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Abstract— A local map module is often implemented in
modern VO/VSLAM systems to improve data association and
pose estimation. Conventionally, the local map contents are
determined by co-visibility. While co-visibility is cheap to
establish, it utilizes the relatively-weak temporal prior (i.e.
seen before, likely to be seen now), therefore admitting more
features into the local map than necessary. This paper describes
an enhancement to co-visibility local map building by incor-
porating a strong appearance prior, which leads to a more
compact local map and latency reduction in downstream data
association. The appearance prior collected from the current
image influences the local map contents: only the map features
visually similar to the current measurements are potentially
useful for data association. To that end, mapped features are
indexed and queried with Multi-index Hashing (MIH). An
online hash table selection algorithm is developed to further
reduce the query overhead of MIH and the local map size.
The proposed appearance-based local map building method is
integrated into a state-of-the-art VO/VSLAM system. When
evaluated on two public benchmarks, the size of the local map,
as well as the latency of real-time pose tracking in VO/VSLAM
are significantly reduced. Meanwhile, the VO/VSLAM mean
performance is preserved or improves.

I. INTRODUCTION

Augmentation of the feature matching process of
VO/VSLAM systems with a local map matching sub-process
aids data association and state optimization [1], [2]. Com-
pared with a global map containing all historical 3D points,
the local map includes only the subset of 3D points that
are hypothesized to be currently visible. Conducting data
association and downstream state optimization on a compact
local map is more efficient than for the larger global map.

By matching 2D features from the current frame to the
local map (which includes 3D points observed at earlier
frames), extra long-baseline feature matchings can be ex-
tracted and utilized in state optimization; see Figure 1 (top-
left) depicting a histogram of matched local map points for
ORB-SLAM, where the baseline is measured in terms of
how long ago the features were seen (as opposed to how far
spatially). These long-baseline matchings contribute to the
accuracy and robustness of VO/VSLAM. Not surprisingly,
VO/VSLAM systems employing a local map [1], [3] tend to
be more accurate and robust than systems relying only on
frame-to-frame tracking [4]–[6].

1Yipu Zhao, Wenkai Ye, and Patricio A. Vela are with School of Elec-
trical and Computer Engineering, Georgia Institute of Technology, Atlanta,
Georgia, USA. {yzhao347,wye1206,pvela}@gatech.edu.

This work was supported in part by the China Scholarship Council (CSC
Student No: 201606260089) and the National Science Foundation (Award
#1816138).

Fig. 1. Latency reduction of the proposed local map building algorithm
(MIH-x/32), when integrated into a state-of-the-art VSLAM system (ORB-
SLAM [1]). Top-Left: Histogram of matched features baselines extracted
from local map, with and without proposed algorithm Top-Right: Accuracy
of VSLAM with or without proposed algorithm, measured with RPE (10-sec
window). Middle: Size of the local map utilized in VSLAM, with or without
proposed algorithm. Bottom: Latency profile of real-time pose tracking on
the long-term NewCollege sequence.

To increase the likelihood of finding and utilizing long-
baseline feature matching, it is natural to maintain a history
of the 3D points observed earlier in time within the local
map. Specific properties or information has been utilized
to guide the local map contents to ensure a compact yet
relevant of local map, as there is a trade-off between size
and search efficiency. The most commonly used property to
guide the search of relevant 3D points is co-visibility. Co-
visibility was introduced for loop closing in VSLAM [7], and
later extended to pose tracking [1], [8]–[10]. The assumption
of co-visibility being: if an earlier keyframe shares many
3D points with a recent keyframe (i.e. co-visible), then all
3D points observed by the earlier keyframe are likely to
be seen also. Co-visibility information is cheap to obtain
as the by-product of earlier data association calculations,
therefore it can be considered to be an efficient heuristic
for local map building. However, co-visibility only utilizes



the relatively-weak temporal prior (i.e. seen before, likely
to be seen now). A local map generated with co-visibility
could easily grow without bound, and introduce significant
latency to VO/VSLAM thereafter. Figure 1 (middle row)
includes a plot of the ORB-SLAM local map versus time,
where it is seen to occasionally grow to be one to two orders
of magnitude more than the number of tracked features per
frame (typically on the order of 102 to 103).

