

tivity of data scientists who can benefit from in-database hardware

acceleration for analytics. Consider the following example.

Example 1 A marketing firm uses the Amazon Web Services (AWS)

Relational Data Service (RDS) to maintain a PostgreSQL database

of its customers. A data scientist in that company forecasts the

hourly ad serving load by running a multi-regression model across

a hundred features available in their data. Due to large training

times, she decides to accelerate her workload using FPGAs on

Amazon EC2 F1 instances [26]. Currently, this requires her to

learn a hardware description language, such as Verilog or VHDL,

program the FPGAs, and go through the painful process of hard-

ware design, testing, and deployment, individually for each ML al-

gorithm. Recent research has developed tools to simplify FPGA

acceleration for ML algorithms [19, 29, 30]. However, these solu-

tions do not interface with or support RDBMSs, requiring her to

manually extract, copy, and reformat her large dataset.

To overcome the aforementioned roadblocks, we devise DAnA,

a cohesive stack that enables deep integration between FPGA ac-

celeration and in-RDBMS execution of advanced analytics. DAnA
exposes a high-level programming interface for data scientists/an-

alysts based on conventional languages, such as SQL and Python.

Building such a system requires: (1) providing an intuitive pro-

gramming abstraction to express the combination of ML algo-

rithm and required data schemas; and (2) designing a hardware

mechanism that transparently connects the FPGA accelerator to the

database engine for direct access to the training data pages.

To address the first challenge, DAnA enables the user to express

RDBMS User-Defined Functions (UDFs) using familiar practices

of Python and SQL. The user provides their ML algorithm as an

update rule using a Python-embedded Domain Specific Language

(DSL), while an SQL query specifies data management and re-

trieval. To convert this high level ML specification into an acceler-

ated execution without manual intervention, we develop a compre-

hensive stack. Thus, DAnA is a solution that breaks the algorithm-

data pair into software execution on the RDBMS for data retrieval

and hardware acceleration for running the analytics algorithm.

With respect to the second challenge, DAnA offers Striders,

which avoid the inefficiencies of conventional Von-Neumann CPUs

for data handoff by seamlessly connecting the RDBMS and FPGA.

Striders directly feed the data to the analytics accelerator by walk-

ing Jacthe RDBMS buffer pool. Circumventing the CPU allevi-

ates the cost of data transfer through the traditional memory sub-

system. These Striders are backed with an Instruction Set Ar-

chitecture (ISA) to ensure programmability and ability to cater to

the variations in the database page organization and tuple length

across different algorithms and training datasets. They are de-

signed to ensure multi-threaded acceleration of the learning al-

gorithm to amortize the cost of data accesses across concurrent

threads. DAnA automatically generates the architecture of these

accelerator threads, called execution engines, that selectively com-

bine a Multi-Instruction Multi-Data (MIMD) execution model with

Single-Instruction Multi-Data (SIMD) semantics to reduce the in-

struction footprint. While generating this MIMD-SIMD accelera-

tor, DAnA tailors its architecture to the ML algorithm’s computa-

tion patterns, RDBMS page format, and available FPGA resources.

As such, this paper makes the following technical contributions:

• Merges three disjoint research areas to enable transparent and

efficient hardware acceleration for in-RDBMS analytics. Data

scientists with no hardware design expertise can use DAnA to

harness hardware acceleration without manual data retrieval and

extraction whilst retaining familiar programming environments.

• Exposes a high-level programming interface, which combines

SQL UDFs with a Python DSL, to jointly specify training data

and computation. This unified abstraction is backed by an ex-

tensive compilation workflow that automatically transforms the

specification to an accelerated execution.

• Integrates an FPGA and an RDBMS engine through Striders that

are a novel on-chip interfaces. Striders bypass CPU to directly

access the training data from the buffer pool, transfer this data

onto the FPGA, and unpack the feature vectors and labels.

• Offers a novel execution model that fuses thread-level and data-

level parallelism to execute the learning algorithm computations.

This model exposes a domain specific instruction set architecture

that offers automation while providing efficiency.

We prototype DAnA with PostgreSQL to automatically accel-

erate the execution of several popular ML algorithms. Through a

comprehensive experimental evaluation using real-world and syn-

thetic datasets, we compare DAnA against the popular in-RDBMS

ML toolkit, Apache MADlib [15], on both PostgreSQL and its

parallel counterpart, Greenplum. Using Xilinx UltraScale+ VU9P

FPGA, we observe DAnA generated accelerators provide on aver-

age 8.3× and 4.0× end-to-end runtime speedups over PostgreSQL

and Greenplum running MADlib, respectively. An average of 4.6×
of the speedup benefits are obtained through Striders, as they effec-

tively bypass the CPU and its memory subsystem overhead.

2. BACKGROUND
Before delving into the details of DAnA, this section discusses

the properties of ML algorithms targeted by our holistic framework.

2.1 Iterative Optimization and Update Rules
During training, a wide range of supervised machine learning

algorithms go through a cyclic process that demand constant itera-

tion, tuning, and improvement. These algorithms use optimization

procedures that iteratively minimize a loss function – distinct for

each learning algorithm – by using one tuple (input-output pair) at

a time to generate updates for the learning model. Each ML al-

gorithm has a specific loss function that mathematically captures

the measure of the learning model’s error. Improving the model

corresponds to minimizing this loss function using an update rule,

which is applied repeatedly over the training model, one training

data tuple (input-output pair) at a time, until convergence.

Example. Given a set of N pairs of {(x1,y
∗
1), ...,(xN ,y

∗
N)} con-

stituting the training data, the goal is to find a hypothesis function

h(w(t)
,x) that can accurately map x → y. The equation below spec-

ifies an entire update rule, where l(w(t)
,xi,y

∗
i) is the loss function

that signifies the error between the output y∗ and the predicted out-

put estimated by a hypothesis function h(w(t)
,xi) for input x.

w(t+1) = w(t)−µ ×
∂ (l(w(t)

,xi,y
∗
i))

∂w(t)
(1)

For each (x,y∗) pair, the goal is to a find a model (w) that mini-

mizes the loss function l(w(t)
,xi,yi) using an iterative update rule.

While the hypothesis (y = h(w,x)) and loss function vary substan-

tially across different ML algorithms, the optimization algorithm

that iteratively minimizes the loss function remains fixed. As such,

the two required components are the hypothesis function to define

the machine learning algorithm and an optimization algorithm that

iteratively applies the update rule.

