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ABSTRACT

While interacting with a machine, humans will naturally formulate beliefs about the machine’s behavior, and
these beliefs will affect the interaction. Since humans and machines have imperfect information about each other
and their environment, a natural model for their interaction is a game. Such games have been investigated from
the perspective of economic game theory, and some results on discrete decision-making have been translated to
the neuromechanical setting, but there is little work on continuous sensorimotor games that arise when humans
interact in a dynamic closed loop with machines. We study these games both theoretically and experimentally,
deriving predictive models for steady-state (i.e. equilibrium) and transient (i.e. learning) behaviors of humans
interacting with other agents (humans and machines). Specifically, we consider experiments wherein agents
are instructed to control a linear system so as to minimize a given quadratic cost functional, i.e. the agents
play a Linear-Quadratic game. Using our recent results on gradient-based learning in continuous games, we
derive predictions regarding steady-state and transient play. These predictions are compared with empirical
observations of human sensorimotor learning using a teleoperation testbed.
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1. INTRODUCTION AND BACKGROUND

We seek to experimentally characterize steady-state and transient behavior as humans learn to control dynamic
systems, with an eye toward future applications in human/robot interaction (HRI) and human-cyber-physical
systems (HCPS). These applications motivate us to combine principles from theories of decision-making and
motor control to study sensorimotor games, that is, dynamic games involving agents that use physical bodies to
produce control actions. We will briefly review key concepts from these areas in the remainder of this section,
then continue in Section 2 with a the problem formulation and theoretical results, followed by simulation and
experimental results in Section 3.

1.1 Decision-making and games

When an agent’s preferences can be quantified with a single objective function, it is natural to model their
decision-making in an optimization framework. The optimization framework for decision-making predicts that
rational agents will seek stationary strategies, that is, they will vary their action until it is no longer possible
to decrease their cost.∗ Under these premises, participating agents play a game wherein the conditions for
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∗Here and in what follows, we assume objective functions are costs that agents seek to minimize. This choice is without
loss of generality since agents that seek to maximize reward also seek to minimize the negative of reward.



stationarity depend on the information structure governing agent interactions. When a single rational agent
interacts with an environment that has known statistics,

min
u

c(u), (1)

then (local) minimizers are stationary. When multiple rational agents interact with a known environment and
are able to cooperate,

min
ui,u−i

{ci(ui, u−i)}i∈I , (2)

then (local) Pareto minimizers are stationary, that is, collections of decision variables {ui
⋆}i∈I which cannot be

(locally) modified without increasing one or more agents’ cost. When multiple rational agents interact with a
known environment and are unable to cooperate,

min
ui

ci(ui, u−i), ∀i ∈ I, (3)

then (local) Nash minimizers are stationary, that is, collections of decision variables {ui
⋆}i∈I which cannot be

(locally) modified unilaterally without increasing the agent’s cost. Although the preceding notation is concise,
appropriately choices of the set of actions u ∈ U and corresponding cost function c can be defined to encompass
dynamic games,1 that is, games wherein costs are related to actions through their effect on the state of a dynamic
system,

ẋ or x+ = F (x, u). (4)

1.2 Sensorimotor learning and control

Multiple scientific theories have been proposed to describe and predict how humans learn to control their bodies
and interact with their environment. In the present context, we are interested in understanding how agents adapt
their actions to guide an external system to follow a specified reference; we will neglect the internal learning
and control processes that produce these actions. This shift in focus from the internals of the human body
to their feedback and feedforward actions on an external control system simplifies and unifies predictions from
leading theories of human motor control. For instance, pilots control linear vehicle models using linear feedback
and feedforward control,2–4 and this observation is consistent with the theories that humans internalize dynamic
models5–7 or motion primitives,8,9 as well as the theory that humans employ optimal control.10,11 Recent work
has experimentally corroborated theoretical predictions for the feedforward action;12–15 we are not aware of work
that probes feedback action analogously.

1.3 Notation and mathematical preliminaries

Key notation used in this paper is summarized in Table 1. We work in the framework of dynamic games,1 and
assume dynamics and costs are twice continuously differentiable so that stationary points can be characterized
using first- and second-order approximations.16

I (|I| = n) set of n agents
x ∈ X dynamic system state
ui ∈ Ui agent i’s action set
U = Πi∈IUi joint action space
u = (ui)i∈I ∈ U element of joint action space
ci : X × U → R agent i’s objective function
G = (F, (ci)i∈I) sensorimotor game
Dici derivative of agent i’s cost with respect to its own action
Djci derivative of agent i’s cost with respect to agent j’s action

Table 1. Notation used in this paper



2. SENSORIMOTOR GAMES

For concreteness, we will focus in what follows on a trajectory tracking task wherein agents are instructed to
choose control actions that steer the system output y to follow a reference r. Multiple such agents i ∈ I may be
tasked with facilitating trajectory tracking in the same system simultaneously, in which case the dynamics and
output are given by

ẋ or x+ = F (x, u), y = H(x, u), u = (ui)i∈I =
(

u1, . . . , u|I|

)

. (5)

In practical terms, such a scenario may arise when a human pilots a vehicle or a co-robot assists a human partner.

