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Abstract— Human locomotion recognition methods based
on electromyography (EMG) signals have not shown robust
and accurate classification performance. This is due to the
limitations of EMG signals such as its stochastic nature and
sensitivity to placement of the sensors, as well as the number of
sensors, feature extraction and classification algorithms. In this
paper, a robust classification approach with only two features
derived from EMG signals is developed to recognize locomotion
activities and detect changing speeds. The root means square
(RMS) and energy of the EMG signals are the features adopted
in this method. The energy of the EMG signal is extracted
using energy kernel method. The proposed approach uses a
low number of sensors and features, online unsupervised clas-
sification, and is generalizable to different lower-limb muscle
groups. To evaluate the benefits of the proposed approach, it
is initially tested on a public dataset of five participants with
two EMG sensors on biceps femoris and gastrocnemius, doing
separate trials on the treadmill at various speeds and slopes.
We performed additional experiments on two participants with
EMG sensors on vastus laterialis and vastus medialis, as
treadmill speeds changed online within each trial. The proposed
approach achieved significant classification accuracy (above
90%) using the standard unsupervised K-means clustering, for
both locomotion activity and speed recognition with the public
dataset and our collected data.

I. INTRODUCTION

Rehabilitation training has shown a positive impact on
neurological restoration of limb functions [1]. Conventional
rehabilitation training is labor intensive especially for lower-
extremity joints. In recent years, assitive devices for rehabil-
itation have gained significant popularity [2]. Rehabilitation
training with proper robot assistance plays a significant role
in recovering the limb motor functions. An active interaction
control strategy that can provide appropriate assistance as
needed is essential for satisfying training performance.

The EMG based control strategy is widely adopted in
rehabilitation, prosthetic control, and human-robot interac-
tion [3]. EMG signals contain important information of the
muscle activities, and thereby, will be helpful to estimate
human intentions. Multiple methods have been proposed
to extract useful information from EMG signals to control
the assistive devices [4]. In hybrid assistive limb (HAL), a
voluntary control strategy is developed to estimate the user’s
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intentions based on the detection of muscle activities through
EMG signals [5]. In [6], intention estimation algorithm based
on EMG signals was integrated into high-level controller
strategy of the knee exoskeleton. Although the aforemen-
tioned assistive devices exhibited fair performance in terms
of providing appropriate assistance using EMG signals, there
are certain limitations associated with number of EMG
sensors, types of locomotion activities, and generalization
of the approach. Many human activity recognition (HAR)
methods were proposed in the literature based on the features
extracted from EMG signals [7]. Some employed eight EMG
sensors around the thigh and adopted convolutional neural
network (CNN) to perform walking activity classification [8].
The combination of linear discriminant analysis (LDA) and
a two-layered artificial neural network (ANN), was used to
identify the locomotion activities with twelve EMG sensors
[9]. Finite state machines using EMG signals from six
muscles were able to recognize level-walking, ramp ascent,
and ramp descent [10]. There is a need to develop human
activity recognition algorithm with minimal number of EMG
sensors and to extract less number of features to make the
algorithm real-time and easily integrable to the assistive
device.

The time domain and frequency domain features are the
most commonly extracted features from the time windows
of EMG signals [7]. Using sliding time window has been
proven to be more robust compared to the fixed time window
[11]. The time domain features such as mean absolute
value (MAV), root mean square (RMS), integrated EMG
(AiEMG), and zero crossing (ZC) are used in supervised
learning [12]. Although time domain features are easy to
compute, they yield less classification accuracy. However,
RMS and MAV are proven to be intuitive in classification of
locomotion activities. Others used frequency domain features
such as mean frequency (MF) and median frequnecy (MDF)
[13]. Some performed wavelet decomposition of the EMG
signals to extract wavelet features to train the algorithm
[14]. The frequency and wavelet features generally require
more computational effort than time domain features. In
[15], energy of the EMG signal is derived using energy
kernel method to improve the transparency of an exoskeleton
knee joint based on the understanding of motor intent. The
energy kernel method seems more intuitive compared to
other methods, which inspired us to use energy of the EMG
signal as one feature in our approach. This feature is intuitive
because locomotion speed or activity depends on the energy
of the muscle activation level. We hypothesize that human
efficiently changes the energy of the muscles based on the



locomotion speed and activity.