Amortizing the cost of data accesses by parallelizing the op-
timization. In Equation (1), a single (xi, y∗i) tuple is used to update

the model. However, it is feasible to use a batch of tuples and com-

pute multiple updates independently when the optimizer supports

combining partial updates [31–37]. This offers a unique opportu-

nity for DAnA to rapidly consume data pages brought on-chip by

1318

Architectures (ISAs). The Strider instructions process page head-

ers, tuple headers, and extract the raw training data from a database

page. Different page sizes and page layouts can be targeted using

this ISA. The execution engine’s ISA describes the operation flow

required to run the analytics algorithm in selective SIMD mode.

Compiler and hardware generator. DAnA’s compiler and hard-

ware generator ensure compatibility between the hDFG and the

hardware accelerator. For the given hDFG and FPGA specifications

(such as number of DSP Slices and BRAMs), the hardware genera-

tor determines the parameters for the execution engine and Striders

to generate the final FPGA synthesizable accelerator. The com-

piler converts the database page configuration into a set of Strider

instructions that process the page and tuple headers and transform

user data into a floating point format. Additionally, the compiler

generates a static schedule for the accelerator, a map of where each

operation is performed, and execution engine instructions.

As described above, providing flexibility and reconfigurability of

hardware accelerators for advanced analytics is a challenging but

pertinent problem. DAnA is a multifaceted solution that untangles

these challenges one by one.

4. FRONT­END INTERFACE FOR DANA
DAnA’s DSL provides an entry point for data scientists to exploit

hardware acceleration for in-RDBMS advanced analytics. This

section elaborates on the constructs and features of the DSL and

how they can be used to train a wide range of learning algorithms

for advanced analytics. This section also explains how a UDF de-

fined in this DSL is translated into an intermediate representation,

i.e., in this case a hierarchical DataFlow Graph (hDFG).

4.1 Programming For DANA
DAnA exposes a high-level DSL for database users to express

their learning algorithm as a UDF. Embedding this DSL within

Python allows support for intricate update rules using a framework

familiar to database users whilst not requiring a full language com-

piler. This DSL meets the following objectives:

1. Incorporates language constructs commonly seen in a wide class

of supervised learning algorithms.

2. Supports expression of any iterative update rule, not just variants

of gradient descent, whilst conforming to the DSL constructs.

3. Segregates algorithmic specification from hardware-dependent

implementation.

The language constructs of this DSL – components, data decla-

rations, mathematical operations, and built-in functions – are sum-

marized in Table 1. Users express the learning algorithm using

these constructs and provide the (1) update rule - to decide how

each tuple in the training data updates the model; (2) merge func-

tion - to specify the combination of distinct parallel update rule

threads; and (3) terminator - to describe convergence.

4.2 Language Constructs

Data declarations. Data declarations delineate the semantics of

the data types used in the ML algorithm. The DSL supports the

following data declarations: input, output, inter, model, and meta.

Each variable can be declared by specifying its type and dimen-

sions. A variable is an implied scalar if no dimensions are speci-

fied. Once the analyst imports the dana package, she can express

the required variables. The code snippet below declares a multi-

dimensional ML model of size [5][2] using dana.model construct.

mo = dana.model ([5][2])

In addition to dana.model, the user can provide dana.input and

dana.output to express a single input-output pair in the training

Table 1: Language constructs of DAnA’s Python-embedded DSL.

Type Keyword Description

Component algo To specify an instance of the learning algorithm

input Algorithm input

output Algorithm output

model Machine learning model

inter Interim data type

meta Meta parameters

+,-,*, /, >, < Primary operations

sigmoid, gaussian, sqrt Non linear operations

sigma, norm, pi Group operations

merge(x, int, "operation") Specify merge operation and number of merge instances

setEpochs(int) Set the maximum number of epochs

setConvergence(x) Specify the convergence criterion

setModel(x) Set the model variable

Mathematical

Operations

Data Types

Built-In Special

Functions

dataset. The user can specify meta variables using dana.meta, the

value of which remains constant throughout execution. As such,

meta variables can be directly sent to the FPGA before algorithm

execution. All variables used for a particular algorithm are linked

to an algo construct.

algorithm = d a n a . a l g o (mo, in, out)

The algo component allows the user to link together the three func-

tions – update rule, merge, and terminator – of a single UDF. Addi-

tionally, the analyst can use untyped intermediate variables, which

are automatically labeled as dana.inter by DAnA’s backend.

Mathematical operations. The DSL supports mathematical op-

erations performed on both declared and untyped intermediate vari-

ables. Primary and non-linear operations, such as *, +, ... , sig-

moid, only require the operands as input. The dimensionality of

the operation and its output is automatically inferred by DAnA’s

translator (as discussed in § 4.4) in accordance to the operands’

dimensions. Group operations, such as sigma, pi, norm, perform

computation across elements. Sigma refers to summation, pi indi-

cates product operator, and norm calculates the magnitude of a mul-

tidimensional vector. Group operations require the input operands

and the grouping axis which is expressed as a constant and allevi-

ates the need to explicitly specify loops. The underlying primary

operation is performed on the input operands prior to grouping.

Built-in functions. The DSL provides four built-in functions to

specify the merge condition, set the convergence criterion, and link

the updated model variable to the algo component. The merge(x,

int, “op”) function is used to specify how multiple threads of the

update rule are combined. Convergence is dictated either by a

specifying fixed number of epochs (1 epoch is a single pass over

the entire training data set) or a user-specified condition. Function

setEpochs(int) sets the number of terminating epochs and setCon-

vergence(x) frames termination based on a boolean variable x. Fi-

nally, the setModel(x) function links a DAnA variable (the updated

model) to the corresponding algo component.

All the described language constructs are supported by DAnA’s

reconfigurable architecture, hence, can be synthesized on an FPGA.

An example usage of these constructs to express the update rule,

merge function, and convergence for linear regression algorithm

running the gradient descent optimizer is provided below.

4.3 Linear Regression Example

Update rule. As the code snippet below illustrates, the data sci-

entist first declares different data types and their corresponding di-

mensions. Then she defines the computations performed over these

variables specific to linear regression.

#Data Declarations
mo = dana.model ([10])

in = dana . input ([10])
out = dana .output ()
lr = dana.meta (0.3) #learning rate

1320

linearR = d a n a . a l g o (mo, in, out)

#Gradient or Derivative of the Loss Function
s = sigma (mo * in, 1)
er = s - out
grad = er * in

#Gradient Descent Optimizer
up = lr * grad
mo_up = mo - up
linearR.setModel(mo_up)

In this example, the update rule uses the gradient of the loss

function. The gradient descent optimizer updates the model in the

negative direction of the loss function derivative (
∂ (l)
∂w(t)). The ana-

lyst concludes with the setModel() function to identify the updated

model, in this case mo up.

