
Coordinating the Motion of Labeled Discs with
Optimality Guarantees under Extreme Density

Rupesh Chinta1 and Shuai D. Han2 and Jingjin Yu2

1 Department of Electrical and Computer Engineering, Rutgers University
2 Department of Computer Science, Rutgers University
{rupesh.chinta, shuai.han, jingjin.yu}@rutgers.edu

Abstract. We push the limit in planning collision-free motions for rout-
ing uniform labeled discs in two dimensions. First, from a theoretical
perspective, we show that the constant-factor time-optimal routing of
labeled discs can be achieved using a polynomial-time algorithm with
robot density over 50% in the limit (i.e., over half of the workspace may
be occupied by the discs). Second, from a more practical standpoint, we
provide a high performance algorithm that computes near-optimal (e.g.,
1.x) solutions under the same density setting.

1 Introduction

The routing of rigid bodies (e.g., mobile robots) to desired destinations under
dense settings (i.e., many rigid bodies in a confined workspace) is a challenging
yet high utility task. On the side of computational complexity, when it comes
to feasibility (i.e., finding collision-free paths for moving the bodies without
considering path optimality), it is well known that coordinating the motion of
translating rectangles is PSPACE-hard [8] whereas planning for moving labeled
discs of variable sizes is strongly NP-hard in simple polygons [15]. More recently,
it is further established that PSPACE-hardness extends to the unlabeled case as
well [13]. Since computing an arbitrary solution is already difficult under these
circumstances, finding optimal paths (e.g., minimizing the task completion time
or the distances traveled by the bodies) are at least equally hard. Taking a
closer look at proof constructions in [8, 13, 15], one readily observes that the
computational difficulty increases as the bodies are packed more tightly in the
workspace. On the other hand, in many multi-robot applications, it is desirable to
have the capacity to have many robots efficiently and (near-)optimally navigate
closely among each other, e.g., in automated warehouses [3, 19]. Provided that
per-robot efficiency and safety are not compromised, having higher robot density
directly results in space and energy3 savings, thus enhancing productivity.

As a difficult but intriguing geometric problem, the optimal routing of rigid
bodies has received much attention in many research fields, particularly robotics.
While earlier research in the area tends to focus on the structural properties and
complete (though not necessarily scalable) algorithmic strategies [4, 5, 10–12],

3 With higher robot density, a fixed number of robots can fit in a smaller workspace,
reducing the distance traveled by the robots

more recent studies have generally attempted to provide efficient and scalable
algorithms with either provable optimality guarantees or impressive empirical
results, or both. For the unlabeled case, a polynomial-time algorithm from [17]
computes trajectories for uniform discs which minimizes the maximal path length
traveled by any disc. The completeness of the algorithm depends on some clear-
ance assumptions between the discs and between a disc and the environment.
In [14], a polynomial-time complete algorithm is also proposed for unlabeled
discs that optimizes the total travel distance, with a more natural clearance
assumption compared to [17]. The clearance assumption (among others, the dis-
tance between two unit discs is at least 4) translates to a maximum density of
about 23%, i.e., the discs may occupy at most 23% of the available free space.
For the labeled case, under similar clearance settings, an integer linear program-
ming (ILP) based method is provided in [22] for minimizing solution makespan.
Though without polynomial running time guarantee, the algorithm is complete
and appears to performs well in practice. Complete polynomial-time algorithms
also exist that do not require any clearance in the start and goal configura-
tions [7]. However, the supported density is actually lower in this case, as the
algorithm needs to expand the start and goal configurations so that the clearance
conditions in [22] is satisfied.

In this work, we study the problem of optimally routing labeled uniform unit
discs in a bounded continuous two-dimensional workspace. As the main result,
we provide a complete, deterministic, and polynomial-time algorithm that allows
more than half of the workspace to be occupied by the discs while simultaneously
ensuring O(1) (i.e., constant-factor) time optimality of the computed paths. We
also provide a practical and fast algorithm for the same setting without the
polynomial running time guarantee. More concretely, our study brings the fol-
lowing contributions: (i) We show that, using a computer-based proof, when the
distance between the centers of any two labeled unit discs is more than 8

3 , the
continuous problem can be transformed into a multi-robot routing problem on a
triangular grid graph with minimal optimality loss. A separation of 8

