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ABSTRACT

The data revolution is fueled by advances in machine learning,
databases, and hardware design. Programmable accelerators are
making their way into each of these areas independently. As
such, there is a void of solutions that enables hardware accelera-
tion at the intersection of these disjoint fields. This paper sets out
to be the initial step towards a unifying solution for in-Database
Acceleration of Advanced Analytics (DAnA). Deploying special-
ized hardware, such as FPGAs, for in-database analytics currently
requires hand-designing the hardware and manually routing the
data. Instead, DAnA automatically maps a high-level specifica-
tion of advanced analytics queries to an FPGA accelerator. The
accelerator implementation is generated for a User Defined Func-
tion (UDF), expressed as a part of an SQL query using a Python-
embedded Domain-Specific Language (DSL). To realize an effi-
cient in-database integration, DAnA accelerators contain a novel
hardware structure, Striders, that directly interface with the buffer
pool of the database. Striders extract, cleanse, and process the
training data tuples that are consumed by a multi-threaded FPGA
engine that executes the analytics algorithm. We integrate DAnA
with PostgreSQL to generate hardware accelerators for a range of
real-world and synthetic datasets running diverse ML algorithms.
Results show that DAnA-enhanced PostgreSQL provides, on aver-
age, 8.3x end-to-end speedup for real datasets, with a maximum
of 28.2x. Moreover, DAnA-enhanced PostgreSQL is, on average,
4.0x faster than the multi-threaded Apache MADLIib running on
Greenplum. DAnA provides these benefits while hiding the com-
plexity of hardware design from data scientists and allowing them
to express the algorithm in ~30-60 lines of Python.
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1. INTRODUCTION

Relational Database Management Systems (RDBMSs) are the
cornerstone of large-scale data management in almost all major en-
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Figure 1: DAnA represents the fusion of three research directions,
in contrast with prior works [3-5,7-9] that merge two of the areas.

terprise settings. However, data-driven applications in such envi-
ronments are increasingly migrating from simple SQL queries to-
wards advanced analytics, especially machine learning (ML), over
large datasets [1,2]. As illustrated in Figure 1, there are three con-
current and important, but hitherto disconnected, trends in this data
systems landscape: (1) enterprise in-database analytics [3,4] , (2)
modern hardware acceleration platforms [5, 6], and (3) program-
ming paradigms which facilitate the use of analytics [7, 8].

The database industry is investing in the integration of ML algo-
rithms within RDBMSs, both on-premise and cloud-based [10,11].
This integration enables enterprises to exploit ML without sacrific-
ing the auxiliary benefits of an RDBMS, such as transparent scal-
ability, access control, security, and integration with their business
intelligence interfaces [7, 8, 12—18]. Concurrently, the computer
architecture community is extensively studying the integration of
specialized hardware accelerators within the traditional compute
stack for ML applications [5,9, 19-21]. Recent work at the inter-
section of databases and computer architecture has led to a growing
interest in hardware acceleration for relational queries as well. This
includes exploiting GPUs [22] and reconfigurable hardware, such
as Field Programmable Gate Arrays (FPGAs) [3,4,23-25], for rela-
tional operations. Furthermore, cloud service providers like Ama-
zon AWS [26], Microsoft Azure [27], and Google Cloud [28], are
also offering high-performance specialized platforms due to the po-
tential gains from modern hardware. Finally, the applicability and
practicality of both in-database analytics and hardware acceleration
hinge upon exposing a high-level interface to the user. This triad
of research areas are currently studied in isolation and are evolv-
ing independently. Little work has explored the impact of moving
analytics within databases on the design, implementation, and in-
tegration of hardware accelerators. Unification of these research
directions can help mitigate the inefficiencies and reduced produc-
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tivity of data scientists who can benefit from in-database hardware
acceleration for analytics. Consider the following example.
Example 1 A marketing firm uses the Amazon Web Services (AWS)
Relational Data Service (RDS) to maintain a PostgreSQL database
of its customers. A data scientist in that company forecasts the
hourly ad serving load by running a multi-regression model across
a hundred features available in their data. Due to large training
times, she decides to accelerate her workload using FPGAs on
Amazon EC2 FI instances [26]. Currently, this requires her to
learn a hardware description language, such as Verilog or VHDL,
program the FPGAs, and go through the painful process of hard-
ware design, testing, and deployment, individually for each ML al-
gorithm. Recent research has developed tools to simplify FPGA
acceleration for ML algorithms [19, 29, 30]. However, these solu-
tions do not interface with or support RDBMSs, requiring her to
manually extract, copy, and reformat her large dataset.

To overcome the aforementioned roadblocks, we devise DANA,
a cohesive stack that enables deep integration between FPGA ac-
celeration and in-RDBMS execution of advanced analytics. DAnA
exposes a high-level programming interface for data scientists/an-
alysts based on conventional languages, such as SQL and Python.
Building such a system requires: (1) providing an intuitive pro-
gramming abstraction to express the combination of ML algo-
rithm and required data schemas; and (2) designing a hardware
mechanism that transparently connects the FPGA accelerator to the
database engine for direct access to the training data pages.

To address the first challenge, DAnA enables the user to express
RDBMS User-Defined Functions (UDFs) using familiar practices
of Python and SQL. The user provides their ML algorithm as an
update rule using a Python-embedded Domain Specific Language
(DSL), while an SQL query specifies data management and re-
trieval. To convert this high level ML specification into an acceler-
ated execution without manual intervention, we develop a compre-
hensive stack. Thus, DAnA is a solution that breaks the algorithm-
data pair into software execution on the RDBMS for data retrieval
and hardware acceleration for running the analytics algorithm.

With respect to the second challenge, DAnA offers Striders,
which avoid the inefficiencies of conventional Von-Neumann CPUs
for data handoff by seamlessly connecting the RDBMS and FPGA.
Striders directly feed the data to the analytics accelerator by walk-
ing Jacthe RDBMS buffer pool. Circumventing the CPU allevi-
ates the cost of data transfer through the traditional memory sub-
system. These Striders are backed with an Instruction Set Ar-
chitecture (ISA) to ensure programmability and ability to cater to
the variations in the database page organization and tuple length
across different algorithms and training datasets. They are de-
signed to ensure multi-threaded acceleration of the learning al-
gorithm to amortize the cost of data accesses across concurrent
threads. DAnNA automatically generates the architecture of these
accelerator threads, called execution engines, that selectively com-
bine a Multi-Instruction Multi-Data (MIMD) execution model with
Single-Instruction Multi-Data (SIMD) semantics to reduce the in-
struction footprint. While generating this MIMD-SIMD accelera-
tor, DANA tailors its architecture to the ML algorithm’s computa-
tion patterns, RDBMS page format, and available FPGA resources.
As such, this paper makes the following technical contributions:

e Merges three disjoint research areas to enable transparent and
efficient hardware acceleration for in-RDBMS analytics. Data
scientists with no hardware design expertise can use DAnA to
harness hardware acceleration without manual data retrieval and
extraction whilst retaining familiar programming environments.

e Exposes a high-level programming interface, which combines
SQL UDFs with a Python DSL, to jointly specify training data

and computation. This unified abstraction is backed by an ex-

tensive compilation workflow that automatically transforms the

specification to an accelerated execution.

o Integrates an FPGA and an RDBMS engine through Striders that
are a novel on-chip interfaces. Striders bypass CPU to directly
access the training data from the buffer pool, transfer this data
onto the FPGA, and unpack the feature vectors and labels.

e Offers a novel execution model that fuses thread-level and data-
level parallelism to execute the learning algorithm computations.
This model exposes a domain specific instruction set architecture
that offers automation while providing efficiency.

We prototype DAnA with PostgreSQL to automatically accel-
erate the execution of several popular ML algorithms. Through a
comprehensive experimental evaluation using real-world and syn-
thetic datasets, we compare DANnA against the popular in-RDBMS
ML toolkit, Apache MADIib [15], on both PostgreSQL and its
parallel counterpart, Greenplum. Using Xilinx UltraScale+ VU9P
FPGA, we observe DANnA generated accelerators provide on aver-
age 8.3x and 4.0x end-to-end runtime speedups over PostgreSQL
and Greenplum running MADIib, respectively. An average of 4.6x
of the speedup benefits are obtained through Striders, as they effec-
tively bypass the CPU and its memory subsystem overhead.