The surface EMG (sEMG) sensors are generally preferred
to record muscle activities due to its non-invasive nature and
easy to mount on the body. There are certain limitations
associated with EMG sensors: 1) placement of the EMG
sensors, 2) repeatability of the measurements during various
sessions, and 3) cross-talk between the muscles. Therefore,
there is a need for a robust method to recognize locomotion
modes with minimal number of EMG sensors to avoid cross
talk and recognize locomotion modes irrespective of the trail
or subject. In this paper, we propose such a robust method
that can perform locomotion mode recognition with minimal
number of sensors and features. The contributions of this
paper include:

1) A locomotion recognition approach is developed based
on the energy of damped harmonic oscillator EMG
model, and the RMS of EMG signal

2) Formulated an online approach that does not require
training of the model with features extracted from
EMG signals.

3) Generalized the algorithm in terms of placement of the
EMG sensor and number of participants.

The rest of the paper is organized as follows. The damped
harmonic oscillator formulation is given in section II. sec-
tion III introduces the approaches used in the experiments
and features extraction. Section IV details the experiment
protocol and gives the classification results of the algorithm.
Section V discusses the results of this paper and talks about
the impact of the proposed approach in real-time control of
assistive robots. Section VI concludes this paper and presents
future work.

II. APPROACH

The RMS and energy of the EMG signal are the two
features proposed to perform classification of locomotion
speed and activities. The RMS of EMG signal is attributed
to the muscle force [16]. The energy of the EMG signal
is derived using energy kernel method given in [15]. The
energy kernel method is based on the assumption that
EMG signal governs a harmonic oscillator model. There
is a physical intuition between energy and force/power of
muscle explained in [15]. In this paper, we hypothesize that
the change in energy of the EMG signal per gait cycle
with locomotion speed or activity follows damped harmonic
oscillator model. Therefore we should be able to classify
different activities based on their energy level. In [17] it
is suggested that the energy kernel method combines the
advantages of both RMS and mean power frequency methods
and provide better Physical intuition of EMG. However,
regarding the uncertainties associated with EMG signal, we
believe that using the RMS and energy of EMG signal as
two features for identifying the gait speed or activity change
would lead to more accurate and robust prediction than using
individually, and can be expanded to broader applications.

Energy Kernel of EMG Oscillator

x10°2

Fig. 1. The energy kernel of the EMG signal of vastus laterialis

A. Damped Harmonic Oscillator Model of EMG

This model is inspired from the simple harmonic oscillator
model of the EMG given in [15]. The behavior of the EMG
signal can be recognized as a oscillator whose amplitude
is featured by the reciprocating motions accompanied by a
noise, as it is a zero-averaged stochastic wave signal. The
energy of simple harmonic oscillator with mass m, stiffness
k is given as:
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or in an elliptic form as:
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The phase portrait of EMG signal of vastus laterialis (ampli-
tude signal on x and derivative of the amplitude on y) for a
segment is shown in Fig. 1. The length of the time window
chosen for this portrait is equal to one gait cycle. Gait cycle
events are obtained from force plates data.

This elliptic shape of the phase portrait given by (2), can
be seen in Fig. 1 for the EMG signal per gait cycle. It is not
possible to compute Fy directly as k and m are unknown.
However, the area of the ellipse will be useful in calculating
the energy of the harmonic oscillator. The area of the ellipse
can be expressed as

2
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Equation (3) shows that the area of the ellipse is propor-
tional to the energy of the harmonic oscillator. The ellipse
of the phase portrait is referred as the energy kernel [15].

It is expected that during gait or any periodic locomotion
activity, the energy of EMG per cycle, which is a represen-
tation of muscle activity, will stay in the same level, and
will change when the activity changes. This change can be
modeled by the harmonic damped oscillator. The energy of
a damped harmonic oscillator with damping b is given as:

S:
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Here t is time, and E and E; are the energy of the
damped harmonic oscillator and simple harmonic oscillator,
respectively. The smaller value of b in (4) makes E to be



approximated as FEj, the energy of the simple harmonic
oscillator. We hypothesize that at a constant speed of a
locomotion activity, the damping of the muscles exhibit
small value. Therefore, it can be approximated as a simple
harmonic oscillator. However, the change in locomotion
speed and activity will change the damping value to a higher
positive or negative value causing decay or increase in the
muscular energy governed by damped harmonic oscillator
model. We want to validate this model in the experiments
with locomotion speed or activity change, and using the
result to detect those changes.