Merge function. The merge function facilitates multiple concur-

rent threads of the update rule on the FPGA accelerator by specify-

ing the functionality at the point of merge.

merge_coef = dana.meta (8)

grad = linearR.merge(grad, merge_coef, ”+”)

In the above merge function, the intermediate grad variable

has been combined using addition, and the merge coefficient

(merge coef) specifies the batch size. DAnA’s compiler implicitly

understands that the merge function is performed before the gradi-

ent descent optimizer. Specifically, the grad variable is calculated

separately for each tuple per batch. The results are aggregated to-

gether across the batches and used to update the model. Alterna-

tively, partial model updates for each batch could be merged.

merge_coef = dana.meta (8)

m1 = linearR.merge(mo_up, merge_coef, ”+”)
m2 = m1/merge_coef
lineaR.setModel(m2)

The mo up is calculated by each thread for tuples in its batch sepa-

rately and consecutively averaged. Thus, DAnA’s DSL provides

the flexibility to create different learning algorithms without re-

quiring any modification to the update rule by specifying differ-

ent merge points. In the above example, the first definition of the

merge function creates a linear regression running batched gradient

descent optimizer, whereas, the second definition corresponds to a

parallelized stochastic gradient descent optimizer.

Convergence function. The user also provides the termination

criteria. As shown in the code snippet below, the convergence

checks for the conv variable, which, if true, terminates the train-

ing. Variable conv compares the Euclidean norm of grad with a

conv factor constant.
convergenceFactor = dana.meta (0.01)
n = norm(grad , i)
conv = n < convergenceFactor
linear.setConvergence(conv)

Alternatively, the number of epochs can be used for convergence

using the syntax linearR.setEpochs(10000).

Query. A UDF comprising the update rule, merge function, and

convergence check describes the entire analytics algorithm. The

linearR UDF can then be called within a query as follows:

SELECT * FROM dana.linearR(’ t r a i n i n g d a t a t a b l e ’);

Currently, for high efficiency and low latency, DAnA’s DSL and

compiler do not support dynamic variables, as the FPGA and CPU

do not interchange runtime values and only interact for data hand-

off. DAnA only supports variable types which either have been

explicitly instantiated as DAnA’s data declarations, or inferred as

intermediate variables (dana.inter) by DAnA’s translator. As such,

this Python-embedded DSL provides a high level programming ab-

straction that can easily be invoked by an SQL query and extended

to incorporate algorithmic advancements. In the next section we

discuss the process of converting this UDF into a hDFG.

Update Rule

……

s = sigma (mo * in, 1)

er = s - out

grad = er * in

up = lr * grad

mo_up = mo - up

Merge Function

……

grad = merge(grad, merge_coef, "+")

Convergence Criteria

setEpochs(10000)

(a) Code snippet

SIGMA

-

×

mo in

outs

er

grad

in

grad

SIGMA

-

×

mo in

outs

er in

moup

mo_up

lr

-

×

+
merge

boundary

T
h
re
a
d
n

T
h
re
a
d
1

(b) Hierarchical DFG
Figure 3: Translator-generated hDFG for the linear regression code
snippet expressed in DAnA’s DSL.

4.4 Translator
DAnA’s translator is the front-end of the compiler, which con-

verts the user-provided UDF to a hierarchical DataFlow Graph

(hDFG). The hDFG represents the coalesced update rule, merge

function, and convergence check whilst maintaining the data de-

pendencies. Each node of the hDFG represents a multi-dimensional

operation, which can be decomposed into smaller atomic sub-

nodes. An atomic sub-node is a single operation performed by the

accelerator. The hDFG transformation for the linear regression ex-

ample provided in the previous section is shown in Figure 3.

The aim of the translator is to expose as much parallelism avail-

able in the algorithm to the remainder of the DAnA workflow. This

includes parallelism within a single instance of the update rule and

among different threads, each running a version of the update rule.

To accomplish this, the translator (1) maintains the function bound-

aries, especially between the merge function and parallelizable por-

tions of the update rule, and (2) automatically infers dimensionality

of nodes and edges in the graph.

The merge function and convergence criteria are performed once

per epoch. In Figure 3b, the colored node represents the merge op-

eration that combines the gradients generated by separate instances

of the update rule. These update rule instances are run in paral-

lel and consume different records or tuples from the training data;

thus, they can be readily parallelized across multiple threads. To

generate the hDFG, the translator first infers the dimensions of each

operation node and its output edge(s). For basic operations, if both

the inputs have same dimensions, it translates into an element by

element operation in the hardware. In case the inputs do not have

same dimensions, the input with lower dimension is logically repli-

cated, and the generated output possess the dimensions of the larger

input. Nonlinear operations have a single input that determines the

output dimensions. For group operations, the output dimension is

determined by the axis constant. For example, a node performing

sigma(mo * in, 2), where variables mo and in are matrices of sizes

[5][10] and [2][10], respectively, generates a [5][2] output.

The information captured within the hDFG allows the hard-

ware generator to configure the accelerator architecture to opti-

mally cater for its operations. Resources available on the FPGA

are distributed on-demand within and across multiple threads. Fur-

thermore, DAnA’s compiler maps all the operations to the accel-

erator architecture to exploit fine-grained parallelism within an up-

date rule. Before delving into the details of hardware generation

and compilation, we discuss the reconfigurable architecture for the

FPGA (Strider and execution engine).

1321

5. HARDWARE DESIGN FOR IN­

DATABASE ACCELERATION
DAnA employs a parametric accelerator architecture comprising

a multi-threaded access engine and a multi-threaded execution en-

gine, shown in Figure 4. Both engines have their respective custom

Instruction Set Architectures (ISA) to program their hardware de-

signs. The access engine harbors Striders to ensure compatibility

between the data stored in a particular database engine and the exe-

cution engines that perform the computations required by the learn-

ing algorithm. The access and execution engines are configured

according to the page layout and UDF specification, respectively.

The details of each of these components are discussed below.