2. BACKGROUND

Before delving into the details of DAnA, this section discusses
the properties of ML algorithms targeted by our holistic framework.

2.1 Iterative Optimization and Update Rules

During training, a wide range of supervised machine learning
algorithms go through a cyclic process that demand constant itera-
tion, tuning, and improvement. These algorithms use optimization
procedures that iteratively minimize a loss function — distinct for
each learning algorithm — by using one tuple (input-output pair) at
a time to generate updates for the learning model. Each ML al-
gorithm has a specific loss function that mathematically captures
the measure of the learning model’s error. Improving the model
corresponds to minimizing this loss function using an update rule,
which is applied repeatedly over the training model, one training
data tuple (input-output pair) at a time, until convergence.

Example. Given a set of N pairs of {(x,y}),..., (xn,yx)} con-
stituting the training data, the goal is to find a hypothesis function
h(w®) x) that can accurately map x — y. The equation below spec-
ifies an entire update rule, where [(w(’ >7x,-,yf) is the loss function
that signifies the error between the output y* and the predicted out-
put estimated by a hypothesis function h(w(’ ) ,x;) for input x.

(W xi,37))
ow()

For each (x,y*) pair, the goal is to a find a model (w) that mini-
mizes the loss function l(w(’),xi,yi) using an iterative update rule.
While the hypothesis (y = h(w,x)) and loss function vary substan-
tially across different ML algorithms, the optimization algorithm
that iteratively minimizes the loss function remains fixed. As such,
the two required components are the hypothesis function to define
the machine learning algorithm and an optimization algorithm that
iteratively applies the update rule.

WD) 20

ey

Amortizing the cost of data accesses by parallelizing the op-
timization. In Equation (1), a single (x;, y;) tuple is used to update
the model. However, it is feasible to use a batch of tuples and com-
pute multiple updates independently when the optimizer supports
combining partial updates [31-37]. This offers a unique opportu-
nity for DAnA to rapidly consume data pages brought on-chip by

1318



Hardware Strider Design ]Catalogl FPGA
G t > Execution Engine | (Accelerator Design
| _» enera O!’/ Design & Execution Binary) W %
........ Translator >| ’T ¢ Stider Files F1 ..
linearR = dana.algo (m, in, .... , out) N 4 \ Instructions / Access Methods . .
err = linearR subtract(sum, output) 4 Operation Map Buffer Pool
grad = linearR.multiply(err, input) Hierarchical gomb Sy Compute | Interconnect
\'\?veirR.setlnter(grad) Dataflow Graph b L 4 Instructions Data Pages
SQL Query

SELECT * FROM dana.linearR Query Tree . Execution Buffer
“training.data. table"): Parser —» (Logical Plan)[ > Optimizer —>" Plan > Executor—»y Manager

Figure 2: Overview of DAnA, that integrates FPGA acceleration with the RDBMS engine. The Python-embedded DSL is an interface
to express the ML algorithm that is converted to hardware architecture and its execution schedules (stored in the RDBMS catalog). The
RDBMS engine fills the buffer pool. FPGA Striders directly access the data pages to extract the tuples and feed them to the threads.
Shaded areas show the entangled components of RDBMS and FPGA working in tandem to accelerate in-database analytics.

Striders while efficiently utilizing the large, ever-growing amounts
of compute resources available on the FPGAs through simultane-
ous multi-threaded acceleration. Examples of commonly used it-
erative optimization algorithms that support parallel iterations are
variants of gradient descent methods, which can be applied across
a diverse range of ML models. DAnA is equipped to accelerate the
training phase of any hypothesis and objective function that can be
minimized using such iterative optimization. Thus, the user simply
provides the update rule via the DAnA DSL described in §4.1.

In addition to providing a background on properties of machine
learning algorithms targeted by DAnA, Appendix A in our tech
report (http://act-lab.org/artifacts/dana/addendum.pdf) pro-
vides a brief overview on Field Programmable Gate Arrays (FP-
GAs). It provides details about the reconfigurability of FPGAs and
how they offer a potent solution for hardware acceleration.

2.2 Insights Driving DANA

Database and hardware interface considerations. To obtain
large benefits from hardware acceleration, the overheads of a tradi-
tional Von-Neumann architecture and memory subsystem need to
be avoided. Moreover, data accesses from the buffer pool need to be
at large enough granularities to efficiently utilize the FPGA band-
width. DAnA satisfies these criteria through Striders, its database-
aware reconfigurable memory interface, discussed in § 5.1.

Algorithmic considerations. The training data retrieved from the
buffer pool and stored on-chip must be consumed promptly to avoid
throttling the memory resources on the FPGA. DAnA achieves
this by leveraging the algorithmic properties of iterative optimiza-
tion to execute multiple instances of the update rule. The Python-
embedded DSL provides a concise means of expressing this update
rule for a broad set of algorithms while facilitating parallelization.

DAnA leverages these insights to provide a cross-stack solution
that generates FPGA-synthesizable accelerators that directly inter-
face with the RDBMS engine’s buffer pool. The next section pro-
vides an overview of DAnA.

3. DANA WORKFLOW

Figure 2 illustrates DAnA’s integration within the traditional
software stack of data management systems. With DAnA, the data
scientist specifies her desired ML algorithm as a UDF using a sim-
ple DSL integrated within Python. DAnA performs static analysis
and compilation of the Python functions to program the FPGA with
a high-performance, energy-efficient hardware accelerator design.
The hardware design is tailored to both the ML algorithm and page
specifications of the RDBMS engine. To run the hardware accel-
erated UDF on her training data, the user provides a SQL query.
DAnNA stores accelerator metadata (Strider and execution engine

instruction schedules) in the RDBMS’s catalog along with the name
of a UDF to be invoked from the query. As shown in Figure 2, the
RDBMS catalog is shared by the database engine and the FPGA.
The RDBMS parses, optimizes, and executes the query while treat-
ing the UDF as a black box. During query execution, the RDBMS
fills the buffer pool, from which DAnA ships the data pages to the
FPGA for processing. DAnA and the RDBMS engine work in tan-
dem to generate the appropriate data stream, data route, and accel-
erator design for the {ML algorithm, database page layout, FPGA}
triad. Each component of DAnA is briefly described below.

Programming interface. The front end of DAnA exposes a
Python-embedded DSL (discussed in §4.1) to express the ML algo-
rithm as a UDF. The UDF includes an update rule that specifies how
each tuple or record in the training data updates the ML model. It
also expects a merge function that specifies how to process multiple
tuples in parallel and aggregate the resulting ML models. DAnA’s
DSL constitutes a diverse set of operations and data types that cater
to a wide range of advanced analytics algorithms. Any legitimate
combination of these operations can be automatically converted to
a final synthesizable FPGA accelerator.

Translator.  The user provided UDF is converted into a
hierarchical DataFlow Graph (ADFG) by DAnA’s parser, discussed
in detail in §4.4. Each node in the nDFG represents a mathe-
matical operation allowed by the DSL, and each edge is a multi-
dimensional vector on which the operations are performed. The in-
formation in the ADFG enables DAnA’s backend to optimally cus-
tomize the reconfigurable architecture and schedule and map each
operation for a high-performance execution.

Strider-based customizable machine learning architecture.
To target a wide range of ML algorithms, DAnA offers a paramet-
ric reconfigurable hardware design solution that is hand optimized
by expert hardware designers as described in § 5. The hardware in-
terfaces with the database engine through a specialized structure
called Striders, that extract high-performance, and provide low-
energy computation. Striders eliminate CPU from the data transfor-
mation process by directly interfacing with database’s buffer pool
to extract the training data pages. They process data at a page gran-
ularity to amortize the cost of per-tuple data transfer from mem-
ory to the FPGA. To exploit this vast amount of data available on-
chip, the architecture is equipped with execution engines that run
multiple parallel instances of the update rule. This architecture is
customized by DAnA’s compiler and hardware generator in accor-
dance to the FPGA specifications, database page layout, and the
analytics function.

