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ABSTRACT

In the High Frequency (HF) band, ranging from 3-30 MHz, long-range communications can be
obtained by bouncing signals off the ionosphere without any significant infrastructure. However,
the ionosphere changes rapidly, which can cause potentially harmful effects to the transmitted
signal. This has motivated research into using adaptive equalization in this band to reverse these
effects. However, a disadvantage of this technique is that based on the equalizer model and learning
algorithm used, the error propagation may become significantly large, resulting in insufficient
equalization to respond to these variations. To counter this, we investigate the usage of cognitive
equalization, where an adaptive equalizer is equipped with the ability to change its structure (i.e.
number of taps, step size, etc.) based on the current channel conditions and use probability of error
to characterize its performance.

INTRODUCTION

In the High Frequency (HF) band, ranging from 3-30 MHz, long-range communications can be
obtained by bouncing transmitted signals off the ionosphere without any significant channel in-
frastructure (i.e. satellites, cell towers). This lack of equipment leads to further benefits; such
as, low-cost communications and portable systems. In [1], we showed that an HF receiver, con-
sisting of a software-defined radio, HF antenna and matching circuit, was capable of observing
long-range communications by being able to hear from multiple distant locations including Tokyo,
Japan. Because of these reasons, the HF band has been a popular band of interest for a broad range
of applications and has often been viewed as a back-up for communication systems in the event
of an adversarial attack [2]. HF radios have also been used during emergency crises, in place of
mainstream communication systems that may be significantly damaged [3]. In addition, because
of their portability, HF systems have been commonly used by the military to feasibly transmit in
treacherous locations [4].

However, the ionosphere is very unstable and can vary based on multiple factors including “the
time of day, location, and current season” [5]. These variations can cause harmful effects to the

transmitted signal, such as multipath and fading. Thus, different signal processing techniques must
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be implemented at the receiver to counter these time-varying channel effects. One such technique
that can be used is adaptive equalization, where the taps of an equalizer are adjusted based on the
incoming signal via a learning algorithm (i.e. Least Means Squares, Recursive Least Squares, etc.).
There has already been a large amount of research in using adaptive equalization in the HF band.
However, based on the particular equalizer used, the algorithm may be prone to significant error
propagation — to the extent where the taps are no longer able to accurately reverse the channel
effects. In addition, due to the frequent ionospheric variations, it may be possible, for example,
that an equalizer with fewer taps may be sufficient — enabling a lower computational complexity
to be obtained compared to an equalizer with a high number of taps.

Thus, in this paper, we introduce the concept of cognitive equalization as a means of improving the
effectiveness of adaptive equalizers. We use cognitive equalization to vary the tap length and step
size of an adaptive equalizer based on the current channel conditions. These potential combinations
of tap lengths and step sizes are determined using a cognitive engine (CE), “an intelligent agent
which observes the radio environment and chooses the best communication settings that best meet
the application’s goal” [6]. The CE is implemented in software and used at the receiver so that
the above attributes of the equalizer can be adjusted if the current configuration is not capable of
compensating for impairments caused by the channel. The structure of the paper is as follows:
first, we provide background on Decision-Feedback Equalizers (DFEs), the Least Means Squares
[LMS] algorithm, CEs, and the Watterson Model — a common model used for HF simulations.
We then discuss the setup of our experiments comparing the effectiveness of a cognitive and preset
(i.e. fixed tap-length and step size) LMS-DFE and provide an analysis of the results. Lastly, we
summarize the work completed in this effort and describe future objectives.

BACKGROUND
A. Decision-Feedback Equalization

There are two main kinds of equalizers: linear and nonlinear. The main distinction between when
an equalizer from either category is used in a particular situation is dependent on the amount of
inter-symbol interference (ISI) present in the channel. For the case where a channel has severe ISI,
a linear equalizer will end up amplifying the noise, but the nonlinear equalizers are structured to
remove it [7]. A DFE is an example of a nonlinear equalizer, and its general structure is shown
in figure 1 [7]. The feedforward and feedback filters are both linear filters and need not have the
same tap length or step size. The purpose of the feedback filter is “to eliminate the ISI caused
by previously detected symbols on the current symbol to be detected” [7]. The detector takes as
input the difference between the feedforward and feedback filters and assigns it a value based on
a particular metric (i.e. minimum distance) and the expected modulation. If BPSK was used, for
example, then the detector would determine whether or not the incoming values were 1 or —1. A
standard formulation of a DFE is:
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Figure 1: Typical DFE Structure - from [7]

where c; represents the taps of the DFE, v represents the sequences received from the channel,
(K1 + 1) and K, are the number of taps of the feedforward and feedback filters respectively, I
represents symbols decoded in previous iterations, and I represents the output of the equalizer
[8]. In equation 1, the first summation represents the feedforward filter and the second represents

the feedback filter.

