)

≤ ε/
√

2 if ε < 1 =>
√

1− ε/2 > 1/
√

2.

A.4. Proof of Theorem 3.7. From Definition 2.14 and using (3.9) with β = n3/µ0(V) ∈
(0, 1], we have that

β

rn3
‖V̂i::‖2F =

β

r
‖Vi::‖2F ≤

β

r

r

n2n3
µ0(V) =

1

n2
= pi

for all i ∈ [n2].
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Using Proposition 3.6, our choice of c implies that

‖A−Ac ∗L†c ∗L‖F = ‖A−A ∗ C ∗D ∗ (Lc ∗D)† ∗L‖F
≤ (1 + ε)‖A−A ∗L† ∗L‖F(A.12)

holds with probability at least 0.85.

A.5. Proof of Corollary 3.8. Since C+ ∗ A minimizes ‖A − C ∗ X‖F over all tensors
X ∈ Rn1×c×n3 , it follows that

‖A− C ∗ C† ∗A‖F ≤ ‖A− C ∗L†C ∗L‖F .

Now, using (A.12), we get

‖A− C ∗ C† ∗A‖F ≤ (1 + ε)‖A−L‖F(A.13)

with probability at least 0.85.
We can trivially boost the success probability to 1 − δ by repeating Algorithm 3.3

O(log(1/δ)) rounds. Specifically, let Ci denote the output of Algorithm 3.3 at round i; using
(A.13) for each Ci we have

‖A− Ci ∗ C†i ∗A‖F ≤ (1 + ε)‖A−L‖F(A.14)

with probability at least 0.85.
Now, let C denote the set of all columns used in the approximation. Since each Ci = C∗Si

for some tensor Si and C+ ∗ A minimizes ‖A − C ∗ X‖F over all tensors X ∈ Rn1×c×n3 , it
follows that

‖A− C ∗ C† ∗A‖F ≤ ‖A− Ci ∗ C†i ∗A‖F
for each i. Hence, if

‖A− C ∗ C† ∗A‖F ≤ (1 + ε)‖A−L‖F
fails to hold, then for each i, (A.14) also fails to hold. Since 0.15 < 1/e, the desired conclusion
must hold with probability at least 1− (1/e)log(1/δ) = 1− δ.

A.6. Proof of Corollary 3.10. Using (A.12), it follows that

‖A− C ∗U ∗R‖F ≤ (1 + ε)‖A− C ∗ C† ∗A‖F(A.15)

with probability at least 0.85.
Using (A.13) and (A.15), our choice of c and l implies the following holds with probabilities

at least 0.7:

‖A− C ∗U ∗R‖F ≤ (1 + ε)2‖A−L‖F ≤ (1 + ε′)‖A−L‖F ,(A.16)

where ε′ = 3ε.
The inequality (A.16) holds with probability at least 1 − δ by following the boosting

strategy employed in the proof of Corollary 3.8. Indeed, since in each trial inequality (A.16)
fails with probability less than 0.3 < 1/e, the claim of Corollary 3.10 will hold with probability
greater than 1− (1/e)log(1/δ) = 1− δ.
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A.7. Proof of Lemma 4.1. Since from Lemma 3.5 we have rankt(Lc) = rankt(L), the
first claim follows similarly by using Lemma 1 of [38].

To prove the second claim, using Lemma 3.5, assume that S> ∗ V consists of the first c
horizontal slices of V. Then, if Lc = U ∗Σ ∗V> ∗ S has rankt(Lc) = rankt(L) = r, the tensor
V> ∗ S must have full tubal rank. Thus, we can write

L+
c ∗Lc = (U ∗ Σ ∗V> ∗ S)+ ∗U ∗ Σ ∗V> ∗ S

= (Σ ∗V> ∗ S)+ ∗U> ∗U ∗ Σ ∗V> ∗ S
= (Σ ∗V> ∗ S)+ ∗ Σ ∗V> ∗ S
= (V> ∗ S)+ ∗ Σ> ∗ Σ ∗V> ∗ S
= (V> ∗ S)+ ∗V> ∗ S
= V> ∗ S ∗ (V> ∗ S ∗ S> ∗V)−1V> ∗ S,

where the second and third equalities follow from U> ∗U = Ic. The fourth and fifth equalities
result from Σ having full tubal rank and V having full lateral slice rank, and the sixth follows
from S> ∗ V having full horizontal slice rank. Next, denote the right singular slices of Lc by
Vc ∈ Rc×r×n3 . Define e̊i,c as the ith lateral slice of Ic and e̊i,n2 as the ith lateral slice of I.
Then we have

µ0(Vc) =
cn3

r
max
1≤i≤c

‖V>c ∗ e̊i,c‖2F

=
cn3

r
max
1≤i≤c

trace{̊e>i,c ∗L+
c ∗Lc ∗ e̊i,c}

=
cn3

r
max
1≤i≤c

trace{̊e>i,c ∗ (V> ∗ S)+ ∗V> ∗ S ∗ e̊i,c}

=
cn3

r
max
1≤i≤c

trace{̊e>i,c ∗ S> ∗V ∗W−1 ∗V> ∗ S ∗ e̊i,c}

=
cn3

r
max
1≤i≤c

trace{̊e>i,n2
∗V ∗W−1 ∗V> ∗ e̊i,n2},

where W = V> ∗ S ∗ S> ∗ V and the final equality follows from V> ∗ S ∗ e̊i,c = V> ∗ e̊i,n2 for
all 1 ≤ i ≤ c.