2.1 General sensorimotor games

When multiple agents interact with the same dynamic system simultaneously, they play a game in the sense
discussed in Section 1.1. Thus, predicting how agents behave requires consideration of the game’s information
structure, that is, what knowledge each agent has about the system and the other agents, and whether agents have
channels of communication other than that provided through interaction with the system. In scenarios where
either multiple humans or multiple autonomous agents interact, the information structure may be complex: if
humans are permitted to communicate through language (verbal, written, or postural), they may be able to
collude and coordinate their actions; similarly, if autonomous agents are permitted centralized communication,
they could effectively act as a single agent.

Although complex information structures are worthy of study, for simplicity we will restrict our attention
to the simplest case involving one human and one autonomous agent that cannot directly communicate except
through the effect of their actions on the state of the shared dynamic system. We will say that such games have
no side information, and specify them by a tuple G =

(

F, (ci)i∈I

)

where:

F specifies a differential or difference equation : X × U → TX or difference equation : X × U → X ;

ci specifies a cost function ci : X × U → R for each agent i ∈ I.

This restriction leads us to focus on Nash equilibria as the stationarity concept in what follows.

Hypothesis 1. In sensorimotor games that have no side information, humans learn to play Nash equilibria.

The determination of Nash equilibria for a given game is a hard problem in general. We will assume the
functions that define the game G are twice continuously differentiable so that Nash equilibria can be characterized
locally using first- and second-order approximations of cost functions.16 Thus, we tacitly assume agents have
bounded rationality17 in the sense that they utilize local information about the cost landscape to make small
adjustments to their actions that are expected to decrease their costs.

2.2 Linear-quadratic sensorimotor games

In this section we restrict our attention to the class of sensorimotor games with linear dynamics,

F (x, u) = Ax+
∑

i∈I

Biui, (6)

and infinite-horizon quadratic costs,

ci(x, ui, u−i) =

∫ ∞

0

x(t)⊤Qix(t) +
∑

j∈I

u−i(t)
⊤Riju−i(t) dt. (7)

Of course, our actual simulations and experiments will terminate on finite time horizons, so we tacitly assume
that games are played sufficiently long that the infinite-horizon game solutions provide useful predictions for
agent behaviors.

This special class of dynamic games has been extensively studied, producing a complete characterization of
their Nash equilibria that we will leverage in our simulations and experiments. For instance, it is known that the



stationary cost-minimizing policies are linear state feedback, that the feedback matrices are determined from the
positive-definite matrices that define the quadratic minimal cost-to-go for each agent, and that these cost-to-go
matrices satisfy coupled Riccati equations. We refer the interested reader to [1, Sec. 6.2.3, 6.5.3] for details in
the n-player case, and summarize these results in the 2-player case in the following example.

Example 1. For concreteness, consider the 2-player, discrete-time game, so that the dynamics are given by

x+ = Ax+B1u1 +B2u2,

and the costs are given by

c1(u1, u2) =
T
∑

t=0

x(t)⊤Q1x(t) + u1(t)
⊤R11u1(t) + u2(t)

⊤R12u2(t)

and

c2(u1, u2) =

T
∑

t=0

x(t)⊤Q2x(t) + u1(t)
⊤R21u1(t) + u2(t)

⊤R22u2(t).

Observe that in general Q1 6= Q2, i.e. the agents do not need to weight tracking error equally. Note also that
although R11, R22 must be positive-definite, there are no such restrictions on R12, R21 (indeed, these matrices
may be nonsquare if the agents’ actions differ in dimension). If Q1 = Q2 and Rij = 0, then we recover the single
agent cooperative LQR solution. Indeed, the linear state feedback ui = −Kixi yields closed-loop dynamics

x(t+ 1) = (A−B1K1 −B2K2)x(t) = Ax(t) = Atx(0) (8)

and corresponding costs for the agent 1,

c1(x(0),K1,K2) =

∞
∑

t=0

x(t)⊤
(

Q1 +K⊤
1 R11K1 +K⊤

2 R12K2

)

x(t)

=

∞
∑

t=0

x(0)(A−B1K1 −B2K2)
t⊤

(

Q1 +K⊤
1 R11K1 +K⊤

2 R12K2

)