Instruction Set Architectures. Both Striders and the execution
engine can be programmed using their respective Instruction Set
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Architectures (ISAs). The Strider instructions process page head-
ers, tuple headers, and extract the raw training data from a database
page. Different page sizes and page layouts can be targeted using
this ISA. The execution engine’s ISA describes the operation flow
required to run the analytics algorithm in selective SIMD mode.

Compiler and hardware generator. DAnA’s compiler and hard-
ware generator ensure compatibility between the Z/DFG and the
hardware accelerator. For the given ADFG and FPGA specifications
(such as number of DSP Slices and BRAMs), the hardware genera-
tor determines the parameters for the execution engine and Striders
to generate the final FPGA synthesizable accelerator. The com-
piler converts the database page configuration into a set of Strider
instructions that process the page and tuple headers and transform
user data into a floating point format. Additionally, the compiler
generates a static schedule for the accelerator, a map of where each
operation is performed, and execution engine instructions.

As described above, providing flexibility and reconfigurability of
hardware accelerators for advanced analytics is a challenging but
pertinent problem. DAnA is a multifaceted solution that untangles
these challenges one by one.

4. FRONT-END INTERFACE FOR DANA

DAnA’s DSL provides an entry point for data scientists to exploit
hardware acceleration for in-RDBMS advanced analytics. This
section elaborates on the constructs and features of the DSL and
how they can be used to train a wide range of learning algorithms
for advanced analytics. This section also explains how a UDF de-
fined in this DSL is translated into an intermediate representation,
i.e., in this case a hierarchical DataFlow Graph (ADFG).

4.1 Programming For DANA

DAnA exposes a high-level DSL for database users to express
their learning algorithm as a UDF. Embedding this DSL within
Python allows support for intricate update rules using a framework
familiar to database users whilst not requiring a full language com-
piler. This DSL meets the following objectives:

1. Incorporates language constructs commonly seen in a wide class
of supervised learning algorithms.

2. Supports expression of any iterative update rule, not just variants
of gradient descent, whilst conforming to the DSL constructs.

3. Segregates algorithmic specification from hardware-dependent
implementation.

The language constructs of this DSL — components, data decla-
rations, mathematical operations, and built-in functions — are sum-
marized in Table 1. Users express the learning algorithm using
these constructs and provide the (1) update rule - to decide how
each tuple in the training data updates the model; (2) merge func-
tion - to specify the combination of distinct parallel update rule
threads; and (3) terminator - to describe convergence.

4.2 Language Constructs

Data declarations. Data declarations delineate the semantics of
the data types used in the ML algorithm. The DSL supports the
following data declarations: input, output, inter, model, and meta.
Each variable can be declared by specifying its type and dimen-
sions. A variable is an implied scalar if no dimensions are speci-
fied. Once the analyst imports the dana package, she can express
the required variables. The code snippet below declares a multi-
dimensional ML model of size [5][2] using dana.model construct.
mo = dana.model ([5][2])

In addition to dana.model, the user can provide dana.input and
dana.output to express a single input-output pair in the training

Table 1: Language constructs of DAnA’s Python-embedded DSL.

Type Keyword Description
Component algo ‘To specify an instance of the learning algorithm
input Algorithm input
output Algorithm output
Data Types model Machine learning model
inter Interim data type
meta Meta parameters

-5 /> < Primary operations

Mathematical — - — -
sigmoid, gaussian, sqrt | Non linear operations

Operations

sigma, norm, pi Group operations

merge(x, int, "operation") | Specify merge operation and number of merge instances
setEpochs(int)

Built-In Special Set the maximum number of epochs

Functions setConvergence(x) Specify the convergence criterion

setModel(x)

Set the model variable

dataset. The user can specify meta variables using dana.meta, the
value of which remains constant throughout execution. As such,
meta variables can be directly sent to the FPGA before algorithm
execution. All variables used for a particular algorithm are linked
to an algo construct.

algorithm = dana.algo (mo, in, out)

The algo component allows the user to link together the three func-
tions — update rule, merge, and terminator — of a single UDF. Addi-
tionally, the analyst can use untyped intermediate variables, which
are automatically labeled as dana.inter by DAnA’s backend.

Mathematical operations. The DSL supports mathematical op-
erations performed on both declared and untyped intermediate vari-
ables. Primary and non-linear operations, such as *, +, ... , sig-
moid, only require the operands as input. The dimensionality of
the operation and its output is automatically inferred by DAnA’s
translator (as discussed in § 4.4) in accordance to the operands’
dimensions. Group operations, such as sigma, pi, norm, perform
computation across elements. Sigma refers to summation, pi indi-
cates product operator, and norm calculates the magnitude of a mul-
tidimensional vector. Group operations require the input operands
and the grouping axis which is expressed as a constant and allevi-
ates the need to explicitly specify loops. The underlying primary
operation is performed on the input operands prior to grouping.

Built-in functions. The DSL provides four built-in functions to
specify the merge condition, set the convergence criterion, and link
the updated model variable to the algo component. The merge(x,
int, “op”) function is used to specify how multiple threads of the
update rule are combined. Convergence is dictated either by a
specifying fixed number of epochs (1 epoch is a single pass over
the entire training data set) or a user-specified condition. Function
setEpochs(int) sets the number of terminating epochs and setCon-
vergence(x) frames termination based on a boolean variable x. Fi-
nally, the setModel(x) function links a DAnA variable (the updated
model) to the corresponding algo component.

All the described language constructs are supported by DAnA’s
reconfigurable architecture, hence, can be synthesized on an FPGA.
An example usage of these constructs to express the update rule,
merge function, and convergence for linear regression algorithm
running the gradient descent optimizer is provided below.

4.3 Linear Regression Example

Update rule. As the code snippet below illustrates, the data sci-
entist first declares different data types and their corresponding di-
mensions. Then she defines the computations performed over these
variables specific to linear regression.

#Data Declarations

mo = dana.model ([10]
in = dana.input ([10]
out = dana.output ()
lr = dana.meta (0.3) #learning rate

)
)
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linearR in, out)

dana.algo (mo,

#Gradient or Derivative of the Loss Function
s = sigma ( mo x in, 1)

er s — out

grad er % in

#Gradient Descent Optimizer
up = lr » grad

mo_up mo — up
linearR.setModel (mo_up)

In this example, the update rule uses the gradient of the loss
function. The gradient descent optimizer updates the model in the

negative direction of the loss function derivative ( gv(v[(?) ). The ana-
lyst concludes with the setModel() function to identify the updated

model, in this case mo_up.

Merge function. The merge function facilitates multiple concur-
rent threads of the update rule on the FPGA accelerator by specify-
ing the functionality at the point of merge.

merge_coef dana.meta (8)

grad linearR.merge (grad, "4

In the above merge function, the intermediate grad variable
has been combined using addition, and the merge coefficient
(merge_coef) specifies the batch size. DAnA’s compiler implicitly
understands that the merge function is performed before the gradi-
ent descent optimizer. Specifically, the grad variable is calculated
separately for each tuple per batch. The results are aggregated to-
gether across the batches and used to update the model. Alterna-
tively, partial model updates for each batch could be merged.

merge_coef dana.meta (8)
ml linearR.merge (mo_up,
m2 ml/merge_coef
lineaR.setModel (m2)

merge_coef,

= merge_coef, "+4")

The mo_up is calculated by each thread for tuples in its batch sepa-
rately and consecutively averaged. Thus, DAnA’s DSL provides
the flexibility to create different learning algorithms without re-
quiring any modification to the update rule by specifying differ-
ent merge points. In the above example, the first definition of the
merge function creates a linear regression running batched gradient
descent optimizer, whereas, the second definition corresponds to a
parallelized stochastic gradient descent optimizer.

Convergence function. The user also provides the termination
criteria. As shown in the code snippet below, the convergence
checks for the conv variable, which, if true, terminates the train-
ing. Variable conv compares the Euclidean norm of grad with a
conv_factor constant.

convergenceFactor

n norm(grad , 1i)
conv = n < convergenceFactor
linear.setConvergence (conv)

dana.meta (0.01)

Alternatively, the number of epochs can be used for convergence
using the syntax linearR.setEpochs(10000).