In this work, we propose to enhance the co-visibility
local map building step with a strong appearance prior,
which will lead to a compact yet relevant local map, a
indicated in Figure 1 (middle row) where the proposed
local map queried is bounded in size and can be up to an
order of magnitude lower that for ORB-SLAM. The idea is
straightforward: only those 3D points that are visually similar
to currently extracted features are potentially useful in data
association (and state optimization thereafter). To utilize the
appearance prior efficiently, we propose to index descriptors
of historical 3D points with Multi-Index Hashing (MIH) [11].
By querying historical 3D points from a series of hash tables,
we can collect the subset of 3D points that are similar to
current measurements in appearance/descriptor space. The
visually-similar 3D points are then verified with co-visibility,
and put together as the local map for the costly computations,
e.g. data association and state optimization.

Furthermore, an online table selection algorithm is de-
veloped to choose a subset of hash tables that cover the
most relevant 3D points. By only querying 3D points from
the subset, the overhead on hash table queries is reduced,
while the quality of the local map is preserved, as indi-
cated by comparable RPE in Fig 1 (top-right). The table
selection process is rooted in the submodular property with
regards to the table selection metric (e.g. information gain
of feature matchings obtained from each table). Because of
the submodular property of table selection metric, a greedy
algorithm can achieve near-optimal table selection outcomes
with good efficiency properties. Figure 1 (bottom row) shows
better bounding of the SLAM latency per frame, with fewer
outliers, relative to a 30ms threshold.

The proposed appearance-enhanced local map building
method is integrated into a state-of-the-art VO/VSLAM
system, ORB-SLAM [1]. When evaluated on multiple pub-
lic benchmarks, the size of the local map is significantly
reduced. More importantly, the proposed method has lower
latency than the state-of-the-art VO/VSLAM systems, while
remaining one of the best methods in terms of accuracy and
robustness. Furthermore, the proposed local map building
method is generic; it can be easily extended to other visual(-
inertial) SLAM systems utilizing a local map, i.e., [3], [12].

II. RELATED WORKS

This section reviews existing works that index 3D points in
a map. Two closely-related fields are explored: Vision-based
Localization (VBL) & Visual SLAM (VSLAM). Differences
between existing works and the proposed work are discussed.

VBL aims to retrieve the 6DoF pose of a visual query (im-
age or video) within a huge, pre-built spatial representation,

e.g. a 3D point map. One key component of VBL is to index
the spatial representation for efficient query. Co-visibility
was introduced to feature-based VBL [13], [14] as a cue to
prioritize feature matching efforts. Researchers also proposed
alternative indexing methods based on appearance/feature
descriptors [15], [16]. Real-valued feature descriptors such as
SIFT [17] and SURF [18] are typically indexed offline using
a kd-tree. Appearance-based indexing are proven to yield
more accurate & robust query results, while co-visibility is
more computationally-efficient. Combining both cues was
first explored in [19], and further refined in [20], [21].
The work [21] replaced the kd-tree data structure with a
faster & more flexible indexing method, inverted multi-index.
The appearance-based query results are then filtered with
co-visibility. Such a combination scheme is efficient: the
VBL system runs real-time on mobile device. Nevertheless,
training the inverted index is still an offline process requiring
a known 3D map.

Recently, binary feature descriptors such as BRISK [22]
and ORB [23] have become popular in VBL since they
are more efficient to extract. Conventional indexing data
structures like kd-trees are better suited to real-valued de-
scriptors, rather than binary ones, motivating the exploration
of alternative indexing methods. For example, [24] proposed
to index binary descriptors with randomized trees, which
were trained offline from the pre-built 3D map. Hashing has
been proven to be a good indexing solution [25], [26] in
binary-descriptor VBL. Coarse-to-fine searching schemes are
commonly applied in these VBL systems, where an initial
hashing query provides the coarse results that are later refined
by a linear scan.

Apart from compatibility with binary descriptors, two
other properties of hashing make it particularly attractive to
online & incremental pose estimation problem, e.g. VSLAM.
First, hashing index can be updated efficiently for online
processes. It is then possible to generate a more compact
and relevant index by updating hash tables, e.g., according
to changes in the map & the visibility constraints. Second,
hashing relaxes the requirement for database pre-training
(or prior offline database generation), therefore enabling
VSLAM systems to operate in general and unknown envi-
ronments. Hashing has been applied to modules of VSLAM
where real-time performance is not required. [27] indexed
binary descriptors with Locality Sensitive Hashing (LSH)
[28], and demonstrated good relocalization performance in
a VSLAM system. [29] utilized Multi-Index Hashing (MIH)
[11] in the loop closing module of VSLAM.