3 implies a
maximum density of over 50%. (ii) We develop a low polynomial-time constant-
factor time-optimal algorithm for routing discs on a triangular grid with the
constraint that no two discs may travel on the same triangle concurrently. The
algorithm has a similar computation time as [7]: it can solve problem instances
with thousands of robots. (iii) We develop a fast and novel integer linear pro-
gramming (ILP) based algorithm that computes time-optimal routing plans for
the triangular grid-based multi-robot routing problem. Combining (i) and (ii)
yields the O(1) time-optimal algorithm while combining (i) and (iii) results in
the more practical and highly optimal algorithm. In addition, the 8

3 separation
proof employs both geometric arguments and computation-based verification,
which may be of independent interest.

Our work leans on graph-theoretic methods for multi-robot routing, e.g.,
[1, 2, 9, 16, 18, 20, 21]. In particular, our constant-factor time-optimal routing al-
gorithm for the triangular grids adapts from a powerful routing method for
rectangular grid in [20] that actually works for arbitrary dimensions. However,

while the method from [20] comes with strong theoretical guarantee and runs in
low polynomial time, the produced paths are not ideal due to the large constant
factor. This prompts us to also look at more practical algorithms and we choose
to build on the fast ILP-based method from [21], which allows us to properly
encode the additional constraints induced by the triangular grid, i.e., no two
discs may simultaneously travel along any triangle.

Organization. The rest of the paper is organized as follows. We provide a
formal statement of the routing problem and its initial treatment in Section 2.
In Section 3, we show how the problem may be transformed into a discrete one
on a special triangular grid. Then, in Section 4 and Section 5, we present a
polynomial time algorithm with O(1)-optimality guarantee and a fast algorithm
that computes highly optimal solutions, respectively. We conclude in Section 6.

2 Preliminaries

2.1 Labeled Disc Routing: Problem Statement

Let W denote a closed and bounded w × h rectangular region. For technical
convenience, we assume w = 4n1 + 2 and h = 4√

3
n2 + 2 for integers n1 ≥ 2 and

n2 ≥ 3. There are n labeled unit discs residing in W. Also for technical reasons,
we assume that the discs are open, i.e., two discs are not in collision when their
centers are exactly distance two apart. These discs may move in any direction
with an instantaneous velocity v satisfying |v| ∈ [0, 1]. Let Cf ⊂ R2 denote the
free configuration space for a single robot in W. The centers of the n discs are
initially located at S = {s1, . . . , sn} ⊂ Cf , with goals G = {g1, . . . , gn} ⊂ Cf . For
all 1 ≤ i ≤ n, a disc labeled i initially located at si must move to gi.

Beside planning collision-free paths, we want to optimize the resulting path
quality by minimizing the global task completion time, also commonly known as
the makespan. Let P = {p1, . . . , pn} denote a set of feasible paths with each pi
a continuous function, defined as

pi : [0, tf] → Cf , pi(0) = si, pi(tf) = gi, (1)

the makespan objective seeks a solution that minimizes tf . That is, denoting P
as the set of all feasible solution path sets, the task is to find a set P with tf (P)
approaching the optimal solution

tmin := min
P∈P

tf (P). (2)

Positive separation between the labeled discs is necessary to render the prob-
lem feasible (regardless of optimality). In this work, we require the following
clearance condition between a pair of si and sj and a pair of gi and gj :

∀1 ≤ i, j ≤ n, ∥si − sj∥ >
8

3
, ∥gi − gj∥ >

8

3
. (3)

For notational convenience, we denote the problem address in this work as
the Optimal Labeled Disc Routing problem (OLDR). By assumption (3) and

assuming that the unit discs occupy the vertices of a regular triangular grid, the
discs may occupy (12π ∗ 12)/(12

8
3 ∗ 4√

3
) ≈ 51% of the free space in the limit (to

see that this is the case, we note that each equilateral triangle with side length
8
3 contains half of a unit disc; each corner of the triangle contains 1

6 of a disc).

2.2 Workspace Discretization

Similar to [4,11,12,22], we approach OLDR through first discretizing the prob-
lem, starting by embedding a discrete graph within W. The assumption of
w = 4n1 + 2 and h = 4√

3
n2 + 2 on the workspace dimensions allows the embed-

ding of a triangular grid with side length of 4√
3
in W such that the grid has 2n1

columns and about n2 (zigzagging) rows of equilateral triangles, and a clearance
of 1 from ∂W. An example is provided in Fig. 1.

w

h

W

Fig. 1: An example of a workspace W with w = 14 and h = 3 4√
3
+ 2, i.e.,

n1 = 3 and n2 = 3. The embedded triangular grid is at least distance 1 from the
boundary of W. The grid has 6 columns and 2+ zigzagging rows.