Query. A UDF comprising the update rule, merge function, and
convergence check describes the entire analytics algorithm. The
linearR UDF can then be called within a query as follows:

SELECT * FROM dana.linearR(’'training_data_table

)i

Currently, for high efficiency and low latency, DAnA’s DSL and
compiler do not support dynamic variables, as the FPGA and CPU
do not interchange runtime values and only interact for data hand-
offt. DAnA only supports variable types which either have been
explicitly instantiated as DAnA’s data declarations, or inferred as
intermediate variables (dana.inter) by DAnA’s translator. As such,
this Python-embedded DSL provides a high level programming ab-
straction that can easily be invoked by an SQL query and extended
to incorporate algorithmic advancements. In the next section we
discuss the process of converting this UDF into a ADFG.
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Figure 3: Translator-generated 2DFG for the linear regression code
snippet expressed in DAnA’s DSL.

4.4 Translator

DAnA’s translator is the front-end of the compiler, which con-
verts the user-provided UDF to a hierarchical DataFlow Graph
(hDFG). The hDFG represents the coalesced update rule, merge
function, and convergence check whilst maintaining the data de-
pendencies. Each node of the #/DFG represents a multi-dimensional
operation, which can be decomposed into smaller atomic sub-
nodes. An atomic sub-node is a single operation performed by the
accelerator. The #DFG transformation for the linear regression ex-
ample provided in the previous section is shown in Figure 3.

The aim of the translator is to expose as much parallelism avail-
able in the algorithm to the remainder of the DAnA workflow. This
includes parallelism within a single instance of the update rule and
among different threads, each running a version of the update rule.
To accomplish this, the translator (1) maintains the function bound-
aries, especially between the merge function and parallelizable por-
tions of the update rule, and (2) automatically infers dimensionality
of nodes and edges in the graph.

The merge function and convergence criteria are performed once
per epoch. In Figure 3b, the colored node represents the merge op-
eration that combines the gradients generated by separate instances
of the update rule. These update rule instances are run in paral-
lel and consume different records or tuples from the training data;
thus, they can be readily parallelized across multiple threads. To
generate the ADFG, the translator first infers the dimensions of each
operation node and its output edge(s). For basic operations, if both
the inputs have same dimensions, it translates into an element by
element operation in the hardware. In case the inputs do not have
same dimensions, the input with lower dimension is logically repli-
cated, and the generated output possess the dimensions of the larger
input. Nonlinear operations have a single input that determines the
output dimensions. For group operations, the output dimension is
determined by the axis constant. For example, a node performing
sigma(mo * in, 2), where variables mo and in are matrices of sizes
[51[10] and [2][10], respectively, generates a [5][2] output.

The information captured within the ADFG allows the hard-
ware generator to configure the accelerator architecture to opti-
mally cater for its operations. Resources available on the FPGA
are distributed on-demand within and across multiple threads. Fur-
thermore, DAnA’s compiler maps all the operations to the accel-
erator architecture to exploit fine-grained parallelism within an up-
date rule. Before delving into the details of hardware generation
and compilation, we discuss the reconfigurable architecture for the
FPGA (Strider and execution engine).



S. HARDWARE DESIGN FOR
DATABASE ACCELERATION

DAnA employs a parametric accelerator architecture comprising
a multi-threaded access engine and a multi-threaded execution en-
gine, shown in Figure 4. Both engines have their respective custom
Instruction Set Architectures (ISA) to program their hardware de-
signs. The access engine harbors Striders to ensure compatibility
between the data stored in a particular database engine and the exe-
cution engines that perform the computations required by the learn-
ing algorithm. The access and execution engines are configured
according to the page layout and UDF specification, respectively.
The details of each of these components are discussed below.

IN-

5.1 Access Engine and Striders

5.1.1 Architecture and Design

The multi-threaded access engine is responsible for storing pages
of data and converting them from a database page format to raw
numbers that are processed by the execution engine. Figure 5
shows a detailed diagram of this access engine. The access engine
uses the Advanced Extensible Interface (AXI) interface to transfer
the data to and from the FPGA, the shifters properly align the data,
and the Striders unpack the database pages. AXI interface is a type
of Advanced Microcontroller Bus Architecture open-standard, on-
chip interconnect specification for system-on-a-chip (SoC) designs.
It is vendor agnostic and standardized across different hardware
platforms. The access engine uses this interface to transfer uncom-
pressed database pages to page buffers and configuration data to
configuration registers. Configuration data comprises Strider and
execution engine instructions and necessary meta-data. Both the
training data in the database pages and the configuration data are
passed through a shifter for alignment, according to the read width
of the block RAM on the target FPGA. A separate channel for
configuration data incorporates a finite state machine to dictate the
route and destination of the configuration information.

To amortize the cost of data transfer and avoid the suboptimal us-
age of the FPGA bandwidth, the access engine and Striders process
database data at a page level granularity. Training data is written to
multiple page buffers, where each buffer stores one database page
at a time and has access to its personal Strider. Alternatively, each
tuple could have been extracted from the page by the CPU and sent
to the FPGA for consumption by the execution engine. This ap-
proach would fail to exploit the bandwidth available on the FPGA,
as only one tuple would be sent at a time. Furthermore, using the
CPU for data extraction would have a significant overhead due to
the handshaking between CPU and FPGA. Offloading tuple extrac-
tion to the accelerator using Striders provides a unique opportunity
to dynamically interleave unpacking of data in the access engine
and processing it in the execution engine.

It is common for data to be spread across pages, where each page
requires plenty of pointer chasing. Two tuples cannot be simulta-
neously processed from a single page buffer, as the location of one
could depend on the previous. Therefore, we store multiple pages
on the FPGA and parallelize data extraction from the pages across
their corresponding Striders. For every page, the Strider first pro-
cesses the page header and extracts necessary information about
the page and stores it in the configuration registers. The informa-
tion includes offsets, such as the beginning and size of each tuple,
which is either located or computed from the data in the header.
This auxiliary page information is used to trace the tuple addresses
and read the corresponding data from the page buffer. After each
page buffer, the shifter ensures alignment of the tuple data for the
Strider. From the tuple data, its header is processed to extract

1322

=

Shifter

P>
1 Q
1 O
¥
i
— [
Page Buffers - =] i
ontroller ‘E " ontroller ‘E M
T & Striders 1 '3
Configuration ,@ﬂ) wE o o e Configuration @%} wE =3
Registers vé o T Registers vé o 1 , @
i 2 53 1
§ .
¥ ¥ T
Controller 1
1
' D
'Q
'c
=3
.o 1S
i
o
i
=| 1Q
{Pc 11111] 3
, @
[ — v e e —_— 1L

Figure 4: Reconfigurable accelerator design in its entirety. The
access engine reads and processes the data via its Striders, while
the execution engine operates on this data according to the UDF.

Table 2: Strider ISA to read, extract, and clean the page data.

Instruction Bits

Instruction Code 21-18 17-12 11-6 5-0
Read Bytes |readB Opcode =0 | Read Address
Extract Bytes |extrB Opcode = 1 Byte Offset
Write Bytes |writeB Opcode = 2 | Read Address # of Bytes |Write Address
Extract Bits  |extrBi Opcode = 3
Clean cln Opcode = 4 # of Bits
Insert ins Opcode =5 | Start Location Offset Reserved
Add ad Opcode = 6
Subtract sub Opcode = 7 | Read Address Immediate
Multiply mul Opcode = 8 1 Read Address 2|  Operand
Branch Enter |bentr Opcode =9 0
Branch Exit  |bexit Opcode =10 Condition I Value I

and route the training data to the execution engine. The number
of Striders and database pages stored on-chip can be adjusted ac-
cording to the BRAM storage available on the target FPGA. The
internal workings of the Strider are dictated by its instructions that
depend on the page layout and page size of the target RDBMS. We
next discuss the novel ISA to program these Striders.

5.1.2  Instruction Set Architecture for STRIDERS

We devise a novel fixed-length Instruction Set Architecture
(ISA) for the Striders that can target a range of RDBMS engines,
such as PostgreSQL and MySQL (innoDB), that have similar back-
end page layouts. An uncompressed page from these RDBMSs,
once transferred to the page buffers, can be read, extracted, and
cleansed using this ISA, which comprises light-weight instructions
specialized for pointer chasing and data extraction. Each Strider
is programmed with the same instructions but operates on different
pages. These instructions are generated statically by the compiler.

