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Abstract

This paper attempts to address the problem of online modulation of virtual impedance for an assistive robot based on real-time gait
and activity measurements to personalize the assistance for different users at different states. In this work, smart shoes and inertial
sensors are introduced to measure ground contact forces and knee joint kinematics, respectively. An automatic impedance tuning
(AIT) approach is presented for a knee assistive device (KAD) based on real-time activity recognition and gait phase detection.
The activities considered in this paper are level, uphill, and downhill walking. A Gaussian mixture model (GMM) is employed to
map the fuzzy likelihood of various activities and gait phases to the desired virtual impedance of the KAD. The prior estimate of
virtual impedance is defined using human knee impedance identified with the walking data collected on different users. The AIT
approach is integrated into the high-level impedance-based controller of the KAD for assistance during the stance phase. Finally,
to evaluate the benefit of the proposed algorithm in stance phase, an EMG sensor is placed on the vastus medialis muscle group of
three participants. The proposed approach is compared with two baseline approaches: constant impedance and finite state machine,
and the results demonstrate that the profiles of impedance parameters and robot assistive torque are smoother and the muscle activity
of vastus medialis is reduced. It is also noticed that the participants reduce their step lengths and increase walking cadence with
assistance from the KAD.
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1. Introduction

The world is witnessing a significant and unprecedented de-
mographic shift with more than 20% of the U.S. residents pro-
jected to be 65 or older by 2030, compared to 13% in 2010 [1].
Aging leads to impaired mobility due to degenerative condi-
tions of the musculoskeletal system, the cardiovascular system,
and the nervous system. With more people suffering from mo-
bility issues, it is not enough to apply only conventional treat-
ment and rehabilitation technologies, which are expensive and
limited to hospitals [2].

In observation of such challenges, wearable sensors and
robotics have attracted significant attention in recent years.
They have shown great potentials in improving our understand-
ing of gait abnormalities, reducing labor intensity for therapists,
and enabling home-based tele-rehabilitation [3, 4]. For hu-
man walking analysis, encoders and inertial sensors have been
employed for studying walking kinematics [5]; force plates
and force sensor embedded insoles have been used to study
the ground contact forces (GCFs) in various gait phases [6];
electromyography (EMG) sensors have been used to analyze
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muscle activities during walking [7]. Various machine learn-
ing approaches, such as support vector machine [8] and hidden
Markov model [9], have been applied to process the wearable
sensor data automatically and extract useful insights for deci-
sion making.

Existing research on wearable robots has paved the way for
providing safe and accurate assistance to improve the training
performance. From the design perspective, series elastic [10],
cable-driven [11], and variable stiffness [12] mechanisms have
been developed to make the wearable robots lightweight, af-
fordable, and adaptive. In contrast to rigid-link robots, soft
robotics has been an emerging area in recent years. Soft robots
are lightweight, inherently safe, and compliant, which make
them an ideal candidate for wearable assistance [13].

The proper assistance of wearable robots significantly de-
pend on planning and control. For motion planning of the wear-
able robots, impedance control has been the most popular ap-
proach due to its simple implementation and clear physical in-
tuition [14]. Over the years, the finite state machine (FSM) is
a widely adopted strategy to modulate the impedance parame-
ters in the robot controller based on gait phases and activities.
To implement FSM, it becomes important to integrate the real-
time gait and activity detection algorithms into the high-level
control of the assistive robot. Hybrid Assistive Limb (HAL3)
is a famous lower-extremity wearable robot. It broadly classi-
fied one walking cycle into support and swing phases based on
force resistive sensor threshold, and constant torque is applied
to hip and knee joints [15]. Apart from HAL, other companies
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such as ReWalk [16] and Ekso Bionics [17] built hip-knee ex-
oskeletons and employed FSM controller strategy to assist in-
dividuals with SCI. In [18], a FSM based controller is designed
for five gait phases to allow variation in impedance for the knee
joint. The gait phases are detected based on knee angles and
manually defined thresholds of GCFs. A FSM controller is im-
plemented in [19], in which the stiffness of the knee actuator
is modulated based on stance and swing phases of the gait cy-
cle. In MINDWALKER exoskeleton, a FSM based impedance
controller is designed for nine states in a gait cycle [20]. A
FSM based impedance controller is implemented for modulat-
ing impedance parameters in the robotic device with knee and
ankle actuators for sitting, standing and walking activities in
[21], and for stair ascent and descent in [22]. Although FSM
has shown promising results, there still remains a major limita-
tion, as it leads to discrete jumps in the impedance parameters
during state transitions [20, 23].

