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Where's My Data? Evaluating Visualizations with Missing Data
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Fig. 1: We measured factors influencing response accuracy, data quality, and confidence in interpretation for time series data with
missing values. We found that visualizations that highlight missing values have higher perceived data quality while those that break
visual continuity decrease these perceptions and can bias interpretation.

Abstract—Many real-world datasets are incomplete due to factors such as data collection failures or misalignments between fused
datasets. Visualizations of incomplete datasets should allow analysts to draw conclusions from their data while effectively reasoning
about the quality of the data and resulting conclusions. We conducted a pair of crowdsourced studies to measure how the methods
used to impute and visualize missing data may influence analysts' perceptions of data quality and their confidence in their conclusions.
Our experiments used different design choices for line graphs and bar charts to estimate averages and trends in incomplete time
series datasets. Our results provide preliminary guidance for visualization designers to consider when working with incomplete data in
different domains and scenarios.

Index Terms—Information Visualization, Graphical Perception,Time Series Data, Data Wrangling, Imputation

1 INTRODUCTION

Visualizations allow people to analyze and interpret data to understand
current phenomena and guide informed decision-making. However,
analysts often must make decisions using imperfect datasets. These
datasets may be missing datapoints due to factors such as failures in
the data collection pipeline or fusing data at different granularities. As
part of the data wrangling process, visualizations have several choices
for dealing with missing data, including not encoding missing elements
or imputing new data (calculating substitute values) based on existing
data. Prior studies show that the ways we represent data influence
how accurately people interpret data and change their confidence in
their data and results [16, 20, 37, 47]. We hypothesize that the ways we
impute and visualize missing data may also bias analysts perceptions of
that data. This study aims to provide a deeper empirical understanding
of visualization for missing data.

We measure how imputation and visualization techniques influence
perceived confidence, data quality, and accuracy for visualizing incom-
plete datasets. We explore how four different categories of visualization
designs employed in prior systems might manipulate perceived data
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quality: highlighting imputed data (e.g., making data more salient, as
in highlighting), downplaying imputed data (e.g., making the data less
salient, as in alpha blending), annotation imputed values (e.g., adding
additional information about the imputation outcomes, such as error
bars), and visually removing information (Fig. 2). We measure effect
of existing techniques corresponding to these four categories of these
visual attributes on perceived data quality, result confidence, and re-
sponse accuracy in two common visualizations: line graphs and bar
charts. While this categorization is not exhaustive, we use this cate-
gorization as a scaffold for exploring a subset of techniques used in
existing visualization systems.

We also explore how methods of imputing missing values might ad-
ditionally shift perceptions of data quality and bias responses. Systems
use imputation to compute values that approximate missing datapoints
to support analysis. As missing data is itself a type of data (it indicates
no values are available), imputation allows systems to indicate where
data is unexpectedly absent and provide principled approximations to
avoid potential misinterpretation of absent data values [7]. Imputing
values also allows systems to indicate potential threats to data quality
by providing visual anchors analysts can use to readily enumerate and
contextualize quality errors [5, 49]. We focus on three common impu-
tation methods encountered in current visualization systems: ad-hoc
zero-filling, local linear interpolation, and marginal means (Fig. 3).

While we commonly expect that missing data should optimally de-
grade perceived quality, there are many cases that run counter to this
assumption. For example, we may not wish to degrade perceived qual-
ity when we can closely approximate missing values or when quality
may interfere with decision speed in low-risk scenarios. We therefore
evaluate how visualizations manipulate confidence relative to other
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Fig. 2: We examined three distinct categories of visualizations that
could encode imputed values: highlight and downplay encodings that
manipulate attention, annotation encodings that provide additional
information, and encodings that use information removal.

techniques to provide designers an empirical basis for visualizing miss-
ing data. We compare imputation and visualization methods in four
crowdsourced studies measuring the effects of these factors on analysts’
accuracy with and without imputed data, confidence in their conclu-
sions, credibility, and perceived data quality. We found that highlighting
and annotating imputed values lead to higher perceived data quality and
more accurate interpretation. Downplaying imputed values or removing
information associated with missing values significantly degraded per-
ceived quality. Our findings suggest ways visualizations might leverage
imputation and visualization to appropriately manipulate perceived data
quality in different scenarios.

2 RELATED WORK

Missing data is typically a challenge associated with “dirty data”—
datasets containing missing data, incorrect data, misalignments, and
other such anomalies that may lead to erroneous conclusions [38].
Missing data can occur throughout the data lifecycle and has significant
implications for analysts’ trust in data [45]. These implications can
be especially problematic for data visualizations as little empirical
understanding exists to guide how visualizations can balance between
indicating the presence of dirty data and not distracting from or biasing
of the rest of the data [35]. Our research builds such knowledge by
measuring the influence of various designs for visualizing missing data.

2.1 Methods for Analyzing Incomplete Data
Missing data can arise at all points in the data lifecycle, including during
data capture, storage, updates, transmission, deletions, and purges [38].
A scraping process might fail due to an interrupted script, packet loss,
or memory errors. Subsets of data may be withheld due to privacy
considerations [21]. Part of the process of data wrangling [25, 35] is
locating missing data and deciding how to manage it. In many cases,
systems choose to impute—estimate a substitute value for—missing
data to address potential anomalies affecting dataset coverage [42].

A broad variety of methods exist for data imputation (see Little &
Rubin [40] and Lajeunesse [39] for surveys). For example, hot-deck
imputation samples substitute values from the current signal while cold-
deck imputation uses values from other sources, such as related datasets
[27] or domain heuristics [31]. Interpolation methods use weighted
combinations of available data to infer missing values using methods
like linear interpolation, regression, and adaptive interpolation [26].
More complex imputation methods can integrate information about the
processes used to generate the dataset [46] or use machine learning and
related techniques to holistically estimate missing values [2].

While an exhaustive survey of imputation methods is beyond the
scope of this paper, understanding the relationship between different
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Fig. 3: We measured effects of three different imputation methods on
data interpretation: zero-filling (substituting missing values with zeros),
marginal means (substituting with the mean of available data), and
linear interpolation of adjacent datapoints.

imputation choices and perceived data quality is critical for visualizing
missing data. As Babad & Hoffer note, even if data values can be
inferred with reasonable accuracy, it is important for analysts to under-
stand when and where missing data occurs [7]. Missing data can have
a significant impact on inference and decision making and can lend
context to analyses. Most significantly for our work, missing data is a
key component of data quality, a measure of the trust and suitability of
data for addressing a given problem [44].

Time series data has specific considerations for data quality (see
Gschwandtner et al. for a survey [30]). For example, non-uniform
sampling may force interpolations. Joining data across two tempo-
ral sources with different granularities can create misalignment [6].
Measures taken at the same time may conflict. Since data is typically
continuous, violations to trends may be especially salient. Due to these
factors, we elect to use time series data for our study as it is common
in both real-world analysis and empirical studies for visualization and
these factors make it an important special case for understanding the
implications of missing data for temporal analysis.

2.2 Visualizing Incomplete Data
Wong & Varga refer to missing data as black holes in a visualization–
“a dark area of the cognitive workspace that by the absence of data
indicates that one should take care [54, p.5].” They argue that it is
unclear when and how visualizations should replace missing data to
support sensemaking, yet it is clear that people should be able to detect
and reason about missing data. Many visualization systems support
data quality analysis, including quality change over time [11], data
preprocessing [8], and highlighting missing, incorrect, or imputed
values [9,10,23]. For example, Visplause [5] supports quality inspection
for temporal data to assist analysts in inferring potential causes of
missing data. Wrangler [36] uses statistical methods to help analysts
impute missing values. xGobi [49], MANET [53], and VIM [50] offer
visualization suites that allow analysts to understand the amount of
missing data and compare different imputation methods.

Many visualization systems oriented towards specific domains or
datatypes automatically process missing data. Some visualizations
provide little to no visual indication of imputed data. For example,
Turkay et al. [51] substitute missing values with feature means. Systems
in meteorology [19] and psychology [31] interpolate missing data
based on domain heuristics. Other systems leverage visual saliency to
manipulate whether analyst attention is drawn to imputed values. For
example, TimeSearcher uses brightly colored marks to indicate missing
values [14]. Restorer uses grayscale to reduce the salience of missing
spatial data and luminance to interpolate imputed values [52]. However,
the influence of imputation and the corresponding visualization methods
used in these systems is not well understood. We ground our exploration
of imputation in current practices for missing data visualization.

2.3 Graphical Perception
Prior studies in graphical perception show how the methods used to
visualize data change our interpretation of that data. For example, stud-
ies show that visualization design changes our abilities to estimate and
compare statistical values [3,15,24,32] and shift our confidence in those
estimations [1]. As imputed values represent uncertain information, we

1077-2626 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SONG AND SZAFIR.: WHERE’S MY DATA? EVALUATING VISUALIZATIONS WITH MISSING DATA� 915

Where's My Data? Evaluating Visualizations with Missing Data

Hayeong Song & Danielle Albers Szafir

Visualizations with High Data Quality

Visualizations with Low Data Quality

Fig. 1: We measured factors influencing response accuracy, data quality, and confidence in interpretation for time series data with
missing values. We found that visualizations that highlight missing values have higher perceived data quality while those that break
visual continuity decrease these perceptions and can bias interpretation.

Abstract—Many real-world datasets are incomplete due to factors such as data collection failures or misalignments between fused
datasets. Visualizations of incomplete datasets should allow analysts to draw conclusions from their data while effectively reasoning
about the quality of the data and resulting conclusions. We conducted a pair of crowdsourced studies to measure how the methods
used to impute and visualize missing data may influence analysts' perceptions of data quality and their confidence in their conclusions.
Our experiments used different design choices for line graphs and bar charts to estimate averages and trends in incomplete time
series datasets. Our results provide preliminary guidance for visualization designers to consider when working with incomplete data in
different domains and scenarios.

Index Terms—Information Visualization, Graphical Perception,Time Series Data, Data Wrangling, Imputation

1 INTRODUCTION

Visualizations allow people to analyze and interpret data to understand
current phenomena and guide informed decision-making. However,
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part of the data wrangling process, visualizations have several choices
for dealing with missing data, including not encoding missing elements
or imputing new data (calculating substitute values) based on existing
data. Prior studies show that the ways we represent data influence
how accurately people interpret data and change their confidence in
their data and results [16, 20, 37, 47]. We hypothesize that the ways we
impute and visualize missing data may also bias analysts perceptions of
that data. This study aims to provide a deeper empirical understanding
of visualization for missing data.

We measure how imputation and visualization techniques influence
perceived confidence, data quality, and accuracy for visualizing incom-
plete datasets. We explore how four different categories of visualization
designs employed in prior systems might manipulate perceived data
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While we commonly expect that missing data should optimally de-
grade perceived quality, there are many cases that run counter to this
assumption. For example, we may not wish to degrade perceived qual-
ity when we can closely approximate missing values or when quality
may interfere with decision speed in low-risk scenarios. We therefore
evaluate how visualizations manipulate confidence relative to other

Highlight

Downplay

Annotation

Information 
Removal

Fig. 2: We examined three distinct categories of visualizations that
could encode imputed values: highlight and downplay encodings that
manipulate attention, annotation encodings that provide additional
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techniques to provide designers an empirical basis for visualizing miss-
ing data. We compare imputation and visualization methods in four
crowdsourced studies measuring the effects of these factors on analysts’
accuracy with and without imputed data, confidence in their conclu-
sions, credibility, and perceived data quality. We found that highlighting
and annotating imputed values lead to higher perceived data quality and
more accurate interpretation. Downplaying imputed values or removing
information associated with missing values significantly degraded per-
ceived quality. Our findings suggest ways visualizations might leverage
imputation and visualization to appropriately manipulate perceived data
quality in different scenarios.

2 RELATED WORK

Missing data is typically a challenge associated with “dirty data”—
datasets containing missing data, incorrect data, misalignments, and
other such anomalies that may lead to erroneous conclusions [38].
Missing data can occur throughout the data lifecycle and has significant
implications for analysts’ trust in data [45]. These implications can
be especially problematic for data visualizations as little empirical
understanding exists to guide how visualizations can balance between
indicating the presence of dirty data and not distracting from or biasing
of the rest of the data [35]. Our research builds such knowledge by
measuring the influence of various designs for visualizing missing data.

2.1 Methods for Analyzing Incomplete Data
Missing data can arise at all points in the data lifecycle, including during
data capture, storage, updates, transmission, deletions, and purges [38].
A scraping process might fail due to an interrupted script, packet loss,
or memory errors. Subsets of data may be withheld due to privacy
considerations [21]. Part of the process of data wrangling [25, 35] is
locating missing data and deciding how to manage it. In many cases,
systems choose to impute—estimate a substitute value for—missing
data to address potential anomalies affecting dataset coverage [42].

