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ABSTRACT

In the High Frequency (HF) band, ranging from 3-30 MHz, long-range communications can be

obtained by bouncing signals off the ionosphere without any significant infrastructure. However,

the ionosphere changes rapidly, which can cause potentially harmful effects to the transmitted

signal. This has motivated research into using adaptive equalization in this band to reverse these

effects. However, a disadvantage of this technique is that based on the equalizer model and learning

algorithm used, the error propagation may become significantly large, resulting in insufficient

equalization to respond to these variations. To counter this, we investigate the usage of cognitive

equalization, where an adaptive equalizer is equipped with the ability to change its structure (i.e.

number of taps, step size, etc.) based on the current channel conditions and use probability of error

to characterize its performance.

INTRODUCTION

In the High Frequency (HF) band, ranging from 3-30 MHz, long-range communications can be

obtained by bouncing transmitted signals off the ionosphere without any significant channel in-

frastructure (i.e. satellites, cell towers). This lack of equipment leads to further benefits; such

as, low-cost communications and portable systems. In [1], we showed that an HF receiver, con-

sisting of a software-defined radio, HF antenna and matching circuit, was capable of observing

long-range communications by being able to hear from multiple distant locations including Tokyo,

Japan. Because of these reasons, the HF band has been a popular band of interest for a broad range

of applications and has often been viewed as a back-up for communication systems in the event

of an adversarial attack [2]. HF radios have also been used during emergency crises, in place of

mainstream communication systems that may be significantly damaged [3]. In addition, because

of their portability, HF systems have been commonly used by the military to feasibly transmit in

treacherous locations [4].

However, the ionosphere is very unstable and can vary based on multiple factors including “the

time of day, location, and current season” [5]. These variations can cause harmful effects to the

transmitted signal, such as multipath and fading. Thus, different signal processing techniques must
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be implemented at the receiver to counter these time-varying channel effects. One such technique

that can be used is adaptive equalization, where the taps of an equalizer are adjusted based on the

incoming signal via a learning algorithm (i.e. Least Means Squares, Recursive Least Squares, etc.).

There has already been a large amount of research in using adaptive equalization in the HF band.

However, based on the particular equalizer used, the algorithm may be prone to significant error

propagation — to the extent where the taps are no longer able to accurately reverse the channel

effects. In addition, due to the frequent ionospheric variations, it may be possible, for example,

that an equalizer with fewer taps may be sufficient — enabling a lower computational complexity

to be obtained compared to an equalizer with a high number of taps.

Thus, in this paper, we introduce the concept of cognitive equalization as a means of improving the

effectiveness of adaptive equalizers. We use cognitive equalization to vary the tap length and step

size of an adaptive equalizer based on the current channel conditions. These potential combinations

of tap lengths and step sizes are determined using a cognitive engine (CE), “an intelligent agent

which observes the radio environment and chooses the best communication settings that best meet

the application’s goal” [6]. The CE is implemented in software and used at the receiver so that

the above attributes of the equalizer can be adjusted if the current configuration is not capable of

compensating for impairments caused by the channel. The structure of the paper is as follows:

first, we provide background on Decision-Feedback Equalizers (DFEs), the Least Means Squares

[LMS] algorithm, CEs, and the Watterson Model — a common model used for HF simulations.

We then discuss the setup of our experiments comparing the effectiveness of a cognitive and preset

(i.e. fixed tap-length and step size) LMS-DFE and provide an analysis of the results. Lastly, we

summarize the work completed in this effort and describe future objectives.

BACKGROUND

A. Decision-Feedback Equalization

There are two main kinds of equalizers: linear and nonlinear. The main distinction between when

an equalizer from either category is used in a particular situation is dependent on the amount of

inter-symbol interference (ISI) present in the channel. For the case where a channel has severe ISI,

a linear equalizer will end up amplifying the noise, but the nonlinear equalizers are structured to

remove it [7]. A DFE is an example of a nonlinear equalizer, and its general structure is shown

in figure 1 [7]. The feedforward and feedback filters are both linear filters and need not have the

same tap length or step size. The purpose of the feedback filter is “to eliminate the ISI caused

by previously detected symbols on the current symbol to be detected” [7]. The detector takes as

input the difference between the feedforward and feedback filters and assigns it a value based on

a particular metric (i.e. minimum distance) and the expected modulation. If BPSK was used, for

example, then the detector would determine whether or not the incoming values were 1 or −1. A

standard formulation of a DFE is:

Îk =
0∑

j=−Ki

cjvk−j +

K2∑

j=1

cj ˇIk−j (1)
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taps adapt based on the current value of e(n) is more effective in modelling channel variations

compared to performing an average [10]. To find the subsequent tap vector that is most effective

in optimizing the above cost function, the following equation is used to update the taps at each

iteration of the adaptation process:

ŵ(n+ 1) = ŵ(n) + µu(n)e∗(n) (5)

where µ represents the step-size. Thus, the LMS algorithm can be used for updating the weights

of the DFE.

C. Cognitive Engines

As stated in the introduction, CEs are used to determine the optimal communication parameters

for a radio based on the current channel conditions. However, the search space a CE will parse

through in order to find such parameters (i.e. modulation, coding, antenna technique, etc.) may

be significantly extensive. In most applications, the radio will not have the luxury of time to try

each option to determine which set is optimal [11]. However, if the radio only selects the best

option out of the options it has always tried, it may never utilize a potentially better configuration.

This is the classic problem of exploration vs. exploitation. Exploration is the process of randomly

selecting an option; however, exploitation is the process of using the best option out of the options

that have already been explored [11]. In order to find this balance, we implement CEs through

the framework of reinforcement learning, a subset of machine learning where the objective is to

determine the best set of actions that maximize/minimize a particular objective.

Reinforcement learning algorithms train a model by sending it rewards based on the actions taken.

Rewards are “measure[s] of success” [12] and are determined based on their relationship to the

objective being maximized/minimized. Some examples of rewards within the realm of communi-

cations include maximizing throughput and minimizing bit error rates (BER). Similar to [6], we

assume that each option’s ability to obtain a reward is characterized by the estimated average of

the reward distribution (i.e. calculated based on how many times the option has been used). In

summary, CEs use reinforcement learning to find the optimal transmission parameters that maxi-

mize/minimize a certain objective. For this paper, an ǫ-greedy CE is implemented, where explo-

ration occurs with probability ǫ, and exploitation occurs with probability 1− ǫ [12].

D. Watterson Model

As stated in the introduction, the Watterson model is the most commonly used model for simulat-

ing ionospheric effects on HF transmissions. In [13], Clark Watterson introduced the model and

verified it using over-the-air measurements. Watterson depicts the ionosphere as a tapped delay

line, with each tap modulating a delayed version of the signal in both amplitude and phase, as

shown in figure 2 [14]. Each tap of the delay line has a bivariate Gaussian distribution

Gi(t) = Gia(t)e
j∗2∗π∗via∗t +Gib(t)e

j∗2∗π∗vib∗t (6)
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