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ABSTRACT
Incompleteness of large knowledge graphs (KG) has motivated
many researchers to propose methods to automatically find miss-
ing edges in KGs. A promising approach for KG completion (link
prediction) is embedding a KG into a continuous vector space. There
are different methods in the literature that learn a continuous rep-
resentation of KG (latent features of KG). The benchmark dataset
FB15k has been widely employed to evaluate these methods. How-
ever, It has been noted that FB15k contains many pairs of edges
in which a pair represents the same relationship in reverse direc-
tions. Therefore, the inverse of numerous test triples occurs in the
training set. To address this problem, FB15k-237, a subset of FB15k,
was created by removing those inverse-duplicate relations to form
a more challenging, realistic dataset. There is not any study that
investigates how the aforementioned bias in this widely used bench-
mark dataset affects the results of embedding-based knowledge
graph completion methods and whether their promising results are
largely due to the bias. Motivated by this question, we conducted
extensive experiments and report the link prediction results on
FB15K and FB15k-237 using several embedding-based methods. We
compare the results of different methods to see how their perfor-
mances change in absence of inverse relations. Our experiment
results demonstrate that the performance of embedding models
in link prediction task diminishes tremendously when the inverse
relationships do not exist anymore.
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1 INTRODUCTION
Large-scale knowledge graphs (KG) such as Freebase [2], DBpe-
dia [1] and NELL [4] store real-world facts in the form of triples
(head entity, relation, tail entity), denoted (h, r, t). They are an im-
portant resource for many AI-related applications such as question
answering, web search, and fact checking, to name just a few. De-
spite their large sizes, KGs are usually far from complete, which
hampers their usefulness in the aforementioned applications. To
address this problem, various KG completion methods have been
proposed. Existingmethods can be categorized into two groups [11]:
(1) latent feature models, also known as embedding models, such
as TransE [3] and RESCAL [12] that embed a KG into a continu-
ous vector space, (2) observed feature models that use observable
properties of graphs, e.g., rule mining systems [6] and path ranking
algorithms [8].

Among existing KG completion methods, embedding models
that learn continuous representation of entities and relations have
been quite popular. They usually embed an entity h (t) into a multi-
dimensional vector h (t) while a relation is represented as an opera-
tion (e.g., translation [3]) that combines h and t. In TransE [3]—one
of the simplest and most efficient embedding models with high
accuracy—the embedding is learned in such a way that if (h, r, t)
holds then h+r ≈ twhere h, r, and t are the vector representations
of h, r, and t, respectively.

Models such as TransH [16] and TransR [9] have been proposed
to further address TransE’s limitations such as its inadequacy in
dealing with 1-to-n, n-to-1 and n-to-n relationships. Most embed-
ding models were evaluated on the link prediction task—predicting
the missing h or t in triple (?, r, t) or (h, r, ?). They were evaluated
using a benchmark dataset FB15k, which is a subset of Freebase
created by Bordes et al. [3]. Toutanova and Chen [14] noted that this
widely-used dataset contains many inverse triples, i.e., it contains
many pairs of (h, r, t) and (t, r−1, h) where r−1 is inverse of r. With
regard to link prediction, it seems unnecessary to learn embeddings
of entities and relations given the existence of such inverse triples.
A simple rule, r (h, t)← r−1 (t, h), can probably predict the missing
h or t with better accuracy.
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In this paper, we aim to shed light on whether the embedding
models are highly effective for link prediction in less straightfor-
ward scenarios. Toward this end, it is imperative to use a more chal-
lenging, realistic dataset. Toutanova and Chen [14] constructed such
a dataset, FB15k-237, by excluding inverse relations from FB15k.
Although embedding models have promising results on FB15k, no
prior study provided a comprehensive investigation of their per-
formance on FB15k-237. For instance, Toutanova and Chen [14]
proposed an observed feature model NLFeat and compared it with
only two embedding models E [13] and DistMult [17] on FB15k-237.

We conducted comprehensive experiments using a wide range of
embedding-based knowledge graph completion methods on FB15k-
237 and measured their performance using multiple standard met-
rics. We also reproduced their results on FB15k. The results of our
experiments show that the good performance of current embed-
ding models degrades significantly after removing inverse triples.
Methods such as DistMult, ANALOGY [10] and ComplEx [15] have
significantly outperformed TransE on FB15k but only attained sim-
ilar or even worse performance on FB15k-237. For example, on
FB15k, the FHits@10 (an often-used evaluation metric in [3] and
others) of ANALOGY vs. TransE is 84.3% vs. 61.8%, while it is 37.4%
vs. 42.5% on FB15k-237. Using another popular measure FMRR,
ConvE [5] is the method with the best results on FB15k-237. How-
ever, its performance on FB15k was considerably stronger. These
observations suggest the necessity of more research on embedding-
based KG completion methods and evaluating them on a more
challenging, realistic dataset.