Throughout the paper, we denote the underlying graph of the triangular grid
as G. Henceforth, we assume such a triangular grid G for a given workspace W.
The choice of the side length of 4√

3
for the triangular grid ensures that two unit

discs located on adjacent vertices of G may move simultaneously on G without
collision when the angle formed by the two traveled edges is not sharp (Fig. 2).

Fig. 2: On a triangular grid with a side length of 4√
3
, two unit discs, initially

residing on two adjacent vertices of the grid, may travel concurrently on the grid
without collision when the two trajectories do not form a sharp angle. In the
figure, the two cyan discs may travel as indicated without incurring collision.
On the other hand, the red discs will collide if they follow the indicated travel
directions.

We note that w ≥ 10 and h ≥ 3 4√
3
+ 2 are needed for our algorithm to have

completeness and optimality guarantees. For smaller w or h, an instance may not
be solvable. On the other hand, the discrete increment assumption on w and h are
for technical convenience and are not strictly necessary. Without these discrete
increments assumptions, we will need additional (and more complex) clearance
assumptions between the discs and ∂W, which does not affect the 51% density
bound since ∂W contributes Θ(w + h) to the area of W which is wh. The ratio
is Θ(w+h

wh) which goes to zero as both w and h increase. We also mention that
although this study only considers bounded rectangular workspace without static
obstacles within the workspace, our results can be directly combined with [22]
to support static obstacles.

3 Translating Continuous Problems to Discrete Problems
with Minimal Penalty on Optimality

A key insight enabling this work is that, under the separation condition (3), a
continuous OLDR can be translated into a discrete one with little optimality
penalty. The algorithm for achieving this is relatively simple. For a given W and
the corresponding G = (V,E) embedded in W, for each si ∈ S, let vsi ∈ V be
a vertex of G that is closest to si (if there are more than one such vsi , pick an
arbitrary candidate). After all vsi ’s (let VS = {vsi }) are identified for 1 ≤ i ≤ n,
let dmax = maxi ∥ vsi − si ∥. Note that dmax ≤ 4

3 . We then let the labeled discs
at si move in a straight line to the corresponding vsi at a constant speed given

by
∥vs

i−si∥
dmax

, which means that for all 1 ≤ i ≤ n, disc i will reach vsi in exactly

one unit of time. The same procedure is then applied to G to obtain VG = {vgi }.
The discrete OLDR is fully defined by (G,VS , VG). We denote the algorithm
as DiscretizeOLDR. Fig. 3 illustrates the assignment of a few unit discs to
vertices of the triangular grid.

Fig. 3: An illustration of assigning a few unit discs to vertices of the triangular
grid.

Because it takes a constant amount computational effort to deal with one
disc, DiscretizeOLDR runs in linear time, i.e.,

Proposition 1. DiscretizeOLDR has a running time of O(n).

The rest of this section is devoted to showing that DiscretizeOLDR is
collision-free and incurs little penalty on time optimality. We only need to show
this for translating S to VS ; translating G to VG is a symmetric operation. We first
make the straightforward observation that DiscretizeOLDR adds a makespan
penalty of up to four because translating S to VS takes exactly one unit of time.
Same holds for translating G to VG .

Proposition 2. DiscretizeOLDR incurs a makespan penalty of up to four.

We then show DiscretizeOLDR assigns a unique vsi ∈ V for a given si ∈ S.

Lemma 1. DiscretizeOLDR assign a unique vsi ∈ V for an si ∈ S.