III. METHODS

To initially evaluate the generalization and performance of
this method, it has been tested on a public dataset on which
EMG data of participants are collected as they were walking
on the treadmill in different slopes and speeds. Furthermore,
an additional set of experiments and data collection are
done, to evaluate the performance of this method on: 1)
clustring if the walking speed changes online and 2) different
muscle groups around knee joint. The later will examine
the generalization of the proposed method to other muscle
groups.

A. Public Data Set

The chosen dataset contains leg joint kinematics, kinetics,
and EMG activity of able bodied subjects walking on a
instrumented treadmill in different combination of slopes (-
10 degree to +10 degree) and speeds (0.8 m/s to 1.2 m/s) in
each trial. The study was done at the University of Texas at
Dallas [18].

Among all the trials, four trials of five subjects have been
considered for speed and activity change detection: level and
uphill walking at speeds 0.8 and 1.2 m/s. Each trial contains
EMG data of four muscle groups: rectus femoris (RF), biceps
femoris (BF), tibialis anterior (TA), and gastrocnemius (GC).
The EMG signals were collected with a sampling rate of
2000 Hz, and rectified and low-pass filtered (fc=40 Hz)
with a zero-phase digital filter. The EMG data are broken
down into individual gait cycles which begin and end at heel
strikes. Each gait cycle contains 150 EMG data points which
are used to extract the proposed features for each stride. As
some issues with right leg EMG sensors have been reported
in this study, left leg EMG sensors are chosen for all subjects.

B. Data Collection and Pre-processing

Two level walking experiments were performed on two
participants, as the treadmill speed changed online, and their
EMG data were collected. For the vastus lateralis (VL) and
vastus medialis (VM), one surface EMG (sEMG) wireless
sensors (Delsys Trigno Avanti) were placed on each muscle
group based on Seniam placement protocol [19].

The sampling rate for both sSEMG was 2000 Hz. The
sensors placement is shown in Fig. 2. This study has been
done at Arizona State University (ASU) and has approved
by its Institutional Review Board (IRB).

Vastus
Medalis

Fig. 2. The sensors placement for EMG signal acquisition of VL and VM
muscle groups during the speed change trials

Each participant walked on an instrumented dual belt
treadmill with integrated force plates. Along with the EMG
data, force plates data were collected to detect heel strike
events. The collected raw EMG data were rectified and
processed using a 4th order Butterworth filter with the cut-
off frequency of 40 Hz. The data were broken down into
individual cycles based on heel strike events detected by the
force plates.

C. Feature Extraction

The RMS and energy feature of EMG were calculated per
gait cycle, from the collected and processed EMG for all
trials. For a given number of data points, the RMS of the

signal will be:
1
RMS =/ =51 a2 5)

where x represents the signal over the cycle and n is the
number of data points within the cycle. The energy of the
EMG signal at each gait cycle, would be the area of the
ellipsoid which was represented in section II. To calculate
the area, the phase portrait of each cycle was extracted by
taking the z as the amplitude of the signal and y as its
derivative. A discrete box counting method proposed in [15]
has been used to calculate the ellipsoid of the phase portrait.

TABLE I
DETAILS OF THE HEALTHY PARTICIPANTS JOINED THE STUDY.

ID Gender Age Height (cm) Weight (kg)

1 Male 21 175 94
2 Male 20 176 78
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Fig. 3. The discrete box counting method to calculate the ellipsoid area

of the EMG signal of the VM muscle groups for one gait cycle.
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Fig. 4. The RMS and energy value of 4 muscle groups EMG signal for two subjects in 4 different walking trials: level walking at 0.8 m/s and 1.2 m/s,

and uphill walking (10 deg inclined) at 0.8 m/s and 1.2 m/s.

This methods divides the rectangle enclosing all the data
points of phase portrait in n; X ng grids or boxes. The
number of points inside each box (p;;) will be counted, and
if p;; > thr, where thr is a predefined threshold, the box
will be included as the area of ellipsoid. In order to make
sure that boxes will cover a continuous area, a 2D moving
average with one sliding window is performed on p;; for
smoothing the counted values of each box before comparing
to the threshold. It must be noted that the number of boxes
(n1 X ng) and the threshold thr depend on the total number
of data points in the segment. By many trials and errors, we
chose n; = ng = 10 and thr = 0.5 for the public data set
which contains 150 points per cycle, and ny = ny = 20
and thr = 2 for the collected data as 2000 data points were
considered for each cycle. Fig. 3 shows the area to calculate
the energy kernel of one of the collected gait cycle data.