Two common modes of operation for equalizers are reference-directed and decision-directed [9].
In reference-directed mode, a small portion of data — referred to as a training sequence — is sent
to an equalizer to enable its taps to be adjusted using a learning algorithm prior to transmission of
the actual (i.e. testing) data. This is done to reduce the probability of the equalizer making errors
but comes at the cost of sending symbols to train instead of the actual data. Once this training
phase is complete, the equalizer will transition into decision-directed mode, where the taps derived
from the training session are now frozen. The testing data is then sent to the equalizer, which is
now only able to use the frozen taps to remove any impairments in the received signal.

B.  LMS Algorithm

As stated in Section A., a DFE can be adaptive if a learning algorithm is used to update the weights
of the feedforward and feedback filters. One such algorithm that can be used is the LMS algorithm,
which is derived as follows [10]. First, the output of the equalizer is determined as

y(n) = (nyu(n) 2)

where 1! represents the estimate of the ideal weight vector, H represents the Hermitian transpo-
sition, and u(n) represents the input vector. Once y(n) is obtained, if the desired signal is known
at time step n, the error can be obtained using

e(n) = d(n) —y(n) (3)

where d(n) is the desired signal. The objective of the LMS algorithm is to determine the weight
vector that minimizes the following cost function:

J(n) = Elle(n)’] = e(n)e*(n) 4)

where E represents the expectation. The approximation in equation 4 is made because having the



taps adapt based on the current value of e(n) is more effective in modelling channel variations
compared to performing an average [10]. To find the subsequent tap vector that is most effective
in optimizing the above cost function, the following equation is used to update the taps at each
iteration of the adaptation process:

w(n+1) =w(n) + pu(n)e*(n) Q)

where p represents the step-size. Thus, the LMS algorithm can be used for updating the weights
of the DFE.

C. Cognitive Engines

As stated in the introduction, CEs are used to determine the optimal communication parameters
for a radio based on the current channel conditions. However, the search space a CE will parse
through in order to find such parameters (i.e. modulation, coding, antenna technique, etc.) may
be significantly extensive. In most applications, the radio will not have the luxury of time to try
each option to determine which set is optimal [11]. However, if the radio only selects the best
option out of the options it has always tried, it may never utilize a potentially better configuration.
This is the classic problem of exploration vs. exploitation. Exploration is the process of randomly
selecting an option; however, exploitation is the process of using the best option out of the options
that have already been explored [11]. In order to find this balance, we implement CEs through
the framework of reinforcement learning, a subset of machine learning where the objective is to
determine the best set of actions that maximize/minimize a particular objective.

Reinforcement learning algorithms train a model by sending it rewards based on the actions taken.
Rewards are “measure[s] of success” [12] and are determined based on their relationship to the
objective being maximized/minimized. Some examples of rewards within the realm of communi-
cations include maximizing throughput and minimizing bit error rates (BER). Similar to [6], we
assume that each option’s ability to obtain a reward is characterized by the estimated average of
the reward distribution (i.e. calculated based on how many times the option has been used). In
summary, CEs use reinforcement learning to find the optimal transmission parameters that maxi-
mize/minimize a certain objective. For this paper, an e-greedy CE is implemented, where explo-
ration occurs with probability €, and exploitation occurs with probability 1 — € [12].

D. Watterson Model

As stated in the introduction, the Watterson model is the most commonly used model for simulat-
ing ionospheric effects on HF transmissions. In [13], Clark Watterson introduced the model and
verified it using over-the-air measurements. Watterson depicts the ionosphere as a tapped delay
line, with each tap modulating a delayed version of the signal in both amplitude and phase, as
shown in figure 2 [14]. Each tap of the delay line has a bivariate Gaussian distribution

Gi (t) = Gia<t)€j*2*ﬂwm*t + Gib(t)ej*2*7r*vib*t (6)
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Figure 2: Watterson Model - from [14]

where a and b represent the magneto-ionic components, G;(t) represents the tap-gain function,
Gi.(t) and G (t) represent bivariate Gaussian distributions, and v;, and v;;, represent Doppler shifts
[14]. Watterson’s work also verified that one consequence of using the HF band is the transmitted
signal being susceptible to Rayleigh fading. However, to obtain this model, Watterson assumed that
the channel was stationary in time and frequency, making it only sufficient for small bandwidths
[13]. The International Telecommunications (ITU) has published a standardized version of the
Watterson model across different channel conditions [14]. The ITU’s version of the Watterson
model consists of a “tapped delay line with only two taps... The taps are fading independently with
a Rayleigh (i.e. complex Gaussian) probability density function and a Gaussian fading spectrum”
[15]. The ITU recommended channel models used in our experiments are listed in table 1.

NUMERICAL RESULTS

In this work, we compare the performance of a preset LMS-DFE with our cognitive equalization
technique. Matlab was used to simulate the ITU channel models and implement the LMS-DFE
[7]. We assume BPSK modulation is used and implement the detector of the DFE to assign the
incoming values as BPSK symbols. Based on the current HF military standards, as summarized in
[16], we assume a sample rate of 6400 Hz for the simulations.