The proposed work is based on MIH, but with a key
enhancement: an online table selection algorithm is devel-
oped to reduce the number of hashing queries, therefore
enabling MIH to be used in VSLAM modules with real-time
requirements, e.g. pose tracking. The local map queried with
appearance/feature descriptors is further tailored with a co-
visibility check. The final local map is more compact than the
ones generated with either co-visibility or appearance only.
Running data association and state optimization on the size-
reduced local map is more efficient and leads to significant
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Fig. 2. Framework of the proposed local map building method. The local
map built with co-visibility is the red dashed ellipse, while the one built by
querying MIH is the green dashed ellipse. Their intersection defines the local
map for downstream processing, i.e. data association and state optimization.

latency reductions in VSLAM based on a more efficient local
map data association step. Furthermore, the quality of the
local map (e.g. amount of long-baseline feature matchings)
is preserved in the compact local map. Therefore, the perfor-
mance of VSLAM is preserved. Preliminary quantification of
these benefits can be seen in Figure 1 for a single sequence.

III. LOCAL MAP BUILDING WITH MULTI-INDEX
HASHING

A diagram of the proposed local map building method
is illustrated in Fig 2. The modules of proposed method are
highlighted with shaded boxes, while those in a conventional
VSLAM pipeline have clear boxes. This section describes the
query and insertion stage of MIH. The hash table selection
algorithm will be introduced in the next section.
Query MIH. Assume that a frame with m binary descriptors
extracted is provided and that the MIH contains t hash tables.
Each binary descriptor will trigger a MIH query. In a MIH
query, the b-bit binary query descriptor is first separated
into t disjoint contiguous substrings. Each substring gets
queried with the corresponding hash table for an exact match.
Query results from all t hash tables are put together as the
final query result. Repeating the MIH query for all binary
descriptors from the input frame, aggregate the 3D point
set {Ph} that satisfy the appearance prior. Its intersecting
with the 3D point set {Pc} collected with conventional co-
visibility builds the final local map {Pc} ∩ {Pc}.
Insert to MIH. Updating MIH according to changes in
the map & visibility constraints is essential for efficient
local map building. As a trade-off between update frequency
and computation cost, MIH updates are triggered only for
keyframes sent to the mapping thread. Updating MIH in the
mapping thread avoids introducing overhead during real-time
pose tracking.

For each keyframe, the co-visible 3D points {Pc} are
inserted into the MIH. Similar to the query process, the b-bit
binary descriptor of each 3D point in {Pc} is separated into
t disjoint contiguous substrings, each of which is of length
bb/tc. Each substring is then inserted into a corresponding
hash table. For 3D points already in the hash tables, their
entries will be brought to the front of the bucket, making
them more likely to be queried in the future.
Choice of hash table number. The amount of hash tables
t has strong impact on the performance-efficiency of MIH-
based local map indexing. Recall the example of a frame with
m features extracted. Each feature will trigger a MIH query

Fig. 3. Simulation results evaluating the recall probability of hashing (the
higher the better) vs. the number of bits perturbed for different numbers of
tables in the MIH. For 256-bit descriptors, MIH with 32 tables is preferred:
it remains high recall even under significant perturbation (50-100 bits).

consisting of t queries to hash tables. Therefore, the MIH-
based local map building has a time complexity of O(mt),
i.e., linear in t. Meanwhile, the space complexity of MIH
is O(tN2bb/tc), where N is the bucket size in each hash
table. The space complexity decreases exponentially with
table number t. Therefore, only a certain range of t works in
practical applications due to time & space complexity limits.