(A−B1K1 −B2K2)
tx(0)

=

∞
∑

t=0

x(0)(At)⊤Qt
A
x(0),

and similar for agent 2.To determine the optimal (Nash) feedback gains for these non-cooperative agents, we
compute each agent’s unique positive definite cost-to-go matrix Pi via coupled Riccati equations and subsequently
compute each agent’s stationary feedback matrix (K⋆

i , K⋆
−i). For the infinite time horizon case, we have

Pi,k−1 = A⊤Pi,kA+K⊤
1 Ri1Ki +K⊤

2 Ri2K2 +Qi

and
Ki,k−1 = (Rii +B⊤

i Pi,kBi)
−1B⊤

i Pi(A+BiKi,k)

for each i ∈ I for k backwards in time until convergence.

2.3 Predictions for steady-state and transient play

As indicated by the theoretical results summarized in the preceding sections, the behaviors exhibited when
multiple agents seek to minimize their individual costs by controlling a shared dynamic system can be complex.
Even if the game admits only a single stationary joint action, it is not obvious whether or how the agents will
learn to play this action. In the remainder of this section we discuss a range of learning processes that may
theoretically be observed, and conclude with a discussion of the behaviors we expect human agents to exhibit.

Consider a mathematically simple model of learning where each agent myopically descends the gradient of
their own cost with respect to their own action. In the single-agent case, this is simply gradient descent, whose



convergence is well-established [18, Ch. 1]. However, when multiple agents perform this update simultaneously
in the same game, counter-intuitive transient behaviors can arise.19 For instance, agents’ costs may in fact
increase after each iteration due to the coupling of cost functions. Alternatively, the agents’ learning process
may converge to a limit cycle20 or a more complicated attractor,21 and therefore never approach a stationary
strategy. Finally, some games have attractive stationary points that are local maxima for each agent.22 These
observations indicate the complexity of behaviors that can arise in sensorimotor games involving multiple agents.

In our experiments, the human agents are not informed in advance about the dynamic systems they are
tasked with controlling – anything they learn about the systems must be obtained through experience. It is
possible that the human subjects learn the system’s dynamics (indeed, we have previously reported experimental
evidence that human subjects learn to invert the system’s dynamics12); in principle, the human subjects could
then choose actions that are stationary for their learned model, and update their actions as they learn a better
model. However, it is also possible that the subjects directly adjust their actions to decrease cost without
relying on an internal model estimate. Regardless of the strategy actually employed, we hypothesize that human
sensorimotor learning can be modeled as a stochastic process that converges in expectation to stationary play.

3. RESULTS

In this section, we provide preliminary results that illustrate steady-state and transient learning in sensorimotor
games. We provide simulation results in Section 3.1 that demonstrate complex learning processes, and preliminary
experimental results in Section 3.2 where human subjects learn to control simple linear systems.

3.1 Simulation results

We consider synthetic agents that employ a local gradient update of a parameterization of their action strategy
in an effort to find Nash minimizers of (3). Specifically, the agents adjust their action strategy using a policy
gradient23 learning rule

K+
i = Ki − γiDici(Ki,K−i), ∀i ∈ I,

where γi is the ith agent’s (possibly variable) learning rate. When learning rates are small, the discrete-time
learning process in (3.1) is approximated by the continuous-time vector field K̇ = −ω(K) = −[Dici(K)]i∈I . To
analyze the asymptotic behavior of the gradient flow, we compute the Jacobian of this vector field,

J(K) =







D2
1c1(K) · · · D1nc1(K)
...

. . .
...

Dn1cn(K) . . . D2
ncn(K)






.

From dynamical systems theory, we know that the discrete time updates will converge locally to a stationary
point K⋆ where ω(K⋆) = 0 and the eigenvalues of −ΓJ are negative, where Γ = diag(γi) is a diagonal matrix
with agents’ learning rates on its diagonal. The stationary point K⋆∗ will be a local Nash minimizer if the block
diagonal terms of the Jacobian (D2

i ci) are positive-definite.

3.1.1 A stable Nash equilibrium becomes unstable

Agents may learn at different rates: some agents may wish to learn quickly to gain an advantage, while others
may have a variable learning rate. In this section, we show that variable learning rates can change the stability
properties of a Nash equilibrium under the learning rule (3.1).

Equilibria of the learning process (3.1) are invariant under change of learning rates, i.e. the solutions to
ω(K) = 0 and Γω = 0 are the same for any non-zero diagonal matrix γ. However, the eigenstructure of
Γω(K) = 0 need not stay constant. The following example illustrates a counter-intuitive but non-degenerate
situation in which changes to one agent’s learning rate causes a stable Nash equilibrium to become unstable.
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