In the aforementioned work, the impedance parameters are
manually set for different gait phases or activities which re-
quires a lot of time and experience from medical profession-
als. Moreover, these parameters may differ across users. There-
fore, it is not possible to design generalized impedance param-
eters profile across the users, instead, they need to be personal-
ized based on user’s requirements. To address these issues, re-
searchers started focusing on the human joint impedance stud-
ies to get more insight on the joint impedance modulation, and
to design the assistive robots that mimic the physiological joint
behavior [24]. The conventional methods to determine joint
impedance involve perturbing the joint in a controlled man-
ner, and describing impedance as the dynamic relationship be-
tween applied perturbations and corresponding joint torques
[25]. Some developed methods to estimate the elastic compo-
nents of the knee joint impedance that depends on muscle acti-
vation [26]. Others modeled the knee joint as a spring-damper
system and identified knee stiffness, damping and setpoint for
gait phases [27]. The results from the aforementioned human
studies demonstrated that the human modulates the impedance
parameters in a smooth and continuous manner within a gait
cycle and these impedance parameters profile changes from
subject to subject. Despite ongoing research on human joint
impedance studies, there still exists a gap in embedding those
insights into impedance-based controller strategy for robots.

Inspired by the aforementioned limitations of the existing
work, the main focus of this paper is to provide smooth
impedance modulation for the robotic assistive device to as-
sist the user in a personalized manner. This is approached by
imparting the identified impedance parameters in human study
experiments to the robot controller. An automatic impedance
tuning (AIT) algorithm is proposed which automatically mod-
ulates the impedance parameters for gait phases and activities.
Smart shoes and inertial sensors are introduced to collect GCF
and kinematic data. Activity recognition and gait phase detec-
tion algorithms are developed to understand human walking in
real time. These algorithms provide fuzzified values instead
of deterministic decisions. These fuzzy likelihood values pro-
vide flexibility for smoothing the impedance parameters pro-
file. A Gaussian mixture model (GMM) is trained to map the
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Fig. 1. Wearable sensing system and knee assistive device (KAD).

fuzzy likelihood of activities and gait phases to the desired vir-
tual impedance of the robot, based on the identified user knee
impedance for different activities and gait phases.

The scope of this paper is to provide assistance during stance
and implement zero impedance case to allow user free motion
during swing. The contributions of this paper include:

1. An online activity and gait phase detection approach is de-
veloped based on force and kinematic data

2. An automatic online impedance tuning approach is devel-
oped based on human knee characterization and GMM to
allow smooth transitions and personalize the assistance

3. The efficacy of these algorithms is verified by experiments
with three human participants and its potential benefit is
illustrated using kinematics and EMG metrics

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the mechatronic design of the wearable sensors
and assistive robot. In Section 3, the human knee impedance
is studied. Section 4 introduces the activity and gait phase de-
tection algorithms. The online impedance tuning algorithm is
discussed in Section 5. Experimental results with three partici-
pants are presented in Section 6. In Section 7, the experimental
results are discussed and the potential of the AIT approach in
clinical applications is detailed. Section 8 concludes this paper
and presents future work.

2. Mechatronic design

2.1. Wearable sensing system

The wireless wearable sensing system comprises inertial
measurement units (IMUs) and smart shoes to measure knee
joint angles and GCFs. The system is connected to a high-
performance computer through a stable wireless ad-hoc net-
work using the TCP/IP protocol. The smart shoes are devel-
oped to measure GCFs at four points: heel, first metatarsal joint
(Meta 1), fourth metatarsal joint (Meta 4) and toe while the sil-
icone tubes are wound into air bladders and connected to baro-
metric pressure sensors shown in Fig.1(a) and (b). The sam-
pling rate of the smart shoes is set to 100 Hz and a model-based
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Table 1
Design specifications for components of KAD.

Component Specification Value

Torsion spring Spring constant 6.59 N·mm/deg
Max angular deflection 317 degrees

Worm gear
Gear ratio 10:1

Pressure angle 25 degrees
Lead angle 18.26 degrees

Spur gear Gear ratio 6.36:1
Pressure angle 14.5 degrees

Encoders Resolution 2000 counts/turn

filter is implemented to compensate for hysteresis and estimate
GCFs from pressure sensor readings in real time [28].

Four IMUs are placed on bilateral thighs and shanks to mea-
sure acceleration and angular rate in real time. The placement
of IMUs on the participant is shown in Fig.1. The combined
Bosch Sensortec’s BNO055 IMU and an Intel Edison processor
is used for motion sensing, as shown in Fig.1(d). The sampling
rate of all IMUs is set to 100 Hz. The knee angle is estimated
by initially aligning the sensor frames of thigh and shank using
functional alignment procedure and then calculating the relative
orientation using an extended Kalman filter [29].

2.2. Knee assistive device (KAD)

A knee assistive device (KAD) is an exoskeleton with a com-
pact rotary series elastic actuator (cRSEA) [10]. In a cRSEA,
a worm gear and spur gear combination is used to amplify and
change the direction of assistive torque generated by a DC mo-
tor. The mechanical design of KAD is shown in Fig.1(c). The
cRSEA is compact and light with a weight of 1.57 kg to avoid
unbalance and discomfort to users. The maximum power con-
sumed by the knee joint is about 80W for a male subject with
the body weight of 70 kg and during level walking and the
knee angular velocity ranges between ±60 rpm [10]. Consid-
ering this, Maxon RE40, a 150W DC Motor is used to power
the KAD. With a combined gear set reduction ratio of 63.6:1,
the end effector can reach a maximum angular velocity of 120
rpm and the KAD can provide a maximum continuous assistive
torque of 11.26 N·m. Two incremental optical rotary encoders
(US Digital) are used to measure both motor and human knee
angles, which are re-initialized at the beginning of each exper-
iment. The torsion spring serves as a torque sensor and also
provides an energy buffer to prevent injuries from unexpected
high motor torques. The specifications of the components used
in the KAD are given in Table 1. The design of KAD targets
people with unilateral impairment which affects knee function.
In this paper, the KAD is used to assist right side knee.

