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Given a set of n points Q in the plane, each colored with one of the k given colors, 
a color-spanning set S ⊂ Q is a subset of k points with distinct colors. The minimum 
diameter color-spanning set (MDCS) is a color-spanning set whose diameter is minimum. 
Somehow symmetrically, the largest closest pair color-spanning set (LCPCS) is a color-
spanning set whose closest pair is the largest. Both MDCS and LCPCS have been shown 
to be NP-complete, but whether they are fixed-parameter tractable (FPT) when k is a 
parameter is open. Motivated by this question, we consider the FPT tractability of some 
matching problems under this color-spanning model, where 2k is the parameter. We show 
that the following three problems are polynomially solvable (hence FPT): (1) MinSum 
Matching Color-Spanning Set, (2) MaxMin Matching Color-Spanning Set, and (3) MinMax 
Matching Color-Spanning Set. For the k-Multicolored Independent Matching problem, 
namely, computing a matching of 2k vertices in a graph such that the vertices of the edges 
in the matching do not share edges, we show that it is W[1]-hard. Finally, motivated by 
this problem, which is related to the parameterized independent set problem, we are able 
to prove that LCPCS is W[1]-hard.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of n points P with all points colored in one of the t given colors, a color-spanning set (sometimes also 
called a rainbow set) is a subset of t points with distinct colors. (In this paper, as we focus on matching problems on P , 
we set t = 2k henceforth. For other cases, we use a point set Q and the parameter k, which does not have to be even.) In 
practice, many problems require us to find a specific color-spanning set with certain property due to the large size of the 
color-spanning sets. For instance, in data mining a problem arises where, given a set Q of n points colored in k colors, one 
wants to find a color-spanning set whose diameter is minimized, which can be solved in O (nk) time using a brute-force 
method [20,3]. (Unfortunately, this is still the best bound to this date.)

Since the color-spanning set problems were initiated in 2001 [1], quite some related problems have been investigated. 
Many of the traditional problems which are polynomially solvable, like Minimum Spanning Tree, Diameter, Closest Pair, 
Convex Hull, etc, become NP-hard under the color-spanning model [8,9,13]. Note that for the hardness results the objective 
functions are usually slightly changed. For instance, in the color-spanning model, we would like to maximize the closest pair 
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and minimize the diameter (among all color-spanning sets). On the other hand, some problems, like Maximum Diameter 
Color-Spanning Set, remain to be polynomially solvable [6].

In [8,9], an interesting question was raised. Namely, if t is a parameter, is the NP-complete Minimum Diameter Color-
Spanning Set (MDCS) problem fixed-parameter tractable? This question is still open. In this paper, we try to investigate some 
related questions along this line. The base problem we target at is the matching problem, both under the geometric model 
and the graph model. We show that an important graph version is W[1]-hard while all other versions in consideration are 
polynomially solvable, hence are fixed-parameter tractable (FPT). Motivated by this problem, which is somehow related to 
the k-independent set problem, we show that Largest Closest Pair Color-Spanning Set (LCPCS) is W[1]-hard.

This paper is organized as follows. In Section 2, we define the basics regarding FPT algorithms and the problems we will 
investigate. In Section 3, we show that MinSum, MaxMin and MinMax Matching Color-Spanning Set are all polynomially 
solvable by reducing to the minimum weight matching problem. In Section 4, we show that a special graph version is 
W[1]-hard and, on top of that, we show that LCPCS is W[1]-hard. In Section 5, we conclude the paper.

2. Preliminaries

We make the following definitions regarding this paper. A Fixed-Parameter Tractable (FPT) algorithm is an algorithm for 
a decision problem with input size n and parameter k whose running time is O ( f (k)nc) = O ∗( f (k)), where f (−) is any 
computable function on k and c is a constant. FPT algorithms are efficient tools for handling some NP-complete problems 
as they introduce an extra dimension k. If an NP-complete problem, like Vertex Cover, admits an FPT algorithm, then it is 
basically polynomially solvable when the parameter k is a small constant [5,10].

Of course, it is well conceived that not all NP-hard problems admit FPT algorithms. It has been established that

FPT ⊆ W [1] ⊆ W [2] ⊆ · · ·W [z] ⊆ XP,

where XP represents the set of problem which must take O (nk) time to solve (i.e., not FPT), with k being the parameter. 
Typical problems in W[1] include Independent Set and Clique, etc. For the formal definition and foundation, readers are 
referred to [5,10].