Apart from time & space complexity, the robustness of
local map building against perturbations in binary descriptors
is largely decided by hash table number t. Assuming ε
bits of the query descriptor are perturbed under a uniform
distribution, the recall probability (i.e. probability that the
query succeeds with a perturbed string) is connected to hash
table number t as per [29]:

Precall(t, ε) = 1− t! Θ(ε, t)/tε, (1)

where Θ(ε, t) is the Stirling partition number [30].
When working with 256-bit binary descriptors such as

ORB, the relationship described in Eq 1 is illustrated in Fig 3.
The green and red dashed lines indicate example thresholds
of bit-wise perturbations in typical SLAM applications. At
least 32 tables are needed for high recall probability within
the example perturbation levels (vertical dashed lines). Using
64 tables is also possible, but with the drawback of higher
overhead due to the linear-growth in time complexity. In
the proposed local map indexing method, 32 hash tables are
maintained; each table covers an 8-bit descriptor substring.
Choice of bucket size. Another parameter affecting the
performance-efficiency of MIH-based local map building is
the bucket size N of each hash table. A bucket in MIH is
implemented as ring buffer, where only the N most recent
3D points are stored. For the purpose of long-baseline feature
matching, it is necessary to keep the entries of 3D points
observed earlier in time within the bucket. However, an over-
sized bucket will store entries of 3D points that are no longer
visible nor relevant. As a consequence, the resulting local
map will be less compact and relevant, introducing overhead
to data association. In what follows, the bucket size N is set
to 10 based on a parameter sweep.

IV. OVERHEAD REDUCTION WITH HASH TABLE
SELECTION

For a frame with m features extracted and a 32-table
MIH, the number of hash table queries in local map building
is O(32m). While querying all 32 hash tables provides
robustness against severe perturbation, querying a subset of



hash tables is more efficient when the bit-wise perturbation
level is low or medium. We propose an online table selection
algorithm to identify the minimum subset of hash tables to
be queried, which further improve the compactness of local
map without performance degeneration.
Formulation. To begin, the metric used for table selection is
introduced. Assume F is the full set of true feature matchings
between current frame and the full local map built with
all 32 hash tables. For each hash table Ti, the true feature
matchings that can be queried from it form a subset Fi ⊂ F ,
where

⋃32
i=1 Fi = F . For each hash table Ti, the contribution

towards current state optimization can be assessed with the
information matrix of subset Fi.

The least squares objective of VO/VSLAM pose tracking
is

min ‖h(x, p)− z‖2 , (2)

where x is the pose of the camera, p are the 3D feature
points and z are the corresponding 2D image measurements.
The measurement function, h(x, p), is a combination of the
SE(3) transformation (world-to-camera) and pin-hole pro-
jection. To first-order approximation, the information matrix
of the camera pose Ωx is

Ωx =
∑

H(i)TΩr(i)H(i) =
∑

Ωx(i), (3)

where H(i) and Ωr(i) are the measurement Jacobian and
residual information matrix of corresponding true matched
features. Denote by Ωx(i) the pose information matrix de-
rived from a single feature match i.

As introduced for feature subset selection [31], [32], the
logDet is especially suited for quantifying the contribution
of matched features to VO/VSLAM. Therefore, the value of
a hash table Ti towards current state optimization can be
measured with

log det(
∑
i∈Fi

Ωx(i)). (4)

There is a certain level of overlap between the true
matched feature subsets for each hash table. In ideal scenario
without any perturbation to feature descriptor, the full set
of true feature matchings can be retrieved from any one of
the 32 hash tables, i.e. 100% overlapping between subsets,
∀i, j Fi = Fj = F . In practice perturbations reduce the
subset overlap percentage to less than 100%, and each hash
table covers a subset of true feature matchings F . Therefore,
selecting a subset of hash table is equivalent to a problem of
maximum coverage, with the objective formulated as:

max
S⊆{1,2,...,32},|S|≤k

log det(
∑

i∈{
⋃

h∈S Fh}

Ωx(i)), (5)

where k is the cardinality constraint.
Greedy Solution. The maximum coverage problem is stud-
ied in the field of computational theory, where it is known
to have submodular properties. Of note,

Theorem 1: [33] Let f be a monotone submoduar func-
tion, then greedy algorithms achieve a (1− 1/e) approxima-
tion guarantee to the optimum solution of Eq (5).

Algorithm 1: Online hash table selection algorithm.
Data: feature matching subset from each hash table

{F1, F2, ... , F32}, cardinality constraint k,
target contribution dthres

Result: indices of hash tables selected S
1 foreach feature matching j ∈

⋃32
i=1 Fi do

2 collect pose information matrix Ωx(j);

3 S ← ∅, dacc = 0;
4 while |S| < k ∧ dacc < dthres do
5 foreach i /∈ S do
6 d(i) = log det(

∑
i∈{

⋃
h∈S∪Fi

Fh} Ωx(i))

7 j ← arg maxi d(i);
8 dacc = d(j);
9 S ← S ∪ j;

10 return S.