A broad variety of methods exist for data imputation (see Little &
Rubin [40] and Lajeunesse [39] for surveys). For example, hot-deck
imputation samples substitute values from the current signal while cold-
deck imputation uses values from other sources, such as related datasets
[27] or domain heuristics [31]. Interpolation methods use weighted
combinations of available data to infer missing values using methods
like linear interpolation, regression, and adaptive interpolation [26].
More complex imputation methods can integrate information about the
processes used to generate the dataset [46] or use machine learning and
related techniques to holistically estimate missing values [2].

While an exhaustive survey of imputation methods is beyond the
scope of this paper, understanding the relationship between different
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Fig. 3: We measured effects of three different imputation methods on
data interpretation: zero-filling (substituting missing values with zeros),
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imputation choices and perceived data quality is critical for visualizing
missing data. As Babad & Hoffer note, even if data values can be
inferred with reasonable accuracy, it is important for analysts to under-
stand when and where missing data occurs [7]. Missing data can have
a significant impact on inference and decision making and can lend
context to analyses. Most significantly for our work, missing data is a
key component of data quality, a measure of the trust and suitability of
data for addressing a given problem [44].

Time series data has specific considerations for data quality (see
Gschwandtner et al. for a survey [30]). For example, non-uniform
sampling may force interpolations. Joining data across two tempo-
ral sources with different granularities can create misalignment [6].
Measures taken at the same time may conflict. Since data is typically
continuous, violations to trends may be especially salient. Due to these
factors, we elect to use time series data for our study as it is common
in both real-world analysis and empirical studies for visualization and
these factors make it an important special case for understanding the
implications of missing data for temporal analysis.

2.2 Visualizing Incomplete Data
Wong & Varga refer to missing data as black holes in a visualization–
“a dark area of the cognitive workspace that by the absence of data
indicates that one should take care [54, p.5].” They argue that it is
unclear when and how visualizations should replace missing data to
support sensemaking, yet it is clear that people should be able to detect
and reason about missing data. Many visualization systems support
data quality analysis, including quality change over time [11], data
preprocessing [8], and highlighting missing, incorrect, or imputed
values [9,10,23]. For example, Visplause [5] supports quality inspection
for temporal data to assist analysts in inferring potential causes of
missing data. Wrangler [36] uses statistical methods to help analysts
impute missing values. xGobi [49], MANET [53], and VIM [50] offer
visualization suites that allow analysts to understand the amount of
missing data and compare different imputation methods.

Many visualization systems oriented towards specific domains or
datatypes automatically process missing data. Some visualizations
provide little to no visual indication of imputed data. For example,
Turkay et al. [51] substitute missing values with feature means. Systems
in meteorology [19] and psychology [31] interpolate missing data
based on domain heuristics. Other systems leverage visual saliency to
manipulate whether analyst attention is drawn to imputed values. For
example, TimeSearcher uses brightly colored marks to indicate missing
values [14]. Restorer uses grayscale to reduce the salience of missing
spatial data and luminance to interpolate imputed values [52]. However,
the influence of imputation and the corresponding visualization methods
used in these systems is not well understood. We ground our exploration
of imputation in current practices for missing data visualization.

2.3 Graphical Perception
Prior studies in graphical perception show how the methods used to
visualize data change our interpretation of that data. For example, stud-
ies show that visualization design changes our abilities to estimate and
compare statistical values [3,15,24,32] and shift our confidence in those
estimations [1]. As imputed values represent uncertain information, we
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draw on prior findings in uncertainty visualization to inform our study.
Specific visual attributes, such as luminance, blurriness, and sketch-
iness, can indicate uncertainty in data and shift people’s confidence
in their conclusions [13, 16, 29, 37, 41]. Presenting data as “sketchy”
additionally increases engagement with and willingness to critique
data [55], which may have interesting ramifications for perceived data
quality. Individual values can shift statistical perceptions of data [17],
indicating imputed points introducing variation may potentially bias
analyses. As many imputation methods provide no quantifiable mea-
sure of uncertainty, we evaluate encodings that both present either the
level or the existence of uncertain information.

A handful of prior studies have explicitly evaluated the influence of
visualization methods on perceptions of data quality. Xie et al. [56]
measure how to communicate data quality in high dimensional data
using size, brightness, and hue, and found hue and size to be strong
channels for encoding quality information. Eaton et al. [21] compared
how different methods for visualizing missing data in line graphs influ-
enced accuracy and confidence in response for point-comparison and
trend estimation recall tasks. They substituted missing values with zero,
rendered no marks for missing data (data absent), and used gapped
circles to indicate missing data. They found that people interpreted
confidently even when critical data was missing, but found no signifi-
cant differences between methods. Participants expressed an overall
preference for visualizations that explicitly indicated missing data. An-
dreasson and Riveiro [4] conducted a similar study comparing the
effects of absent data, fuzziness, and annotated absent data on analyst
confidence in a decision making task. Their results showed that people
had a strong preference for conditions with annotated absent data and a
strong dislike for fuzziness.

Our work extends these findings by separating effects of imputation
methods such as the zero-filling in Eaton et al. [21] from visualization
methods, considering variable numbers of missing values, and lever-
aging a wider variety of visualization methods. We also evaluate bar
charts in addition to line graphs as removing missing data from bar
charts is indistinguishable from zero values. Prior studies indicate that
the kinds of information people synthesize across bars and lines can
vary [57], and these differences may significantly impact perceptions
of missing data.

3 MOTIVATION & HYPOTHESES

Data quality concerns how suitable a given dataset is to solve a problem
or make a decision. Dimensions of data quality include several factors
related to a data source (e.g., accessibility, volume, and relevance)
and others relating to perceptions of the dataset (e.g., completeness,
credibility, and reliability) [44]. While analysts must consider factors
of a data source when choosing a dataset, the visualizations used to
analyze data directly influence perceptions of that data. In this study,
we measure how imputation and visualization choices impact response
bias and perceptions when data is incomplete. We measure quality
as a combination of confidence (how confidently can they complete
a task given the data), completeness (how much data is available),
credibility (how true is the data), and reliability (how correct is the
data). Following best practices, we use the results from these metrics
to construct a data quality scale ( [18, 22, 48], c.f., §4.4).

Our inspiration for this study comes from collaborations with public
health analysts. These analysts fuse data from sources of both low
(e.g., social media) and high (e.g., CDC and WHO reports) quality
data to develop holistic insights. Data collection errors and temporal
misalignments after fusing these sources frequently lead to incomplete
data. While our collaborators care about large scale patterns in this
data, their imputation methods and whether or not they need to include
imputed data in assessing these patterns is less well defined: analysts
want to analyze patterns in light of missing data, but can often gener-
ate reasonable approximations about that data or want to know when
and where data is missing to temper their decision making processes.
As a result, we opt to evaluate missing data using similar methods
to Jansen & Hornbæk where participants naturally integrate imputed
values without explicit instructions as to how to consider those values
in their estimates [34]. We measure performance using two common

tasks employed by our collaborators: average and trend analysis.
We tested four categories of visualization type for communicating

missing data that we encountered in the systems discussed in §2. The
first category highlights missing data by leveraging bright colors to
attract attention to missing data points (e.g., [10, 14]). The second
category downplayed missing values by reducing the salience of im-
puted values relative to the rest of the data (e.g., [4, 9]). The third
category used the encodings to annotate missing values with addi-
tional statistical information such as error bars drawing confidence
from the imputation estimate (e.g., variance statistics for cold- or hot-
deck methods) [9]. The fourth category used information removal,
physically removing some element of missing values from the visual-
ization (e.g., [4, 21]). As these semantically related to incompleteness,
we anticipate that these encodings will also degrade data quality per-
ceptions. Some tested manipulations were hybrids of these categories
that examine dependencies across conditions. To mirror prior studies,
we included a condition where missing data was entirely absent.

We draw our tested imputation methods from three methods we
observed in existing visualization systems. Zero-filling substituted a
single value (0) for all missing data points, as in many commercial
systems. Linear interpolation linearly interpolated between adjacent
available items (e.g., [31,52]). Marginal means replaced each missing
data value with the mean of all available signals (e.g., [23, 51]). For
our data, zero-filling introduced the highest deviation from the original
dataset, marginal means the second, and linear interpolation the lowest.
While we experimented with more complex interpolation methods, we
found no significant differences in our stimuli between those meth-
ods and the three selected. Figure 3 provides examples of the tested
imputation and visualization categories.

Based on these conditions, we hypothesized that:

H1–Perceived data quality and response accuracy will both degrade as
the amount of missing data increases.

H2–Highlighting methods will generate higher perceived data quality
than downplaying and information removal methods.

H3–Linear interpolation will lead to higher perceived confidence and
data quality than marginal means or zero-filling as it takes into account
local trends in dataset.

H4–Imputed values will lead to higher perceived data quality than
removed values.

H1 stems from the idea that completeness is a key indicator of
data quality and provides a quality check for our experiment. In our
experiment, data quality is measured as a combination of perceived
confidence, credibility, reliability, and completeness. We anticipated
people could effectively reason about missing values; therefore, no
change in accuracy beyond that introduced by the amount of missing
data. H2 arises from certainty and completeness as aspects of data
quality. As highlighting visualizations provide no visual indications as-
sociated with either completeness (as with information removal) or with
reduced visual weight (as in downplaying), we anticipate it will lead to
higher perceived quality. This corresponds with observations from An-
dreassen & Riveiro [4] who found evidence that “fuzzy” visualizations,
correlated with downplaying, were not well-liked for decision-making
with missing data [13]. We predict H3 on the basis of potential biases
introduced by zero-filled and mean values and that linear interpola-
tion will create plausible variation in imputed values. This aligns with
Correll & Heer’s findings that values outside of a distribution can bias
statistical perceptions in data [17]. H4 stems directly from Eaton et
al. [21], who showed a preference for visualizations using explicit
visual indications of missing data.

4 METHODS

We ran two 7 (visualization type) × 3 (imputation method) × 4 (per-
centage of missing data) full factorial within-participants studies to
measure how visualization and imputation influence time series analy-
sis, focusing on two conventional visualizations: line and bar graphs.
Each study followed the same general procedure. Specific differences
between the two studies are discussed in their respective sections. For

each study, we had three independent variables—visualization type,
imputation method, and percentage of missing data—and five depen-
dent variables—accuracy, confidence in response, data credibility, data
reliability, and data completeness—combined to measure quality using
scale construction [18].

4.1 Stimuli & Tasks
We generated each graph as a 1000 × 400 pixel graph using D3 [12]
and Plot.ly [33] (see Fig. 1 for examples). Each graph visualizes 60
values representing the frequency of Tweets collected per minute over
an hour to provide a concrete problem scenario where we often find
missing data in the real-world. We simulated missing data completely
at random (MCAR) by randomly removing a subset of values in each
graph (0%,10%,20%, or 30%). We replaced these values with imputed
values computed using one of the three imputation methods described
in §3 (zero-filling, linear interpolation, or marginal means). The 0%
condition provided a baseline for measuring changes to our dependent
variables due to data removal. The imputed values were then rendered
using one of the seven candidate visualization methods per graph type
(Figs. 4 and 6).

Above each graph, we provided a brief sentence contextualizing the
data, a statement encouraging participants to complete the questions
as quickly and accurately as possible, and a counter indicating current
progress through the study. Below each graph, we enumerated five
questions, answered using radio buttons. We evaluated two tasks each
for line graphs and bar charts: average and trend comparison. Each
task required participants to answer five questions for each stimuli with
task language determined in piloting.
1. Were there more Tweets on average in the first or second half-

hour? (Averaging)
Is the overall rate of change larger in the first or second half-hour?
(Trend Detection)

2. How confident are you in your response?
1–Extremely Unconfident, 7–Extremely Confident

3. How credible is this data?
1–Extremely Uncredible, 7–Extremely Credible

4. How complete is this data?
1–Extremely Incomplete, 7–Extremely Complete

5. How reliable is this data?
1–Extremely Unreliable, 7–Extremely Reliable

We chose to use averaging and trend comparison tasks in our eval-
uation as they forced participants to consider information from all
points in the dataset and mitigated changes to the correct response and
task difficulty introduced by randomly removing values. Prior stud-
ies in missing data visualization have relied on trend detection tasks
(e.g., [21]), while our public health collaborators noted the importance
of averaging for comparing relative frequencies across datasets.