Given a set Q of n points in the plane with k colors, a color-spanning set S ⊂ Q is a subset of k points with distinct 
colors. If S satisfies a property � among all color-spanning sets of Q , we call the corresponding problem of computing 
S the Property-� Color-Spanning Set. For instance, the Minimum Diameter Color-Spanning Set (MDCS) is one where the 
diameter of S is minimized (among all color-spanning sets of Q ) and the Largest Close Pair Color-Spanning Set (LCPCS) is 
one where the closest pair of S is maximized (among all color-spanning sets of Q ). The distance measure for two points in 
the plane is the Euclidean (or L2) distance. We next define the matching problems we will investigate in this paper.

Given a set P of n points in the plane with t = 2k colors, let S ⊂ P be a color-spanning set of 2k distinct colors. Then 
the (disjoint pairs of) points in S always induce a perfect matching, i.e., a set M of k edges connecting the 2k points in S . 
Among all these matchings (over all color-spanning sets), if a matching M satisfies a property �, we call the problem the 
Property-� Matching Color-Spanning Set or Property-� Color-Spanning Matching. The three properties we focus on are MinSum, 
MinMax and MaxMin.

MinSum means that the sum of edge lengths in M is minimized, MinMax means that the maximum edge length in M
is minimized, and MaxMin means that the minimum edge length in M is maximized. One of the main purposes of this 
paper is to investigate the FPT tractability of the three problems: MinSum Matching Color-Spanning Set, MinMax Matching 
Color-Spanning Set, and MaxMin Matching Color-Spanning Set. We show that all these problems are in fact polynomially 
solvable (hence FPT).

Finally, we will study a special version on graphs where the (vertices of the) edges in M cannot share edges in G . We 
call the problem k-Multicolored Independent Matching, and we will show that this problem is W[1]-hard. This problem 
eventually helps us prove that Largest Closest Pair Color-Spanning Set (LCPCS) is W[1]-hard. In the next section, we first 
show the positive results. The negative W[1]-hardness results will be shown in Section 4.

3. MinSum, MaxMin and MinMax Matching Color-Spanning Set problems

3.1. MinSum and MaxMin Matching Color-Spanning Set are in P

We first consider the MinSum Matching Color-Spanning Set problem. Formally, given a set P of n points in the plane, each 
colored with one of the 2k colors, we need to identify 2k points with distinct colors such that they induce a matching 
with certain property (e.g., the minimum total weight). Recall that the weight of an edge (pi, p j) is the Euclidean distance 
between pi and p j . For a point pi , let color(pi) be the color of pi .

For MaxMin Matching Color-Spanning Set, the first attempt is to try to see its relation to the MinSum Matching Color-
Spanning Set problem. In Fig. 1, we show an example where MaxMin Matching Color-Spanning Set is not necessarily related 
to the MinSum (or MaxSum) Color-Spanning Matching. In Fig. 1, the MinSum Color-Spanning Matching is {(a, c), (b, f )}, 
with a total weight of 2 − 2ε . The MaxSum Color-Spanning Matching is {(a, b), (d, e)}, which has a total weight of 1 + √

5. 
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Fig. 1. An example of a 4-colored set of 6 points in the plane. The edges of both squares have length 1. Points c, f are ε distance away from the correspond-
ing closest square corners. The MinSum Color-Spanning Matching is {(a, c), (b, f )}, with a minimum edge weight of 1 − ε . The MaxMin Color-Spanning 
Matching is {(a, d), (b, e)}, with a minimum edge weight of 

√
2.

The optimal solution for MaxMin Color-Spanning Matching is {(a, d), (b, e)}, with a solution value of 
√
2 (while the total 

weight is 2
√
2). Note that (a, d) and (b, e) do not form the closest pairs among the subsets of respective colors.

For the same point set {a, b, c, d, e, f }, the color-spanning set {a, b, d, e} (which happens to correspond to the point set for 
MaxMin Color-Spanning Matching), gives the solution for LCPCS (largest closest pair color-spanning set). The corresponding 
closest pair in the set has length 1, while the solution value for MaxMin Color-Spanning Matching is 

√
2. Hence, LCPCS and 

MaxMin Color-Spanning Matching are not the same and the claim we made in the conference version [2] is not correct. 
In fact, as we will see a bit later, not only that the two problems are not the same, they are quite different: the former 
problem is W[1]-hard while the latter is polynomially solvable (hence FPT).

Nonetheless, we show next that MinSum and MaxMin Matching Color-Spanning Set have the following property.

Lemma 1. In an optimal solution of MinSum (resp. MaxMin) Matching Color-Spanning, let pi and p j form a (resp. minimum) matched 
edge in the optimal matching, then (pi, p j) must be the closest (resp. farthest) pair between points of color(pi) and color(p j).