3. The study of human knee motion

In a gait cycle, human continuously modulates their joint
impedance depending on the activity, speed, and terrain. The
understanding of human joint impedance helps to design virtual

HS LR MST TST PSW ISW 
&MSW

TSW

Stance Flexion (SF)

Stance (ST) Swing (SW)

Fig. 2. The gait cycle of human walking. HS - heel strike, LR - loading
response, MST - mid stance, TST - terminal stance, PSW - pre-swing, ISW -
initial swing, MSW - mid swing, and TSW - terminal swing.

Table 2
The details of healthy participants volunteered for the experiments.

ID Gender Age Height (cm) Weight (kg)
1 Male 22 180 59.96
2 Male 31 183 77.61
3 Female 26 158 55.01

impedance of the assistive robot. There are two objectives asso-
ciated with performing experiments: 1) to get the knee kinemat-
ics and kinetics data to study human impedance modulation and
to identify the parameters of the model that will be discussed in
Section 3.2. 2) To get the experimental data to train GMM in
AIT algorithm that will be proposed in Section 5.1.

3.1. Experimental setup

The experiments were set up in the motion capture labo-
ratory which was equipped with 12 high-speed infrared cam-
eras (Vicon Motion Systems Ltd.,) and instrumented treadmill
(Bertec Corporation) at Arizona State University (ASU). The
ASU Institutional Review Board (IRB) reviewed and approved
this study. The details of the healthy participants volunteered in
the experiments are given in Table 2. The speed of the treadmill
was set to 0.8 m/s for the level walking and 0.6 m/s for both up-
hill and downhill walking. The slope of the treadmill was set to
0, +10, and -10 degree for level, uphill, and downhill walking.
There is a limitation related of the instrumented treadmill that it
does not allow changing the slope while running. Therefore, the
experiments of three activities were planned separately without
focusing on their transitions. A total number of 9 experimental
sessions were conducted on each participants allocating three
sessions for each walking activity. Each session lasted for 1
minute. The participant relaxed for 2 to 3 minutes in between
the sessions within an activity and for 15 minutes before start-
ing other activity sessions.

For the experiments, participant worn 16 markers, 4 IMUs,
and smart shoes. The Vicon camera captures markers at a frame
rate of 100 Hz. The plug-in gait Vicon software registers lower
body joint angular displacements and computes gait parameters
such as cadence and step length. Also, the knee moment is
calculated by the Vicon software which takes moments from
instrumented treadmill and marker’s position as inputs. The
joint moment is estimated by applying inverse dynamics to the
multi-body model given in [30].
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Fig. 3. The comparison of knee kinematics and kinetics of one gait cycle for three activities experiments performed on participant 1. The slope of the treadmill was
set to 0, +10, and -10 degree and the speed of the treadmill was 0.8 m/s, 0.6 m/s, and 0.6 m/s for level, uphill, and downhill walking experiments.

3.2. Human knee impedance model

This paper primarily focuses on identifying the knee stiff-
ness and damping during the stance phase for three activities.
A spring damper model is considered for modeling the human
knee torque with respect to the knee angle and angular veloc-
ity [27]. The kinematics and kinetics data are processed for the
right knee as our KAD is designed for right side. The spring
damper model is defined as [27]:

Th(t) = k · (θh(t) − θ0) + b · θ̇h(t), (1)

where Th(t), θh(t), and θ̇h(t) are the human knee torque, an-
gle, and angular velocity, respectively. k, b, and θ0 represent
the knee stiffness, damping, and setpoint, respectively. A gait
cycle can be divided into two main phases: stance (ST) and
swing (SW). The ST can be further divided into three sub-
phases: stance flexion (SF), mid stance (MST) and terminal
stance (TST), as shown in Fig.2. The SF phase includes the
heel strike (HS) and loading response (LR). In this paper, k, b,
and θ0 are identified for three phases SF, MST, and TST using
a least square method with Th(t) as output and θh(t), θ̇h(t) as in-
puts. The identified mean and standard deviation of k, b and θ0
for three participants for a minute are given in Table 3.

3.3. Discussion

The knee angle, angular velocity, and moment for the activ-
ities of participant 1 are shown in Figs.3(a) – 3(c). The knee
moment versus angle and knee moment versus angular veloc-
ity during one gait cycle for different activities are shown in
Figs.3(d) – 3(i), and it can be seen that the SF takes place from
HS to LR. Whereas, MST is from LR to heel off (HO) and
the TST is up to toe off (TO). The swing knee flexion is ob-
served from TO to maximum swing flexion (MWF) and swing
knee extension takes place up to the next HS. The knee flex-
ion during HS is higher for uphill in comparison with the level
or downhill walking which can be seen in Fig.3(a). The knee
plays a wide range of roles during the execution of the gait,
including supporting the body weight and deceleration during
stance by applying a large knee moment that can be seen in
Figs. 3(g) – 3(i). The knee undergoes a resistive flexion during
SF and a propulsion extension during MST. On the other hand,
knee undergoes a ballistic movement demanding a less signifi-
cant effort during swing phase. This trend is observed in knee
moment plots shown in Fig. 3(c).