5.1 Access Engine and Striders

5.1.1 Architecture and Design

The multi-threaded access engine is responsible for storing pages

of data and converting them from a database page format to raw

numbers that are processed by the execution engine. Figure 5

shows a detailed diagram of this access engine. The access engine

uses the Advanced Extensible Interface (AXI) interface to transfer

the data to and from the FPGA, the shifters properly align the data,

and the Striders unpack the database pages. AXI interface is a type

of Advanced Microcontroller Bus Architecture open-standard, on-

chip interconnect specification for system-on-a-chip (SoC) designs.

It is vendor agnostic and standardized across different hardware

platforms. The access engine uses this interface to transfer uncom-

pressed database pages to page buffers and configuration data to

configuration registers. Configuration data comprises Strider and

execution engine instructions and necessary meta-data. Both the

training data in the database pages and the configuration data are

passed through a shifter for alignment, according to the read width

of the block RAM on the target FPGA. A separate channel for

configuration data incorporates a finite state machine to dictate the

route and destination of the configuration information.

To amortize the cost of data transfer and avoid the suboptimal us-

age of the FPGA bandwidth, the access engine and Striders process

database data at a page level granularity. Training data is written to

multiple page buffers, where each buffer stores one database page

at a time and has access to its personal Strider. Alternatively, each

tuple could have been extracted from the page by the CPU and sent

to the FPGA for consumption by the execution engine. This ap-

proach would fail to exploit the bandwidth available on the FPGA,

as only one tuple would be sent at a time. Furthermore, using the

CPU for data extraction would have a significant overhead due to

the handshaking between CPU and FPGA. Offloading tuple extrac-

tion to the accelerator using Striders provides a unique opportunity

to dynamically interleave unpacking of data in the access engine

and processing it in the execution engine.

It is common for data to be spread across pages, where each page

requires plenty of pointer chasing. Two tuples cannot be simulta-

neously processed from a single page buffer, as the location of one

could depend on the previous. Therefore, we store multiple pages

on the FPGA and parallelize data extraction from the pages across

their corresponding Striders. For every page, the Strider first pro-

cesses the page header and extracts necessary information about

the page and stores it in the configuration registers. The informa-

tion includes offsets, such as the beginning and size of each tuple,

which is either located or computed from the data in the header.

This auxiliary page information is used to trace the tuple addresses

and read the corresponding data from the page buffer. After each

page buffer, the shifter ensures alignment of the tuple data for the

Strider. From the tuple data, its header is processed to extract

Thread #m

Page Buffers
& Striders

A
c
c
e
s
s
 E

n
g

in
e

E
x
e
c
u
tio

n
 E

n
g

in
e

Memory

Controller

Configuration

Registers

Thread #1

Memory

Controller

Configuration

Registers

Controller

PC

AU
4
AU
3
AU
2
AU
1
AU
0 PC

Controller

PC

AU
4
AU
3
AU
2
AU
1
AU
0 PC

Controller

PC

AU
4

AU
3

AU
2

AU
1

AU
0PC

Controller

PC

AU
4

AU
3

AU
2

AU
1

AU
0PC

Shifter

Figure 4: Reconfigurable accelerator design in its entirety. The
access engine reads and processes the data via its Striders, while
the execution engine operates on this data according to the UDF.

Table 2: Strider ISA to read, extract, and clean the page data.

21 - 18 17 - 12 11 - 6 5 - 0

Read Bytes readB Opcode = 0 Read Address

Extract Bytes extrB Opcode = 1 Byte Offset

Write Bytes writeB Opcode = 2 Read Address

Extract Bits extrBi Opcode = 3

Clean cln Opcode = 4

Insert ins Opcode = 5 Reserved

Add ad Opcode = 6

Subtract sub Opcode = 7

Multiply mul Opcode = 8

Branch Enter bentr Opcode = 9

Branch Exit bexit Opcode = 10 Condition Value

Bits

Instruction

Instruction

Code

0

Start Location

Write Address

Offset

of Bits

of Bytes

Read Address

1 Read Address 2

Immediate

Operand

and route the training data to the execution engine. The number

of Striders and database pages stored on-chip can be adjusted ac-

cording to the BRAM storage available on the target FPGA. The

internal workings of the Strider are dictated by its instructions that

depend on the page layout and page size of the target RDBMS. We

next discuss the novel ISA to program these Striders.

5.1.2 Instruction Set Architecture for Striders

We devise a novel fixed-length Instruction Set Architecture

(ISA) for the Striders that can target a range of RDBMS engines,

such as PostgreSQL and MySQL (innoDB), that have similar back-

end page layouts. An uncompressed page from these RDBMSs,

once transferred to the page buffers, can be read, extracted, and

cleansed using this ISA, which comprises light-weight instructions

specialized for pointer chasing and data extraction. Each Strider

is programmed with the same instructions but operates on different

pages. These instructions are generated statically by the compiler.

Table 2 illustrates the 10 instructions of this ISA. Every instruc-

tion is 22 bits long, comprising a unique operation code (opcode)

as identification. The remaining bits are specific to the opcode.

Instructions Read Bytes and Write Bytes are responsible for read-

ing and writing data from the page buffer, respectively. The ISA

provides the flexibility to extract data at byte and bit granularity

using the Extract Byte and Extract Bit instructions. The Clean

instruction can remove parts of the data not required by the execu-

tion engine. Conversely, the Insert instruction can add bits to the

data, such as NULL characters and auxiliary information, which is

particularly useful when the page is to be written back to memory.

Basic math operations, Add, Subtract, and Multiply, allow calcu-

lation of tuple sizes, byte offsets, etc. Finally, the Bentr and Bexit

branch instructions are used to specify jumps or loop exits, respec-

tively. This feature invariably reduces the instruction footprint as

repeated patterns can be succinctly expressed using branches while

enabling loop exits that depend on a dynamic runtime variable.

1322

Compute

Controller
AU7 AU6 AU5 AU4 AU3 AU2 AU1 AU0

Program

Counter

Selective SIMD

Instruction

Buffer

Communication

Controller

Data from Memory Interface

(a) Analytic Cluster

C
o

n
tro

l S
ig

n
a

ls
 fro

m
 P

C
 C

o
n

tro
lle

r

N
e
tw

o
rk

R
o

u
te

D
e
s
tin

a
tio

n

Ty
p

e

Bus Data

FIFO
Left

Right

N
e

ig
h

b
o

r C
o

n
n

e
c

tio
n

s

Instruction

Buffer

Data

Memory

Scratchpad

(b) Analytic Unit
Figure 7: (a) Single analytic cluster comprising analytic units op-
erating in a selective SIMD mode and (b) an analytic unit that is
the pipelined compute hub of the architecture.

performing instructions independently. Data sharing among ACs is

made possible via a shared line topology inter-AC bus.