4.1.1 Data Generation
Both noise and task difficulty may influence data perceptions and
performance: noisier signals may change the effects of different
imputation methods and confidence may correlate with difficulty.
To control for these concerns, we used synthetic datasets to pro-
vide control over noise and difficulty. Each graph contained 60
y-values ranging from y = 0 to y = 100 uniformly spaced in time.
We computed the y-values by first generating a signal from struc-
tured random noise and then adjusted each signal based on task con-
straints [43]. To assist with reproducing and extending our results
and analyses, data and experimental infrastructures are available at
http://cmci.colorado.edu/visualab/MissingData/.
Average Data: We generated signals using five different noise levels
and considered noise as a random effect in our analyses. We then used
a constraint-based optimization to adjust the mean difference between
the first and last thirty points while minimizing deviation from the
original random signal to control difficulty. We separated the means
of the first and last half hour by 2.0, 4.0, and 6.0, randomly selecting
which half hour was highest. We used this difference threshold as
it achieved desirable response accuracy in prior studies [3]. For the

average task, each graph visualized a randomly selected dataset from
110 total datasets generated using this method.
Trend Data: We generated signals using four different noise levels
and considered noise as a random effect in our analyses. We separated
the difference in the slopes of the first and last half hour by 0.5 or 0.7,
randomly selecting which half hour larger overall rate of change. For
the trend task, each graph visualized a randomly selected dataset from
96 total datasets generated using this method.

4.2 Procedure
Our study consisted of five phases: (1) consent, (2) screening, (3)
instructional tutorial, (4) formal study, and (5) demographic question-
naire. Each participant first provided informed consent to participate
in the study in accordance with our IRB protocol. We then screened
participants for color vision deficiencies using a set of four Ishihara
plates. Participants then received instructions about the study and were
serially shown examples of each of the seven visualization conditions
with one missing value. Each stimuli in the tutorial explained that some
data was missing and that we had “guessed” at the values and described
how we visualized “guessed” values. Participants were not informed
of specific imputation methods or subjective tasks. Participants cor-
rectly identified the half-hour with the highest average or trend for each
condition before beginning the formal study.

The formal study consisted of 87 trials presented serially (84 from
our factorial design and 3 engagement checks). To mitigate effects
from changing the visualization paradigm, we blocked stimuli by vi-
sualization method and randomized the order of blocks. Within each
block, participants saw all twelve combinations of missing data (0%,
10%, 20%, and 30%) and imputation method (zero-filling, linear inter-
polation, and marginal mean) presented in random order. Each stimuli
visualized a random dataset, with each dataset occurring at most once
per participant. For averaging, engagement checks had 0%missing data
where the average between halves of the dataset differed by 20.0. For
trends, engagement checks differed in slopes by 1.0. These engagement
checks were added to blocks 2, 4, and 6.

After completing the formal study, participants completed a demo-
graphic questionnaire, which included an opportunity for open-ended
comments, and were compensated $1.00 for their participation.

4.3 Participants
We collected data from 303 U.S. participants on Amazon’s Mechanical
Turk (µage = 36.3,σage = 12.7, 150 female, 153 male). All partici-
pants reported normal or corrected-to-normal vision. To ensure honest
participation and task understanding, we excluded any participants
who answered two or more engagement checks incorrectly. Individual
demographics and exclusions are reported in each Results section.

4.4 Measures & Analysis
We used three primary measures to analyze participant responses: per-
ceived confidence in their answer (Question 2), credibility (Question 3),
and a two-item scale describing perceived quality (Questions 4-5). We
constructed the two-item scale by identifying correlation between the
four quality questions at α = .7. We combined correlated dimensions
to construct our data quality scale per best practices [18, 22, 48]. We
used this scale in place of the component questions to increase measure
validity and use only descriptive analyses with single-item scales to
mitigate effects of participant interpretation on our results. Accuracy
both with and without imputed values formed a secondary metric to
detect performance biases.

Unless otherwise specified, our main analysis used a repeated mea-
sures analysis of covariance (ANCOVA) to test for main and interaction
effects with question order and noise treated as random effects and the
actual (difference in when data points are removed) and imputed differ-
ence between means as covariates to mitigate effects of task difficulty.
In both experiments, our response data was normally distributed. To
control for Type I errors in planned comparisons between independently
distributed settings of visualization method and imputation, we used
Tukey’s Honest Significant Difference test with α = .05 for post-hoc
analyses. We elected not to use response time as a measure. While
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draw on prior findings in uncertainty visualization to inform our study.
Specific visual attributes, such as luminance, blurriness, and sketch-
iness, can indicate uncertainty in data and shift people’s confidence
in their conclusions [13, 16, 29, 37, 41]. Presenting data as “sketchy”
additionally increases engagement with and willingness to critique
data [55], which may have interesting ramifications for perceived data
quality. Individual values can shift statistical perceptions of data [17],
indicating imputed points introducing variation may potentially bias
analyses. As many imputation methods provide no quantifiable mea-
sure of uncertainty, we evaluate encodings that both present either the
level or the existence of uncertain information.

A handful of prior studies have explicitly evaluated the influence of
visualization methods on perceptions of data quality. Xie et al. [56]
measure how to communicate data quality in high dimensional data
using size, brightness, and hue, and found hue and size to be strong
channels for encoding quality information. Eaton et al. [21] compared
how different methods for visualizing missing data in line graphs influ-
enced accuracy and confidence in response for point-comparison and
trend estimation recall tasks. They substituted missing values with zero,
rendered no marks for missing data (data absent), and used gapped
circles to indicate missing data. They found that people interpreted
confidently even when critical data was missing, but found no signifi-
cant differences between methods. Participants expressed an overall
preference for visualizations that explicitly indicated missing data. An-
dreasson and Riveiro [4] conducted a similar study comparing the
effects of absent data, fuzziness, and annotated absent data on analyst
confidence in a decision making task. Their results showed that people
had a strong preference for conditions with annotated absent data and a
strong dislike for fuzziness.

Our work extends these findings by separating effects of imputation
methods such as the zero-filling in Eaton et al. [21] from visualization
methods, considering variable numbers of missing values, and lever-
aging a wider variety of visualization methods. We also evaluate bar
charts in addition to line graphs as removing missing data from bar
charts is indistinguishable from zero values. Prior studies indicate that
the kinds of information people synthesize across bars and lines can
vary [57], and these differences may significantly impact perceptions
of missing data.

3 MOTIVATION & HYPOTHESES

Data quality concerns how suitable a given dataset is to solve a problem
or make a decision. Dimensions of data quality include several factors
related to a data source (e.g., accessibility, volume, and relevance)
and others relating to perceptions of the dataset (e.g., completeness,
credibility, and reliability) [44]. While analysts must consider factors
of a data source when choosing a dataset, the visualizations used to
analyze data directly influence perceptions of that data. In this study,
we measure how imputation and visualization choices impact response
bias and perceptions when data is incomplete. We measure quality
as a combination of confidence (how confidently can they complete
a task given the data), completeness (how much data is available),
credibility (how true is the data), and reliability (how correct is the
data). Following best practices, we use the results from these metrics
to construct a data quality scale ( [18, 22, 48], c.f., §4.4).

Our inspiration for this study comes from collaborations with public
health analysts. These analysts fuse data from sources of both low
(e.g., social media) and high (e.g., CDC and WHO reports) quality
data to develop holistic insights. Data collection errors and temporal
misalignments after fusing these sources frequently lead to incomplete
data. While our collaborators care about large scale patterns in this
data, their imputation methods and whether or not they need to include
imputed data in assessing these patterns is less well defined: analysts
want to analyze patterns in light of missing data, but can often gener-
ate reasonable approximations about that data or want to know when
and where data is missing to temper their decision making processes.
As a result, we opt to evaluate missing data using similar methods
to Jansen & Hornbæk where participants naturally integrate imputed
values without explicit instructions as to how to consider those values
in their estimates [34]. We measure performance using two common

tasks employed by our collaborators: average and trend analysis.
We tested four categories of visualization type for communicating

missing data that we encountered in the systems discussed in §2. The
first category highlights missing data by leveraging bright colors to
attract attention to missing data points (e.g., [10, 14]). The second
category downplayed missing values by reducing the salience of im-
puted values relative to the rest of the data (e.g., [4, 9]). The third
category used the encodings to annotate missing values with addi-
tional statistical information such as error bars drawing confidence
from the imputation estimate (e.g., variance statistics for cold- or hot-
deck methods) [9]. The fourth category used information removal,
physically removing some element of missing values from the visual-
ization (e.g., [4, 21]). As these semantically related to incompleteness,
we anticipate that these encodings will also degrade data quality per-
ceptions. Some tested manipulations were hybrids of these categories
that examine dependencies across conditions. To mirror prior studies,
we included a condition where missing data was entirely absent.

We draw our tested imputation methods from three methods we
observed in existing visualization systems. Zero-filling substituted a
single value (0) for all missing data points, as in many commercial
systems. Linear interpolation linearly interpolated between adjacent
available items (e.g., [31,52]). Marginal means replaced each missing
data value with the mean of all available signals (e.g., [23, 51]). For
our data, zero-filling introduced the highest deviation from the original
dataset, marginal means the second, and linear interpolation the lowest.
While we experimented with more complex interpolation methods, we
found no significant differences in our stimuli between those meth-
ods and the three selected. Figure 3 provides examples of the tested
imputation and visualization categories.

Based on these conditions, we hypothesized that:

H1–Perceived data quality and response accuracy will both degrade as
the amount of missing data increases.

H2–Highlighting methods will generate higher perceived data quality
than downplaying and information removal methods.

H3–Linear interpolation will lead to higher perceived confidence and
data quality than marginal means or zero-filling as it takes into account
local trends in dataset.

H4–Imputed values will lead to higher perceived data quality than
removed values.

H1 stems from the idea that completeness is a key indicator of
data quality and provides a quality check for our experiment. In our
experiment, data quality is measured as a combination of perceived
confidence, credibility, reliability, and completeness. We anticipated
people could effectively reason about missing values; therefore, no
change in accuracy beyond that introduced by the amount of missing
data. H2 arises from certainty and completeness as aspects of data
quality. As highlighting visualizations provide no visual indications as-
sociated with either completeness (as with information removal) or with
reduced visual weight (as in downplaying), we anticipate it will lead to
higher perceived quality. This corresponds with observations from An-
dreassen & Riveiro [4] who found evidence that “fuzzy” visualizations,
correlated with downplaying, were not well-liked for decision-making
with missing data [13]. We predict H3 on the basis of potential biases
introduced by zero-filled and mean values and that linear interpola-
tion will create plausible variation in imputed values. This aligns with
Correll & Heer’s findings that values outside of a distribution can bias
statistical perceptions in data [17]. H4 stems directly from Eaton et
al. [21], who showed a preference for visualizations using explicit
visual indications of missing data.

4 METHODS

We ran two 7 (visualization type) × 3 (imputation method) × 4 (per-
centage of missing data) full factorial within-participants studies to
measure how visualization and imputation influence time series analy-
sis, focusing on two conventional visualizations: line and bar graphs.
Each study followed the same general procedure. Specific differences
between the two studies are discussed in their respective sections. For

each study, we had three independent variables—visualization type,
imputation method, and percentage of missing data—and five depen-
dent variables—accuracy, confidence in response, data credibility, data
reliability, and data completeness—combined to measure quality using
scale construction [18].

4.1 Stimuli & Tasks
We generated each graph as a 1000 × 400 pixel graph using D3 [12]
and Plot.ly [33] (see Fig. 1 for examples). Each graph visualizes 60
values representing the frequency of Tweets collected per minute over
an hour to provide a concrete problem scenario where we often find
missing data in the real-world. We simulated missing data completely
at random (MCAR) by randomly removing a subset of values in each
graph (0%,10%,20%, or 30%). We replaced these values with imputed
values computed using one of the three imputation methods described
in §3 (zero-filling, linear interpolation, or marginal means). The 0%
condition provided a baseline for measuring changes to our dependent
variables due to data removal. The imputed values were then rendered
using one of the seven candidate visualization methods per graph type
(Figs. 4 and 6).

Above each graph, we provided a brief sentence contextualizing the
data, a statement encouraging participants to complete the questions
as quickly and accurately as possible, and a counter indicating current
progress through the study. Below each graph, we enumerated five
questions, answered using radio buttons. We evaluated two tasks each
for line graphs and bar charts: average and trend comparison. Each
task required participants to answer five questions for each stimuli with
task language determined in piloting.
1. Were there more Tweets on average in the first or second half-

hour? (Averaging)
Is the overall rate of change larger in the first or second half-hour?
(Trend Detection)

2. How confident are you in your response?
1–Extremely Unconfident, 7–Extremely Confident

3. How credible is this data?
1–Extremely Uncredible, 7–Extremely Credible

4. How complete is this data?
1–Extremely Incomplete, 7–Extremely Complete

5. How reliable is this data?
1–Extremely Unreliable, 7–Extremely Reliable

We chose to use averaging and trend comparison tasks in our eval-
uation as they forced participants to consider information from all
points in the dataset and mitigated changes to the correct response and
task difficulty introduced by randomly removing values. Prior stud-
ies in missing data visualization have relied on trend detection tasks
(e.g., [21]), while our public health collaborators noted the importance
of averaging for comparing relative frequencies across datasets.