The knee stiffness follows a more linear profile in the stance
compared to swing in three activities shown in Figs. 3(d) – 3(f).
It can be seen from Table 3 that maximum stiffness for level and
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Table 3
The identified mean and SD of stiffness k (N·m/degree), damping b
(N·m·s/degree) and set point θ0 (degree) for a minute for three participants.

Gait phases Parameters Activities
Level Uphill Downhill

SF
kS F 1.641 ± 0.619 3.580 ± 0.781 4.415 ± 0.382
bS F 0.035 ± 0.039 -0.070 ± 0.219 -0.052 ± 0.011
θS F 9.79 ± 3.376 38.91 ± 2.299 8.826 ± 1.395

MST
kMS T 6.058 ± 1.038 2.604 ± 0.773 5.841 ± 1.029
bMS T -0.215 ± 0.069 -0.151 ± 0.048 0.057 ± 0.023
θMS T 10.267 ± 1.183 35.393 ± 2.417 22.940 ± 3.778

TST
kTS T 0.352 ± 0.287 6.246 ± 1.075 3.0425 ± 0.229
bTS T -0.308 ± 0.133 -0.369 ± 0.123 -0.080 ± 0.012
θTS T 0.031 ± 0.029 22.94 ± 3.778 3.702 ± 0.609

downhill walking is observed during MST phase, but for uphill
it is observed during terminal stance, which is also shown in the
knee angle-moment plots Figs. 3(d) – 3(f). This can be justified
from the biomechanical perspective that the instant where the
body begins to transit from force absorption at impact to force
propulsion happens during MST in level, and downhill walking.
Whereas, this transition happens during TST in uphill walking
[31]. The knee damping values for the stance phases in three
activities are also shown in Table 3. The knee damping values
for downhill during MST and TST are relatively high compared
to level and uphill walking. This can also be inferred from the
knee angular velocity and moment plots shown in Figs. 3(g)
– 3(i) that the knee moment is higher in downhill compared to
other activities during MST and TST. This is consistent with the
biomechanical analysis that higher knee moment is exhibited in
downhill to account for the negative slope of the contact surface
during MST and TST [31].

The identified knee stiffness, damping, and setpoints in the
experiments are used in tuning the actuator impedance for the
same participant wearing the KAD. The impedance parameters
for AIT algorithm in ST phase is set to 10% of the identified
impedance exhibited by the participant as shown in Table 3.
The percentage value is selected based on the torque limit of
the actuator.

4. Human intention estimation algorithm

The overview of the human intention estimation algorithm is
shown in Fig. 4. This algorithm utilizes the fuzzy logic method
[32] and includes two modules: gait phase detection (GPD) and
activity recognition (AR). The GPD module detects four phases
in every gait cycle: SF, MST, TST, and SW. In addition to the
four phases, the GPD module will provide HS detection as well.
Meanwhile, the AR module is used to provide estimation of
three activities: level, uphill and downhill walking

4.1. Gait phase detection (GPD) module

The GPD module’s fuzzy logic rule base is inspired by [6],
where two hyperbolic functions are used as input membership
functions while our GPD module’s input and output member-
ship functions are changed to partially overlapped trapezoid and
triangular functions, as shown in Fig. 5(a) and (b). This change

GCFs

Knee Angle

GPD Module

HS Detected

AR Module

Activity Fuzzy 
Output

Gait Fuzzy 
Output

GMM

Stiffness

Damping

Knee Angle Setpoint

KAD

Fig. 4. The overview of AIT algorithm structure.

accounts more samples into the gait phase transition period in-
stead of a specific gait phase and provides a smoother gait fuzzy
output profile, shown in Fig. 6. Once a new gait phase is de-
tected by the GPD module, the value of the knee setpoint will
change correspondingly. Also, the outputs of this module will
be used as part of the training data set for GMM and the input
to AIT which is discussed in Section 5.

4.2. Activity recognition (AR) module
An fuzzy inference algorithm was developed in our previous

work that can detect six activities in real time [33]. The algo-
rithm is based on the knee angle and GCF measurements from
IMUs and smart shoes. The design of the rule base in Table 4
is inspired by the human walking patterns, shown in Fig. 3(a).
It is obvious that during the SF phase, the right side knee angle
is larger in the uphill case compared to the other two activi-
ties. This difference brings the definitions of high and low in
the rule base for right side. Once the rule base is built, the in-
put and output fuzzy logic membership functions are defined
using trapezoid functions. The max method of aggregation and
centroid method of de-fuzzification is used to generate a final
fuzzy output [33]. Like the output from GPD module, this fuzzy
output value will be used in impedance tuning algorithm. How-
ever, limited by the treadmill, the module is simplified to detect
three activities: level, uphill, and downhill walking. To make
it clear, this module will only be activated when the right side
HS is detected by GPD module and the output will be kept until
the next right HS happens. For three participants, the ranges
of the activity fuzzy output values defined for level, uphill, and
downhill walking are 0–0.3, 0.31–0.6, and 0.61–1, respectively.