Table 2 illustrates the 10 instructions of this ISA. Every instruc-
tion is 22 bits long, comprising a unique operation code (opcode)
as identification. The remaining bits are specific to the opcode.
Instructions Read Bytes and Write Bytes are responsible for read-
ing and writing data from the page buffer, respectively. The ISA
provides the flexibility to extract data at byte and bit granularity
using the Extract Byte and Extract Bit instructions. The Clean
instruction can remove parts of the data not required by the execu-
tion engine. Conversely, the Insert instruction can add bits to the
data, such as NULL characters and auxiliary information, which is
particularly useful when the page is to be written back to memory.
Basic math operations, Add, Subtract, and Multiply, allow calcu-
lation of tuple sizes, byte offsets, etc. Finally, the Bentr and Bexit
branch instructions are used to specify jumps or loop exits, respec-
tively. This feature invariably reduces the instruction footprint as
repeated patterns can be succinctly expressed using branches while
enabling loop exits that depend on a dynamic runtime variable.
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Figure 5: Access engine design uses Striders as the main interface
are read from the buffer pool and stored in on-chip page buffers.

Page Header

page size | [ XXX ] | free space start | free space end

offset special space |tuple pointer 1 Ituple pointer 2 | Free

Space

222 A8, Soeci Space
User Training Data
Figure 6: Sample pggetlayout similar to PostgreSQL.

An example page layout representative of PostgreSQL and
MySQL is illustrated in Figure 6. Such layouts are divided into
a page header, tuple pointers, and tuple data and can be processed
using the following assembly code snippet written in Strider ISA.

\\Page Header Processing

©

readB 0, 8, $%cr
readB 8, 2, %cr
readB 10, 4, S%cr
extrB %cr, 2, %cr

\\Tuple Pointer Processing
readB %cr, 4, %treg

extrB 0, 1 ,%cr

extrB 1, 1 ,%treg

\\Tuple extraction and processing
bentr

ad %treg, Streg, 0

readB %treg, %cr, S%treg

extrB %treg, %cr, S$treg

cln %treg, %cr, 2

bexit 1, $%$treg, %cr

Each line in the assembly code is identified by its instruction name
(opcode) and its corresponding fields. The first four assembly in-
structions process the page header to obtain the configuration in-
formation. For example, the (readB 0, 8, %cr) instruction, reads
8 bytes from address 0 in the page buffer and adds this page size
information into a configuration register. Each variable shown at
%(reg) corresponds to an actual Strider hardware register. The %cr
is a configuration register, and %t is a temporary register. Next,
the first tuple pointer is read to extract the byte-offset and length
(bytes) of the tuple. Only the first tuple pointer is processed, as all
the training data tuples are expected to be identical. Each corre-
sponding tuple is processed by adding the tuple size to the previous
offset to generate the page address. This address is used to read
the data from the page buffer, which is then cleansed by removing
its auxiliary information. The above step is repeated for each tuple
using the bentr and bexit instructions. The loop is exited when
the tuple offset address reaches the free space in the page. Finally,
cleaned data is sent to the execution engines.

5.2 Execution Engine Architecture

The execution engines execute the /DFG of the user provided
UDF using the Strider processed training data pages. More and

between the RDBMS and execution engines. Uncompressed data pages
Each page has a corresponding strider to extract the tuple data.

more database pages can now be stored on-chip as the BRAM ca-
pacity is rapidly increasing with the new FPGAs such as Arria 10
that offers 7 MB and UltraScale+ VU9P with 44 MB of memory.
Therefore, the execution engine needs to furnish enough computa-
tional resources that can process this copious amount of on-chip
data. Our reconfigurable execution engine architecture can run
multiple threads of parallel update rules for different data tuples.
This architecture is backed by a Variable Length Selective SIMD
ISA, that aims to exploit both regular and irregular parallelism in
ML algorithms whilst providing the flexibility to each component
of the architecture to run independently.

Reconfigurable compute architecture. All the threads in the
execution engine are architecturally identical and perform the same
computations on different training data tuples. DAnA balances the
resources allocated per thread vs. the number of threads to ensure
high performance for each algorithm. The hardware generator of
DAnNA (discussed in §6.1) determines this division by taking into
account the parallelism in the ADFG, number of compute resources
available on chip, and number of striders/page buffers that can fit
on the on-chip BRAM. The architecture of a single thread is a hi-
erarchical design comprising analytic clusters (ACs) composed of
multiple analytic units (AUs). As discussed below, the AC archi-
tecture is designed while keeping in mind the algorithmic proper-
ties of multi-threaded iterative optimizations, and the AU caters to
commonly seen compute operations in data analytics.

Analytic cluster. An Analytic Cluster (AC), shown in Figure 7a,
is a collection of AUs designed to reduce the data transfer latency
between them. Thus, ADFG nodes which exhibit high data depen-
dencies are all scheduled to a single cluster. In addition to provid-
ing greater connectivity among the AUs within an AC, the cluster
serves as the control hub for all its constituent AUs. The AC runs in
a selective SIMD mode, where the AC specifies which AUs within
a cluster perform an operation. Each AU within a cluster is ex-
pected to execute either a cluster level instruction (add, subtract,
multiply, divide, etc.) or a no-operation (NOP). Finer details about
the source type, source operands, and destination type can be stored
in each individual AU for additional flexibility. This collective in-
struction technique simplifies the AU design, as each AU no longer
requires a separate controller to decode and process the instruction.
Instead, the AC controller processes the instruction and sends con-
trol signals to all the AUs. When the designated AUs complete their
execution, the AC proceeds to the next instruction by incrementing
the program counter. To exploit the data locality among the oper-
ations performed within an AC, different connectivity options are
provided. Each AU within an AC is connected to both its neighbors,
and the AC has a shared line topology bus. The number of AUs per
AC are fixed to 8 to obtain highest operational frequency. A single
thread generally contains more than one instance of an AC, each
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Figure 7: (a) Single analytic cluster comprising analytic units op-
erating in a selective SIMD mode and (b) an analytic unit that is
the pipelined compute hub of the architecture.

performing instructions independently. Data sharing among ACs is
made possible via a shared line topology inter-AC bus.

Analytic unit. The Analytic Unit (AU) shown in Figure 7b, is the
basic compute element of the execution engine. It is tailored by
the hardware generator to satisfy the mathematical requirements of
the ADFG. Control signals are provided by the AC. Data for each
operation can be read from the memory according to the source
type of the AC instruction. Training data and intermediate results
are stored in the data memory. Additionally, data can be read from
the bus FIFO (First In First Out) and/or the registers corresponding
to the left and right neighbor AUs. Data is then sent to the Arith-
metic Logic Unit (ALU), that executes both basic mathematical op-
erations and complicated non-linear operations, such as sigmoid,
gaussian, and square root. The internals of the ALU are reconfig-
ured according to the operations required by the ”IDFG. The ALU
then sends its output to the neighboring AUs, the shared bus within
the AC, and/or the memory as per the instruction.

Bringing the Execution Engine together. Results across the
threads are combined via a computationally-enabled tree bus in ac-
cordance to the merge function. This bus has attached ALUs to
perform computations on in-flight data. The pliability of the archi-
tecture enables DANA to generate high-performance designs that
efficiently utilize the resources on the FPGA for the given RDBMS
engine and algorithm. The execution engine is programmed us-
ing its own novel ISA. Due to space constraints, the details of this
ISA are added to the Appendix B of our tech report (http://act-
lab.org/artifacts/dana/addendum.pdf).

6. BACKEND FOR DANA

DAnA’s translator, scheduler, and hardware generator together
configure the accelerator design for the UDF and create its run-
time schedule. As discussed in § 4.4, the translator converts the
user-provided UDF, merge function, and convergence criteria into
a hDFG. Each node of the ADFG comprises of sub-nodes, where
each sub-node is a single instruction in the execution engine. Thus,
all the sub-nodes in the ADFG are scheduled and mapped to the fi-
nal accelerator hardware design. The hardware generator outputs
a single-threaded architecture for the operations of these sub-nodes
and determines the number of threads to be instantiated. The sched-
uler then statically maps all operations to this architecture.