Proof. Each equilateral triangle in G has a side length of 4√
3
, which means that

the distance from the center of a triangle to its vertices is 4
3 . Therefore, for any

si ∈ S, it must be at most of distance 4
3 to at least one vertex of G. Let this

vertex be vsi . Now given any other sj ∈ S, assume DiscretizeOLDR assigns
to it vsj . We argue that vsi ̸= vsj because otherwise

4

3
+

4

3
≥∥ vi − vsi ∥ + ∥ vj − vsj ∥=∥ vi − vsi ∥ + ∥ vj − vsi ∥≥∥ vi − vj ∥>

8

3
,

which is a contradiction. Here, the first ≥ holds because ∥ vi − vsi ∥≤ 4
3 and

∥ vj − vsj ∥≤ 4
3 by DiscretizeOLDR; the second ≥ is due to the triangle

inequality. The > is due to assumption (3). ⊓⊔

Next, we establish that DiscretizeOLDR is collision-free. For the proof,
we use geometric arguments assisted with computation-based case analysis.

Theorem 1. DiscretizeOLDR guarantees collision-free motion of the discs.

Proof. We fix a vertex v ∈ V of the triangular grid G. By Lemma 1, at most one
si ∈ S may be matched with v, in which case v becomes vsi . If this is the case,
then si must be located within one of the six equilateral triangles surrounding
v. Assume without loss of generality that si belongs to an equilateral triangle
△uvw as shown in Fig. 4(a). The rules of DiscretizeOLDR further imply that
si must fall within one (e.g., the orange shaded triangle in Fig 4 (a)) of the six
triangles belonging to △uvw that are formed by the three bisectors of △uvw.
Let this triangle be △vox. Now, let sj ̸= si be the center of a labeled disc j;
assume that disc j go to some vsj ∈ V . By symmetry, if we can show that disc

i with si ∈ △vox and an arbitrary disc j with ∥ si − sj ∥> 8
3 will not collide

with each other as disc i and disc j move along siv
s
i and sjv

s
j , respectively, then

DiscretizeOLDR is a collision-free procedure.
We then observe that if disc i and disc j collide as we align their centers to

vertices of the triangular grid, then the distance between their centers must be
exactly 8

3 at some point before they collide (when their centers are of distance less
than 2). Following this reasoning, instead of showing a disc j with ∥ si−sj ∥> 8

3
will not collide with disc i, it suffices to show the same only for ∥ si − sj ∥= 8

3 .
That is, for any si ∈ △vox and any sj on a circle of radius 8

3 centered at si, disc i
and disc j will not collide as si and sj move to vsi and vsj , respectively, according
to the rules specified by DiscretizeOLDR (see Fig. 4(b) for an illustration).

To proceed from here, one may attempt direct case-by-case geometric analy-
sis, which appears to be quite tedious. We instead opt for a more direct computer
assisted proof as follows. We first partition △vox using axis-aligned square grids
with side length ε; ε is some parameter to be determined through computation.
For each of the resulting ε × ε square region (a small green square in Fig. 5),

u

w

v(vsi)

o
x

si si

vsi

sj
vsj

(a) (b)

Fig. 4: (a) By symmetry, for an si ∈ S to be moved to some v = vsi , we only
need to consider the region △vox, which is 1

12 -th of all possible places where si
may appear. (b) For a fixed si, we only need to consider sj that is of exactly 8

3
distance from it.

we assume that si is at its center. For each fixed si, an annulus centered at si
with inner radius 8

3 −
√
2ε
2 and outer radius 8

3 +
√
2ε
2 is obtained (part of which is

illustrated as in Fig. 5). Given this construction, for any potential s′i in a fixed
ε× ε square, a circle of radius 8

3 around it falls within the annulus.
We then divide the outer perimeter of the annulus into arcs of length no more

than
√
2ε. For each piece, we obtain a roughly square region with side length√

2ε on the annulus, one of which is shown as the red square in Fig. 5. We take
the center of the square as sj . We then fix vsj accordingly (note that it may be
the case that vsj is not unique for the square that bounds a piece of arc, in which
case we will attempt all potentially valid vsj ’s).

si

vsi sj

vsj

Fig. 5: Illustration of picking a pair of si and sj for a computer based proof.