Proof. The proof for the two cases are almost identical, so we only consider the maxmin case. Let d1(pi, p j) be the length 
of the minimum matched edge. Let d2(pi, p j) be the length of the farthest pair between points of color(pi) and color(p j). 
Then we could replace d1(pi, p j) by d2(pi, p j) to have a new matching whose minimum matched edge length is longer. �

Using this property, we show that MinSum Matching Color-Spanning Set can be solved in polynomial time (hence FPT). 
First, for all 

(2k
2

)
pairs of colors, compute the bichromatic closest pair of points of the selected colors. This can be done 

in O (n logn) time [19] for each pair of colors. The total time for all pairs of colors is O (k2n logn). It can be reduced to 
O (kn logn) as follows. Suppose that the colors are 1, 2, . . . , 2k. For each i = 1, 2, . . . , 2k − 1, do the following steps.

(1) Make a graph G = (V , E) with V = {1, 2, . . . , 2k} and E = ∅.
(2) For points of color i, construct the Voronoi diagram and a data structure Di for point location with O (logn) query time.
(3) For each color j ∈ {i + 1, i + 2, . . . , 2k} and each point p of color j, find its nearest neighbor q in Di . For each color 

j ∈ {i + 1, i + 2, . . . , 2k}, compute a pair (p, q) with minimum Euclidean distance and add it to E .

Finally, we compute a perfect matching in G of minimum weight using a variation of Edmonds algorithm with running 
time O (n3), where n is the number of vertices of G [14,11].1 We hence have the following theorem.

Theorem 1. A minsum matching color-spanning set can be computed in O (k3 + kn logn) time.

Similarly, we show that MaxMin Matching Color-Spanning Set is polynomially solvable (hence FPT). With Lemma 1, we 
construct a complete graph G1 over k vertices each corresponding to one of the k colors and between two colors ci , c j we 
have an edge whose weight (length) w(ci, c j) is the farthest pair (distance) between points of color ci and c j . The cost for 
constructing G1 is O (kn logn) time.

To solve the problem, we sort all edges in G1. Then for any given edge e = (ci, c j) ∈ E(G1), we delete all edges of lengths 
smaller than w(e) and we delete ci, c j as well from G1. Let G ′

1 be the resulting graph (containing 2k − 2 colors). Then the 
problem is to test whether G ′

1 contains a perfect matching saturating the remaining 2k − 2 colors. The total cost for this 
decision problem is O (k3) [14,11]. We then could use binary search to find the best e∗ in O (k3 logk) time. The total cost of 
this algorithm is O (k3 logk + kn logn) time.

Corollary 1. MaxMin Matching Color-Spanning Set can be solved in O (k3 logk + kn logn) time.

1 Notice that the problems of finding the matchings of minimum weight and of maximum weight are equivalent.
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Fig. 2. A simple multicolored point set, the dotted, dashed and solid segments have lengths 1 −ε , 2 +ε and 1.5 +ε respectively. The MinSum color-spanning 
matching is {(a, b), (c, d)}, with a maximum edge weight of 2 + ε . The MinMax color-spanning matching is {(c, e), (d, f )}, with a maximum edge weight of 
1.5 + ε .

3.2. MinMax Matching Color-Spanning Set is in P

In this subsection, we consider MinMax Matching Color-Spanning Set. Not surprisingly, such a matching has nothing to do 
with the MinSum Color-Spanning Matching or the MaxSum Color-Spanning Matching. In Fig. 2, the MinSum Color-Spanning 
Matching is {(a, b), (c, d)}, with a total weight of 3. The MaxSum Color-Spanning Matching has a weight at least that of 
{(a, c), (b, d)} or {(c, d), (e, f )}, each having a total weight of 4 + 2ε . For the MinMax Color-Spanning Matching problem, 
all of the above matchings give a solution value of 2 + ε . The optimal solution is {(c, e), (d, f )}, with a solution value of 
1.5 + ε (while the total weight is 3 + 2ε). Also, note that (c, e) and (d, f ) do not form the farthest pairs among the subsets 
of respective colors.

We next state that MinMax Matching Color-Spanning Set has the following property, which is a corollary of Lemma 1.

Corollary 2. In an optimal solution of MinMax Color-Spanning Matching, let pi and p j be the maximum matched edge, then (pi, p j)

must be the closest pair between points of color(pi) and color(p j).

We could solve MinMax Color-Spanning Matching in very much the same way as in Corollary 1, in O (k3 logk + kn logn)

time. However, after a graph G2, over 2k colors and the edge weights between two colors being the closest pair between 
the corresponding colors, is constructed, we note that the problem is really the Bottleneck Matching problem on G2. For a 
graph with nV vertices and nE edges, it is known that such a matching can be computed in O (

√
nV lognV · nE) time [12]. 