D. K-means Clustering Approach

K-means is a well known unsupervised approach that can
cluster n objects into k£ classes. K-means clustering mini-
mizes the distortion measure, taking the total intra-cluster
variance as a cost function. This method iteratively finds the
cluster centroids, and then assigns the data according to the
Euclidean distance to the cluster centroids until convergence.
In our case, we hypothesize that energy-RMS cluster of the
EMG signal will be distinguishable for various locomotion
speeds and activities.

IV. RESULTS

A. Speed and Activity Change Identification in Separate
Trials

The energy and RMS value of EMG signals during each
gait cycle are calculated for five subjects in four different
trials with different activities and speeds. The subject ID
numbers are as given in the public dataset. Fig. 4 shows

the RMS and energy of EMG signal of the four muscle
groups, for two of the subjects. It can be seen that the RMS
and energy values of some muscle groups show more clear
distinction in the activities than the other ones. Based on our
observation from these figures for all subjects, the muscle
groups BF and GC are chosen to extract the features. Fig.
5 shows the 2D feature space (Energy-RMS) of these two
EMG signals for gait speed change and activity change.
By considering these 2D features for all the four EMG
sensors, it seems impossible to use only one EMG sensor
to differentiate between speed and activity changes for all
subjects. Using two EMG sensors make the classification
among the subjects more robust. The energy feature of EMG
signal helps with increasing the distance between the clusters
and making the classification more accurate, rather than
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Fig. 5.

subjects for gait speed change (a) and activity change (b).

The Energy-RMS plots of RF and GC EMG signals of one of the



using only RMS feature.

As an unsupervised classification approach, K-means clus-
tering has been used to classify the data based on the gait
activity or speed change. This approach does not need any
training and can group unlabeled data into certain clusters.
The only input to this algorithm besides the features, is the
number of clusters. Our assumption is that the extracted
features of the two EMG signals will remain at almost same
level, as far as the gait speed or activity has not changed,
independent of subjects or other conditions. The K-means
clustering would be ideal to test this assumption.

The RMS and energy of EMG signal of RF and GC muscle
groups, were considered as the four features of the K-means
clustering. The classification is performed on 30 gait cycles
of each trial. The level walking trials at speeds 0.8 and 1.2
m/s are considered together to classify the speed change,
and level and uphill walking trials at 0.8 m/s are considered
as activity change classification. The accuracy of the two
classifications for all subjects is represented in Fig. 6. For
all cases, the accuracy of classification is greater than 90%.
Depending on the subject, the accuracy of detecting activity
or speed change is different, which is expected as different
subjects’ muscle groups might behave differently in those

conditions.
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Fig. 6. The accuracy of K-means classification algorithm to predict gait

speed or activity change based on a 4 features space consisting of RMS and
energy values of two EMG sensors (BF and GC) in the public dataset

B. Online Gait Speed Change Detection using Different
Muscle Groups

In order to validate the performance of this method in the
case that walking speed changes online in one trial, rather
than in separate trials, the same analysis is performed on 2
subjects walking on treadmill while the speed changes twice
in the middle of the trial, from slow speed (0.5m/s) to normal
speed (0.8 m/s), and then to fast speed (1.2 m/s). Here, EMG
signal of VM and VL muscle groups are used to further
examine the generalization of this approach. The 2D feature
(RMS and energy) of each EMG signal are plotted in Fig.
7 for each subject. 15 gait cycles are considered for each
speed (total 45 for each trial), and the transition points are
not considered here. The reason is that transition points will
make the classification and distinction between clusters much
more complicated and difficult, and for now we only focus on
speed change from slow walking to normal and fast walking.

From Fig. 7 it is observed that using these muscle groups
and the proposed features, it is still possible to have separate
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Fig. 7. The energy-RMS of EMG signal plots for two subjects walking

on treadmill as the speed changes twice: From 0.5 m/s to 0.8 m/s and then
to 1.2 m/s. The EMG signal are acquired from two muscle groups, VL and
VM. The gait cycles in speed transitions are not considered.