As proven in [34], logDet is submodular & monotone
increasing. Solutions to the subset selection problem, and
the equivalent hash table selection problem, can be ap-
proximated using greedy algorithms. More importantly, a
greedy algorithm is guaranteed to be near-optimal, with
approximation ratio of 1 − 1/ε. Based on this outcome, we
present a greedy, online hash table selection algorithm in
Alg 1. Two control parameters are fixed after parameter
sweep: cardinality constraint k = 8, target contribution
dthres = 80.0.

Notice that the above discussion assumes that the true
feature matchings are known whem performing hash table
selection. We assume that the hash table contents are a
slowly-varying function of time. Therefore, the hash table
subset selection algorithm runs at a lower rate than real-
time pose tracking, and only updates the selected subsets at
keyframes. Between keyframes, the hash table subset queried
for local map building is fixed.

V. EXPERIMENTAL RESULTS

This section evaluates the performance-efficiency trade off
of the proposed local map building algorithm on a state-
of-the-art VSLAM system, ORB-SLAM [1]. Applying the
proposed algorithm to the real-time tracking thread of ORB-
SLAM reduces pose tracking latency. Meanwhile, tracking
accuracy is either improved (on short sequences) or remains
near the same level as canonical ORB-SLAM (on long
sequence), and the robustness is preserved (i.e. avoid tracking
failure).

Two public benchmarks are used to evaluate the proposed
algorithm:
1) NewCollege [35], which contains a 43-minutes stereo

sequence collected with a robot traversing a campus and
adjacent parks. There are multiple loops/revisits within
the sequence. The sequence is well-suited for evaluating
the long-term performance & efficiency of VSLAM sys-
tem (with loop closure). Due to the lack of 6DoF pose
ground truth, offline Bundle Adjustment is executed with



stereo video, and the jointly optimized camera poses are
taken as the ground truth. We only evaluate monocular
VSLAM (e.g. with left camera) against the ground truth
in this experiment.

2) EuRoC [36], which contains 11 stereo-inertial sequences
comprising 19 minutes of video, recorded in 3 differ-
ent indoor environments. Compared with NewCollege,
videos in EuRoC are well-suited for evaluating the short-
term performance & efficiency of VO (without loop
closure). Ground-truth tracks are provided using motion
capture systems (Vicon & Leica MS50). We evaluate only
monocular VO implementations on EuRoC.

Two performance metrics are used in the experiment.
When evaluating the short-term performance of VO on
EuRoC, absolute root-mean-square error (RMSE) between
ground truth track and real-time VO estimation is used.
When evaluating the long-term performance of VSLAM on
NewCollege, the Relative Position Error (RPE) [37], [38]
is chosen. Compared with absolute RMSE, RPE is less
sensitive to the inevitable scale drift of monocular VSLAM.
Therefore, it is better for evaluating monocular systems on
long-term sequences.

The efficiency of VO/VSLAM is evaluated with the la-
tency of real-time pose tracking per frame, which is defined
as the time interval from receiving an image to publishing
the pose estimate. Latency of mapping & loop closing is less
of a concern in this work due to the relaxed time constraints
of those processes.

Performance assessment involves a 10-run repeat for each
configuration, i.e., the benchmark sequence, the VO/VSLAM
approach and the parameter (number of features tracked per
frame). Results for a tested VO/VSLAM configuration are
discarded if at least one run experiences track loss. The
experiments are conducted on a desktop equipped with an
Intel i7 quadcore 4.20GHz CPU (passmark score of 2583
per thread) running the ROS Indigo environment.

A. Online Table Selection vs Fixed Table Subsets

To demonstrate the benefit of online hash table selection
(Alg 1), we performed additional 10-run repeats of MIH-
based local map building with a predefined set of fixed hash
table subsets, ranging 1 table (MIH-1/32) to all 32 tables
(MIH-32/32). Results of these tests are compared to MIH-
based local map building with online hash table selection,
i.e. MIH-x/32 (x = 10).