Hence, in our case the MinMax Color-Spanning Matching can be solved in O (k2.5
√
logk + kn logn) time. Therefore, we have 

the following corollary.

Corollary 3. MinMax Color-Spanning Matching can be solved in O (k2.5
√
logk + kn logn) time.

In the next section, we show that a special matching problem on graphs is in fact W[1]-hard. This helps us find some 
ideas to prove that Largest Closest Pair Color-Spanning Set is W[1]-hard.

4. k-Multicolored Independent Matching is W[1]-hard

The k-Multicolored Independent Matching problem is defined as follows.
INSTANCE: An undirected graph G = (V , E) with each vertex colored with one of the 2k given colors.
QUESTION: Is there an independent matching E ′ ⊆ E including all the k colors? That is, are there k edges in E ′ such that 

all the vertices of the edges in E ′ have different colors, and for any two edges (x1, x2) and (y1, y2) in E ′ , (xi, y j) /∈ E (with 
i, j = 1..2).

The problem originates from an application in shortwave radio broadcast, where the matched nodes represent the short-
wave channels which should not directly affect each other [15]. (We also comment that this problem seems to be related 
to the uncolored version of ‘Induced Matching’ which is known to be W[1]-hard as well [17,18].) We will show that this 
problem is not only NP-complete but also W[1]-hard. The problem to reduce from is the k-Multicolored Independent Set, 
which is defined as follows.

INSTANCE: An undirected graph G = (V , E) with each vertex colored with one of the k given colors.
QUESTION: Is there an independent set V ′ ⊆ V including all the k colors? That is, are there k vertices in V ′ incurring no 

edge in E , and all the vertices in V ′ have different colors.
When U ⊆ V contains exactly k vertices of different colors, we also say that U is colorful.
For completeness, we first prove the following lemma, similar to what was done by Fellows et al. on k-Multicolored 

Clique problem [7].

Lemma 2. k-Multicolored Independent Set is W[1]-hard.
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Proof. The proof can be done through a reduction from k-Independent Set. Let G = (V , E) be a general connected graph. 
Given an instance (G = (V , E), k) for k-Independent Set, we first make k copies of G , Gi ’s, such that the vertices in each 
Gi are all colored with color i, for i = 1..k. For any u ∈ V , let ui be the corresponding mirror vertex in Gi . Then, for each 
(u, v) ∈ E and for each pair of i, j, with 1 ≤ i 
= j ≤ k, we add four edges (ui, u j), (vi, v j), (ui, v j) and (u j, vi). Let the 
resulting graph be G ′ . It is easy to verify that G has a k-independent set if and only if G ′ has a k-multicolored independent 
set. As k-Independent Set is W[1]-complete [5], the lemma follows. �

The following theorem shows that k-Multicolored Independent Matching is not only NP-complete but also W[1]-hard.

Theorem 2. k-Multicolored Independent Matching is W[1]-hard.

Proof. We reduce k-Multicolored Independent Set (IS) to the k-Multicolored Independent Matching problem.
Given an instance of k-Multicolored IS problem, i.e., a connected graph G = (V , E) with each vertex in V = {v1, v2, ..., vn}

colored with one of the k colors {1, 2, ..., k}, the question is whether one could compute an IS of size k, each with a distinct 
color.

We construct an instance for the k-Multicolored Independent Matching as follows. First, make a copy of G (with the given 
coloring of k colors). Then, construct a set U = {u1, u2, ..., uk} such that ui has color k + i. Finally, we connect each ui ∈ U to 
each v j ∈ V such that color(v j) = i, i.e., we construct a set E ′ = {(ui, v j)|ui ∈ U , v j ∈ V , 1 ≤ i ≤ k, 1 ≤ j ≤ n, i = color(v j)}. 
(Note that each ui ∈ U is connected to nodes in V of exactly one color.) Let the resulting graph be G ′ = (V ∪ U , E ∪ E ′), 
with each vertex in G ′ colored with one of the 2k colors. We claim that G has a colorful independent set of size k if and 
only if G ′ has a colorful independent matching of size k. The details are given as follows.

If G has a colorful independent set V ′ ⊆ V of size k, we select the k vertices in V ′ and match them up with the k
vertices in U to obtain k edges (in E ′). The vertices in V ′ are independent and no two vertices in U share an edge (i.e., 
vertices in U are also independent); moreover, by the definition of E ′ , the vertices of these k edges contain color pairs 
{(1, k + 1), ..., (i, k + i), ..., (k, 2k)}. Therefore, among these k edges, no two edges can have their vertices directly connected 
(by edges in E ∪ E ′). Hence, these k edges form a colorful independent matching for G ′ .