For each fixed set of si, v
s
i , sj , and vsj , following the rules of Discretize-

OLDR, we may (analytically) compute the shortest distance between the cen-
ters of disc i and disc j as disc i is moved from si to vsi while disc j is moved
from sj to vsj . Let the trajectory followed by the two centers in this case be τi(t)
and τj(t), respectively, with 0 ≤ t ≤ 1 (as guaranteed by DiscretizeOLDR).
We may express the distance (for fixed ε, si, v

s
i , sj , and vsj) as δε(si, sj) = mint ∥

τi(t) − τj(t) ∥. For any s′i that falls in the same ε × ε box as si, if disc i is

initially located at s′i, let it follow a trajectory τ ′i(t) to vsi . We observe that
∥ τi(t) − τ ′i(t) ∥≤ ε. This holds because as the center of disc i moves from any-
where within the ε× ε box to vsi , ∥ τi(t)− τ ′i(t) ∥ continuously decreases until it
becomes zero at vsi , which is the same for both si and s′i. Therefore, the initial

uncertainty is the largest, which is no more than ε because ∥ si−s′i ∥≤
√
2ε
2 . The

same argument applies to disc j, i.e., ∥ τj(t)− τ ′j(t) ∥≤ ε. Therefore, we have

δε(si, sj) = min
t

∥ τi(t)− τj(t) ∥

= min
t

∥ τi(t)− τ ′i(t) + τ ′j(t)− τj(t) + τ ′i(t)− τ ′j(t) ∥

≤ min
t
(∥ τi(t)− τ ′i(t) ∥ + ∥ τ ′j(t)− τj(t) ∥ + ∥ τ ′i(t)− τ ′j(t) ∥)

≤ 2ε+min
t

∥ τ ′i(t)− τ ′j(t) ∥

≤ 2ε+ δε(s
′
i, s

′
j).

If δε(si, sj) > 2ε, then we may conclude that δε(s
′
i, s

′
j) > 0. We verify this

using a python program that computes the minimum δε(si, sj) over all possible
choices of si and sj given a small ε. When ε = 0.025, we obtain that δε(si, sj) is
lower bounded at approximately 0.076, which is larger than 2ε = 0.05. Therefore,
DiscretizeOLDR is a collision-free algorithm. ⊓⊔

With DiscretizeOLDR, in Section 4 and Section 5, we assume a discrete
multi-robot routing problem is given as a 3-tuple (G,VS , VG) in which G is the
unique triangular grid embedded in W. Also, VS , VG ⊂ V and |VS | = |VG | = n.

4 Constant-Factor Time-Optimal Multi-Robot Routing
on Triangular Grid

In [20], it is established that constant-factor makespan time-optimal solution can
be computed in quadratic running time on a k-dimensional orthogonal grid G
for an arbitrary fixed k. It is a surprising result that applies even when n = |V |,
i.e., there is a robot or disc on every vertex of grid G. The functioning of the
algorithm, PaF (standing for partition and flow), requires putting together many
algorithmic techniques. However, the key requirements of the PaF algorithm
hinges on three basic operations, which we summarize here for the case of k = 2.
Due to limited space, only limited details are provided.

First, to support the case of n = |V | while ensuring desired optimality, it
must be possible to “swap” two adjacent discs in a constant sized neighborhood
in a constant number of steps (i.e. makespan), as illustrated in Fig. 6. This
operation is essential in ensuring makespan time optimality as the locality of
the operation allows many such operations to be concurrently carried out. Note
that a random problem on G is always feasible if G satisfies this requirement,
because any two robots can exchange their locations without affecting the other
robots by using multiple ”swap” actions.

Second, it must be possible to iteratively split the initial problem into smaller
sub-problems. This is achieved using a grouping operation that in turn depends

1 32

4 65

1 63

4 52

3 62

1 54

1 23

4 65

Fig. 6: Discs 2 and 3 may be “swapped” in three steps on a 3× 2 grid, implying
that any two discs can be swapped in O(1) steps without net effect on other
discs.

on the swap operation. We illustrate the idea using an example. In Fig. 7(a), a
8×4 grid is split in the middle into two smaller grids. Each vertex is occupied by
a disc; we omit the individual labels. The lightly (cyan) shaded discs have goals
on the right 4×4 grid. The grouping operation moves the 7 lightly shaded discs to
the right, which also forces the 7 darker shaded discs on the right to the left side.
This is achieved through multiple rounds of concurrent swap operations either
along horizontal lines or vertical lines. The result is Fig. 7(b). This effectively
reduces the initial problem (G,VS , VG) to two disjoint sub-problems. Repeating
the iterative process can actually solve the problem completely but does not
always guarantee constant-factor makespan time optimality in the worst case.
This is referred to as the iSaG algorithm in [20].

(a) (b)

Fig. 7: Illustration of an iteration of the iSaG algorithm.