Analytic unit. The Analytic Unit (AU) shown in Figure 7b, is the

basic compute element of the execution engine. It is tailored by

the hardware generator to satisfy the mathematical requirements of

the hDFG. Control signals are provided by the AC. Data for each

operation can be read from the memory according to the source

type of the AC instruction. Training data and intermediate results

are stored in the data memory. Additionally, data can be read from

the bus FIFO (First In First Out) and/or the registers corresponding

to the left and right neighbor AUs. Data is then sent to the Arith-

metic Logic Unit (ALU), that executes both basic mathematical op-

erations and complicated non-linear operations, such as sigmoid,

gaussian, and square root. The internals of the ALU are reconfig-

ured according to the operations required by the hDFG. The ALU

then sends its output to the neighboring AUs, the shared bus within

the AC, and/or the memory as per the instruction.

Bringing the Execution Engine together. Results across the

threads are combined via a computationally-enabled tree bus in ac-

cordance to the merge function. This bus has attached ALUs to

perform computations on in-flight data. The pliability of the archi-

tecture enables DAnA to generate high-performance designs that

efficiently utilize the resources on the FPGA for the given RDBMS

engine and algorithm. The execution engine is programmed us-

ing its own novel ISA. Due to space constraints, the details of this

ISA are added to the Appendix B of our tech report (http://act-
lab.org/artifacts/dana/addendum.pdf).

6. BACKEND FOR DANA
DAnA’s translator, scheduler, and hardware generator together

configure the accelerator design for the UDF and create its run-

time schedule. As discussed in § 4.4, the translator converts the

user-provided UDF, merge function, and convergence criteria into

a hDFG. Each node of the hDFG comprises of sub-nodes, where

each sub-node is a single instruction in the execution engine. Thus,

all the sub-nodes in the hDFG are scheduled and mapped to the fi-

nal accelerator hardware design. The hardware generator outputs

a single-threaded architecture for the operations of these sub-nodes

and determines the number of threads to be instantiated. The sched-

uler then statically maps all operations to this architecture.

6.1 Hardware Generator
The hardware generator finalizes the parameters of the recon-

figurable architecture (Figure 4) for the Striders and the execution

engine. The hardware generator obtains the database page layout

information, model, and training data schema from the DBMS cata-

log. FPGA-specific information, such as the number of DSP slices,

the number of BRAMs, the capacity of each BRAM, the number

of read/write ports on a BRAM, and the off-chip communication

bandwidth are provided by the user. Using this information, the

hardware generator distributes the resources among access and ex-

ecution engine. Sizes of the DBMS page, model, and a single train-

ing data record determine the amount of memory utilized by each

Strider. Specifically, a portion of the BRAM is allocated to store

the extracted raw training data and model. The remainder of the

BRAM memory is assigned to the page buffer to store as many

pages as possible to maximize the off-chip bandwidth utilization.

Once the number of resident pages is determined, the hardware

generator uses the FPGA’s DSP information to calculate the num-

ber of AUs which can be synthesized on the target FPGA. Within

each AU, the ALU is customized to contain all the operations re-

quired by the hDFG. The number of AUs determines the number

of ACs. Each thread is allocated a number of ACs determined by

the merge coefficient provided by the programmer. It creates at

most as many threads as the coefficient. To decide the allocation of

resources to each thread vs. number of threads, we equip the hard-

ware generator with a performance estimation tool that uses the

static schedule of the operations for each design point to estimate its

relative performance. It chooses the smallest and best-performing

design point which strikes a balance between the number of cycles

for data processing and transfer. Performance estimation is viable,

as the hDFG does not change, there is no hardware managed cache,

and the accelerator architecture is fixed during execution. Thus,

there are no dynamic irregularities that hinder estimation. This

technique is commensurate with prior works [5, 19, 30] that per-

form a similar restricted design space exploration in less than five

minutes with estimates within 5% of the physical measurements.

Using these specifications, the hardware generator converts the

final architecture into a functional and synthesizable design that can

efficiently run the analytics algorithm.

6.2 Compiler
The compiler schedules, maps, and generates the micro-

instructions for both ACs and AUs for each sub-node in the hDFG.

For scheduling and mapping a node, the compiler keeps track of

the sequence of scheduled nodes assigned to each AC and AU on

a per-cycle basis. For each node which is “ready”, i.e., all its pre-

decessors have been scheduled, the compiler tries to place that op-

eration with the goal to improve throughput. Elementary and non-

linear operation nodes are spread across as many AUs as required

by the dimensionality of the operation. As these operations are

completely parallel and do not have any data dependencies within a

node, they can be dispersed. For instance, an element-wise vector-

vector multiplication, where each vector contains 16 scalar values

will be scheduled across two ACs (8 AUs per ACs). Group oper-

ations exhibit data dependencies, hence, they are mapped to mini-

mize the communication cost. After all the sub-nodes are mapped,

the compiler generates the AC and AU micro-instructions.

The FPGA design, its schedule, operation map, and instructions

are then stored in the RDBMS catalog. These components are exe-

cuted when the query calls for the corresponding UDF.

7. EVALUATION
We prototype DAnA by integrating it with PostgreSQL and com-

pare the end-to-end runtime performance of DAnA generated ac-

celerators with a popular scalable in-database advanced analytics

library, Apache MADlib [14, 15], for both PostgreSQL and Green-

plum RDBMSs. We compare the end-to-end runtime performance

1324

Table 3: Descriptions of datasets and machine learning models
used for evaluation. Shaded rows are synthetic datasets.

of Tuples # 32KB Pages Size (MB)

Remote Sensing Logistic Regression, SVM 54 581,102 4,924 154

WLAN Logistic Regression 520 19,937 1,330 42

Netflix Low Rank Matrix Factorization 6040, 3952, 10 6,040 3,068 96

Patient Linear Regression 384 53,500 1,941 61

Blog Feedback Linear Regression 280 52,397 2,675 84

S\N Logistic Logistic Regression 2,000 387,944 96,986 3,031

S\N SVM SVM 1,740 678,392 169,598 5,300

S\N LRMF Low Rank Matrix Factorization 19880, 19880, 10 19,880 50,784 1,587

S\N Linear Linear Regression 8,000 130,503 130,503 4,078

S\E Logistic Logistic Regression 6,033 1,044,024 809,339 25,292

S\E SVM SVM 7,129 1,356,784 1,242,871 38,840

S\E LRMF Low Rank Matrix Factorization 28002, 45064, 10 45,064 162,146 5,067

S\E Linear Linear Regression 8000 1,000,000 1,027,961 32,124

Workloads Machine Learning Algorithm Model Topology
Training Data

Table 4: Xilinx Virtex UltraScale+ VU9P FPGA specifications.