2 BACKGROUND
Embedding-based methods employ two steps: (1) defining a scoring
function to measure the plausibility of triples (h,r,t), and (2) learning
the representations (i.e., embeddings) of entities and relations by
solving an optimization problem of maximizing the scores of correct
triples while minimizing the scores of incorrect ones. In TransE,
the scoring function is:

fr (h, t) = −∥h + r − t∥2ℓ1/2 (1)

which gives higher scores to correct triples and lower scores to
incorrect ones.

TransH is similar to TransE but each relation is modeled as a
vector dr on a relation-specific hyperplane with wr as normal
vector where ∥wr ∥ = 1, and the embeddings h and t are projected
to the relation-specific hyperplane to obtain h⊥ = h−w⊤r hwr and
t⊥ = t−w⊤r twr . In this way, the embeddings of entities are learned
based on the relation that they are involved in.

TransR learns embeddings in two different vector spaces Rd and
Rk for entities and relations, respectively. It defines a projection
matrixMr to map entity embedding to relation vector space. The
score function of TransR is defined as:

fr (h, t) = −∥Mrh + r −Mr t∥22 (2)

In TransD [7], an improvement of TransR, the entities and the
relation in a triple (h,r,t) are represented by two groups of vectors:
one being h, r and t, and the other being hp , rp and tp . The latter
group is used to create the projection matrices:

Mrh = rph⊤p + I Mr t = rp t⊤p + I (3)

As in TransR, these projection matrices are used to map entity
vectors h and t to the relation vector space.

Besides these embedding methods that employ additive opera-
tion for composition of two entity vectors, there are bilinear ap-
proaches such as RESCAL, DistMult and ComplEx which use multi-
plicative operation (element-wise dot product). RESCAL represents
a relation as a matrix which describes the interactions between la-
tent representations of entities. The score of a triple in this method
is defined as:

fr (h, t) = h⊤Wr t (4)
DistMult is similar to RESCAL but restricts relations to diagonal
matrices to decrease the number of relation parameters. ComplEx
is an extension of DistMult that uses complex numbers instead of
real numbers to handle symmetric and anti-symmetric relations.
ANALOGY further optimizes the embeddings of entities and rela-
tions with respect to their analogical properties. They argue that
if two subgraphs д1 and д2 are analogous then missing triples in
one of them can be inferred by their counterparts in the other one.
ConvE is a neural network model that uses 2D convolutional layers
over embeddings. NLFeat is a graph feature model that utilizes
simple observed features of entities and relations. NeuralLp is a
rule mining system which learns first-order logical rules from KGs.
Although NLFeat and NeuralLP are not embedding-based methods,
we include them in evaluation since they were among the few of
which the results on FB15k-237 were reported in the literature.

3 EVALUATION
Motivated by the lack of a comprehensive comparison of perfor-
mance of KG embedding models, we did extensive experiments to
empirically compare the results of the most important models with
and without inverse relations. The aim of our experiments is to
investigate how much the removal of inverse relations affects the
performance of these approaches.

3.1 Datasets
The experiments are conducted on two datasets FB15k and FB15k-
237. FB15k, a subset of Freebase constructed by Bordes et al. [3],
is extensively employed for evaluating KG embedding approaches.
It contains 592,213 triples with 14,951 entities and 1,345 relations,
which were randomly split into training, test and validation sets.
As mentioned in Section 1, FB15k includes many pairs of inverse
triples, e.g., (x, /film/actor/film./film/performance/film, y) and (y,
/film/film/starring./film/performance/actor, x). Therefore, the inverse
triples of numerous test triples exist in the training set. Toutanova
and Chen [14] created FB15k-237 from FB15k by removing inverse
and near-duplicate relations. They noted that the training dataset of
FB15k has 81% test leakage as inverse relations, i.e., inverse triples
of 81% of the test triples exist in the training set. The resulting
FB15-237 contains 310,116 triples (reduced from 592,213 in FB15k)
with 14,541 entities and 237 relations (reduced from 1,345 in FB15k).

3.2 Experiment Setups
Our experiments were conducted using source codes of various
methods from several places, including the OpenKE repository 1

1https://github.com/thunlp/OpenKE



which covers implementations of TransE, TransH, TransR, TransD,
RESCAL, DistMult, and ComplEx, as well as the source codes re-
leased for ANALOGY 2 (which covers DistMult and ComplEx as
well), ComplEx 3 (which covers DistMult as well), and ConvE 4

(which covers DistMult and ComplEx as well). All source codes and
data used in our experiments are available at https://github.com/
idirlab/kgcompletion.