(a) Input membership functions (b) Output membership functions

Fig. 5. Example of the input and output membership functions of the GPD
module
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Table 4
The rule base for activity detection with θR (right) and θL (left) knee angles.

Activity θR θL

Level walk low medium
Uphill high low

Downhill low high

5. Automatic impedance tuning (AIT) algorithm

The AIT algorithm is an online impedance tuning algorithm
which tunes the virtual stiffness and damping values based on
the fuzzy outputs from GPD and AR modules. In AIT, a GMM
is trained with the gait and activity fuzzy output values ob-
tained from the participant’s walking experiments. The training
dataset of a healthy participant is shown in Fig. 7 in which gait
and activity fuzzy values are plotted on x and y axes, respec-
tively. It can be seen from Fig. 7 that fuzzy values along y axis
is more separated compared to x axis, since the training data
does not contain transitions among the activities.

5.1. Gaussian mixture model (GMM)

The GMM is a parametric probability density function repre-
sented as a weighted sum of Gaussian component densities. In
this paper, three activity components (level, uphill and downhill
walking) and four gait phase components (SF, MST, TST, and
SW) are separately defined on y axis and x axis which forms a
3 by 4 Gaussian components group. The Gaussian component
is labeled as Ci j where i and j represents the activity and gait
phase components respectively. Meanwhile, the outputs from
GPD and AR modules are labeled as q1 and q2, respectively.
Using the Expected Maximization (EM) method, the parame-
ters of the GMM are identified from the training data [34]. A
given new data point (q1,q2) firstly generates a feature vector
q = [q1, q2]T . Then, the probability of this data belonging to
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Fig. 7. The training data set for GMM with participant 1. The participant
walks at the speed of 0.8 m/s on the level surface and 0.6 m/s on 10 deg
uphill/downhill condition. The Gait and Activity fuzzy outputs range from 0 to
1 and are calculated through GPD and AR module, respectively.

Algorithm 1 AIT

Input: l1, l2, l3, l4: GCF for heel, Meta 1, Meta 4 and toe sens-
ing points, θL, θR: Left and right knee angle, ki j, bi j: Stiff-
ness and damping values by knee characterization where
i and j stand for the activity and gait phase classes, g0:
Threshold of fuzzy likelihood for HS detection

Output: k, b: desired actuator stiffness and damping value
1: q2 = 0 . AR module initialized with level walking
2: loop
3: q1 = GPD(l1, l2, l3, l4) . Gait fuzzy output q1 updated
4: if q1 < g0 then . HS detected
5: q2 = AR(θL, θR) . Activity fuzzy output q2 updated
6: else
7: . HS not detected q2 = q2 . Keep the previous activity

detection
8: end if
9: (k, b) = GMM(q1, q2, ki j, bi j) . Impedance updated

10: end loop

component Ci j is given by Bayes rule:

p(Ci j | q) =
p(Ci j)p(q | Ci j)

p(q)
(2)

where the prior component weighting factors p(Ci j) are set to be
the same. After the possibility for each component is acquired,
the desired actuator stiffness and damping values are calculated
as:

k =

3∑
i=1

4∑
j=1

p(Ci j | q)ki j, b =

3∑
i=1

4∑
j=1

p(Ci j | q)bi j (3)

where ki j and bi j are the identified stiffness and damping values
mentioned in Section 3.2, with 3 activities and 4 gait phases,
k and b are the actuator stiffness and damping values for the
KAD. The AIT algorithm is described in Algorithm 1. Note
that the AR module is executed only in the HS phase once every
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(a) The SF Gaussian components distribution in different activities for partici-
pants.

(b) The SF Gaussian components distribution in level walking for participants.

Fig. 8. Examples of GMM components distribution.

gait cycle, and the algorithm is initiated at level walking activity
(q2 = 0). If the HS is not detected in the next gait cycle, the
algorithm will use the last AR module output (q2) to generate
the stiffness and damping values.

In this paper, the algorithm is reduced to a 1D GMM which
focuses on the gait phase transition and its performance is veri-
fied for three activities level, uphill, and downhill with inclina-
tion angles of 0, +10 and -10 degrees. A comparison of GMM
components is shown in Fig. 8(a) and (b). As presented in
Fig. 8(a), the distributions of SF component in three activi-
ties: level, uphill and downhill are different which means, for
a single participant, the possibilities that a gait fuzzy output
value, i.e. q1 = 0.05 belongs to the SF component are depen-
dent on the activity condition. It is also obvious in Fig.8(b) that,
in the same activity condition, the distributions of SF compo-
nent are distinct between the three participants which indicates
the possibility that a given input q1 belongs to the SF compo-
nent is dependent on participant as well. These variances in the
distributions of the GMM components reflect the individual’s
walking pattern and make this algorithm personalized to each
participant.