If G ′ has a colorful independent matching of size k, then the k edges must be obtained by matching exactly k vertices 
of V with the k vertices in U . (Otherwise, assume that two vertices vi and v j in V form an edge in the optimal colorful 
matching. Then we cannot have k edges in the matching. This is because at least two vertices in U , of colors color(vi) + k
and color(v j) + k respectively, cannot match up with vertices in V ∪ U by the definition of E ′ . Hence, the colorful matching 
would contain at most k −1 edges, a contradiction.) By the definition of colorful independent matching, among the k edges, 
the k corresponding vertices from V cannot share any edge hence form an independent set for G .

As the reduction takes polynomial time, the theorem is proved. �
Motivated by the above negative result, we take a more closer look at Largest Closest Pair Color-Spanning Set (LCPCS). It 

is basically a multicolored independent set problem on a unit disk graph: given a set Q of n points, each colored with one 
of the k colors, centered at each point qi ∈ Q with color(qi), we put a disk with radius γ and with color color(qi), Di(γ ), 
then we have the corresponding intersection graph G(γ ) of these disks. (There is an edge between two unit disks Di(γ )

and D j(γ ) centered at qi and q j respectively if and only if d(qi, q j) < 2γ .) The LCPCS problem is exactly the multicolored 
independent set problem on this unit disk graph when γ is maximized to γ ∗ . More precisely, G(γ ∗) has a multicolored 
independent set of size k if and only if the Largest Closest Pair Color-Spanning Set on Q has a solution value 2γ ∗ (i.e., 
the corresponding LCPCS solution S ⊂ Q has a largest closest pair of value 2γ ∗). Of course, to show the W[1]-hardness of 
LCPCS, it is only necessary to look at its decision version, i.e., whether there is a colorful subset of points S ⊂ Q such that 
the closest pair of S has a value at least r, where r is part of the input.

Marx showed that the k-Independent Set problem on unit disk graphs is W[1]-hard [16]. We can use this result and the 
standard method (similar to Lemma 2) to have the following lemma.

Lemma 3. k-Multicolored Independent Set on a unit disk graph is W[1]-hard.

Proof. The proof can be done by a reduction from k-Independent Set on a unit disk graph which is W[1]-hard [16]. Given 
a unit disk graph G represented by a set D of n unit disks, for each disk D ∈ D, we make k copies of colors {1, ..., k}, with 
the same center as D . Let the resulting set of disks be Dk . Similar to Lemma 2, it is easy to see that the intersection graph 
G of D has an independent set of size k if and only if the intersection graph of Dk has a multicolored independent set of 
size k. The reduction takes O (k|G|) = O (kn2) time. �

We then have the following theorem regarding Largest Closest Pair Color-Spanning Set.

Theorem 3. Largest Closest Pair Color-Spanning Set is W[1]-hard.



S. Bereg et al. / Theoretical Computer Science 786 (2019) 26–31 31
Proof. As discussed above, we reduce k-Multicolored Independent Set on a unit disk graph to Largest Closest Pair Color-
Spanning Set (LCPCS). Let Dk be the set of unit disks (with radii γ and each is colored in one of the k given colors) for the 
corresponding unit disk graph Gk(γ ). The centers of these disks form the point set Q , where a point qi ∈ Q inherits the 
color of the corresponding disk, i.e., each qi ∈ Q is colored in one of the k given colors. It is easy to see that Gk(γ ) has a 
multicolored independent set if and only if G has a color-spanning set S whose closest pair is at least 2γ . The reduction 
obviously takes linear time. �

The above result implies that LCPCS does not admit any FPT algorithm unless FPT=W[1]. One temptation is to apply the 
same idea to reduce the k-clique problem on a unit disk graph to MDCS. But, unfortunately, this does not work. The reason 
is that the maximum clique on a unit disk graph is polynomially solvable [4].

5. Closing remarks

Motivated by the open question of Fleischer and Xu, we studied the FPT tractability of some related matching problems 
under the color-spanning model. We showed in this paper that most of these problems are polynomially solvable (hence 
FPT), except one version on graphs which can be considered as a generalization of the multicolored independent set prob-
lem. And, motivated by this last problem, we made a connection between Largest Closest Pair Color-Spanning Set (LCPCS) 
and the multicolored independent set problem on unit disk graphs and were able to show that it is W[1]-hard. The original 
question on the FPT tractability of Minimum Diameter Coloring-Spanning Set (MDCS), is, unfortunately, still open.
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