Next, we have

µ0(VLC
) =

cn3

r
max
1≤i≤c

trace{̊e>i,n2
∗V ∗W−1 ∗V> ∗ e̊i,n2}

=
cn3

r
max
1≤i≤c

trace{W−1 ∗V> ∗ e̊i,n2 ∗ e̊
>
i,n2
∗V}

≤ cn3

r
‖W−1‖2 max

1≤i≤c
‖V> ∗ e̊i,n2 ∗ e̊

>
i,n2
∗V‖2~,

where the last inequality follows form Hölder’s inequality.
Since V> ∗ e̊i,n2 ∗ e̊

>
i,n2
∗V has tubal rank one, using the definition of µ0-coherence, we have

µ0(VLC
) ≤ c

n2
‖W−1‖2µ0(V).
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Now, using (A.8), we have that ‖W−1‖2 ≤ n2
c(1−ε/2) . Thus, it follows that

µ0(VLC
) ≤ µ0(V)/(1− ε/2).

To prove the last claim under Lemma 3.5, we note that

µ1(Lc) =
n1cn

2
3

r
max

1≤i≤n1
1≤j≤c

‖̊e>i,n1
∗Uc ∗V>c ∗ e̊j,c‖2F

≤ n1cn
2
3

r
max

1≤i≤n1

‖U>c ∗ e̊i,n1‖2F max
1≤j≤c

‖V>c ∗ e̊j,c‖2F

≤ r

(1− ε/2)
µ0(U)µ0(V).

A.8. Proof of Theorem 4.2. Define A(X) as the event that a tensor X is ( rµ2

1−ε/2 , r)-

coherent. To prove Theorem 4.2, let L̃ denote the solution obtained by CUR t-NN and let
L∗ be the exact solution of problems (2.9), (4.5), and (4.6). In Algorithm 4.1, define L̄ as

L̄ =

[
C̃1 R̃2

C̃2 L∗22

]
,

where C̃ =
[
C̃1 C̃2

]>
, and R̃ =

[
R̃1 R̃2

]
, and L∗22 ∈ R(n1−l)×(n2−c)×n3 is the bottom right

subtensor of L∗. It can easily be seen that

‖L∗ − L̄‖2F ≤ ‖C∗ − C̃‖2F + ‖R∗ − R̃‖2F .(A.17)

Now, define W (L̃, L̄) as the event

‖L̃− L̄‖F ≤ (1 + ε)‖L∗ − L̄‖F .(A.18)

If W (L̃, L̄) holds, we have

‖L∗ − L̃‖F ≤ ‖L∗ − L̄‖F + ‖L̄− L̃‖F by the triangle inequality

≤ ‖L∗ − L̄‖F + (1 + ε)‖L∗ − L̄‖F from (A.18)

≤ (2 + ε)‖L∗ − L̄‖F

≤ (2 + ε)

√
‖C∗ − C̃‖2F + ‖R∗ − R̃‖2F from (A.17).

Next, we consider all three events W (L̃, L̄), A(R∗), and A(C∗) with log(3/δ). Using
Lemma 4.1, our choice of c and l implies that A(C∗) and A(R∗) holds with probability at
least 1 − δ/3. Since L̃ is a t-CUR approximation to L̄, from Corollary 3.10, we get that
W (L̃, L̄) holds with probability at least 1− δ/3.

Using the union bound, it follows that

Pr(W (L̃, L̄)
⋂
A(C∗)

⋂
A(R∗)) ≥ 1−Pr(W (L̃, L̄)c)−Pr(A(C∗)c)−Pr(A(R∗)c)

≥ 1− δ/3− δ/3− δ/3
= 1− δ.
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A.9. Optimization by ADMM. We provide the optimization and parameter setting de-
tails of ADMM used in Algorithm A.1 for solving a robust tensor factorization. As discussed
in [54], the updates of Lk+1 and Ek+1 have closed form solutions. It is easy to see that the
main per-iteration cost of Algorithm A.1 is in the update of Lk+1, which requires computing
the fft of L and the SVD of block matrix L̂ = fft(L) in the Fourier domain.

Algorithm A.1. , L← ADMM(X, λ).

Initialize: L0 = E0 = Y0 = 0, ρ = 1.1, µ0 = 1e− 3, µmax = 1e+ 10, ε = 1e− 8.
while not converged do

• Lk+1 ← argminL ‖L‖~ + µk
2 ‖L + Ek −X + Yk

µk
‖2F ;

• Ek+1 ← argminE λ‖E‖1 + µk
2 ‖Lk+1 + E−X + Yk

µk
‖2F ;

• Yk+1 = Yk + µk(Lk+1 + Ek+1 −X);
• Update µk+1 by µk+1 = min(ρµk, µmax);
• Check ‖Lk+1 −Lk‖∞ ≤ ε, ‖Ek+1 − Ek‖∞ ≤ ε, ‖Lk+1 + Ek+1 −X‖∞ ≤ ε;

end while

The next result establishes the global convergence of the ADMM for solving problem (4.5)
(for details on the convergence analysis, see [46]). Note that similar results hold for solving
problems (2.9) and (4.6).

Theorem A.1. The sequence (Lk,Ek) generated by Algorithm A.1 from any starting point
converges to a stationary point of problem (4.5).

Acknowledgments. The authors would like to thank the Associate Editor and three
anonymous referees for many constructive comments and suggestions that improved signifi-
cantly the structure and readability of the paper.
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