Lastly, PaF achieves guaranteed constant-factor optimality using iSaG as
a subroutine. It begins by computing the maximum distance between any pair
of vsi ∈ VS and vgi ∈ VG over all 1 ≤ i ≤ n. Let this distance be dg. G is
then partitioned into square grid cells of size roughly 5dg × 5dg each. With this
partition, a disc must have its goal in the same cell it is in or in a neighboring
cell. After some pre-processing using iSaG, the discs that need to cross cell
boundaries can be arranged to be near the destination cell boundary. At this
point, multiple global circulations (a circulation may be interpreted as discs
rotating synchronously on a cycle on G) are arranged so that every disc ends up
in a 5dg × 5dg cell partition where its goal also resides. A rough illustration of
the global circulation concept is provided in Fig. 8. Then, a last round of iSaG
is invoked at the cell level to solve the problem, which yields a constant-factor
time-optimal solution even in the worst case.

To adapt PaF to the special triangular grid graph G, we need to: (i) identify
a constant sized local neighborhood for the swapping operation to work, (ii)
identify two “orthogonal” directions that cover G for the iSaG algorithm to
work, and (iii) ensure that the constructed global circulation can be executed.
Because of the limitation imposed by the triangular grid, i.e., any two edges of a
triangle cannot be used at the same time (see Fig. 2), achieving these conditions
simultaneously becomes non-trivial. In what follows, we will show how we may
simulate PaF on a triangular grid G under the assumption that all vertices of

1

2

3

4

5

6

1

2

3

4
5

6 1

2

3

4
5

6

1 2 3

4 5 6

(a) (b) (c)

Fig. 8: Illustration of a single global circulation constructed and executed by
PaF (the discs and the underlying grid cells are not fully drawn). (a) In six
partitioned (5dg × 5dg) cells numbered 1 − 6 in G, there are six labeled discs
with goals in the correspondingly numbered cells, e.g., disc 1 should be in cell 1.
(b) Using iSaG in each cell, discs 1−6 are moved to boundary areas and a cycle
is formed on G for robot routing. (c) Moving all discs on the cycle by one edge
synchronously, all discs are now in the desired cell; no other discs (not shown)
have crossed any cell boundary.

G are occupied by labeled discs, i.e., n = |V |. For the case of n < |V |, we may
treat empty vertices as having “virtual discs” placed on them.

Because two edges of a triangle cannot be simultaneously used, we use two
adjacent hexagons on G (e.g., the two red full hexagons in Fig. 9(a)) to simulate
the two square cells in Fig. 6. It is straightforward to verify that the swap
operation can be carried out using two adjacent hexagons. There is an issue,
however, as not all vertices of G can be covered with a single hexagonal grid.
For example, the two red hexagons in Fig. 9(a) left many vertices uncovered.
This can be resolved using up to three sets of interweaving hexagon grids as
illustrated in Fig. 9(a) (here we use the assumption that W has dimensions
w ≥ 10 and h ≥ 3 4√

3
+2, which limits the possible embeddings of the triangular

grid G). We note that for the particular graph G in Fig. 9(a), we only need the
red and the green hexagons to cover all vertices.

(a) (b)

Fig. 9: (a) We may use the red, green, and cyan hexagon grids on G to perform
the swap operation. (b) The red and green paths may serve as orthogonal paths
for carrying out the split and group operations as required by iSaG.

To realize requirement (ii), i.e., locating two sets of “orthogonal” paths for
carrying out iSaG iterations, we may use the red and green paths as illustrated
in Fig. 9(b). The remaining issue is that the red waving paths do not cover the
few vertices at the bottom of G (the green paths, on the other hand, covers all
vertices of G). This issue can be addressed with some additional swaps (e.g., with
a second pass) which still only takes constant makespan during each iteration of
iSaG and does not impact the time optimality or running time of iSaG.

The realization of requirement (iii) is straightforward as the only restriction
here is that the closed paths for carrying out circulations on G cannot contain

sharp turns. We can readily realize this using any one of the three interweaving
hexagonal grids on G that we use for the swap operation, e.g., the red one in
Fig. 9(a). Clearly, any cycle on a hexagonal grid can only have angles of 2π

3
which are obtuse. We note that there is no need to cover all vertices for this
global circulation-based routing operation because only a fraction (< 1

2 , see [20]
for details) of discs need to cross the 5dg×5dg cell boundary. On the other hand,
any one of the three hexagonal grids cover about 2

3 of the vertices on a large G.
Calling the adapted PaF algorithm on the special triangular grid as PaFT,

we summarize the discussion in this section in the following result.