4.1.1 Data Generation
Both noise and task difficulty may influence data perceptions and
performance: noisier signals may change the effects of different
imputation methods and confidence may correlate with difficulty.
To control for these concerns, we used synthetic datasets to pro-
vide control over noise and difficulty. Each graph contained 60
y-values ranging from y = 0 to y = 100 uniformly spaced in time.
We computed the y-values by first generating a signal from struc-
tured random noise and then adjusted each signal based on task con-
straints [43]. To assist with reproducing and extending our results
and analyses, data and experimental infrastructures are available at
http://cmci.colorado.edu/visualab/MissingData/.
Average Data: We generated signals using five different noise levels
and considered noise as a random effect in our analyses. We then used
a constraint-based optimization to adjust the mean difference between
the first and last thirty points while minimizing deviation from the
original random signal to control difficulty. We separated the means
of the first and last half hour by 2.0, 4.0, and 6.0, randomly selecting
which half hour was highest. We used this difference threshold as
it achieved desirable response accuracy in prior studies [3]. For the

average task, each graph visualized a randomly selected dataset from
110 total datasets generated using this method.
Trend Data: We generated signals using four different noise levels
and considered noise as a random effect in our analyses. We separated
the difference in the slopes of the first and last half hour by 0.5 or 0.7,
randomly selecting which half hour larger overall rate of change. For
the trend task, each graph visualized a randomly selected dataset from
96 total datasets generated using this method.

4.2 Procedure
Our study consisted of five phases: (1) consent, (2) screening, (3)
instructional tutorial, (4) formal study, and (5) demographic question-
naire. Each participant first provided informed consent to participate
in the study in accordance with our IRB protocol. We then screened
participants for color vision deficiencies using a set of four Ishihara
plates. Participants then received instructions about the study and were
serially shown examples of each of the seven visualization conditions
with one missing value. Each stimuli in the tutorial explained that some
data was missing and that we had “guessed” at the values and described
how we visualized “guessed” values. Participants were not informed
of specific imputation methods or subjective tasks. Participants cor-
rectly identified the half-hour with the highest average or trend for each
condition before beginning the formal study.

The formal study consisted of 87 trials presented serially (84 from
our factorial design and 3 engagement checks). To mitigate effects
from changing the visualization paradigm, we blocked stimuli by vi-
sualization method and randomized the order of blocks. Within each
block, participants saw all twelve combinations of missing data (0%,
10%, 20%, and 30%) and imputation method (zero-filling, linear inter-
polation, and marginal mean) presented in random order. Each stimuli
visualized a random dataset, with each dataset occurring at most once
per participant. For averaging, engagement checks had 0%missing data
where the average between halves of the dataset differed by 20.0. For
trends, engagement checks differed in slopes by 1.0. These engagement
checks were added to blocks 2, 4, and 6.

After completing the formal study, participants completed a demo-
graphic questionnaire, which included an opportunity for open-ended
comments, and were compensated $1.00 for their participation.

4.3 Participants
We collected data from 303 U.S. participants on Amazon’s Mechanical
Turk (µage = 36.3,σage = 12.7, 150 female, 153 male). All partici-
pants reported normal or corrected-to-normal vision. To ensure honest
participation and task understanding, we excluded any participants
who answered two or more engagement checks incorrectly. Individual
demographics and exclusions are reported in each Results section.

4.4 Measures & Analysis
We used three primary measures to analyze participant responses: per-
ceived confidence in their answer (Question 2), credibility (Question 3),
and a two-item scale describing perceived quality (Questions 4-5). We
constructed the two-item scale by identifying correlation between the
four quality questions at α = .7. We combined correlated dimensions
to construct our data quality scale per best practices [18, 22, 48]. We
used this scale in place of the component questions to increase measure
validity and use only descriptive analyses with single-item scales to
mitigate effects of participant interpretation on our results. Accuracy
both with and without imputed values formed a secondary metric to
detect performance biases.

Unless otherwise specified, our main analysis used a repeated mea-
sures analysis of covariance (ANCOVA) to test for main and interaction
effects with question order and noise treated as random effects and the
actual (difference in when data points are removed) and imputed differ-
ence between means as covariates to mitigate effects of task difficulty.
In both experiments, our response data was normally distributed. To
control for Type I errors in planned comparisons between independently
distributed settings of visualization method and imputation, we used
Tukey’s Honest Significant Difference test with α = .05 for post-hoc
analyses. We elected not to use response time as a measure. While
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(a) Data Absent (b) Color Points (c) Color Points & Line

Gradients

(d) Connected Error

Bars

(e) Disconnected Error
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(f) Unfilled Points (g) Unfilled Points &

Line Gradients

Fig. 4: We tested seven different methods for visualizing missing values in line graphs manipulating both point and line appearance: two
highlighting missing values, two downplaying missing values, two annotating missing values, and one removing missing values. .

understanding the effects of missing data on analysis speed is an inter-
esting question, the inclusion of our subjective measures and use of
crowdsourcing make it less reliable for our experiment.

5 EXPERIMENT ONE: LINE GRAPHS

Prior studies in missing data visualization focused on line graphs, one
of the most common and ubiquitous methods for visualizing data.
We tested three factors we hypothesized that may effect missing data
interpretation in line graphs: visualization type, percentage of missing
data, and imputation method. We tested seven different visualization
approaches that manipulated some combination of the point marks and
lines themselves. We anticipated that since the connection between
values in a line chart is salient, manipulating the lines may have different
effects from manipulating the points alone.

Figure 4 shows the seven tested visualization designs: (a) Data
Absent [21], (b) Color Points [14], (c) Color Points with Line Gradients
(where the imputed value and its connections are both colored red) [14],
(d) Connected Error Bars, with error corresponding to the standard
deviation of the present values [4], (e) Disconnected Error Bars (where
the line does not pass through imputed points) [4], (f) Unfilled Points
[21], and (g) Unfilled Points with Line Gradients (where the line passing
through imputed data is alpha-blended) [52]. Drawing on our four
target visualization categories, the color conditions highlighted imputed
values, unfilled points downplayed imputed values, error bars annotate
data with additional statistical information, and data absent falls into
information removal (Fig. 4). We conducted a 7 (visualization type)
× 3 (imputation method) × 4 (percentage of missing data) within
participants study to evaluate the effects of visualization and imputation
on analyzing incomplete datasets using the procedure outlined in §4.

5.1 Line Graph Results
We found a strong correlation between perceived completeness and
reliability (Cronbach’s α > 0.70) for both average and trend results.
We constructed a two-item scale using these factors to describe data
quality. We analyzed this scale as well as task performance using a
three-factor full factorial rmANCOVAwith question order and difficulty
as random covariates. Figure 5 and Tables 1 & 2 summarize our results
for perceived data quality and accuracy.

5.1.1 Averaging Results
Participants: We collected data from 66 U.S. participants on Ama-
zon’s Mechanical Turk (µage = 37.2,σage = 13.22, 36 female, 30 male).
Two participants were excluded for failing two or more of the large
difference engagement check stimuli, resulting in 5,568 total trials.
Table 1 summarizes our primary results.
Subjective Results
Data Quality: We found main effects of missing amount, visualization,
and imputation on perceptions of data quality (Fig. 5). As the amount
of missing data increased, perceived data quality decreased. Connected
error bars and color points with line gradients led to higher perceived
data quality, whereas the data absent conditions and disconnected error
bars led to lower perceived data quality. Linear interpolation had higher
perceived quality than marginal means, and both methods had higher
perceived quality than zero-filling. We found three significant interac-
tions effects on data quality: 1) visualization and missing amount, 2)
visualization and imputation, and 3) imputation and missing amount.

Color points with linear interpolation led to higher perceived quality,
while disconnected error bars with zero-filling led to the lower. Con-
nected error bars and zero-filling had significantly higher perceived
quality than other zero-filling conditions.
Data Credibility & Analyst Confidence: Perceived data credibility and
confidence mirrored our data quality results. Connected error bars and
color points led to higher perceived credibility (µconnected = 4.59± .12,
µcolorpoint = 4.61 ± .11) and confidence (µconnected = 4.63 ± .12,
µcolorpoint = 4.66± .11), whereas the data absent condition led to lower
credibility (µabsent = 4.08± .12) and confidence (µabsent = 4.29± .12).
We found the same preference ranking for different imputation meth-
ods across both confidence and credibility: linear interpolation be-
ing highest (µcred = 4.88± .07, µcon f = 4.67± .07), followed by
marginal means (µcred = 4.76± .07, µcon f = 4.48± .08), and zero-
filling (µcred = 4.45± .08, µcon f = 4.35± .08).
Objective Results
We computed accuracy both considering (with, Table 1) imputed values
and excluding (without, statistics inline) imputed values to include both
potential analysis strategies. Overall, participants correctly identified
the half-hour with the higher mean in 78.8% of trials with and 78.3%
without considering imputed values. We found main effects of missing
amount (Fwithout(1,62) = 23.81, p < .0001) and imputation method
(Fwithout(2,61) = 8.76, p < .0002) on accuracy. Linear interpolation
and marginal means (µlinear = 80.65%±1.15 to µmeans = 77.10%±
1.15) both led to higher accuracy than zero-filling method (µzero =
72.87%±1.15) in both cases. We found significant interaction effects
of imputation and missing amount for both metrics (Fwithout(2,61) =
6.14, p< .002).

5.1.2 Trend Detection Results
Participants: We collected data from 80 U.S. participants on Ama-
zon’s Mechanical Turk (µage = 36.05,σage = 11.75, 38 female, 42
male). No participants were excluded as all participants correctly an-
swered two or more of the engagement checks, resulting in 6,960 trials.
Table 2 summarizes our primary results.
Subjective Results
Data Quality: We found significant effects of the percentage of missing
data, visualization, and imputation method on perceived data quality
(Fig. 5). Connected error bars and color points led to higher perceived
data quality while disconnected error bars and data absent led to the
lower. Both linear interpolation and marginal means had higher per-
ceived quality than zero-filling. We found a significant interaction
between imputation method and missing amount, with linear interpola-
tion being more robust as the amount increased.
Data Credibility & Analyst Confidence: Our confidence and credi-
bility effects again mirrored effects of data quality. Connected er-
ror bars (µcred = 4.90± .12, µcon f = 5.42± .12) and color points
(µcred = 4.86± .11, µcon f = 5.48± .11) led to higher perceived data
credibility and confidence in trend detection, whereas disconnected
error bars (µcred = 4.27± .12, µcon f = 5.07± .12) and information
removal (µcred = 4.51± .10, µcon f = 5.27± .11) led to lower overall
perceptions of confidence and credibility. Of note, connected error bars
and zero-filling also had significantly higher perceived credibility than
all other zero-filling conditions (µerror,zero = 4.83± .20). We again
found a consistent preference ranking across these factors for impu-
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Fig. 5: Our results show that (a) visualization type, (b) imputation method, and (c) amount of missing data shift perceived data quality and can
bias data interpretation for average and trend detection in line graphs. Error bars are bootstrapped 95% confidence intervals.

Table 1: Summary of significant results for line graph averaging (grey
indicates non-significant results)

Factors Data Quality Accuracy (%)
Amt. Missing F(1,62) = 1519.38, p< .0001 F(1,62) = .32, p< .5694
Vis. F(6,57) = 22.92, p< .0001 F(6,57) = .36, p< .9024
(Connected) (µ = 4.53± .12) (µ = 76.50±1.77)
(Data Absent) (µ = 3.60± .11) (µ = 74.00±1.78)
(Color gradients) (µ = 4.3± .12) (µ = 77.00±1.78)
(Disconnected) (µ = 3.85± .12) (µ = 76.03±1.78)
Imp. F(2,61) = 61.77, p< .0001 F(2,61) = 20.78, p< .0001
(Linear) (µ = 4.43± .07) (µ = 81.20±1.16)
(Marginal) (µ = 4.24± .07) (µ = 76.54±1.16)
(Zero-Filling) (µ = 3.77± .08) (µ = 70.59±1.17)
Vis*Amt. Missing F(6,57) = 6.86, p< .0001 F(6,57) = 1.20, p< .3024
Vis*Imp. F(12,51) = 3.047, p< .0002 F(12,51) = .48, p< .9267
(Color Points*Linear) (µ = 4.75± .19) (µ = 83.50±3.08)
(Disconnected*Zero) (µ = 3.50± .23) (µ = 69.78±3.09)
(Connected*Zero) (µ = 4.09± .20) (µ = 69.35±3.09)
Imp.*Amt. Missing F(12,51) = 17.04, p< .0001 F(12,51) = .77, p< .6727

tation method: linear interpolation being highest (µcred = 4.90± .07,
µcon f = 5.55± .06), followed by marginal means (µcred = 4.62± .07,
µcon f = 5.40± .07), and zero-filling (µcred = 4.49± .06, µcon f =
5.42± .07).