Frequency BRAM Size # DSPs

1,182 K LUTS 2,364 K Flip-Flops 150 MHz 44 MB 6,840

FPGA Capacity

of these three systems. Next, we investigate the impact of Strid-

ers on the overall runtime of DAnA and how accelerator perfor-

mance varies with the system parameters. Such parameters in-

clude the buffer page-size, number of Greenplum segments, multi-

threading on the hardware accelerator, and bandwidth and com-

pute capability of the target FPGA. We also aim to understand the

overheads of performing analytics within RDBMS, thus compare

MADlib+PostgreSQL with software libraries optimized to perform

analytics outside the database. Furthermore, to delineate the over-

head of reconfigurable architecture, we compare our FPGA designs

with custom hard coded hardware designs targeting a single or fixed

set of machine learning algorithms.

Datasets and workloads. Table 3 lists the datasets and machine

learning models used to evaluate DAnA. These workloads cover a

diverse range of machine learning algorithms, – Logistic Regres-

sion (Logistic), Support Vector Machines (SVM), Low Rank Ma-

trix Factorization (LRMF), and Linear Regression (Linear). Re-
mote Sensing, WLAN, Patient, and Blog Feedback are publicly

available datasets, obtained from the UCI repository [38]. Remote
Sensing is a classification dataset used by both logistic regression

and support vector machine algorithms. Netflix is a movie recom-

mendation dataset for LRMF algorithm. The model topology, num-

ber of tuples, and number of uncompressed 32 KB pages that fit the

entire training dataset are also listed in the table. Publicly available

datasets fit entirely in the buffer pool, hence impose low I/O over-

heads. To evaluate the performance of out-of-memory workloads,

we generate eight synthetic datasets, shown by the shaded rows in

Table 3. Synthetic Nominal (S\N) and Synthetic Extensive (S\E)

datasets are used to evaluate performance with the increasing sizes

of datasets and model topologies. Finally, Table 5 provides abso-

lute runtimes for all workloads across our three systems.

Experimental setup. We use the Xilinx Virtex UltraScale+ VU9P

as the FPGA platform for DAnA and synthesize the hardware at

150 MHz using Vivado 2018.2. Specifications of the FPGA board

are provided in Table 4. DAnA accelerators . The baseline exper-

iments for MADlib were performed on a machine with four Intel

i7-6700 cores at 3.40GHz running Ubuntu 16.04 xLTS with ker-

nel 4.8.0-41, 32GB memory, a 256GB Solid State Drive storage.

We run each workload with MADlib v1.12 on PostgreSQL v9.6.1

and Greenplum v5.1.0 to measure single- and multi-threaded per-

formance, respectively.

Default setup. Our default setup uses a 32 KB buffer page size

and 8 GB buffer pool size across all the systems. As DAnA op-

erates with uncompressed pages to avoid on-chip decompression

overheads, 32 KB pages are used as a default to fit at least 1 tuple

per page for all the datasets. To understand the performance sensi-

Table 5: Absolute runtimes across all systems.

Workloads MADlib+PostgreSQL MADlib+Greenplum DAnA+PostgreSQL

Remote Sensing LR 3s 600ms 1s 100ms 0s 100ms

WLAN 14s 0ms 14s 0ms 0s 610ms

Remote Sensing SVM 1s 700ms 0s 600ms 0s 90ms

Netflix 62s 300ms 69s 200ms 7s 890ms

Patient 2s 800ms 0s 900ms 1s 180ms

Blog Feedback 1s 600ms 0s 500ms 0s 340ms

S/N Logistic 54m 52s 49m 53s 2m 11s

S/N SVM 56m 26s 12m 50s 4m 4s

S/N LRMF 0m 23s 0m 3s 0m 2s

S/N Linear 29m 7s 24m 16s 5m 35s

S/E Logistic 66h 45m 0s 8h 30m 0s 0h 11m 24s

S/E SVM 0h 6m 0s 0h 5m 24s 0h 1m 12s

S/E LRMF 0h 54m 36s 0h 26m 24s 0h 39m 0s

S/E Linear 6h 36m 36s 5h 22m 12s 0h 16m 48s

tivity by varying the page size on PostgreSQL and Greenplum, we

measured end-to-end runtimes for 8, 16, and 32 KB page sizes. We

found that page size had no significant impact on the runtimes. Ad-

ditionally, we did a sweep for 4, 8, and 16 segments for Greenplum.

We observed the most benefits with 8 segments, making it our de-

fault choice. Results are obtained for both warm cache and cold

cache settings to better interpret the impact of I/O on the overall

runtime. In the case of a warm cache, before query execution, train-

ing data tables for the publicly available dataset reside in the buffer

pool, whereas only a part of the synthetic datasets are contained in

the buffer pool. For the cold cache setting, before execution, no

training data tables reside in the buffer pool.

7.1 End­to­End Performance

Publicly available datasets. Figures 8a and 8b illustrate end-to-

end performance of MADlib+PostgreSQL, Greenplum+MADlib,

and DAnA, for warm and cold cache. The x-axis represents the

individual workloads and y-axis the speedup. The last bar pro-

vides the geometric mean (geomean) across all workloads. On

average, DAnA provides 8.3× and 4.8× end-to-end speedup over

PostgreSQL and 4.0× and 2.5× speedup over 8-segment Green-

plum for publicly available datasets in warm and cold cache setting,

respectively. The benefits diminish for cold cache as the I/O time

adds to the runtime and cannot be parallelized. The overall runtime

of the benchmarks reduces from 14 to 1.3 seconds with DAnA in

contrast to MADlib+PostgreSQL.

The maximum speedup is obtained by Remote Sensing LR,

28.2× with warm cache and 14.6× with cold cache. This work-

load runs logistic regression algorithm to perform non-linear trans-

formations to categorize data in different classes and offers copious

amounts of parallelism for exploitation by DAnA’s accelerator. In

contrast, Blog Feedback sees the smallest speedup of 1.9× (warm

cache) and 1.5× (cold cache) due to the high CPU vectorization

potential of the linear regression algorithm.