6.1 Hardware Generator

The hardware generator finalizes the parameters of the recon-
figurable architecture (Figure 4) for the Striders and the execution
engine. The hardware generator obtains the database page layout

information, model, and training data schema from the DBMS cata-
log. FPGA-specific information, such as the number of DSP slices,
the number of BRAMs, the capacity of each BRAM, the number
of read/write ports on a BRAM, and the off-chip communication
bandwidth are provided by the user. Using this information, the
hardware generator distributes the resources among access and ex-
ecution engine. Sizes of the DBMS page, model, and a single train-
ing data record determine the amount of memory utilized by each
Strider. Specifically, a portion of the BRAM is allocated to store
the extracted raw training data and model. The remainder of the
BRAM memory is assigned to the page buffer to store as many
pages as possible to maximize the off-chip bandwidth utilization.

Once the number of resident pages is determined, the hardware
generator uses the FPGA’s DSP information to calculate the num-
ber of AUs which can be synthesized on the target FPGA. Within
each AU, the ALU is customized to contain all the operations re-
quired by the ”DFG. The number of AUs determines the number
of ACs. Each thread is allocated a number of ACs determined by
the merge coefficient provided by the programmer. It creates at
most as many threads as the coefficient. To decide the allocation of
resources to each thread vs. number of threads, we equip the hard-
ware generator with a performance estimation tool that uses the
static schedule of the operations for each design point to estimate its
relative performance. It chooses the smallest and best-performing
design point which strikes a balance between the number of cycles
for data processing and transfer. Performance estimation is viable,
as the ADFG does not change, there is no hardware managed cache,
and the accelerator architecture is fixed during execution. Thus,
there are no dynamic irregularities that hinder estimation. This
technique is commensurate with prior works [5, 19, 30] that per-
form a similar restricted design space exploration in less than five
minutes with estimates within 5% of the physical measurements.

Using these specifications, the hardware generator converts the
final architecture into a functional and synthesizable design that can
efficiently run the analytics algorithm.

6.2 Compiler

The compiler schedules, maps, and generates the micro-
instructions for both ACs and AUs for each sub-node in the ADFG.
For scheduling and mapping a node, the compiler keeps track of
the sequence of scheduled nodes assigned to each AC and AU on
a per-cycle basis. For each node which is “ready”, i.e., all its pre-
decessors have been scheduled, the compiler tries to place that op-
eration with the goal to improve throughput. Elementary and non-
linear operation nodes are spread across as many AUs as required
by the dimensionality of the operation. As these operations are
completely parallel and do not have any data dependencies within a
node, they can be dispersed. For instance, an element-wise vector-
vector multiplication, where each vector contains 16 scalar values
will be scheduled across two ACs (8 AUs per ACs). Group oper-
ations exhibit data dependencies, hence, they are mapped to mini-
mize the communication cost. After all the sub-nodes are mapped,
the compiler generates the AC and AU micro-instructions.

The FPGA design, its schedule, operation map, and instructions
are then stored in the RDBMS catalog. These components are exe-
cuted when the query calls for the corresponding UDF.

7. EVALUATION

We prototype DANA by integrating it with PostgreSQL and com-
pare the end-to-end runtime performance of DAnA generated ac-
celerators with a popular scalable in-database advanced analytics
library, Apache MADIib [14, 15], for both PostgreSQL and Green-
plum RDBMSs. We compare the end-to-end runtime performance
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Table 3: Descriptions of datasets and machine learning models
used for evaluation. Shaded rows are synthetic datasets.

. . Training Data

Workloads Machine Learning Algorithm Model Topology -
# of Tuples | # 32KB Pages | Size (MB)
Remote Sensing | Logistic Regression, SYM 54 581,102 4,924 154
WLAN Logistic Regression 520] 19,937 1,330 42|
Netflix Low Rank Matrix Factorization 6040, 3952, 10| 6,040 3,068 96
Patient Linear Regression 384 53,500 1,941 61|
Blog Feedback Linear Regression 280 52,397 2,675 84
S\N Logistic Logistic Regression 2,000 387,944 96,986 3,031
S\WN SVM SVM 1,740 678,392 169,598 5,300
S\N LRMF Low Rank Matrix Factorization | 19880, 19880, 10 19,880 50,784 1,587,
S\ Linear Linear Regression 8,000 130,503 130,503 4,078]
S\E Logistic Logistic Regression 6,033] 1,044,024 809,339 25,292
S\E SVM SVM 7,129] 1,356,784 1,242,871 38,840
S\E LRMF Low Rank Matrix Factorization | 28002, 45064, 10 45,064 162,146 5,067
S\E Linear Linear Regression 8000] 1,000,000 1,027,961 32,124

Table 4: Xilinx Virtex UltraScale+ VU9P FPGA specifications.
FPGA Capacity Frequency | BRAM Size | # DSPs
1,182 K LUTS ‘ 2,364 K Flip-Flops | 150 MHz 44 MB 6,840

of these three systems. Next, we investigate the impact of Strid-
ers on the overall runtime of DAnA and how accelerator perfor-
mance varies with the system parameters. Such parameters in-
clude the buffer page-size, number of Greenplum segments, multi-
threading on the hardware accelerator, and bandwidth and com-
pute capability of the target FPGA. We also aim to understand the
overheads of performing analytics within RDBMS, thus compare
MADIib+PostgreSQL with software libraries optimized to perform
analytics outside the database. Furthermore, to delineate the over-
head of reconfigurable architecture, we compare our FPGA designs
with custom hard coded hardware designs targeting a single or fixed
set of machine learning algorithms.

Datasets and workloads. Table 3 lists the datasets and machine
learning models used to evaluate DAnA. These workloads cover a
diverse range of machine learning algorithms, — Logistic Regres-
sion (Logistic), Support Vector Machines (SVM), Low Rank Ma-
trix Factorization (LRMF), and Linear Regression (Linear). Re-
mote Sensing, WLAN, Patient, and Blog Feedback are publicly
available datasets, obtained from the UCI repository [38]. Remote
Sensing is a classification dataset used by both logistic regression
and support vector machine algorithms. Netflix is a movie recom-
mendation dataset for LRMF algorithm. The model topology, num-
ber of tuples, and number of uncompressed 32 KB pages that fit the
entire training dataset are also listed in the table. Publicly available
datasets fit entirely in the buffer pool, hence impose low I/O over-
heads. To evaluate the performance of out-of-memory workloads,
we generate eight synthetic datasets, shown by the shaded rows in
Table 3. Synthetic Nominal (S\N) and Synthetic Extensive (S\E)
datasets are used to evaluate performance with the increasing sizes
of datasets and model topologies. Finally, Table 5 provides abso-
lute runtimes for all workloads across our three systems.

Experimental setup. We use the Xilinx Virtex UltraScale+ VU9P
as the FPGA platform for DAnA and synthesize the hardware at
150 MHz using Vivado 2018.2. Specifications of the FPGA board
are provided in Table 4. DAnA accelerators . The baseline exper-
iments for MADIib were performed on a machine with four Intel
17-6700 cores at 3.40GHz running Ubuntu 16.04 xLTS with ker-
nel 4.8.0-41, 32GB memory, a 256GB Solid State Drive storage.
We run each workload with MADIib v1.12 on PostgreSQL v9.6.1
and Greenplum v5.1.0 to measure single- and multi-threaded per-
formance, respectively.

Default setup. Our default setup uses a 32 KB buffer page size
and 8 GB buffer pool size across all the systems. As DAnA op-
erates with uncompressed pages to avoid on-chip decompression
overheads, 32 KB pages are used as a default to fit at least 1 tuple
per page for all the datasets. To understand the performance sensi-
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Table 5: Absolute runtimes across all systems.