Objective Results
We again computed accuracy both considering (with, Table 2) imputed
values and excluding (without, statistics inline) imputed values to in-
clude both potential analysis strategies. Overall, participants correctly
identified the half-hour with the larger overall rate of change or slope
with imputed values in 62.8% of trials and 63.2% without imputed val-
ues. We did not find any significant effects of our independent variables
on trend detection accuracy.

5.2 Line Graphs–Synthesis of Results

Our results provide preliminary support for all of our hypotheses:
H1: As the percentage of missing data increased, perceived quality,
credibility, accuracy, and confidence in analysis decreased.

H2: (partial) We found that encodings highlighting missing values
(e.g., our color points and color points and lines conditions) led to
significantly higher perceived quality than visualizations that removed

Table 2: Summary of significant results for line graph trends

Factors Data Quality Accuracy (%)
Amt. Missing F(1,78) = 1185.901, p< .0001 F(1,78) = .06, p< .8040
Vis F(6,73) = 17.56, p< .0001 F(6,73) = .76, p< .5975
(Connected) (µ = 4.85± .12) (µ = 64.88±1.65)
(Data Absent) (µ = 4.19± .11) (µ = 62.62±1.65)
(Color Gradients) (µ = 4.76± .17) (µ = 61.57±1.66)
(Disconnected) (µ = 4.06± .13) (µ = 63.56±1.66)
Imp. F(2,77) = 24.63, p< .0001 F(2,77) = .52, p< .5891
(Linear) (µ = 4.72± .08) (µ = 62.29±1.09)
(Marginal) (µ = 4.46± .09) (µ = 63.50±1.08)
(Zero-Filling) (µ = 4.30± .08) (µ = 63.77±1.08)
Imp.*Amt. Missing F(2,77) = 5.81, p< .003 F(2,77) = 1.55, p< .2114

data. We failed to find evidence supporting the same comparison with
downplaying techniques.

H3: Linear interpolation led to the highest perceived data quality
H4: The data absent condition led to significantly lower perceived
data quality, credibility, and confidence than all other visualization
conditions.

We found limited evidence of accuracy bias from imputation methods,
consistent with Eaton et al. [21].

Our results showed that the participants regarded color points with
line gradients as of higher quality overall while removing missing data-
points from the graph caused analysts to see the data as having lower
quality and led to lower reported confidence in their task performance.
While most methods within a given design category performed compa-
rably, we also saw an interesting contrast between our two annotation
conditions (connected versus disconnected error bars). Participants
perceived connected error bars as having higher data quality, being
more credible, and leading to higher confidence in interpretation. On
the other hand, when the error bars were disconnected they reported sig-
nificantly lower scores on these subjective measures. This conclusion
offers an interesting consideration when juxtaposed with results from
Andreasson and Riveiro [4] who found that fuzziness, another correlate
for uncertainty, led to the lowest overall preference for decision making
tasks. This discrepancy also suggests that adding additional informa-
tion is insufficient to increase perceived data quality: the underlying
structure of the visualization and integration of imputed values into
the visual structure of a dataset may also play a role. Additionally,
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(a) Data Absent (b) Color Points (c) Color Points & Line

Gradients

(d) Connected Error

Bars

(e) Disconnected Error

Bars

(f) Unfilled Points (g) Unfilled Points &

Line Gradients

Fig. 4: We tested seven different methods for visualizing missing values in line graphs manipulating both point and line appearance: two
highlighting missing values, two downplaying missing values, two annotating missing values, and one removing missing values. .

understanding the effects of missing data on analysis speed is an inter-
esting question, the inclusion of our subjective measures and use of
crowdsourcing make it less reliable for our experiment.

5 EXPERIMENT ONE: LINE GRAPHS

Prior studies in missing data visualization focused on line graphs, one
of the most common and ubiquitous methods for visualizing data.
We tested three factors we hypothesized that may effect missing data
interpretation in line graphs: visualization type, percentage of missing
data, and imputation method. We tested seven different visualization
approaches that manipulated some combination of the point marks and
lines themselves. We anticipated that since the connection between
values in a line chart is salient, manipulating the lines may have different
effects from manipulating the points alone.

Figure 4 shows the seven tested visualization designs: (a) Data
Absent [21], (b) Color Points [14], (c) Color Points with Line Gradients
(where the imputed value and its connections are both colored red) [14],
(d) Connected Error Bars, with error corresponding to the standard
deviation of the present values [4], (e) Disconnected Error Bars (where
the line does not pass through imputed points) [4], (f) Unfilled Points
[21], and (g) Unfilled Points with Line Gradients (where the line passing
through imputed data is alpha-blended) [52]. Drawing on our four
target visualization categories, the color conditions highlighted imputed
values, unfilled points downplayed imputed values, error bars annotate
data with additional statistical information, and data absent falls into
information removal (Fig. 4). We conducted a 7 (visualization type)
× 3 (imputation method) × 4 (percentage of missing data) within
participants study to evaluate the effects of visualization and imputation
on analyzing incomplete datasets using the procedure outlined in §4.

5.1 Line Graph Results
We found a strong correlation between perceived completeness and
reliability (Cronbach’s α > 0.70) for both average and trend results.
We constructed a two-item scale using these factors to describe data
quality. We analyzed this scale as well as task performance using a
three-factor full factorial rmANCOVAwith question order and difficulty
as random covariates. Figure 5 and Tables 1 & 2 summarize our results
for perceived data quality and accuracy.

5.1.1 Averaging Results
Participants: We collected data from 66 U.S. participants on Ama-
zon’s Mechanical Turk (µage = 37.2,σage = 13.22, 36 female, 30 male).
Two participants were excluded for failing two or more of the large
difference engagement check stimuli, resulting in 5,568 total trials.
Table 1 summarizes our primary results.
Subjective Results
Data Quality: We found main effects of missing amount, visualization,
and imputation on perceptions of data quality (Fig. 5). As the amount
of missing data increased, perceived data quality decreased. Connected
error bars and color points with line gradients led to higher perceived
data quality, whereas the data absent conditions and disconnected error
bars led to lower perceived data quality. Linear interpolation had higher
perceived quality than marginal means, and both methods had higher
perceived quality than zero-filling. We found three significant interac-
tions effects on data quality: 1) visualization and missing amount, 2)
visualization and imputation, and 3) imputation and missing amount.

Color points with linear interpolation led to higher perceived quality,
while disconnected error bars with zero-filling led to the lower. Con-
nected error bars and zero-filling had significantly higher perceived
quality than other zero-filling conditions.
Data Credibility & Analyst Confidence: Perceived data credibility and
confidence mirrored our data quality results. Connected error bars and
color points led to higher perceived credibility (µconnected = 4.59± .12,
µcolorpoint = 4.61 ± .11) and confidence (µconnected = 4.63 ± .12,
µcolorpoint = 4.66± .11), whereas the data absent condition led to lower
credibility (µabsent = 4.08± .12) and confidence (µabsent = 4.29± .12).
We found the same preference ranking for different imputation meth-
ods across both confidence and credibility: linear interpolation be-
ing highest (µcred = 4.88± .07, µcon f = 4.67± .07), followed by
marginal means (µcred = 4.76± .07, µcon f = 4.48± .08), and zero-
filling (µcred = 4.45± .08, µcon f = 4.35± .08).
Objective Results
We computed accuracy both considering (with, Table 1) imputed values
and excluding (without, statistics inline) imputed values to include both
potential analysis strategies. Overall, participants correctly identified
the half-hour with the higher mean in 78.8% of trials with and 78.3%
without considering imputed values. We found main effects of missing
amount (Fwithout(1,62) = 23.81, p < .0001) and imputation method
(Fwithout(2,61) = 8.76, p < .0002) on accuracy. Linear interpolation
and marginal means (µlinear = 80.65%±1.15 to µmeans = 77.10%±
1.15) both led to higher accuracy than zero-filling method (µzero =
72.87%±1.15) in both cases. We found significant interaction effects
of imputation and missing amount for both metrics (Fwithout(2,61) =
6.14, p< .002).

5.1.2 Trend Detection Results
Participants: We collected data from 80 U.S. participants on Ama-
zon’s Mechanical Turk (µage = 36.05,σage = 11.75, 38 female, 42
male). No participants were excluded as all participants correctly an-
swered two or more of the engagement checks, resulting in 6,960 trials.
Table 2 summarizes our primary results.
Subjective Results
Data Quality: We found significant effects of the percentage of missing
data, visualization, and imputation method on perceived data quality
(Fig. 5). Connected error bars and color points led to higher perceived
data quality while disconnected error bars and data absent led to the
lower. Both linear interpolation and marginal means had higher per-
ceived quality than zero-filling. We found a significant interaction
between imputation method and missing amount, with linear interpola-
tion being more robust as the amount increased.
Data Credibility & Analyst Confidence: Our confidence and credi-
bility effects again mirrored effects of data quality. Connected er-
ror bars (µcred = 4.90± .12, µcon f = 5.42± .12) and color points
(µcred = 4.86± .11, µcon f = 5.48± .11) led to higher perceived data
credibility and confidence in trend detection, whereas disconnected
error bars (µcred = 4.27± .12, µcon f = 5.07± .12) and information
removal (µcred = 4.51± .10, µcon f = 5.27± .11) led to lower overall
perceptions of confidence and credibility. Of note, connected error bars
and zero-filling also had significantly higher perceived credibility than
all other zero-filling conditions (µerror,zero = 4.83± .20). We again
found a consistent preference ranking across these factors for impu-
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Fig. 5: Our results show that (a) visualization type, (b) imputation method, and (c) amount of missing data shift perceived data quality and can
bias data interpretation for average and trend detection in line graphs. Error bars are bootstrapped 95% confidence intervals.

Table 1: Summary of significant results for line graph averaging (grey
indicates non-significant results)

Factors Data Quality Accuracy (%)
Amt. Missing F(1,62) = 1519.38, p< .0001 F(1,62) = .32, p< .5694
Vis. F(6,57) = 22.92, p< .0001 F(6,57) = .36, p< .9024
(Connected) (µ = 4.53± .12) (µ = 76.50±1.77)
(Data Absent) (µ = 3.60± .11) (µ = 74.00±1.78)
(Color gradients) (µ = 4.3± .12) (µ = 77.00±1.78)
(Disconnected) (µ = 3.85± .12) (µ = 76.03±1.78)
Imp. F(2,61) = 61.77, p< .0001 F(2,61) = 20.78, p< .0001
(Linear) (µ = 4.43± .07) (µ = 81.20±1.16)
(Marginal) (µ = 4.24± .07) (µ = 76.54±1.16)
(Zero-Filling) (µ = 3.77± .08) (µ = 70.59±1.17)
Vis*Amt. Missing F(6,57) = 6.86, p< .0001 F(6,57) = 1.20, p< .3024
Vis*Imp. F(12,51) = 3.047, p< .0002 F(12,51) = .48, p< .9267
(Color Points*Linear) (µ = 4.75± .19) (µ = 83.50±3.08)
(Disconnected*Zero) (µ = 3.50± .23) (µ = 69.78±3.09)
(Connected*Zero) (µ = 4.09± .20) (µ = 69.35±3.09)
Imp.*Amt. Missing F(12,51) = 17.04, p< .0001 F(12,51) = .77, p< .6727

tation method: linear interpolation being highest (µcred = 4.90± .07,
µcon f = 5.55± .06), followed by marginal means (µcred = 4.62± .07,
µcon f = 5.40± .07), and zero-filling (µcred = 4.49± .06, µcon f =
5.42± .07).

Objective Results
We again computed accuracy both considering (with, Table 2) imputed
values and excluding (without, statistics inline) imputed values to in-
clude both potential analysis strategies. Overall, participants correctly
identified the half-hour with the larger overall rate of change or slope
with imputed values in 62.8% of trials and 63.2% without imputed val-
ues. We did not find any significant effects of our independent variables
on trend detection accuracy.

5.2 Line Graphs–Synthesis of Results

Our results provide preliminary support for all of our hypotheses:
H1: As the percentage of missing data increased, perceived quality,
credibility, accuracy, and confidence in analysis decreased.