5.2. Control structure of KAD

The control structure of KAD includes three layers:
impedance planning, torque planning, and motion control as
shown in Fig. 9. The AIT approach drives impedance planning
layer by providing desired impedance parameters and setpoints.
These parameters are then used to calculate the desired assis-
tive torque. There are two ways in the literature to provide the
desired knee assistive torque by: 1) using reference knee trajec-
tory for the gait cycle [35], and 2) providing setpoint knee angle
conditions for the gait phases [27]. There are limitations associ-
ated with the first method as the participant trajectory does not
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Fig. 9. Control block diagram for the KAD. θ0: knee angle setpoint, k:
actuator stiffness, b: actuator damping, q1: gait phase fuzzy output, q2:
activity fuzzy output, θh: human knee angle, and, θ̇h: human knee angular
velocity. IC: impedance control. TC: torque control. AR and GPD modules
are discussed in Section 4.

a) b) c)

Fig. 10. Experiment setup: a) level, b) uphill, and c) downhill walking.

follow a constant pattern and may deviate from the reference
across gait cycles, based on different walking conditions [35].
To avoid this problem, setpoints are defined for each gait phase
separately. The desired knee assistive torque follows:

Td(t) = k(θh(t) − θ0) + bθ̇h(t), (4)

where Td is the desired torque, k and b are the desired actuator
stiffness and damping obtained from (3), θ0 is the setpoint angle
which is identified in human study experiments given in Section
3 and determined based on the current gait phase and activity.
θh is knee angle measurement from human-side encoder.

Regarding the rotary series elastic structure of the KAD, the
generated torque is proportional to the motor position [10], i.e.,
the desired torque can be achieved by controlling the motor po-
sition in the torque planning layer. Hence, after calculating the
torque reference from (4) in torque planning layer, the reference
position of the motor is calculated and the motor tracks the ref-
erence position using a cascaded PID control loop, in which the
inner loop controls the motor velocity and the outer loop con-
trols the position.

6. Experiments and results

To verify the performance of the AIT algorithm, the same
three participants in Section 3 volunteered in the identical ex-
perimental setup. The experiment protocol mainly consisted
of two cases: passive and active. In passive case, the device
was not powered and it did not provide assistance to the par-
ticipant. Whereas, the KAD provided stance assistance for the
knee flexion and extension in the active case. Three types of
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(a) Stiffness profile for three activities.

(b) Damping profile for three activities.

(c) Assistive torque profile for three activities.

Fig. 11. The impedance parameters and assistive torque profile in level, uphill,
and downhill activities for three cases: CI, FSM, and AIT for participant 1.
The x axis in plots represent gait cycle in terms of percentage.

active cases were designed for the experiment protocol: a) con-
stant impedance (CI), b) FSM, and c) AIT. The focus of this
section is to compare the performance of the AIT with the two
baseline cases: CI and FSM. All the experimental sessions were
planned on a single day for a participant. There were five types
of sessions proposed: normal walking without KAD, passive,
CI, FSM, and AIT cases for each activity. The time duration
for sessions and relax time between the sessions was similar
to the protocol given in Section 3. Also, the sequence of the
sessions were randomized to make them unbiased.

6.1. Impedance and assistive torque
For the implementation of CI and FSM approaches, the gait

phase detection outputs need to be deterministic instead of
fuzzy. To account for this, the algorithm implemented in [6]
was chosen. In the CI case, the impedance was set to a constant
predefined value obtained from Table 3 throughout the stance

phase. The impedance was predefined as 10% of the normal
impedance exhibited by the participant in FSM case. In the
AIT case, the impedance parameters were set as 10% of the
impedance obtained from the trained GMM. The desired assis-
tive torque Td for KAD for gait phases SF, MST, or TST was
given by (4). The maximum desired torque for the KAD was
set to 9 N·m for all activity sessions as to restrict the actuator
from reaching the saturation limit.

The actuator stiffness, damping, and assistive torque for three
activities are shown in Fig. 11. The profiles of impedance pa-
rameters and assistive torque differ for three active cases. It
is clear from Fig. 11 that the AIT case provided smoother
impedance parameters and assistive torque profiles, and also
smoother transitions between the gait phases in contrast to FSM
case. It can been seen from Figs. 11(a) and 11(b) that the stiff-
ness and damping values reaches to zero at nearly 60% of the
gait cycle for three activities, which suggests the participant is
in swing phase and no assistive torque is provided by KAD. It
can be observed from Fig. 11(c) that the knee assistive torque
for level walking drops closer to zero at nearly 30% of the gait
cycle which is not the case in downhill or uphill walking. The
reason is that the stiffness and damping values of the level walk-
ing are much lower in TST compared to SF or MST. It should
be noted that applying smoothing function, for instance, the sig-
moid function to FSM impedance parameters profile can lead
to smoother transitions between the states. However, the draw-
back in such approach is parameters of the sigmoid function
need to set manually to account for slope and time shift. In the
case of AIT algorithm, the smoother transitions happen due to
fuzzy likelihood values obtained from the trained GMM model
specific to participant shown in section V. Therefore, the steep-
ness and time shift of the transitions in AIT are participant spe-
cific. To compare the performance of proposed AIT with the
standard CI and FSM approaches, there is a need to define rel-
evant metrics. The details about the metrics are given in the
following subsection.