Synthetic nominal and extensive datasets. Figures 9 and

10 depict end-to-end performance comparison for synthetic nom-

inal and extensive datasets across our three systems. Across S/N
datasets, shown in Figure 9, DAnA achieves an average speedup of

13.2× in warm cache and 9.5× in cold cache setting. In compar-

ison to 8-segment Greenplum, for S/N datasets, DAnA observes

a gain of 5.0× for warm cache and 3.5× for cold cache. The

average speedup as shown in Figure 10, across S/E datasets in

comparison to MADlib+PostgreSQL are 12.9× for warm cache

and 11.9× for cold cache. These speedups reduce to 5.9× (warm

cache) and 7.0× (cold cache) when compared against 8-segment

MADlib+Greenplum. Higher benefits of acceleration are observed

with larger datasets as DAnA accelerators are exposed to more

1325

11. REFERENCES

[1] Gartner Report on Analytics.

gartner.com/it/page.jsp?id=1971516.

[2] SAS Report on Analytics. sas.com/reg/wp/corp/23876.

[3] M. Owaida, D. Sidler, K. Kara, and G. Alonso. Centaur: A

framework for hybrid cpu-fpga databases. In 2017 IEEE 25th

International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 211–218, April 2017.

[4] David Sidler, Muhsen Owaida, Zsolt István, Kaan Kara, and

Gustavo Alonso. doppiodb: A hardware accelerated

database. In 27th International Conference on Field

Programmable Logic and Applications, FPL 2017, Ghent,

Belgium, September 4-8, 2017, page 1, 2017.

[5] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik

Sharma, Amir Yazdanbakhsh, Joon Kim, and Hadi

Esmaeilzadeh. TABLA: A unified template-based framework

for accelerating statistical machine learning. In IEEE

International Symposium on High Performance Computer

Architecture (HPCA), March 2016.

[6] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek

Chiou, Kypros Constantinides, John Demme, Hadi

Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan

Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir

Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric

Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi

Xiao, and Doug Burger. A reconfigurable fabric for

accelerating large-scale datacenter services. In Proceeding of

the 41st Annual International Symposium on Computer

Architecuture, ISCA ’14, pages 13–24, 2014.

[7] Xixuan Feng, Arun Kumar, Benjamin Recht, and

Christopher Ré. Towards a Unified Architecture for

in-RDBMS Analytics. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data,

SIGMOD ’12, pages 325–336. ACM, 2012.

[8] Yu Cheng, Chengjie Qin, and Florin Rusu. GLADE: Big

Data Analytics Made Easy. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data,

SIGMOD ’12, pages 697–700. ACM, 2012.

[9] Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff

Mason, and Prasanna Sundararajan. CHiMPS: A high-level

compilation flow for hybrid CPU-FPGA architectures. In

Field Programmable Gate Arrays (FPGA), 2008.

[10] Amazon web services postgresql.

https://aws.amazon.com/rds/postgresql/.

[11] Azure sql database. https://azure.microsoft.com/en-
us/services/sql-database/.

[12] Oracle Data Mining.

http://www.oracle.com/technetwork/database/options/
advanced-analytics/odm/overview/index.html.

[13] Oracle R Enterprise. http:
//www.oracle.com/technetwork/database/database-
technologies/r/r-enterprise/overview/index.html.

[14] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M.

Hellerstein, and Caleb Welton. MAD Skills: New Analysis

Practices for Big Data. PVLDB, 2(2):1481–1492, 2009.

[15] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann,

Daisy Zhe Wang, Eugene Fratkin, Aleksander Gorajek,

Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and

Arun Kumar. The MADlib Analytics Library: Or MAD

Skills, the SQL. PVLDB, 5(12):1700–1711, 2012.
[16] Microsoft SQL Server Data Mining.

https://docs.microsoft.com/en-us/sql/analysis-
services/data-mining/data-mining-ssas.

[17] Benjamin Recht, Christopher Re, Stephen Wright, and Feng

Niu. Hogwild: A lock-free approach to parallelizing

stochastic gradient descent. In J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 24.

Curran Associates, Inc., 2011.

[18] Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel.

Learning generalized linear models over normalized data. In

Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages

1969–1984. ACM, 2015.

[19] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung

Kim, Preston Olds, and Hadi Esmaeilzadeh. Scale-out

acceleration for machine learning. In Proceedings of the 50th

Annual IEEE/ACM International Symposium on

Microarchitecture, pages 367–381, New York, NY, USA,

2017. ACM.

[20] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He,

Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,

et al. Dadiannao: A machine-learning supercomputer. In

Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM

International Symposium on, pages 609–622. IEEE, 2014.

[21] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,

Shengyuan Zhou, Olivier Teman, Xiaobing Feng, Xuehai

Zhou, and Yunji Chen. Pudiannao: A polyvalent machine

learning accelerator. In International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2015.

[22] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis

Papakonstantinou, and Steven Swanson. Hippogriffdb:

Balancing i/o and gpu bandwidth in big data analytics.

PVLDB, 9(14):1647–1658, 2016.

[23] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data

processing on fpgas. PVLDB, 2(1):910–921, 2009.

[24] Kaan Kara, Jana Giceva, and Gustavo Alonso. Fpga-based

data partitioning. In Proceedings of the 2017 ACM

International Conference on Management of Data, SIGMOD

’17, pages 433–445. ACM, 2017.

[25] Kaan Kara, Dan Alistarh, Gustavo Alonso, Onur Mutlu, and

Ce Zhang. Fpga-accelerated dense linear machine learning:

A precision-convergence trade-off. 2017 IEEE 25th FCCM,

pages 160–167, 2017.

[26] Amazon EC2 F1 instances: Run custom FPGAs in the

amazon web services (aws) cloud.

https://aws.amazon.com/ec2/instance-types/f1/, 2017.

[27] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari

Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil,

Matt Humphrey, Puneet Kaur, Joo-Young Kim, et al. A

cloud-scale acceleration architecture. In Microarchitecture

(MICRO), 2016 49th Annual IEEE/ACM International

Symposium on, pages 1–13. IEEE, 2016.

1329

[28] Norman P. Jouppi, Cliff Young, Nishant Patil, David

Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,

Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy

Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William

Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg,

John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron

Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,

Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,

Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark

Omernick, Narayana Penukonda, Andy Phelps, Jonathan

Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy

Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia

Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter

Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter

performance analysis of a tensor processing unit. CoRR,

abs/1704.04760, 2017.