H2: (partial) We found that encodings highlighting missing values
(e.g., our color points and color points and lines conditions) led to
significantly higher perceived quality than visualizations that removed

Table 2: Summary of significant results for line graph trends

Factors Data Quality Accuracy (%)
Amt. Missing F(1,78) = 1185.901, p< .0001 F(1,78) = .06, p< .8040
Vis F(6,73) = 17.56, p< .0001 F(6,73) = .76, p< .5975
(Connected) (µ = 4.85± .12) (µ = 64.88±1.65)
(Data Absent) (µ = 4.19± .11) (µ = 62.62±1.65)
(Color Gradients) (µ = 4.76± .17) (µ = 61.57±1.66)
(Disconnected) (µ = 4.06± .13) (µ = 63.56±1.66)
Imp. F(2,77) = 24.63, p< .0001 F(2,77) = .52, p< .5891
(Linear) (µ = 4.72± .08) (µ = 62.29±1.09)
(Marginal) (µ = 4.46± .09) (µ = 63.50±1.08)
(Zero-Filling) (µ = 4.30± .08) (µ = 63.77±1.08)
Imp.*Amt. Missing F(2,77) = 5.81, p< .003 F(2,77) = 1.55, p< .2114

data. We failed to find evidence supporting the same comparison with
downplaying techniques.

H3: Linear interpolation led to the highest perceived data quality

H4: The data absent condition led to significantly lower perceived
data quality, credibility, and confidence than all other visualization
conditions.

We found limited evidence of accuracy bias from imputation methods,
consistent with Eaton et al. [21].

Our results showed that the participants regarded color points with
line gradients as of higher quality overall while removing missing data-
points from the graph caused analysts to see the data as having lower
quality and led to lower reported confidence in their task performance.
While most methods within a given design category performed compa-
rably, we also saw an interesting contrast between our two annotation
conditions (connected versus disconnected error bars). Participants
perceived connected error bars as having higher data quality, being
more credible, and leading to higher confidence in interpretation. On
the other hand, when the error bars were disconnected they reported sig-
nificantly lower scores on these subjective measures. This conclusion
offers an interesting consideration when juxtaposed with results from
Andreasson and Riveiro [4] who found that fuzziness, another correlate
for uncertainty, led to the lowest overall preference for decision making
tasks. This discrepancy also suggests that adding additional informa-
tion is insufficient to increase perceived data quality: the underlying
structure of the visualization and integration of imputed values into
the visual structure of a dataset may also play a role. Additionally,
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Fig. 6: We tested seven different methods for visualizing missing values in bar charts: one highlighting missing values, three downplaying missing
values, two annotating missing values, and one removing missing values.

Table 3: Summary of significant results for bar graph averaging

Factors Data Quality Accuracy (%)
Amt. Missing F(1,78) = 2927.7, p< .0001 F(1,78) = 2.6, p< .1067
Vis F(6,73) = 24.15, p< .0001 F(6,73) = 3.91, p< .0007
(Bar Error) (µ = 4.82± .11) (µ = 81.48±1.52)
(Color Bars) (µ = 4.71± .08) (µ = 83.23±1.52)
(Gradient Bars) (µ = 4.71± .08) (µ = 79.62±1.5)
(Sketched Bars) (µ = 4.41± .07) (µ = 78.69±1.54)
(Dashed Outline) (µ = 4.32± .08) (µ = 75.35±1.52)
(Point Error) (µ = 4.26± .09) (µ = 75.70±1.52)
(Data Absent) (µ = 3.60± .11) (µ = 76.37±1.52)
Imp. F(2,77) = 52.76, p< .0001 F(2,77) = 9.14, p< .0001
(Linear) (µ = 4.67± .07) (µ = 80.51±1)
(Marginal) (µ = 4.60± .07) (µ = 80.25±1)
(Zero-Filling) (µ = 4.26± .07) (µ = 75.14±1)
Vis*Amt. Missing F(6,73) = 10.73, p< .0001 F(6,73) = .89, p< .4988
Vis*Imp. F(12,67) = 7.97, p< .0001 F(12,67) = 1.21, p< .2636
(Bar Error*Linear) (µ = 5.14± .19) (µ = 88.52±2.64)
(Point Error*Marginal) (µ = 4.19± .23) (µ = 79.37±2.64)
(Gardient Bars*Linear) (µ = 5.01± .21) (µ = 85.41±2.61)
(Color Bars*Linear) (µ = 4.99± .22) (µ = 83.92±2.64)
Imp.*Amt. Missing F(2,77) = 21.35, p< .0001 F(2,77) = 2.52, p< .0808
Vis*Imp.*Amt. Missing F(12,67) = 3.11, p< .0001 F(12,67) = 1.75, p< .0514

the robustness demonstrated by connected error bars as the amount of
missing data increased suggests that connected error bars may preserve
perceived quality even as actual quality decreases, which could bias
decision making. As this assumption is grounded in descriptive statis-
tics and a lack of an effect, further testing is needed to determine the
validity of this observation.

6 EXPERIMENT TWO: BAR CHARTS

Bar charts provide an interesting case for visualizing missing data as
they use bar height to encode data rather than position and connection.
This change in encoding may shift the data patterns people observe
[57]. Many techniques for bar charts also visualize absent data, zero-
filling, and y= 0 the same way, which may change biases and quality
perceptions compared to line graphs.

Several of our designs mirrored those used in the line graph condi-
tions; however, we extended our techniques to include sketchy render-
ing [55] and dashed outlines [13] to prioritize encodings correlated to
downplaying imputed values. Figure 6 shows the seven tested visual-
ization designs: (a) Data Absent [21], (b) Color Bars [14], (c) Sketched
Bars [55], (d) Bars with Error Bars [4], (e) Points with Error Bars [4],
(f) Unfilled Bars with Dashed Outlines [13], and (g) Alpha-blended
Gradient Bars [52]. Error bars again approximated the standard devia-
tion of the data used in the imputation, and gradients used this amount
to define the blend radius. Color bars highlighted imputed values; error
bars and points with error bars annotated imputed values; sketchiness,
gradient bars, and dashed outlines downplayed imputed values; and not
showing the values exemplified information removal.

6.1 Bar Graph Results

We again found a strong correlation between perceived completeness
and reliability (α > 0.70) for both averaging and trend detection. We

constructed a two-item scale using these factors to describe data quality.
We analyzed this scale as well as task performance using a three-factor
(visualization technique, imputation method, and amount of missing
data) full factorial rmANCOVA with question order and difficulty as
random covariates. Figure 7 and Tables 3 & 4 summarize our results
for perceived data quality and accuracy.

6.1.1 Averaging Results

Participants: We collected data from 80 U.S. participants on Me-
chanical Turk (µage = 37.1,σage = 11.4, 38 female, 42 male). All
participants answered at least two of the engagement checks correctly,
resulting in 6,960 trials. Figure 7 and Table 3 summarize our results.

Subjective Results
Data Quality: We found significant main effects of the percentage of
missing data, visualization type, and imputation method on perceived
data quality (Fig. 7). Increasing amount of missing data led to lower
perceived data quality. Bars with error bars, color bars, and gradient
bars led to higher perceived data quality, whereas points with error bars,
and downplaying techniques—sketched bars and dashed outlines—and
information removal led to lower perceived data quality. Both linear
interpolation and marginal means had higher perceived quality than
zero-filling. We also found four significant interactions: 1) visualization
type and missing data, 2) visualization type and imputation, 3) amount
of missing data and imputation method, and 4) visualization type,
amount of missing data, and imputation method. Bars with error bars,
gradient bars, and color bars using linear interpolation led to higher
perceived data quality, while points with error bars and zero-filling led
to lower data quality.

Data Credibility & Analyst Confidence: Self-reported perceptions of
data credibility and analyst confidence generally mirrored data quality
measures. Color bars led to the highest overall perceived confidence
(µcolor = 4.75± .10). Color bars, bars with error bars, and gradient bars
generated higher perceived credibility (µcolor = 4.85± .07, µbarerror =
4.90± .11, and µgradient = 4.86± .08), while points with error bars led
to consistently lower credibility (µpointerror = 4.52± .09) and confi-
dence (µpointerror = 4.64± .10). The downplay techniques (sketching,
outlines) and information removal also led to low reported confidence
(µsketch = 4.57± .07, µoutline = 4.56± .08, µabsent = 4.60± .07).

Both linear interpolation and marginal means led to higher per-
ceived credibility (µlocal = 4.81± .07, µmeans = 4.75± .06, and µzero =
4.52± .07) and confidence (µlocal = 4.71± .07, µmeans = 4.64± .06,
and µzero = 4.47± .07). Unlike with lines, we found no evidence of
significant differences between linear interpolation and marginal means
for bars.

Objective Results
We again computed accuracy both considering (with, Table 3) im-

puted values and excluding (without, statistics inline) imputed values
to include both potential analysis strategies. Overall, participants cor-
rectly identified the half-hour with the higher average in 80.76% of
trials without imputed values and 80.73% with them. We found a main
effects of visualization (Fwithout(6,73) = 4.84, p < .0001) and impu-
tation (Fwithout(2,77) = 3.38, p < .0338) on accuracy in both cases.
Bars with error bars and color bars led to higher accuracy, whereas the
dashed outline bars led to lower accuracy (µbarerror = 83.98%± .01
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Fig. 7: As in line charts, our results show that (a) visualization type, (b) imputation method, and (c) amount of missing data shift perceived data
quality and can even bias data interpretation for average and trend detection in bar charts.

Table 4: Summary of significant results for bar graph trends

Factors Data Quality Accuracy (%)
Amt. Missing F(1,72) = 1803.289, p< .0001 F(1,72) = 2.38, p< .1224
Vis F(6,67) = 22.80, p< .0001 F(6,67) = 0.32, p< .9268
(Bar Error) (µ = 4.81± .10) (µ = 61.08±1.60)
(Dashed Outline) (µ = 4.10± .08) (µ = 60.97±1.59)
(Data Absent) (µ = 4.18± .11) (µ = 60.28±1.61)
(Points Error) (µ = 4.03± .07) (µ = 62.39±1.61)
Imp. F(2,71) = 127.61, p< .0001 F(2,71) = 5.66, p< .0035
(Linear) (µ = 4.72± .08) (µ = 59.57±1.06)
(Marginal) (µ = 4.39± .04) (µ = 60.57±1.06)
(Zero-Filling) (µ = 4.14± .04) (µ = 64.33±1.05)
Vis * Amt. Missing F(6,67) = 7.64, p< .0001 F(6,67) = 2.01, p< .0607
Vis * Imp. F(12,61) = 5.73, p< .0001 F(12,61) = 0.79, p< .6546
Imp. * Amt. Missing F(2,71) = 9.34, p< .0001 F(2,71) = 1.42, p< .2401

and µcolor = 83.4%± .02 vs. µdashoutline = 77.95%± .02). Lin-
ear interpolation and marginal means (µlinear = 80.40%± .991 to
µmeans = 80.19.%± .991) both led to higher accuracy than zero-filling
method (µzero = 77.13%± .992).

For strategies inclusive of imputed values, we found additional main
effects of imputation: linear interpolation and marginal means both led
to higher accuracy than zero-filling. We found two interaction effects
on accuracy: 1) imputation and missing amount and 2) visualization,
missing amount, and imputation method. Bars with error bars using
linear interpolation led to higher accuracy than linearly interpolated
points with error bars and were more robust to changes in the amount
of missing data.

6.1.2 Trend Detection Results
Participants: We collected data from 77 U.S. participants on Mechan-
ical Turk (µage = 34.9,σage = 11.9, 38 female, 39 male). We excluded
3 participants who failed to answer at least two of the engagement
check stimuli correctly, resulting in 6,438 trials. Table 4 summarizes
our primary results.
Subjective Results
Data Quality: We found main effects of the amount of missing data,
visualization type, and imputation method on perceived data quality
(Fig. 7). Bars with error bars led to higher perceived data quality while
data absent, dashed outline bars, and points with error bars were seen
as lower quality. Linear interpolation resulted in the highest perceived

data quality, followed by marginal means, and data absent. We found
three main interaction effects: 1) visualization and amount of missing
data, 2) visualization method and imputation, and 3) amount of missing
data and imputation. Bars with error bars and gradient bars with linear
interpolation led to higher perceived data quality than all imputation
methods using points with error bars and than dashed outlines with
both zero-filling and marginal means.

Data Credibility & Analyst Confidence: We found limited effects of
our independent variables on credibility and confidence that did not
necessarily align with our quality scale. Specifically, gradient bars led
to higher perceived credibility and confidence (µcred = 5.18± .05,
µcon f = 5.45± .11) than dashed outline bars (µcred = 4.85± .10,
µcon f = 5.17± .11) and points with error bars (µcred = 4.80± .11,
µcon f = 5.13± .12). Linear interpolation (µcred = 4.84± .11, µcon f =
5.26± .04) led to higher perceived confidence than marginal means
(µcred = 4.65± .12, µcon f = 5.02± .04) and zero-filling (µcred =
4.55± .12, µcon f = 5.10± .05).