TABLE II
THE SPEED CHANGE DETECTION ACCURACY FOR SUBJECTS WALKING
ON TREADMILL AS ITS SPEED CHANGES TWO TIMES

Subject Trial number Accuracy

I 1 97.8%
2 100%
N 1 97.8%
2 97.8%

clusters as the speed changes during walking. The K-means
clustering method is performed on the extracted features of
these two EMG signal, to classify three clusters for each
experiment and the results are shown in table II. As expected,
the classification accuracy for all 4 trials is high (more than
97%).

V. DISCUSSION

Essentially RMS and energy of EMG signal are not
completely independent features as they are both attributed
to the muscle activation level. However, regarding the noisy
and stochastic nature of EMG signal, each of them might
behave differently, and our result showed that having them
as two different features would lead to better classification
accuracy.

Based on the results showed in Fig. 6, the energy kernel
of EMG per gait cycle for lower-limb muscles will remain
in certain level or cluster during constant gait activity or
speed, and will go to different clusters if the speed or activity
changes. Therefore the energy kernel of each gait cycle,
during the gait activity or speed change, can be described by
damped harmonic oscillators rather than mass-spring model.

The robustness of the proposed method to detect gait speed
or activity changes is tested in three ways: across different
subjects, across different experimental and data acquisition
conditions (two different data set and separate trials), and
across two groups of different muscle groups (VM-VL,
and BF-GC). We obtained high classification accuracies for
all those conditions, suggesting a robust performance of
the purposed method. It must be noted that EMG based



classification methods are not usually robust, regarding the
stochastic and noisy nature of EMG signal, and its sensitivity
to the experiment and data acquisition condition. Further
experiments can be performed to address the effects of
human physiological change such as muscle fatigue, to
examine the robustness of this EMG classification method,
in more details.

This method has the potential to be implemented in real
time. Both features can be extracted in real time and an
online unsupervised classification algorithm can use the
proposed 2D feature space to identify changes in the gait.
Although the update rate might not be very fast (at least
one gait cycle), this method can possibly be used for gait
assistive robot applications. Given its accuracy, robustness,
few number of sensors, and applicability to different muscle
groups, it can be used to detect any changes in the muscle
activation level, and the robotic exoskeleton would alter its
policy or level of assistance accordingly.

VI. CONCLUSION AND FUTURE WORK

In this paper, a damped harmonic oscillator model was
proposed based on a previously developed harmonic oscil-
lator model for EMG signals, to account for the change in
energy level of EMG signal due to gait activity changes.
It was shown that the energy level of EMG of lower-limb
muscle groups remain at the same level for each activity
and changes as the activity changes, therefore they could
be classified into different clusters. Inspired by these ideas
and observations, the energy of EMG was considered as a
feature, along with the RMS of the signal, to classify human
gait based on activity and speed. The method was tested on a
public dataset containing different walking activity and speed
trials. The result showed that by taking the data from two
EMG sensors, placed on biceps femoris and gastrocnemius,
the change in speed and activity in separate trials could
be detected using K-means clustering as an unsupervised
classification method, with more than 90% accuracy for
five participants. To further evaluate the generalization and
robustness of the proposed method, experiments were per-
formed on two subjects walking on a treadmill as the speed
change online. This time the EMG data of vastus laterialis
and Vastus medialis were collected, and the RMS-energy
features were extracted. Using the same method, the accuracy
of detecting speed change for both subject was more than
97%.

In the future, this work can be extended to control of
lower-limb robotic exoskeletons, to adopt to different gait
activities and speeds [20]. The applicability of this method
will be further investigated by testing in an outdoor envi-
ronment, and/or with a larger number of gait activities. The
integration of this method with other joints kinematic data
to gain better gait activity and speed recognition, will be
explored.

REFERENCES

[11 G. Morone, S. Paolucci, A. Cherubini, D. De Angelis, V. Venturiero,
P. Coiro, and M. Iosa, “Robot-assisted gait training for stroke patients:

[2

—

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

current state of the art and perspectives of robotics,” Neuropsychiatric
disease and treatment, vol. 13, p. 1303, 2017.

T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive
strategies in powered lower-limb orthoses and exoskeletons,” Robotics
and Autonomous Systems, vol. 64, pp. 120-136, 2015.