The latency profiles of different hash table subsets are
presented in Fig 4. MIH-x/32 has the lowest latency for
data association, when compared to other predefined hash
table subsets. The latency of hash table queries is also lower
with online hash table selection. Performance evaluation
of the methods collected the average RPE (with a 10-sec
window), and also logged the average latency of each module
in the real-time pose tracking process. Performance (RPE)
and efficiency (latency) outcomes are summarized in Fig 5.
MIH-x/32 has the lowest latency for pose tracking while
preserving the performance of VSLAM relative to the fixed
table subsets.
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Fig. 4. Top: Latency of data association from 1 run on NewCollege.
Bottom: Latency of hash table query (part of data association) from 1 run
on NewCollege. The first 5 profiles have predefined hash table subsets, e.g.
first 1, first 4, etc. The last profile employs online hash table subset selection.

Fig. 5. RPE & latency for different hash table subsets averaged over 10
runs on NewCollege. The first 5 columns are the fixed hash table subset
methods, e.g. first 1, first 4, etc. The last column employs online selection.
No RPE is reported for the single hash table (MIH-1/32) since track loss
frequently occurred.

B. Comparison with State-of-the-Art VO/VSLAM

The latency reduction and strong performance of the
proposed local map building algorithm is demonstrated by
comparing with other state-of-the-art VO/VSLAM systems.
VSLAM. Two state-of-the-art VSLAM systems are chosen
as baselines: DSO with loop closure (LDSO) [39] and ORB-
SLAM (ORB) [1]. In addition to the proposed MIH-x/32,
we integrate two reference methods into ORB-SLAM that
enhance co-visibility local map building with simple heuris-
tics. One heuristic is random sampling, i.e. Rnd. The other
heuristic prioritizes map points with a long track history,
denoted as Long, since feature points tracked for a long time
are more likely to be mapped accurately.

To capture the performance-efficiency trade off of VSLAM
systems, we adjust the number of features/patches extracted
per frame. All 5 VSLAM systems are configured to run 10-
repeats on NewCollege, with feature/patch quantities ranging



Fig. 6. Latency vs. accuracy on NewCollege monocular sequence. System
evaluation involved a sweep of features per frame: 800, 1000, 1500, 2000.

TABLE I
RPE (M/S) AND LATENCY (MS) ON NEWCOLLEGE SEQUENCE

VSLAM (with loop-closure)

R
PE

(S
T

D
) Seq. LDSO ORB MIH-x/32

RPE3 - 0.11 (2e-2) 0.12 (8e-3)
RPE10 - 0.08 (8e-3) 0.08 (6e-3)
RPE30 - 0.09 (5e-3) 0.10 (1e-2)

L
at

en
cy Q1 - 13.2 10.4

Avg. - 18.3 12.2
Q3 - 21.5 13.3

from 800 to 2000. The RPE under 10-sec window versus
the average latency per frame is depicted in Fig 6. Relative
to ORB-SLAM, the proposed MIH-x/32 leads to latency
reduction for all configurations of feature number. Rnd also
leads to latency reduction, but not as much as MIH-x/32. The
Rnd case with 800 features leads to track loss, so it is not
plotted. Both LDSO and Long failed to track the full New
College sequence. The accuracy of MIH-x/32 is comparable
to the best performing ORB realizations, but with a lower
deviation as indicated by the shorter error bars. Lastly, we
report the accuracy & latency of the monocular VSLAM
systems under the configuration of 800 features per frame
in Table I. Three RPE metrics are computed using different
sliding windows: 3-sec, 10-sec and 30-sec. In addition to
the average RPE over 10-run repeat, the standard deviation
(STD) of the RPE is also reported in each cell of Table I. The
two heuristics Rnd and Long are excluded since they both
failed to track on the full sequence. The best numbers (lowest
average/STD of RPE, lowest latency) are highlighted with
bold. The accuracy of MIH-x/32 remains at similar levels
as ORB (equal or around 10%), as evaluated on all 3 RPE
metrics. More importantly, the latency of proposed method
is lower and more consistent than baseline ORB. It is 21%,
33%, and 40% lower for the first quartile, average, and third
quartile values.
VO. Two state-of-the-art VO baselines are included: SVO
[40] and DSO [41]. For fair comparison, the loop closing
module is disabled on all ORB-SLAM variants: canonical
ORB, MIH-x/32, Rnd, and Long. All VO systems are con-
figured to run 10-repeats on EuRoC under example configu-