Objective Results
Overall, participants correctly identified the half-hour with the larger

overall rate of change in 60.6% of trials when discounting imputed
values and 61.4% of trials when considering imputed values. We found
no significant main effects for strategies discounting imputed values;
however, we did find a surprising countereffect to averaging without
imputed values in that zero-filling led to higher accuracy than linear
interpolation and marginal means inclusive of imputed values.

6.2 Bar Graphs–Synthesis of Results

Our results provide support for each of our four hypotheses:

H1: (partial) As the amount of missing data increased, confidence in
result and perceived data quality decreased. We found no corresponding
evidence for accuracy.

H2: (partial) Our data absent condition and two downplaying tech-
niques (sketching and dashed outlines) led to consistently low per-
ceived data quality, whereas color bars led to high quality perceptions.
However, gradient bars, which also downplay imputed values, led to
consistently high perceived data quality.

H3: (partial) Linear interpolation outperformed zero-filling and led to
higher quality perceptions, confidence, and credibility for the tested
visualization types. However, linear interpolation only led to higher
subjective impressions for our trend detection task.
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(a) Data Absent (b) Color Bars (c) Sketched Bar (d) Bars with Er-

ror Bars

(e) Points with

Error Bars

(f) Bars with

Dashed Outlines

(g) Alpha Gradient

Bars

Fig. 6: We tested seven different methods for visualizing missing values in bar charts: one highlighting missing values, three downplaying missing
values, two annotating missing values, and one removing missing values.

Table 3: Summary of significant results for bar graph averaging

Factors Data Quality Accuracy (%)
Amt. Missing F(1,78) = 2927.7, p< .0001 F(1,78) = 2.6, p< .1067
Vis F(6,73) = 24.15, p< .0001 F(6,73) = 3.91, p< .0007
(Bar Error) (µ = 4.82± .11) (µ = 81.48±1.52)
(Color Bars) (µ = 4.71± .08) (µ = 83.23±1.52)
(Gradient Bars) (µ = 4.71± .08) (µ = 79.62±1.5)
(Sketched Bars) (µ = 4.41± .07) (µ = 78.69±1.54)
(Dashed Outline) (µ = 4.32± .08) (µ = 75.35±1.52)
(Point Error) (µ = 4.26± .09) (µ = 75.70±1.52)
(Data Absent) (µ = 3.60± .11) (µ = 76.37±1.52)
Imp. F(2,77) = 52.76, p< .0001 F(2,77) = 9.14, p< .0001
(Linear) (µ = 4.67± .07) (µ = 80.51±1)
(Marginal) (µ = 4.60± .07) (µ = 80.25±1)
(Zero-Filling) (µ = 4.26± .07) (µ = 75.14±1)
Vis*Amt. Missing F(6,73) = 10.73, p< .0001 F(6,73) = .89, p< .4988
Vis*Imp. F(12,67) = 7.97, p< .0001 F(12,67) = 1.21, p< .2636
(Bar Error*Linear) (µ = 5.14± .19) (µ = 88.52±2.64)
(Point Error*Marginal) (µ = 4.19± .23) (µ = 79.37±2.64)
(Gardient Bars*Linear) (µ = 5.01± .21) (µ = 85.41±2.61)
(Color Bars*Linear) (µ = 4.99± .22) (µ = 83.92±2.64)
Imp.*Amt. Missing F(2,77) = 21.35, p< .0001 F(2,77) = 2.52, p< .0808
Vis*Imp.*Amt. Missing F(12,67) = 3.11, p< .0001 F(12,67) = 1.75, p< .0514

the robustness demonstrated by connected error bars as the amount of
missing data increased suggests that connected error bars may preserve
perceived quality even as actual quality decreases, which could bias
decision making. As this assumption is grounded in descriptive statis-
tics and a lack of an effect, further testing is needed to determine the
validity of this observation.

6 EXPERIMENT TWO: BAR CHARTS

Bar charts provide an interesting case for visualizing missing data as
they use bar height to encode data rather than position and connection.
This change in encoding may shift the data patterns people observe
[57]. Many techniques for bar charts also visualize absent data, zero-
filling, and y= 0 the same way, which may change biases and quality
perceptions compared to line graphs.

Several of our designs mirrored those used in the line graph condi-
tions; however, we extended our techniques to include sketchy render-
ing [55] and dashed outlines [13] to prioritize encodings correlated to
downplaying imputed values. Figure 6 shows the seven tested visual-
ization designs: (a) Data Absent [21], (b) Color Bars [14], (c) Sketched
Bars [55], (d) Bars with Error Bars [4], (e) Points with Error Bars [4],
(f) Unfilled Bars with Dashed Outlines [13], and (g) Alpha-blended
Gradient Bars [52]. Error bars again approximated the standard devia-
tion of the data used in the imputation, and gradients used this amount
to define the blend radius. Color bars highlighted imputed values; error
bars and points with error bars annotated imputed values; sketchiness,
gradient bars, and dashed outlines downplayed imputed values; and not
showing the values exemplified information removal.

6.1 Bar Graph Results

We again found a strong correlation between perceived completeness
and reliability (α > 0.70) for both averaging and trend detection. We

constructed a two-item scale using these factors to describe data quality.
We analyzed this scale as well as task performance using a three-factor
(visualization technique, imputation method, and amount of missing
data) full factorial rmANCOVA with question order and difficulty as
random covariates. Figure 7 and Tables 3 & 4 summarize our results
for perceived data quality and accuracy.

6.1.1 Averaging Results

Participants: We collected data from 80 U.S. participants on Me-
chanical Turk (µage = 37.1,σage = 11.4, 38 female, 42 male). All
participants answered at least two of the engagement checks correctly,
resulting in 6,960 trials. Figure 7 and Table 3 summarize our results.

Subjective Results
Data Quality: We found significant main effects of the percentage of
missing data, visualization type, and imputation method on perceived
data quality (Fig. 7). Increasing amount of missing data led to lower
perceived data quality. Bars with error bars, color bars, and gradient
bars led to higher perceived data quality, whereas points with error bars,
and downplaying techniques—sketched bars and dashed outlines—and
information removal led to lower perceived data quality. Both linear
interpolation and marginal means had higher perceived quality than
zero-filling. We also found four significant interactions: 1) visualization
type and missing data, 2) visualization type and imputation, 3) amount
of missing data and imputation method, and 4) visualization type,
amount of missing data, and imputation method. Bars with error bars,
gradient bars, and color bars using linear interpolation led to higher
perceived data quality, while points with error bars and zero-filling led
to lower data quality.

Data Credibility & Analyst Confidence: Self-reported perceptions of
data credibility and analyst confidence generally mirrored data quality
measures. Color bars led to the highest overall perceived confidence
(µcolor = 4.75± .10). Color bars, bars with error bars, and gradient bars
generated higher perceived credibility (µcolor = 4.85± .07, µbarerror =
4.90± .11, and µgradient = 4.86± .08), while points with error bars led
to consistently lower credibility (µpointerror = 4.52± .09) and confi-
dence (µpointerror = 4.64± .10). The downplay techniques (sketching,
outlines) and information removal also led to low reported confidence
(µsketch = 4.57± .07, µoutline = 4.56± .08, µabsent = 4.60± .07).

Both linear interpolation and marginal means led to higher per-
ceived credibility (µlocal = 4.81± .07, µmeans = 4.75± .06, and µzero =
4.52± .07) and confidence (µlocal = 4.71± .07, µmeans = 4.64± .06,
and µzero = 4.47± .07). Unlike with lines, we found no evidence of
significant differences between linear interpolation and marginal means
for bars.

Objective Results
We again computed accuracy both considering (with, Table 3) im-

puted values and excluding (without, statistics inline) imputed values
to include both potential analysis strategies. Overall, participants cor-
rectly identified the half-hour with the higher average in 80.76% of
trials without imputed values and 80.73% with them. We found a main
effects of visualization (Fwithout(6,73) = 4.84, p < .0001) and impu-
tation (Fwithout(2,77) = 3.38, p < .0338) on accuracy in both cases.
Bars with error bars and color bars led to higher accuracy, whereas the
dashed outline bars led to lower accuracy (µbarerror = 83.98%± .01
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Fig. 7: As in line charts, our results show that (a) visualization type, (b) imputation method, and (c) amount of missing data shift perceived data
quality and can even bias data interpretation for average and trend detection in bar charts.

Table 4: Summary of significant results for bar graph trends

Factors Data Quality Accuracy (%)
Amt. Missing F(1,72) = 1803.289, p< .0001 F(1,72) = 2.38, p< .1224
Vis F(6,67) = 22.80, p< .0001 F(6,67) = 0.32, p< .9268
(Bar Error) (µ = 4.81± .10) (µ = 61.08±1.60)
(Dashed Outline) (µ = 4.10± .08) (µ = 60.97±1.59)
(Data Absent) (µ = 4.18± .11) (µ = 60.28±1.61)
(Points Error) (µ = 4.03± .07) (µ = 62.39±1.61)
Imp. F(2,71) = 127.61, p< .0001 F(2,71) = 5.66, p< .0035
(Linear) (µ = 4.72± .08) (µ = 59.57±1.06)
(Marginal) (µ = 4.39± .04) (µ = 60.57±1.06)
(Zero-Filling) (µ = 4.14± .04) (µ = 64.33±1.05)
Vis * Amt. Missing F(6,67) = 7.64, p< .0001 F(6,67) = 2.01, p< .0607
Vis * Imp. F(12,61) = 5.73, p< .0001 F(12,61) = 0.79, p< .6546
Imp. * Amt. Missing F(2,71) = 9.34, p< .0001 F(2,71) = 1.42, p< .2401

and µcolor = 83.4%± .02 vs. µdashoutline = 77.95%± .02). Lin-
ear interpolation and marginal means (µlinear = 80.40%± .991 to
µmeans = 80.19.%± .991) both led to higher accuracy than zero-filling
method (µzero = 77.13%± .992).

For strategies inclusive of imputed values, we found additional main
effects of imputation: linear interpolation and marginal means both led
to higher accuracy than zero-filling. We found two interaction effects
on accuracy: 1) imputation and missing amount and 2) visualization,
missing amount, and imputation method. Bars with error bars using
linear interpolation led to higher accuracy than linearly interpolated
points with error bars and were more robust to changes in the amount
of missing data.

6.1.2 Trend Detection Results
Participants: We collected data from 77 U.S. participants on Mechan-
ical Turk (µage = 34.9,σage = 11.9, 38 female, 39 male). We excluded
3 participants who failed to answer at least two of the engagement
check stimuli correctly, resulting in 6,438 trials. Table 4 summarizes
our primary results.
Subjective Results
Data Quality: We found main effects of the amount of missing data,
visualization type, and imputation method on perceived data quality
(Fig. 7). Bars with error bars led to higher perceived data quality while
data absent, dashed outline bars, and points with error bars were seen
as lower quality. Linear interpolation resulted in the highest perceived

data quality, followed by marginal means, and data absent. We found
three main interaction effects: 1) visualization and amount of missing
data, 2) visualization method and imputation, and 3) amount of missing
data and imputation. Bars with error bars and gradient bars with linear
interpolation led to higher perceived data quality than all imputation
methods using points with error bars and than dashed outlines with
both zero-filling and marginal means.

Data Credibility & Analyst Confidence: We found limited effects of
our independent variables on credibility and confidence that did not
necessarily align with our quality scale. Specifically, gradient bars led
to higher perceived credibility and confidence (µcred = 5.18± .05,
µcon f = 5.45± .11) than dashed outline bars (µcred = 4.85± .10,
µcon f = 5.17± .11) and points with error bars (µcred = 4.80± .11,
µcon f = 5.13± .12). Linear interpolation (µcred = 4.84± .11, µcon f =
5.26± .04) led to higher perceived confidence than marginal means
(µcred = 4.65± .12, µcon f = 5.02± .04) and zero-filling (µcred =
4.55± .12, µcon f = 5.10± .05).

Objective Results
Overall, participants correctly identified the half-hour with the larger

overall rate of change in 60.6% of trials when discounting imputed
values and 61.4% of trials when considering imputed values. We found
no significant main effects for strategies discounting imputed values;
however, we did find a surprising countereffect to averaging without
imputed values in that zero-filling led to higher accuracy than linear
interpolation and marginal means inclusive of imputed values.

6.2 Bar Graphs–Synthesis of Results

Our results provide support for each of our four hypotheses:

H1: (partial) As the amount of missing data increased, confidence in
result and perceived data quality decreased. We found no corresponding
evidence for accuracy.

H2: (partial) Our data absent condition and two downplaying tech-
niques (sketching and dashed outlines) led to consistently low per-
ceived data quality, whereas color bars led to high quality perceptions.
However, gradient bars, which also downplay imputed values, led to
consistently high perceived data quality.