6.2. Metrics and results

Three types of metrics were chosen for comparison: 1) joint
kinematics, 2) gait parameters and 3) muscle activities. For
muscle activity comparison, an EMG sensor was attached to
vastus medialis as it plays a crucial role in generating knee as-
sistive torque for the stance phase in all the three activities [36].

6.2.1. Joint kinematics and gait parameters
The right knee range of motion (ROM) for the three partici-

pants is shown in the Fig. 12 with the mean and standard devia-
tion (SD) for 1 minute during five cases. It is clear from Fig. 12
that the right knee ROM decreases for the active case in com-
parison to without KAD and passive cases for three activities.
The participants exhibited lowest knee ROM in AIT case.

The right side step length was computed as the KAD is de-
signed for right knee assistance. The mean and SD of cadence
and the average right side step length for three participants were
calculated for one minute shown in the Table 5. It is clear from
Table 5 that cadence increases and the step length reduces with
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Fig. 12. The mean knee ROM with SD for one minute in three activities for
three participants.

Table 5
The mean and SD of cadence (steps/min) and step length (m) for one minute.

Activity Session Cadence
(steps/min)

Average step length
(m)

Level

without 89.18 ± 11.36 0.452 ± 0.097
Passive 90.69 ± 11.97 0.439 ± 0.096

CI 92.27 ± 13.98 0.427 ±0.088
FSM 93.03 ± 13.71 0.408 ± 0.094
AIT 93.74 ± 13.98 0.396 ± 0.100

Downhill

without 92.62 ± 10.34 0.384 ± 0.029
Passive 93.86 ± 10.62 0.371 ± 0.031

CI 95.24 ± 11.48 0.356 ± 0.024
FSM 95.67 ± 11.40 0.344 ± 0.030
AIT 96.82 ± 11.97 0.334 ± 0.033

Uphill

without 78.98 ± 10.51 0.435 ± 0.038
Passive 80.51 ± 11.41 0.424 ± 0.036

CI 81.67 ± 11.79 0.415 ± 0.029
FSM 84.03 ± 13.49 0.403 ± 0.042
AIT 85.42 ± 14.54 0.393 ± 0.046

assistance. The AIT case exhibited higher cadence and lower
step length in all the three activities, which can be inferred from
Table 5. The device in passive case adds extra weight to par-
ticipant’s body and lower the performance of walking that is
reflected in gait parameters. However, the KAD helps partici-
pants spend less effort on the knee joint in active case.

6.2.2. Muscle activity
The maximal voluntary contraction (MVC) experiment on

vastus medialis was performed prior to all experiment sessions
on each participant to get the reference of the muscle activity.
The procedure for MVC experiment was followed as given in
[37]. The processing of the EMG signals involves full-wave
rectification, detrending, and low pass filtering using 5th order
Butter-worth filter [38]. The EMG signals were recorded with
a sampling rate of 1000 Hz. Two metrics for muscle activity
were chosen: 1) Average EMG activity reduction (P%): first,
the average of the peak values of the processed EMG signals

Table 6
The average EMG activity reduction (P%) for one minute in all sessions.

Activity Session Participant 1 Participant 2 Participant 3

Level

Passive −11.19% −8.06% −10.64%
CI −4.78% −1.48% −2.53%

FSM 1.53% 5.07% 7.89%
AIT 6.64% 9.27% 11.65%

Downhill

Passive −8.16% −6.57% −9.45%
CI −5.17% 1.05% 2.73%

FSM 1.77% 6.33% 8.15%
AIT 5.80% 10.99% 12.13%

Uphill

Passive −6.95% −9.14% −8.46%
CI −3.40% −4.82% 2.12%

FSM 2.69% 2.07% 5.32%
AIT 8.14% 6.78% 9.65%

was normalized with respect to MVC value for all five cases;
Second, P% was obtained by computing the percentage reduc-
tion of those values in passive and three active cases with re-
spect to without KAD case. In conclusion, P% metric gives
the measure of change in normalized muscle activation levels
in four cases with respect to normal walking. 2) Average root
mean square (RMS) of EMG: The RMS of the processed EMG
signal with a moving fixed time window is calculated.

The average RMS of the EMG signals with SD during three
activities for one minute are reported using a bar chart in Fig.
13. Along with the four cases, without KAD case is included
for comparisons. It is clear that the AIT performed best in re-
ducing the average RMS value of the EMG signals. The pas-
sive and CI cases showed more average RMS in EMG signals
in comparison with without KAD. This can be explained by the
weight of the KAD device on the participant. The FSM showed
nearly the same or less RMS value compared to without KAD.
This can also be verified from P% displayed in Table 6. The
passive and CI case showed negative P% which suggests that
the normalized EMG value increased in comparison with the
without KAD case.