W. Meng, Q. Liu, Z. Zhou, Q. Ai, B. Sheng, and S. S. Xie, “Recent
development of mechanisms and control strategies for robot-assisted
lower limb rehabilitation,” Mechatronics, vol. 31, pp. 132—145, 2015.
A. J. Young and D. P. Ferris, “State of the art and future directions
for lower limb robotic exoskeletons,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 171-182,
2017.

S. Lee and Y. Sankai, “Power assist control for walking aid with
hal-3 based on emg and impedance adjustment around knee joint,”
in Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, vol. 2. 1EEE, 2002, pp. 1499-1504.

N. Karavas, A. Ajoudani, N. Tsagarakis, J. Saglia, A. Bicchi, and
D. Caldwell, “Tele-impedance based assistive control for a compliant
knee exoskeleton,” Robotics and Autonomous Systems, vol. 73, pp.
78-90, 2015.

X. Xi, M. Tang, S. M. Miran, and Z. Luo, “Evaluation of feature
extraction and recognition for activity monitoring and fall detection
based on wearable semg sensors,” Sensors, vol. 17, no. 6, p. 1229,
2017.

M. Md Alias, A. Needham, A. A. Dehghani-Sanij, R. Vaidyanathan,
U. Martinez-Hernandez, and C. Weston, “Walking activity recognition
with semg sensor array on thigh circumference using convolutional
neural network,” in 2018 International Conference on Intelligent
Systems Engineering (ICISE). 1EEE, 2018.

H. Huang, T. A. Kuiken, R. D. Lipschutz et al., “A strategy for
identifying locomotion modes using surface electromyography,” IEEE
Transactions on Biomedical Engineering, vol. 56, no. 1, pp. 65-73,
2009.

M. Islam and E. T. Hsiao-Wecksler, “Detection of gait modes using
an artificial neural network during walking with a powered ankle-foot
orthosis,” Journal of Biophysics, vol. 2016, 2016.

A. Merlo, D. Farina, and R. Merletti, “A fast and reliable technique
for muscle activity detection from surface emg signals,” IEEE Trans-
actions on Biomedical Engineering, vol. 50, no. 3, pp. 316-323, 2003.
J. Ziegier, H. Gattringer, and A. Mueller, “Classification of gait
phases based on bilateral emg data using support vector machines,” in
2018 7th IEEE International Conference on Biomedical Robotics and
Biomechatronics (Biorob). 1EEE, 2018, pp. 978-983.

D. Joshi, B. H. Nakamura, and M. E. Hahn, “High energy spectrogram
with integrated prior knowledge for emg-based locomotion classifica-
tion,” Medical engineering & physics, vol. 37, no. 5, pp. 518-524,
2015.

Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic muscle
activation patterns account for muscle activity during human locomo-
tion,” The Journal of physiology, vol. 556, no. 1, pp. 267-282, 2004.
X. Chen, Y. Zeng, and Y. Yin, “Improving the transparency of an
exoskeleton knee joint based on the understanding of motor intent
using energy kernel method of emg,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 6, pp. 577-588,
2017.

A. Christie, J. G. Inglis, G. Kamen, and D. A. Gabriel, “Relationships
between surface emg variables and motor unit firing rates,” European
Journal of applied physiology, vol. 107, no. 2, pp. 177-185, 2009.
X. Chen, Y. Yin, and Y. Fan, “Emg oscillator model-based energy
kernel method for characterizing muscle intrinsic property under
isometric contraction,” Chinese science bulletin, vol. 59, no. 14, pp.
1556-1567, 2014.

K. R. Embry, D. J. Villarreal, R. L. Macaluso, and R. D. Gregg,
“Modeling the kinematics of human locomotion over continuously
varying speeds and inclines,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 2018.

H. Hermens and B. Freriks, “The state of the art on sensors and sensor
placement procedures for surface electromyography: a proposal for
sensor placement procedures,” Deliverable of the SENIAM Project,
1997.

P. T. Chinimilli, Z. Qiao, S. M. Rezayat Sorkhabadi, V. Jhawar,
I. H. Fong, and W. Zhang, “Automatic virtual impedance adaptation
of a knee exoskeleton for personalized walking assistance,”
Robotics and Autonomous Systems, 2019. [Online]. Available:
http://doi.org/10.1016/j.robot.2019.01.013