H3: (partial) Linear interpolation outperformed zero-filling and led to
higher quality perceptions, confidence, and credibility for the tested
visualization types. However, linear interpolation only led to higher
subjective impressions for our trend detection task.
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H4: (partial) The data absent condition again led to low overall per-
ceived quality, confidence, and credibility; however, other techniques
performed comparably poorly on this metric.

Across both tasks, we found that bars with error bars, gradient bars,
and color bars led to consistently high perceived confidence and overall
accuracy. However, our other annotation condition—points with error
bars—and downplay conditions—sketched bars and dashed outline
bars—led to lower perceived confidence, credibility, data quality, and
task accuracy. Combined with our results from Experiment One and
findings from Andreasson & Riveiro [4], these findings suggest that
visual encodings that break the continuous visual structure of a graph
reduce perceptions of data quality and may actually inhibit analysis.
We anticipate that these effects may be more critical to consider for bar
charts as we found significant discrepancies between accuracy effects
inclusive and exclusive of imputed values.

We hypothesize the observed subjective and objective bias for en-
codings that break continuity may be due to attentional selection. The
process used to visually average information may be impacted by the
point condition’s use of height and position encodings. Our lowest
performing conditions—data absent, points with error bars, dashed
outlines, sketching, and zero filling—reduce or remove the weight of
imputed bars. Based on known mechanisms of visual attention (see
Gleicher et al. [28] for a discussion), these reductions may cause partic-
ipants to group consecutive sets of imputed and real data values prior to
estimating aggregate statistics, complicating visual aggregation tasks.
Gradient bars would not exhibit these effects as the majority of the bar
appears consistent with the rest of the bars in the sequence. Future
testing is needed to verify this hypothesis.

7 DISCUSSION

We measured the effect of missing data on interpretation accuracy
and perceived data quality in time series data across 14 visualization
methods and three imputation types. Our results show:

• Perceived data quality and confidence generally degrade as the
amount of missing data increases.

• Data visualized by highlighting missing values tends to be seen
as higher quality than downplay or information removal.

• Information removal can significantly degrade perceptions of data
quality, and confidence. These methods even lead to incorrect
responses if missing values break the visual continuity of a visu-
alization.

• Linear interpolation leads to higher perceptions of quality and
confidence in analysis.

While avoiding bias is a critical element of effective visualization, we
find that the ways systems impute and visualize missing data can also
manipulate perceived data quality and confidence in results. Whether
ideal perceptions of quality are high or low is likely dependent on
parameters of the data, problem, and domain.

We found preliminary evidence that high confidence, credibility,
and perceived quality in interpreting incomplete datasets depend on
multiple factors. Our studies show that visualizing imputed datapoints
using highlighting and annotation while preserving the continuity of
available data lead to the highest perceived data quality and confidence
in result. We see this in color bars, gradient bars, and bars with error
bars in bar graphs and with connected error bars and color points with
line gradient in line graphs. This conclusions runs somewhat contrary
to prior work on preference in decision support [4]; however, it is inline
with research on visual selection [28] and uncertainty and trust (see
Sacha et al [47] for a discussion). Specifically, visual explanations
of errors, such as those indicated by error bars, may increase trust
in a system [20]. This trust may manifest in increased confidence
and perceived data quality. Examining further design components
associated with uncertainty visualization could offer further insight into
this phenomena (e.g., alternative designs [37] and cognitive biases [16]).
However, we found that error bars that do not preserve continuity—
disconnected error bars in line graphs and point with errors bars in bar
charts—lead to low perceived confidence, credibility, and data quality,
which indicate critical factors beyond the integration of uncertainty.

Linear interpolation consistently produced the highest confidence
and perceived data quality, while zero-filling led to the lowest. The
increased quality perceptions associated with linear interpolation in-
dicate that imputation methods should favor methods drawing from
the data distribution in scenarios requiring high analyst confidence and
perceived quality. Sophisticated imputation methods may be worth
added complexity to avoid response bias in these scenarios. We offer
first steps towards a systematic understanding of the role of imputation
in visualization; however, our studies focused on a simple domain and
relatively smooth signals. Further evaluation is needed to more deeply
understand the effects of imputation in visualization.

While our results enumerate how design choices for visualizing
incomplete datasets might modulate perceived quality, a number of
factors may inform the desirable level of perceived quality, including:
Decision Risk: Accuracy is paramount in high risk situations and miss-
ing values may jeopardize that accuracy. Visualization systems can
encourage caution in interpreting flawed datasets by using representa-
tions that avoid bias and appropriately decrease perceived quality.
Data Fusion: Combining data from multiple sources may mean that
the overall anticipated data quality varies between those sources. In
these scenarios, systems can leverage domain knowledge to guide
analysts to visualizations that modulate confidence and apparent quality
appropriately for each source.
Confidence in Imputation: Individual imputation methods may differ
in how faithfully they represent the original data. In scenarios like
cold-deck imputation, analysts may know how well the imputed data
mirrors the original data. Visualizations can leverage this knowledge
to choose methods that adapt perceived quality proportionally to the
imputation quality.

7.1 Limitations & Future Work
We made several simplifying assumptions in our experiment. Our nar-
rative scenario used familiar but simple and low-risk tasks (i.e., the
cost of getting the wrong answer is minimal). While these choices
allowed us strong control over our tested conditions to encourage gen-
eral understanding, future testing should extend our work to real-world
datasets and scenarios to better understand the impact of these choices
and how different analytic workflows and data characteristics might
change these perceptions.

Further, we tested a small set of possible imputation and visualization
methods, drawing inspiration from visualization tools that actively
manage missing data. However, we found few tools explicitly discuss
missing data management. Future work should extend to a broader set
of visualization and imputation methods, such as multiple imputation
and machine learning-based approaches to understand their broader
utility for data in different domains. Future studies should additionally
test more subtle amounts of missing data and consider more formal
modeling of salience, uncertainty, and other perceptions with perceived
quality and accuracy.

8 CONCLUSION

We used time series data with missing values to measure how missing
data influences factors of perceived data quality and found that the
design choices and interpolation methods used to represent data signifi-
cantly influence analysts’ perceptions of data. Highlighting imputed
values and using linear interpolation led to higher perceived confi-
dence, credibility, and data quality. Downplaying visual encodings,
zero-filling, and electing not to draw data can lead to lower subjective
perceived measurements.

Our results enumerate design trade-offs for designers to consider
when crafting behaviors for handling missing data in visualization in
order to tailor subjective and objective responses to the demands and
domains of stakeholders.
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H4: (partial) The data absent condition again led to low overall per-
ceived quality, confidence, and credibility; however, other techniques
performed comparably poorly on this metric.

Across both tasks, we found that bars with error bars, gradient bars,
and color bars led to consistently high perceived confidence and overall
accuracy. However, our other annotation condition—points with error
bars—and downplay conditions—sketched bars and dashed outline
bars—led to lower perceived confidence, credibility, data quality, and
task accuracy. Combined with our results from Experiment One and
findings from Andreasson & Riveiro [4], these findings suggest that
visual encodings that break the continuous visual structure of a graph
reduce perceptions of data quality and may actually inhibit analysis.
We anticipate that these effects may be more critical to consider for bar
charts as we found significant discrepancies between accuracy effects
inclusive and exclusive of imputed values.

We hypothesize the observed subjective and objective bias for en-
codings that break continuity may be due to attentional selection. The
process used to visually average information may be impacted by the
point condition’s use of height and position encodings. Our lowest
performing conditions—data absent, points with error bars, dashed
outlines, sketching, and zero filling—reduce or remove the weight of
imputed bars. Based on known mechanisms of visual attention (see
Gleicher et al. [28] for a discussion), these reductions may cause partic-
ipants to group consecutive sets of imputed and real data values prior to
estimating aggregate statistics, complicating visual aggregation tasks.
Gradient bars would not exhibit these effects as the majority of the bar
appears consistent with the rest of the bars in the sequence. Future
testing is needed to verify this hypothesis.

7 DISCUSSION

We measured the effect of missing data on interpretation accuracy
and perceived data quality in time series data across 14 visualization
methods and three imputation types. Our results show:

• Perceived data quality and confidence generally degrade as the
amount of missing data increases.

• Data visualized by highlighting missing values tends to be seen
as higher quality than downplay or information removal.

• Information removal can significantly degrade perceptions of data
quality, and confidence. These methods even lead to incorrect
responses if missing values break the visual continuity of a visu-
alization.

• Linear interpolation leads to higher perceptions of quality and
confidence in analysis.

While avoiding bias is a critical element of effective visualization, we
find that the ways systems impute and visualize missing data can also
manipulate perceived data quality and confidence in results. Whether
ideal perceptions of quality are high or low is likely dependent on
parameters of the data, problem, and domain.

We found preliminary evidence that high confidence, credibility,
and perceived quality in interpreting incomplete datasets depend on
multiple factors. Our studies show that visualizing imputed datapoints
using highlighting and annotation while preserving the continuity of
available data lead to the highest perceived data quality and confidence
in result. We see this in color bars, gradient bars, and bars with error
bars in bar graphs and with connected error bars and color points with
line gradient in line graphs. This conclusions runs somewhat contrary
to prior work on preference in decision support [4]; however, it is inline
with research on visual selection [28] and uncertainty and trust (see
Sacha et al [47] for a discussion). Specifically, visual explanations
of errors, such as those indicated by error bars, may increase trust
in a system [20]. This trust may manifest in increased confidence
and perceived data quality. Examining further design components
associated with uncertainty visualization could offer further insight into
this phenomena (e.g., alternative designs [37] and cognitive biases [16]).
However, we found that error bars that do not preserve continuity—
disconnected error bars in line graphs and point with errors bars in bar
charts—lead to low perceived confidence, credibility, and data quality,
which indicate critical factors beyond the integration of uncertainty.

Linear interpolation consistently produced the highest confidence
and perceived data quality, while zero-filling led to the lowest. The
increased quality perceptions associated with linear interpolation in-
dicate that imputation methods should favor methods drawing from
the data distribution in scenarios requiring high analyst confidence and
perceived quality. Sophisticated imputation methods may be worth
added complexity to avoid response bias in these scenarios. We offer
first steps towards a systematic understanding of the role of imputation
in visualization; however, our studies focused on a simple domain and
relatively smooth signals. Further evaluation is needed to more deeply
understand the effects of imputation in visualization.

While our results enumerate how design choices for visualizing
incomplete datasets might modulate perceived quality, a number of
factors may inform the desirable level of perceived quality, including:
Decision Risk: Accuracy is paramount in high risk situations and miss-
ing values may jeopardize that accuracy. Visualization systems can
encourage caution in interpreting flawed datasets by using representa-
tions that avoid bias and appropriately decrease perceived quality.
Data Fusion: Combining data from multiple sources may mean that
the overall anticipated data quality varies between those sources. In
these scenarios, systems can leverage domain knowledge to guide
analysts to visualizations that modulate confidence and apparent quality
appropriately for each source.
Confidence in Imputation: Individual imputation methods may differ
in how faithfully they represent the original data. In scenarios like
cold-deck imputation, analysts may know how well the imputed data
mirrors the original data. Visualizations can leverage this knowledge
to choose methods that adapt perceived quality proportionally to the
imputation quality.

7.1 Limitations & Future Work
We made several simplifying assumptions in our experiment. Our nar-
rative scenario used familiar but simple and low-risk tasks (i.e., the
cost of getting the wrong answer is minimal). While these choices
allowed us strong control over our tested conditions to encourage gen-
eral understanding, future testing should extend our work to real-world
datasets and scenarios to better understand the impact of these choices
and how different analytic workflows and data characteristics might
change these perceptions.

Further, we tested a small set of possible imputation and visualization
methods, drawing inspiration from visualization tools that actively
manage missing data. However, we found few tools explicitly discuss
missing data management. Future work should extend to a broader set
of visualization and imputation methods, such as multiple imputation
and machine learning-based approaches to understand their broader
utility for data in different domains. Future studies should additionally
test more subtle amounts of missing data and consider more formal
modeling of salience, uncertainty, and other perceptions with perceived
quality and accuracy.

8 CONCLUSION

We used time series data with missing values to measure how missing
data influences factors of perceived data quality and found that the
design choices and interpolation methods used to represent data signifi-
cantly influence analysts’ perceptions of data. Highlighting imputed
values and using linear interpolation led to higher perceived confi-
dence, credibility, and data quality. Downplaying visual encodings,
zero-filling, and electing not to draw data can lead to lower subjective
perceived measurements.

Our results enumerate design trade-offs for designers to consider
when crafting behaviors for handling missing data in visualization in
order to tailor subjective and objective responses to the demands and
domains of stakeholders.
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