To evaluate different embedding methods, the widely used link
prediction task as described in [3] is used. The goal of link prediction
is to predict missing h or t in a triple (h,r,t). For each test triple
(h,r,t), the head entity h is replaced with each other entity in the
dataset, to form corrupted triples. The original test triple and its
corresponding corrupted triples are ranked by their dissimilarity
scores according to the score functions mentioned in Section 2. The
same procedure is repeated by replacing the tail entity t.

The accuracy of different embedding models is measured using
Mean Rank (MR), Hits@10 and Mean Reciprocal Rank (MRR), as
in [3]. MR is the mean of the test triples’ ranks. Hits@10 is the
percentage of test triples that are ranked within top 10. MRR is the
average multiplicative inverse of the ranks of the test triples. Higher
Hits@10 and MRR and lower MR are desirable. Besides these raw
metrics, we also used their corresponding filtered metrics [3], de-
noted FMR, FHits@10, and FMRR, respectively. They are measured
after removing those corrupted triples that appear in training, test
or validation sets. In this way, a model is not penalized for ranking
other correct triples higher than a test triple.

3.3 Results
Table 1 displays the results of link prediction on FB15k and FB15k-
237 for all compared methods, using both raw and filtered metrics.
The upward (downward, resp.) arrow beside a measure indicates
that methods with greater (smaller, resp.) values by that measure
possess higher accuracy. For each method, the table shows the orig-
inal publication where it comes from. The values in black color
are the results listed in the original publication, while a hyphen
under a measure indicates that the original publication did not list
the corresponding value. The values in other colors are obtained
through our experiments using various source codes: blue for re-
sults obtained by implementations from the OpenKE repository;
green for results from codes provided by Trouillon et al. [15] which
introduced ComplEx and also supplied an implementation of Dist-
Mult; red for Liu et al. [10] which introduced ANALOGY and also
provided implementations of DistMult and ComplEx; and orange
for code from Dettmers et al. [5] which introduced ConvE and
supplied DistMult and ComplEx implementations.

Below we summarize and explain the results in Table 1 based on
the the best performance achieved by our experiments.

(1) By conducting experiments on both FB15k and FB15k-237,
our main goal is to see how the performance of different embed-
ding models change after removal of inverse relations. The overall
observation is that the performance of all methods worsens con-
siderably on FB15k-237. For instance, the FMRR of ConvE—one
of the best performing methods under many of the metrics—has

2https://github.com/quark0/ANALOGY
3https://github.com/ttrouill/complex
4https://github.com/TimDettmers/ConvE

decreased from 68.9 (on FB15k) to 31 (on FB15k-237), and its FMR
also became much worse, from 51.2 to 277. This result suggests that
embedding-based methods may only perform well in predicting
the inverse relations. However, it is possible to leverage a simple
rule-based approach to conduct link prediction when the inverse
of a triple is available, as explained in Section 1. Besides being
simple, a rule-based system has another advantage in that it can
be applied to entities unavailable in the training set. On the other
hand, embedding models do not enjoy such a trait. The results of
two observed feature models, NLFeat and NeuarlLP, demonstrate
their strength in link prediction on FB15k. NLFeat has the highest
FMRR among all the embedding models.

(2) Many methods were proposed as superior successors of
TransE—the very first embedding model for KG completion—and
indeed outperformed TransE on FB15k. However, by raw metrics
MR, Hits@10 as well as filtered metric FMR, they all have worse
results than TransE on FB15k-237, except for almost equal perfor-
mance in a couple of cases. By raw metric MRR and filtered metric
FHits@10, still they were outperformed by TransE on FB15k-237,
except for ConvE. In terms of FMRR, methods such as DistMult,
ComplEx, and ANALOGY significantly outperformed TransE on
FB15k: TransE has an FMRR of 30.7, in comparison with DistMult
(70.5), ComplEx (72.4) and ANALOGY (72.2). But their performance
advantage over TransE under FB15k-237 is much smaller: TransE
with an FMRR of 18.0, in comparison with DistMult (29.6), ComplEx
(28.6) and ANALOGY (21.3). We hypothesize that these methods
actually improved the results of link prediction for inverse triples
and hence, after removing those triples they could not make much
improvement on link prediction results. Yang et al. [17] empirically
showed that embeddings learned by using multiplicative models
significantly outperform additive models, which is also verified by
our experiment results on FB15k. However the results on FB15k-
237 do not show high superiority of them over additive models.
This suggests their limitations in modeling the less straightforward
portion of KGs.