TABLE II
RMSE (M) AND LATENCY (MS) ON EUROC SEQUENCES

VO (without loop-closure)

Seq. SVO DSO ORB MIH-x/32 Rnd Long

R
M

SE

MH 01 easy 0.227 0.407 0.027 0.026 0.025 -
MH 02 easy 0.761 - 0.034 0.031 0.034 -
MH 03 med 0.798 0.751 0.041 0.086 0.035 -
MH 04 diff 4.757 - 0.699 0.293 0.746 0.329
MH 05 diff 3.505 - 0.346 0.197 - -
VR1 01 easy 0.726 0.950 0.057 0.040 0.034 -
VR1 02 med 0.808 0.536 - - - -
VR1 03 diff - - - - - -
VR2 01 easy 0.277 0.297 0.025 0.032 0.021 -
VR2 02 med 0.722 0.880 0.053 0.035 0.216 -
VR2 03 diff - - - - - -

Avg. 1.477 0.637 0.160 0.093 0.159 0.329

L
at

en
cy Q1 7.4 5.8 13.9 11.4 12.0 11.3

Avg. 12.6 16.4 18.4 15.7 16.0 17.7
Q3 16.8 19.1 20.7 16.3 16.1 21.0

ration (800 features per frame). The short-term performance
of VO are evaluated with RMSE, while the efficiency is still
assessed via per frame tracking latency. Accuracy & latency
results are summarized in Table II. The best value (lowest
RMSE, lowest latency) in each row is highlighted with bold
in Table II. According to the upper part of Table II, DSO and
the 2 local map building heuristics are not robust enough
(e.g. frequent track loss). SVO tracks 9 of 11 sequences,
but with the highest RMSE over all VO systems. Both ORB
baseline and proposed MIH-x/32 track 8 of 11 sequences.
Additionally, MIH-x/32 improves the accuracy relative to
baseline ORB, with an RMSE average that is 41% lower.

The latency reduction of MIH-x/32 is less significant for
these short-term VO sequences, when compared with the
previous long-term VSLAM outcomes. Nevertheless, MIH-
x/32 has the 2nd lowest average latency among all 6 VO
systems, second to SVO. When comparing the 3rd quantile
of latency, MIH-x/32 is lower than SVO (by 3%), which
suggests that tighter latency bounds can be achieved with
the proposed local map building algorithm.

VI. CONCLUSION

This paper demonstrated how an appearance prior can
be exploited to build a compact yet relevant local map in
VSLAM. Working with the compact local map leads to
latency reduction in time-sensitive VSLAM modules, i.e.,
pose tracking. Meanwhile, the accuracy and robustness of
VSLAM is preserved, thanks to the preservation of long-
baseline feature associations in the local map. On both long-
term VSLAM and short-term VO applications, the proposed
algorithm leads to significant latency reduction in real-time
pose tracking, while keeping (if not improving) VO/VSLAM
performance relative to the baseline variant and having the
best performance relative to other state-of-the-art systems.



REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[2] R. Mur-Artal and J. D. Tards, “Visual-inertial monocular SLAM with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.

[3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[4] S. Shen, N. Michael, and V. Kumar, “Tightly-coupled monocular
visual-inertial fusion for autonomous flight of rotorcraft mavs,” in
IEEE International Conference on Robotics and Automation, 2015,
pp. 5303–5310.

[5] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[6] K. Mohta, K. Sun, S. Liu, M. Watterson, B. Pfrommer, J. Svacha,
Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Experiments in fast,
autonomous, gps-denied quadrotor flight,” in IEEE International Con-
ference on Robotics and Automation, 2018, pp. 7832–7839.

[7] C. Mei, G. Sibley, and P. Newman, “Closing loops without places,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010, pp. 3738–3744.

[8] H. Strasdat, A. J. Davison, J. M. Montiel, and K. Konolige, “Dou-
ble window optimisation for constant time visual SLAM,” in IEEE
International Conference on Computer Vision, 2011, pp. 2352–2359.

[9] M. Bürki, I. Gilitschenski, E. Stumm, R. Siegwart, and J. Nieto,
“Appearance-based landmark selection for efficient long-term visual
localization,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2016, pp. 4137–4143.

[10] M. A. Nitsche, G. I. Castro, T. Pire, T. Fischer, and P. De Cristóforis,
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