7. Discussion

The KAD assists the participants in stance phase and follows
zero impedance strategy during swing phase. It can be seen
from the knee angular velocity plot shown in Fig. 3(b) that the
swing phase is characterized by high angular velocities. Dur-
ing high angular velocities, the KAD response is increasingly
governed by the intrinsic stiffness of the joint which results in
resisting torque. Therefore, this alternative assistance and resis-
tance provided by the KAD during stance and swing phases of
the gait cycle influences the participants knee ROM. As shown
in Fig. 12, the reduced knee ROM is observed in active cases
in comparison to passive or without KAD case. Also, the other
reason could be that the device introduces inertia and friction
due to its weight, which leads to decreased knee ROM. From
Table 5, it is clear that the participants exhibited increased ca-
dence and decreased step length. The probable reason can be
that as the speed of the treadmill is fixed, the subject need to
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Fig. 13. The mean RMS of EMG signals of vastus medialis with SD measured for a minute in three activities and five sessions, respectively.

compensate for reduced knee ROM with increased cadence.
This is confirmed in the study of Aoyagi et al. where the in-
ertia of assistive device results in a reduced range of pelvic mo-
tion during zero impedance case [39]. Also, a decrease in knee
ROM is observed when walking with LOPES lower limb ortho-
sis in zero impedance case [40]. From the studies [39] and [40],
it was shown the reduced joint ROM caused direct effect on gait
parameters: step time, step length, and stance time. Also, the
subjects showed a tendency to take shorter and quicker steps.
As KAD follows zero impedance strategy in swing phase, sim-
ilar results of reduced knee ROM are observed in this paper.

The percentage improvement of the RMS value of the EMG
signals for participant 1 in the AIT case compared to without
KAD for level, uphill, and downhill walking are 6.03%, 6.22%,
and 8.52%. Whereas, FSM showed 1.8%, 1.4%, and 1.92%
improvement. Similarly, for participant 2 and 3, the AIT case
exhibited a noticeable improvement in EMG RMS value with
respect to without KAD for level, uphill and downhill walk-
ing. Similar results can be inferred by looking at P% for three
participants. The FSM and AIT active cases provided nearly
equal assistive torques for gait phases. However, a clear dis-
tinction in the muscle activity is observable and AIT performs
better than FSM. The possible reason can be that AIT provides
smoother impedance and torque profile for the actuator in com-
parison with the FSM.

7.1. Clinical implications
The approach proposed in this paper addresses the limitations

of FSM and provides smooth continuous impedance parameters
using the identified human joint impedance. The approach has
the potential to become a personalized training system for pa-
tients. More experiments need to run to define the impedance
parameters for the fuzzy clusters of gait and activity based on
the requirements of the patients and the GMM will output the
impedance parameters adaptively. As a proof of concept, the
knee joint is considered in this paper. It is possible to extend
this framework to multiple joints. As the AIT approach pro-
vides flexibility in designing the impedance parameters for the
clusters of gait and activity, it will be advantageous in clinical
settings, as it allows variability in walking pattern, more per-
sonalized walking patterns. Also, AIT can provide different
impedance parameter profiles, thereby providing various levels
of assistance depending on early, mid, and final stages of reha-
bilitation.

Regarding the effectiveness of this approach in rehabilitation,
a clinical protocol with a therapist is needed, in practice, to
evaluate the method of automatic impedance modulation and
its effect on patients. With this purpose, a graphical user inter-
face (GUI) will be useful for the therapists, in order to facilitate
the monitoring of variable such as knee ROM, step length, or
cadence and choosing impedance profile.

7.2. Limitations of this study

Due to the limitation of the slope change operation of instru-
mented treadmill used for the experiments, the transitions be-
tween different activities are not evaluated. Therefore, the three
activity experiments are conducted separately. In future exper-
iments, the activity transitions will be included. In experiment
trails, the speed is fixed along with slope of the treadmill. The
speed change during experiments might have provided more in-
sights into the study of human impedance modulation. In this
study, the AIT approach is evaluated on healthy subjects and
not on impaired subjects. It will be useful to observe the fuzzy
likelihood profiles of gait and activity for impaired subjects.

In this paper, the AIT approach is designed to make it suit-
able for rehabilitation training in the indoor environment. The
authors believe that the AIT have the potential for the appli-
cations in outdoors as well. However, the complexity of the
problem increases in terms of gait speed, terrain conditions, and
more activities.

8. Conclusion

In this paper, an online impedance tuning algorithm was pro-
posed for a knee exoskeleton to provide personalized assistance
based on simultaneous detection of activity and gait phase. Hu-
man knee impedance was characterized by collected walking
data. The uncertainty of activity and gait phases was modeled
with a fuzzy likelihood, and a GMM was developed to deter-
mine the desired robot impedance. The AIT was compared with
CI and FSM approaches in a study with three participants. The
AIT algorithm led to reduction of vastus medialis muscle ac-
tivity, and it also yielded increased cadence and reduced step
length in comparison to baseline approaches.

The future work will introduce transitions in activities as
well. The AIT approach will be tested in outdoor environmen-
tal conditions. EMG sensors will be put on other muscles of
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the leg to comprehensively study the effect of the impedance
tuning, and patients will be recruited to evaluate the efficacy of
AIT in assisting abnormal gaits.
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