Lemma 2. PaFT computes constant-factor makespan time-optimal solutions
for multi-robot routing on triangular grids in O(|V |2) time.

Combining DiscretizeOLDR with PaFT then gives us the following. In
deriving the running time result, we use the fact that wh = Θ(|V |) = Ω(n).

Theorem 2. In a rectangular workspace W with w ≥ 10 and h ≥ 3 4√
3
+2, for n

labeled unit discs having start and goal configurations of separation no less than
8
3 , constant-factor makespan time-optimal collision-free paths connecting the two
configurations may be computed in O(w2h2) time.

We conclude this section with the additional remark that PaFT should
mainly be viewed as providing a theoretical guarantee rather than being a prac-
tical algorithm due to the fairly large constant in the optimality guarantee.

5 Fast Computation of Near-Optimal Solutions via
Integer Linear Programming

From a practical standpoint, the DiscretizeOLDR algorithm introduces the
possibility of plugging in any discrete algorithm for multi-robot routing. Indeed,
algorithms including those from [1, 2, 16, 18, 21] may be modified to serve this
purpose. In this paper, we develop a new integer linear programming (ILP)
approach based on the time-expanded network structure proposed in [21]. The
benefits of using an ILP model are its flexibility and computational performance
when combined with the appropriate solvers, e.g., Gurobi [6].

5.1 Integer Linear Programming Model for Multi-Robot Routing
on Triangular Grids

The essential idea behind an ILP-based approach, e.g., [21], is the construction
of a directed time-expanded network graph representing the possible flow of the
robots over time. Given a discrete problem instance (G,VS , VG), the network is
constructed by taking the vertex set V of G and making T +1 copies of it. Each
copy represents an integer time instance starting from 0 to T . Then, a directed
edge is added between any two vertices when they are both adjacent on G and
in time, in the direction from time step t to time step t+ 1.

To build the ILP model, we create a binary variable for each robot and each
edge in the time-expanded graph to represent whether the given robot uses that
edge as part of its trajectory. We then add constraints to ensure that robots will

not collide. The basic model from [21] only ensures that no two robots can use
the same edge or vertex at the same time. But in our case, we need to consider
more complex interactions, which are detailed as follows.

Denoting N(i) as the set of vertex i ∈ V and its neighbors, the ILP model
contains two sets of binary variables: (i) {xr,i,j,t|1 ≤ r ≤ n, i ∈ V, j ∈ N(i), 0 ≤
t < T}, where xr,i,j,t indicates whether robot r moves from vertex i to j between
time step t and t + 1. Note that by a reachability test, some variables here are
fixed to 0. (ii) {xr,vg

r ,vs
r ,T

|1 ≤ r ≤ n} which represent virtual edges between the
goal vertex of each robot at time step T and its start vertex at time 0. xr,vg

r ,vs
r ,T

is set to 1 iff r reaches its goal at T . The objective of this ILP formulation is to
maximize the number of robots that reach their goal vertices at T , i.e.,

maximize
∑︂

1≤r≤n

xr,vg
r ,vs

r ,T
,

under the constraints

∀1 ≤ r ≤ n, 0 ≤ t < T,
∑︂

i∈N(j)

xr,i,j,t =
∑︂

k∈N(j)

xr,j,k,t+1, (4)

∀1 ≤ r ≤ n,
∑︂

i∈N(vs
r)

xr,vs
r ,i,0

=
∑︂

i∈N(vg
r)

xr,i,vg
r ,T−1 = xr,vg

r ,vs
r ,T

, (5)

∀0 ≤ t < T, i ∈ V,
∑︂

1≤r≤n

∑︂
j∈N(i)

xr,i,j,t ≤ 1, (6)

∀0 ≤ t < T, i ∈ V, j ∈ N(i),
∑︂

1≤r≤n

xr,i,j,t +
∑︂

1≤r≤n

xr,j,i,t ≤ 1. (7)

Here, constraint (4) and (5) ensure a robot always starts from its start vertex,
and can only stay at the current vertex or move to an adjacent vertex at each
time step. Moreover, constraint (5) is essential for calculating the objective value.
Constraint (6) prevents robots from simultaneously occupying the same vertex,
while constraint (7) eliminates head-to-head collisions on edges.