The objective of the e-greedy CE was to determine the tap-lengths of the feedforward and feedback
filters, and the step size of the DFE that would minimize the probability of error. The e-greedy
CE uses the average minimum distance (i.e. sum of the minimum distances in reference to the
symbols of the BPSK constellation divided by the length of a full testing sequence) as a basis
for distinguishing between the configurations. As explained in Section C., when the e-greedy
CE explores it will select an equalizer configuration randomly. However, when it exploits, the
equalizer configuration with the smallest error rate, represented by the average minimum distance,
will be chosen. When a configuration is selected, its average minimum distance is updated.

For simplicity, it was assumed that the feedforward and feedback filters were implemented with the
same step sizes for each option selected. The selection of feedforward taps varied from 5-25 taps,
and the selection of feedback taps varied from 7-14 taps. The different step size values that could
be selected were 0.01, 0.001, 0.0001, and 0.00001. This resulted in a total of 757 configurations



Table 1: ITU HF Channel Conditions from [14]

Channel Condition Delay Spread (ms) | Doppler Spread (Hz)
Low Latitude, Quiet (LQ) 0.5 0.5

Low Latitude, Moderate (LM) | 2 1.5

Mid Latitude, Quiet (MQ) 0.5 0.1

Mid Latitude, Moderate (MM) | 1 0.5

Mid Latitude, Disturbed (MD) | 2 1

High Latitude, Quiet (HQ) 1 0.5

for the e-greedy CE to explore/exploit, with € set to 0.3. The fixed LMS-DFE was set to have 15
feedforward taps, 10 feedback taps, and a step size of 0.001. The probabilities of error obtained
for each SNR were averaged over 1000 independent trials (i.e. sending a training and testing

sequence). The training sequence consisted of 500 symbols, and the testing sequence consisted of
2000 symbols.

Figures 3 - 8 show the results of our simulations for all of the channel conditions displayed in
table 1. The figures indicate that the e-greedy CE outperforms the preset LMS-DFE in each of
the channel models. This is primarily due to its ability to characterize/select the tap-lengths and
step sizes that provide fewer errors, while the preset LMS-DFE is unable to adapt. Figures 6 and
8 show that the error probabilities for both equalizers are slightly higher than the other scenarios,
which may be due to the larger degradation of the channels as indicated by their respective delay
and frequency spreads in table 1. This indicates the need for more robust equalizer algorithms to
be utilized (i.e. turbo, frequency-domain, etc.) However, the e-greedy CE is still able to provide a
smaller amount of error overall.
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CONCLUSIONS

In this paper, we have introduced the concept of cognitive equalization as a means of maintaining
reliable communications in the HF band. As stated earlier, being able to adjust the parameters of

6



LMS-DFE: Fixed vs. Cognitive - Low Latitude, Moderate Conditions LMS-DFE: Fixed vs. Cognitive - Mid Latitude, Moderate Conditions 2 %ZMS-DFE: Fixed vs. Cognitive - Mid Latitude, Disturbed Conditions
0.36 02 3 -
©— Fixed: FF = 15, FB = 10, Deta = 0.0001 a S— Fixed: FF = 15, FB = 10, Delta = 0.0001 03 s S— Fixed: FF = 15,FB = 10, Delta = 00001
034 —6— c-greedy CE: ¢ = 0.3 o18F \ ©— c-greedy CE: ¢ =03 o< —6— c-greedy CE: ¢ = 0.3
S a\ 6,
A\ 0.28
032 LEEN o a 0.16 R T tTe—e )
o N N\ b ~ \ oz O/Q\ S |
5 03 o o—= 5 N 5 \
i (i Ok . W0 0.24 \
‘5 028 \ A1 e 5
2z \ 2012 N Zox \6\
3 h 5 S, a 3 .
g% \ 3 L NP 2 02 ha
o B 5 01 S o 8
a 024 ~ o : % o8
AN o N -
022 5o & X \S\.\ 0.16 \/\\
T e 0.06 s © S .
02 A ~o—f g 0.14 N A_
~e’ N
e 0.12 -
0.18 &
0 5 10 15 0 5 10 15 0 5 10 15
SNR (dB) SNR (dB)

SNR (dB)

Figure 6: Probability of Error for Figure 7: Probability of Error for Figure 8: Probability of Error for
LM Channel MM Channel MD Channel

an equalizer is critical, especially if channels share similar characteristics as the ionosphere, which
exhibits frequent variations. We’ve used an e-greedy CE to adjust the parameters of an LMS-DFE
so that it can alter its structure with the objective of minimizing the probability of error. We have
verified that under multiple, distinct HF environments, our cognitive equalization technique is able
to provide a better performance than a fixed equalizer. One future direction we will investigate
is expanding the concept of cognitive equalization by varying the learning algorithm used by the
equalizer and the actual equalizer model itself (i.e. DFE, frequency-domain, decision-directed,
turbo, etc.), as well as the tap length and step size. We will also use different CE algorithms,
including meta-CEs [17], to observe if any performance improvements can be obtained. In additon,
we will work towards verifying the effectiveness of cognitive equalization via long-range, over the
air experiments.
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