[29] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik

Sharma, Amir Yazdanbakhsh, Joon Kyung Kim, and Hadi

Esmaeilzadeh. Tabla: A unified template-based framework

for accelerating statistical machine learning. In HPCA, 2016.

[30] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel

Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. From high-level deep neural models to

FPGAs. In ACM/IEEE International Symposium on

Microarchitecture (MICRO), October 2016.

[31] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu.

On parallelizability of stochastic gradient descent for speech

dnns. In ICASSP, 2014.

[32] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J

Smola. Parallelized stochastic gradient descent. In Neural

Information Processing Systems, 2010.

[33] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin

Xiao. Optimal distributed online prediction using

mini-batches. Journal of Machine Learning Research,

13(Jan):165–202, 2012.

[34] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are

fast. In NIPS, 2009.

[35] Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan

Silberman, and Daniel D. Walker. Efficient large-scale

distributed training of conditional maximum entropy models.

In NIPS, 2009.

[36] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere,

Karthikeyan Vaidynathan, Srinivas Sridharan, Dhiraj

Kalamkar, Bharat Kaul, and Pradeep Dubey. Distributed

deep learning using synchronous stochastic gradient descent.

arXiv:1602.06709 [cs], 2016.

[37] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal

Jozefowicz. Revisiting distributed synchronous SGD. In

International Conference on Learning Representations

Workshop Track, 2016.

[38] A. Frank and A. Asuncion. University of california, irvine

(uci) machine learning repository, 2010.

[39] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei

Dai, Garth A. Gibson, and Eric P. Xing. Strads: A distributed

framework for scheduled model parallel machine learning. In

Proceedings of the 11th European Conference on Computer
Systems, pages 5:1–5:16, New York, NY, USA, 2016. ACM.

[40] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin. Liblinear: A library for large linear

classification. J. Mach. Learn. Res., 9:1871–1874, June 2008.

[41] Ce Zhang and Christopher Ré. Dimmwitted: A study of

main-memory statistical analytics. Computing Research

Repository (CoRR), abs/1403.7550, 2014.

[42] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass,

E. Cosatto, S. Chakradhar, and H. P. Graf. A massively

parallel fpga-based coprocessor for support vector machines.

In 2009 17th IEEE Symposium on Field Programmable

Custom Computing Machines, pages 115–122, April 2009.

[43] M. Papadonikolakis and C. S. Bouganis. A heterogeneous

fpga architecture for support vector machine training. In

2010 18th IEEE FCCM, pages 211–214, May 2010.

[44] Falcon computing. http://cadlab.cs.ucla.edu/∼cong/
slides/HALO15 keynote.pdf.

[45] TABLA source code.

http://www.act-lab.org/artifacts/tabla/.

[46] Eric S. Chung, John D. Davis, and Jaewon Lee. LINQits: Big

data on little clients. In ISCA, 2013.

[47] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold,

K. Sjoerd Mullender, and Martin L. Kersten. Monetdb: Two

decades of research in column-oriented database

architectures. IEEE Technical Committee on Data

Engineering, 35(1):40–45, 2012.

[48] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,

Chengyong Wu, Yunji Chen, and Olivier Temam. DianNao:

A small-footprint high-throughput accelerator for ubiquitous

machine-learning. In Proceedings of 19th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[49] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne,

Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier

Temam. Shidiannao: shifting vision processing closer to the

sensor. In 42nd International Symposium on Computer

Architecture (ISCA), 2015.

[50] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan

Pedram, Mark A. Horowitz, and William J. Dally. Eie:

Efficient inference engine on compressed deep neural

network. In Proceedings of the 43rd International

Symposium on Computer Architecture, ISCA ’16, pages

243–254, Piscataway, NJ, USA, 2016. IEEE Press.

[51] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A

Spatial Architecture for Energy-Efficient Dataflow for

Convolutional Neural Networks. In ISCA, 2016.

[52] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.

Jerger, and A. Moshovos. Cnvlutin: Ineffectual-Neuron-Free

Deep Neural Network Computing. In ISCA, 2016.

[53] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh

Rama, Hyunkwang Lee, Sae Kyu Lee, Jose Miguel

Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.

Minerva: Enabling low-power, highly-accurate deep neural

network accelerators. In ISCA, 2016.

[54] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim,

C. Shao, A. Mishra, and H. Esmaeilzadeh. From high-level

deep neural models to fpgas. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 1–12, Oct 2016.

1330

[55] Boriana L. Milenova, Joseph S. Yarmus, and Marcos M.

Campos. Svm in oracle database 10 g : Removing the

barriers to widespread adoption of support vector

machines. PVLDB, pages 1152–1163, 2005.

[56] Daisy Zhe Wang, Michael J. Franklin, Minos Garofalakis,

and Joseph M. Hellerstein. Querying probabilistic

information extraction. PVLDB, 3(1-2):1057–1067, 2010.

[57] Michael Wick, Andrew McCallum, and Gerome Miklau.

Scalable probabilistic databases with factor graphs and

mcmc. PVLDB, 3(1-2):794–804, 2010.

[58] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Shark: Sql and rich

analytics at scale. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’13, pages 13–24, New York, NY, USA,

2013. ACM.

[59] M. Levent Koc and Christopher Ré. Incrementally

maintaining classification using an rdbms. PVLDB,

4(5):302–313, 2011.

[60] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim

Kraska, Carsten Binnig, Ugur Cetintemel, and Stan Zdonik.

An architecture for compiling udf-centric workflows.

PVLDB, 8(12):1466–1477, 2015.

[61] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak

Narayanan, Holger Pirk, Malte Schwarzkopf, Saman

Amarasinghe, and Matei Zaharia. Weld: A common runtime

for high performance data analytics. January 2017.

[62] Arun Kumar, Matthias Boehm, and Jun Yang. Data

management in machine learning: Challenges, techniques,

and systems. In Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD ’17, pages

1717–1722, New York, NY, USA, 2017. ACM.

1331

	Introduction
	Background
	Iterative Optimization and Update Rules
	Insights Driving DANA

	DANA Workflow
	Front-End Interface For DANA
	Programming For DANA
	Language Constructs
	Linear Regression Example
	Translator

	Hardware Design for in-Database Acceleration
	Access Engine and Striders
	Architecture and Design
	Instruction Set Architecture for Striders

	Execution Engine Architecture

	Backend for DANA
	Hardware Generator
	Compiler

	Evaluation
	End-to-End Performance
	Performance Sensitivity
	Comparison to Custom Designs

	Related Work
	Conclusion
	Acknowledgments
	References