(3) ConvE has the best performance under many metrics. How-
ever, there is a wide margin between its performance on FB15k and
FB15k-237. For instance, its FMRR on FB15k vs. FB15k-237 is 68.9 vs.
31. This implies the necessity of more improvements of embedding
models on FB15k-237. Most of the previous embedding models tried
to be straightforward and efficient by using few parameters and
simple operators. In this way they will be easy to train and hence
scalable on large KGs. However, as the results of our experiments
show, this simplicity decreases their true power in modeling KGs.
On the other hand, increasing the number of parameters can lead to
overfitting. Dettmers et al. [5] argued that deep, multi-layer models
such as ConvE have better modeling power for complex graphs and
the experiment results appear to verify it. ConvE employs a multi-
layer convolutional neural network, for which different techniques
exist to avoid overfitting while training the model. This probably
explains why ConvE had the best overall results.

(4) For ComplEx and DistMult, we have presented the results
from several different implementations which have quite differ-
ent performance values. Similarly many of the implementations
in our experiments produced better results than those reported in

https://github.com/idirlab/kgcompletion
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Table 1: Link Prediction Results

FB15k FB15k-237
Raw Filtered Raw Filtered

Model MR↓ Hits@10↑ MRR↑ FMR↓ FHits@10↑ FMRR↑ MR↓ Hits@10↑ MRR↑ FMR↓ FHits@10↑ FMRR↑

TransE [3] 243.0
201.0

34.9
43.4

—
18.44

125.0
70.2

47.1
61.8

-
30.7

-
440.2

-
29.8

-
11.9

-
250.8

-
42.5

-
18.0

TransH [16] 211.0
213.8

42.5
47.3

-
28.3

84.0
69.3

58.5
70.1

-
16.3

-
511.8

-
29.0

-
10.5

-
309.8

-
42.9

-
16.3

TransR [9] 226.0
236.4

43.8
47.2

-
16.2

78.0
82.7

65.5
71.9

-
29.7

-
544.9

-
27.9

-
9.9

-
337.0

-
42.9

-
16.2

TransD [7] 211.0
209.8

49.4
47.4

-
16.3

67.0
65.4

74.2
70.4

-
28.3

-
506.9

-
29.4

-
10.4

-
305.2

-
42.8

-
16.2

RESCAL [12] 828.0
374.7

28.4
31.1

-
15.2

683.0
220.4

44.1
47.2

-
28.3

-
850.6

-
19.8

-
10.0

-
640.8

-
31.6

-
18.0

DistMult [17]

-
315.0
269.6
279.0
-

-
45.3
50.6
50.0
-

-
20.4
24.6
25.5
-

-
161.6
112.3
120.4
89.9

57.7
70.9
83.3
84.2
81.3

35
41.8
65.4
70.5
64.8

-
993.7
708.8
708.4
-

-
12.4
18.0
22.1
-

-
5.5
7.9
11.7
-

-
783.1
494.0
495.4
391.7

-
25.3
35.2
37.6
46.1

-
13.2
17.5
21.5
29.6

ComplEx [15]

-
347.6
266.2
292.7
-

-
44.3
48.5
49.2
-

24.2
20.4
23.0
24.9
-

-
189.5
106.0
132.9
97.5

84.0
73.0
82.6
82.5
79.2

69.2
51.3
67.5
72.4
62.3

-
1169.2
630.7
708.5
-

-
8.2
18.7
21.1
-

-
3.9
8.1
11.3
-

-
955.1
415.7
495.1
456.5

-
20.7
36.9
36.7
45.7

-
10.9
18.4
20.9
28.6

ANALOGY [10] -
279.4

-
50.5

25.3
26.0

-
120.9

85.4
84.3

72.5
72.2

-
715.9

-
21.9

-
11.5

-
502.7

-
37.4

-
21.3

ConvE [5] -
190.8

-
52.5

-
27.2

64.0
51.2

87.3
85.1

74.5
68.9

-
489.3

-
28.4

-
15.4

246.0
277.0

49.1
48.5

31.6
31.0

NLFeat [14] - - - - 87.0 82.2 - - - - 34.7 22.6
NeuralLp [18] - - - - 83.7 76.0 - - - - 36.2 24.0
• Published results • OpenKE : https://github.com/thunlp/OpenKE • ComplEx : https://github.com/ttrouill/complex
• ANALOGY : https://github.com/quark0/ANALOGY • ConvE : https://github.com/TimDettmers/ConvE

the original publications. We attribute these differences to differ-
ent dimensionalities of vectors representing entities and different
optimization methods that were employed in the implementations.

4 CONCLUSIONS
In this paper, we showed that the impact of removing inverse triples
is significant on performance of embedding models. This indicates
the necessity of more improvements and research on KG completion
methods that use embedding models. It also becomes apparent
that a more challenging, realistic dataset is required for evaluating
embedding models. FB15k-237 is a valuable dataset toward that
goal but its size is much smaller than that of a real KG.
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