Workloads MADIlib+PostgreSQL |MADIib+Greenplum |DAnA+PostgreSQL
Remote Sensing LR 3s 600ms 1s 100ms 0s 100ms
WLAN 145 Oms 145 Oms 0s 610ms
Remote Sensing SVM 1s 700ms 0s 600ms 0s 90ms
Netflix 625 300ms 69s 200ms 75 890ms
Patient 25 800ms 0s 900ms 1s 180ms
Blog Feedback 1s 600ms 0s 500ms 0Os 340ms
S/N Logistic 54m 52s 49m 53s 2m11s
S/NSVM 56m 26s 12m 50s 4m 4s
S/N LRMF 0m 23s Om 3s 0m 2s
S/N Linear 29m 7s 24m 16s 5m 35s
S/E Logistic 66h 45m Os 8h 30m Os Oh 11m 24s
S/ESVM Oh 6m Os 0Oh 5m 24s Oh1m12s
S/E LRMF 0Oh 54m 36s Oh 26m 24s 0h 39m Os
S/E Linear 6h 36m 36s 5h22m 12s Oh 16m 48s

tivity by varying the page size on PostgreSQL and Greenplum, we
measured end-to-end runtimes for 8, 16, and 32 KB page sizes. We
found that page size had no significant impact on the runtimes. Ad-
ditionally, we did a sweep for 4, 8, and 16 segments for Greenplum.
We observed the most benefits with 8 segments, making it our de-
fault choice. Results are obtained for both warm cache and cold
cache settings to better interpret the impact of I/O on the overall
runtime. In the case of a warm cache, before query execution, train-
ing data tables for the publicly available dataset reside in the buffer
pool, whereas only a part of the synthetic datasets are contained in
the buffer pool. For the cold cache setting, before execution, no
training data tables reside in the buffer pool.

7.1 End-to-End Performance

Publicly available datasets. Figures 8a and 8b illustrate end-to-
end performance of MADIib+PostgreSQL, Greenplum+MADIib,
and DAnA, for warm and cold cache. The x-axis represents the
individual workloads and y-axis the speedup. The last bar pro-
vides the geometric mean (geomean) across all workloads. On
average, DAnA provides 8.3x and 4.8 end-to-end speedup over
PostgreSQL and 4.0x and 2.5x speedup over 8-segment Green-
plum for publicly available datasets in warm and cold cache setting,
respectively. The benefits diminish for cold cache as the I/O time
adds to the runtime and cannot be parallelized. The overall runtime
of the benchmarks reduces from 14 to 1.3 seconds with DAnA in
contrast to MADIib+PostgreSQL.

The maximum speedup is obtained by Remote Sensing LR,
28.2x with warm cache and 14.6x with cold cache. This work-
load runs logistic regression algorithm to perform non-linear trans-
formations to categorize data in different classes and offers copious
amounts of parallelism for exploitation by DAnA’s accelerator. In
contrast, Blog Feedback sees the smallest speedup of 1.9x (warm
cache) and 1.5x (cold cache) due to the high CPU vectorization
potential of the linear regression algorithm.

Synthetic nominal and extensive datasets. Figures 9 and
10 depict end-to-end performance comparison for synthetic nom-
inal and extensive datasets across our three systems. Across S/N
datasets, shown in Figure 9, DAnA achieves an average speedup of
13.2x in warm cache and 9.5 % in cold cache setting. In compar-
ison to 8-segment Greenplum, for S/N datasets, DAnA observes
a gain of 5.0x for warm cache and 3.5x for cold cache. The
average speedup as shown in Figure 10, across S/E datasets in
comparison to MADIib+PostgreSQL are 12.9x for warm cache
and 11.9x for cold cache. These speedups reduce to 5.9x (warm
cache) and 7.0x (cold cache) when compared against 8-segment
MADIib+Greenplum. Higher benefits of acceleration are observed
with larger datasets as DAnA accelerators are exposed to more
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Figure 11: Comparison of DAnA with and without Striders with
PostgreSQL +MADIib as the baseline.

opportunities for parallelization, which enables the accelerator to
hide the overheads such as data transfer across platforms, on-chip
data alignment, and setting up the execution pipeline. These results
show the efficacy of the multi-threading employed by DAnA’s ex-
ecution engine in comparison to the scale-out Greenplum engine.
The total runtime for S/N Logistic and S/E Logistic reduces from
55 minutes to 2 minutes and 66 hrs to 12 minutes, respectively.
These workloads achieve high reduction in total runtimes due to
their high skew towards compute time, which DAnA’s execution
engine is specialized in handling. For S/N SVM, DAnA is only
able to reduce the runtime by 20 seconds. This can be attributed to
the high I/O time incurred by the benchmark in comparison to its
compute time, thus, the accelerator frequently stalls for the buffer
pool page replacements to complete. Nevertheless, for S/E SVM,
DAnA still reduces the absolute runtime from 55 to 39 minutes.

Evaluating Striders. A crucial part of DAnA’s accelerators is
their direct integration with the buffer pool via Striders. To evaluate
the effectiveness of Striders, we simulate an alternate design where
DAnA’s execution engines are fed by the CPU. In this alternative,
the CPU transforms the training tuples and sends them to the execu-

tion engines. Figure 11 compares the end-to-end runtime of DAnA
with and without Striders using warm cache MADIib+PostgreSQL
as baseline. DAnA with and without Striders achieve, on aver-
age, 10.7x and 2.3 x speedup in comparison to the baseline. Even
though raw application hardware acceleration has its benefits, inte-
grating Striders to directly interface with the database engine am-
plifies those performance benefits by 4.6x. The Striders bypass
the bottlenecks in the memory subsystem of CPUs and provide an
on-chip opportunity to intersperse the tasks of the access and execu-
tion engines. The above evaluation demonstrates the effectiveness
of DANA and Striders in integrating with PostgreSQL.

7.2 Performance Sensitivity

Multi-threading in Greenplum. As shown in Figure 13, for
publicly available datasets, the default configuration of 8-segment
Greenplum provides 2.1x (warm cache) and 1.9x (cold cache)
higher speedups than its PostgreSQL counterpart. The 8-segment
Greenplum performs the best amongst all options and performance
does not scale as the segments increase.

Performance Sensitivity to FPGA resources. Two main re-
source constraints on the FPGA are its compute capability and
bandwidth. DAnA configures the template architecture in accor-
dance to the algorithmic parameters and FPGA constraints. To
maximize compute resource utilization, DAnA supports a multi-
threaded execution engine, where each thread runs a version of
the update rule. We perform an analysis for varying number of
threads on the final accelerator by changing the merge coefficient.
A merge coefficient of 2 implies a maximum of two threads. How-
ever, a large merge coefficient, such as 2048, does not warrant 2048
threads, as the FPGA may not have enough resources. In Ultra-
Scale+ FPGA, maximum 1024 compute units can be instantiated.
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Figure 12 shows performance sensitivity with increasing com-
pute utilization of FPGA for different workloads. Each plot shows
DAnA’s accelerator runtime (access engine + execution engine) in
comparison to a single-thread. The sensitivity towards compute
resources is a function of algorithm type, model width, and # of
epochs. Thus, each workload fares differently with varying com-
pute resources. Workloads such as Remote Sensing LR and Re-
mote Sensing SVM have a narrow model size, thus, increasing the
number of threads increases performance till they reach peak com-
pute utilization. On the other hand, LRMF algorithm workloads
do not experience a higher performance with increasing number
of threads. This can be attributed to the copious amounts of par-
allelism available in a single instance of the update rule. Thus,
increasing the number of threads reduces the ACs allocated to a
single thread, whereas, merging across multiple different threads
incurs an overhead. One of the challenges tackled by the compiler
is to allocate the on-chip resources by striking a balance between
the single-thread performance and multi-thread parallelism.

Figure 14 illustrates the impact of FPGA bandwidth (in com-
parison to baseline bandwidth) on the speedup of DAnA accelera-
tors. The results show that as the size of the benchmark increases,
except the ones that run LRMF algorithm, the workloads become
bandwidth bound. The workloads S/N LRMF and S/E LRMF are
compute heavy, thus, bandwidth increase does not have a signifi-
cant impact on the accelerator runtime.

7.3 Comparison to Custom Designs

Potential alternatives to DAnA are: (1) custom software li-
braries [39—41] that run multi-core advanced analytics and (2) algo-
rithm specific FPGA implementations [42—44]. For these alterna-
tives, if training data is stored in the database, there is an overhead
to extract, transform, and supply the data in accordance to each of
their requirements. We compare the performance of these alterna-
tives with MADIib+PostgreSQL and DAnA.

Optimized software libraries. We compare C++-optimized li-
braries DimmWitted and Liblinear-Multicore classification with
MADIib+PostgreSQL, Greenplum+MADIib, and DAnA acceler-
ators. Liblinear supports Logistic Regression and SVM, and
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Figure 15: Comparison to external software libraries.

DimmWitted supports SVM, Logistic Regression, Linear Regres-
sion, Linear Programming, Quadratic Programming, Gibbs Sam-
pling, and Neural Networks. Logistic Regression, SVM, and Lin-
ear Regression (only DimmWitted), overlap with our benchmarks,
thus, we compare multi-core versions (2, 4, 8, 16 threads) of these
libraries and use the minimum runtime. We maintain the same
hyper-parameters, such as tolerance, and choice of optimizer to
compare runtime of 1 epoch across all the systems. We separately
compare the compute time and end-to-end runtime (data extraction
from PostgreSQL + data transformation + compute), as well as pro-
vide a runtime breakdown. Figure 15a illustrates the breakdown of

Liblinear and DimmWitted into the different phases that comprise

the end-to-end runtime. Data exporting and reformatting for these

external specialized ML tools is an overhead specific to perform-
ing analytics outside RDBMS. Results suggest that DAnA is uni-
formly faster, as it (1) does not export the data from the database,

(2) employs Striders in the FPGA to walk through the data, and (3)

accelerates the ML computation with an FPGA. However, different

software solutions exhibit different trends, as elaborated below.

e Logistic regression: As Figure 15b shows, Liblinear
and DimmWitted provide 3.8x and 1.8x speedup over
MADIib+PostgreSQL for logistic regression-based workloads in
terms of compute time. With respect to end-to-end runtime com-
pared to MADIib+PostgreSQL (Figure 15c¢), the benefits from
Liblinear reduce to 2.4 x and increase for DimmWitted to 2.1 x.
On the other hand, DAnA outperforms Liblinear by 2.2x and
DimmWitted by 4.7 x in terms of compute time. For overall run-
time, DANA is 9.1 x faster than Liblinear and 10.4 x faster than
DimmWitted. The compute time of Remote sensing LR bench-
mark receives the least benefit from LibLinear and DimmWitted
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and exhibits a slowdown in end-to-end runtime. This can be at-
tributed to the small model size, which, despite a large dataset,
does not provide enough parallelism that can be exploited by
these libraries. Specifically sparse datasets, such as WLAN, are
handled more efficiently by these libraries.

e SVM: As shown in Figure 15b, that compares compute time of
SVM-based workloads, Liblinear and DimmWitted are 18.1x
and 22.3x slower than MADIib+PostgreSQL, respectively. For
end-to-end runtime (Figure 15c¢), the slowdown is reduced to
14.6x for Liblinear and 15.9x for DimmWitted, due to the
complex interplay between data accesses and UDF execution of
MADIib+PostgreSQL. In comparison, DAnA outperforms Lib-
linear by 30.7 x and DimmWitted by 37.7 X in terms of compute
time. For overall runtime, DANnA is 127x and 138.3x faster
than Liblinear and DimmWitted, respectively.

e Linear regression: For linear regression-based workloads,
DimmWitted is 4.3x faster than MADIib+PostgreSQL in
terms of compute time. For end-to-end runtime compared to
MADIib+PostgreSQL (Figure 15c¢), the speedup of DimmWit-
ted is reduced to 12%. DAnA outperforms DimmWitted by 1.6
and 6.0x in terms of compute and overall time, respectively.

Specific FPGA implementations. We compare hand-optimized
FPGA designs created specifically for one algorithm with our re-
configurable architecture. DAnA’s execution engine performance
is on par with Parallel SVM [42], is 44% slower than Heteroge-
neous SVM [43], and is 1.47 x faster than Falcon Logistic Regres-
sion [44]. In addition to the speedup, we compare Giga Ops Per
Second (GOPS), to measure the numerical compute performance
of these architectures. In terms of GOPS, DAnA performs, on av-
erage, 16% less operations than these hand-coded designs. In addi-
tion to providing comparable performance, DAnA relieves the data
scientist of the arduous task of hardware design and testing whilst
integrating seamlessly within the database engine. Whereas, for
these custom designs, designer requires hardware design expertise
and long verification cycles to write ~15000 lines of Verilog code.

Comparison with TABLA. We compare DAnA with TABLA [5],
an open-source framework [45] that generates optimized FPGA im-
plementations for a wide variety of analytics algorithms. We mod-
ify the templates for UltraScale+ and perform design space explo-
ration to present the best case results with TABLA. Figure 16 shows
that DAnA generated accelerators perform 4.7 x faster than TABLA
accelerators. DAnA’s benefits can be attributed to the: (1) inter-
leaving of Striders in the access engine with the execution engine
to mitigate the overheads of data transformation and (2) the multi-
threading capability of the execution engines to exploit parallelism
between different instances of the update rule. TABLA on the other
hand, offers only single threaded acceleration.

8. RELATED WORK

Hardware acceleration for data management. Accelerat-
ing database operations is a popular research direction that con-
nects modern acceleration platforms and enterprise in-database
analytics as shown in Figure 1. These prior FPGA-based solu-

tions aim to accelerate DBMS operations (some portion of the
query) [3,4,23,24,46], such as join and hash. LINQits [46] ac-
celerates database queries but does not focus on machine learning.
Centaur [3] dynamically decides which particular operators in a
MonetDB [47] query plan can be executed on FPGA and creates a
pipeline between FPGA and CPU. Another work [24] uses FPGAs
to provide a robust hashing mechanism to accelerate data partition-
ing in database engines. In the GPU realm, HippogriffDB [22] aims
to balance the I/O and GPU bandwidth by compressing the data
that is transferred to GPU. Support for in-database advanced ana-
lytics for FPGAs in tandem with Striders set this work apart from
the aforementioned literature, which does not focus on providing
components that integrate FPGAs within an RDBMS engine and
machine learning.

Hardware acceleration for advanced analytics. Both re-
search and industry have recently focused on hardware acceler-
ation for machine learning [5, 21, 25, 48] especially deep neural
networks [49-53] connecting two of the vertices in Figure 1 traid.
These works either only focus on a fixed set of algorithms or do not
offer the reconfigurability of the architecture. Among these, sev-
eral works [19,29, 54] provide frameworks to automatically gener-
ate hardware accelerators for stochastic gradient descent. However,
none of these works provide hardware structures or software com-
ponents that embed FPGAs within the RDBMS engine. DAnA’s
Python DSL builds upon the mathematical language in the prior
work [5, 19]. However, the integration with both conventional
(Python) and data access (SQL) languages provides a significant
extension by enabling support for UDFs which include general it-
erative update rules, merge functions, and convergence functions.

In-Database advanced analytics. Recent work at the intersec-
tion of databases and machine learning are extensively trying to
facilitate efficient in-database analytics and have built frameworks
and systems to realize such an integration [7,14,15,17,55-61] (see
[62] for a survey of various methods and systems). DAnA takes a
step forward and exposes FPGA acceleration for in-Database ana-
lytics by providing a specialized component, Strider, that directly
interfaces with the database to alleviate some of the shortcomings
of the traditional Von-Neumann architecture in general purpose
compute systems. Past work in Bismarck [7] provides a unified
architecture for in-database analytics, facilitating UDFs as an in-
terface for the analyst to describe their desired analytics models.
However, unlike DAnA, Bismarck lacks the hardware acceleration
backend and support for general iterative optimization algorithms.

9. CONCLUSION

This paper aims to bridge the power of well-established and ex-
tensively researched means of structuring, defining, protecting, and
accessing data, i.e., RDBMS with FPGA accelerators for compute-
intensive advanced data analytics. DAnA provides the initial co-
alescence between these paradigms and empowers data scientists
with no knowledge of hardware design, to use accelerators within
their current in-database analytics procedures.
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