For a triangular grid, we must impose one extra set of constraints so that
two robots cannot simultaneously move on the same triangle. Reasoning about
each triangle formed by mutually adjacent vertices i, j, k ∈ V , for all 0 ≤ t < T ,
the constraint can be expressed as∑︂

1≤r≤n

(xr,i,j,t + xr,j,i,t + xr,i,k,t + xr,k,i,t + xr,j,k,t + xr,k,j,t) ≤ 1. (8)

Building on the ILP model, the overall route planning algorithm for triangu-
lar grids, TriILP, is outlined in Alg. 1. In line 1, an underestimated makespan T
is computed by routing robots to goal vertices while ignoring mutual collisions.
Then, as T gradually increases (line 6), ILP models are iteratively constructed
and solved (line 3-4) until the resulting objective value objval equals n. In line
5, time-optimal paths are extracted and returned. Derived from [21], TriILP
has completeness and optimality guarantees.

To improve the scalability of the ILP-based algorithm, a k-way split heuristic
is introduced in [21] that adds intermediate robot configurations (somewhere be-
tween the start and goal configurations) to split the problem into sub-problems.
These sub-problems require fewer steps to solve, which means that the corre-
sponding ILP models are much smaller and can be solved much faster. Detailed
description and evaluation of the split heuristic are avaliable in [21]. This heuris-
tic is directly applicable to TriILP.

Algorithm 1: TriILP

1 T ←UnderestimatedMakespan(G,VS , VG)
2 while True do
3 model← PrepareModel(G,VS , VG , T)
4 objval← Optimize(model)
5 if objval equals to n then return ExtractSolution(model)
6 else T ← T + 1

5.2 Performance Evaluation

We evaluate the performance of TriILP based on two standard measures: com-
putation time and optimality ratio. To compute the optimality ratio, we first
obtain the underestimated makespan tî, which is the number of steps needed to
move robots to their goals for a given problem instance i while ignoring poten-
tial robot-robot collisions. Denoting ti as the makespan produced by TriILP
of the i-th problem instance, the optimality ratio is defined as (

∑︁
i ti)/(

∑︁
i tî).

For each set of problem parameters, ten random instances are generated and the
average is taken. All experiments are executed on an Intel® CoreTM i7-6900K
CPU with 32GB RAM at 2133MHz. For the ILP solver, Gurobi 8 is used [6].

We begin with TriILP on purely discrete multi-robot routing problems. On
a densely occupied minimum triangular grid (n1 = 2, n2 = 3, |V | = 22, n = 16)
as allowed by our formulation, a randomly generated problem can be solved
optimally within 5 seconds on average. For a much larger environment (n1 =
7, n2 = 16, |V | = 232), we evaluate TriILP with k-way split heuristics, gradu-
ally increasing the number of robots. As shown in Fig. 10, TriILP could solve
problems with 50 robots optimally in 60 seconds. Performance of TriILP is
significantly improved with k-way split heuristic: with 4-way split, TriILP can
solve problems with 110 robots in 55 seconds to 1.65-optimal. With 8-way split,
we can further push to 140 robots with reasonable optimality ratio.

Solving (continuous) OLDR requires both DiscretizeOLDR and TriILP.
We first attempted a scenario where the density approaches the theoretical limit
by placing the robots just 8

3 apart from each other in a regular (triangular)
pattern for both start and goal configurations (see Fig. 11(a) for an illustra-
tion; we omit the labels of the robots, which are different for the start and goal

0 50 100 150
Number of Robots

100

101

102

C
om

pu
ta
tio

n
Ti
m
e
(s
)

0 50 100 150
Number of Robots

1.0

1.5

2.0

2.5

3.0

O
pt

im
al
ity

 R
at
io

TriILP 2-way Split 4-way Split 8-way Split

Fig. 10: Performance of TriILP with k-way split heuristics on a triangular grid
with 232 vertices and varying numbers of robots.

configurations). After running DiscretizeOLDR, we get a discrete arrange-
ment as illustrated in Fig. 11(b). For this particular problem, we can compute
a 1.5-optimal solution in 2.1 second without using splitting heuristics.

(a) (b)

Fig. 11: Illustration of a compact OLDR instance with 20 densely packed robots,
and the configuration of robots after DiscretizeOLDR.

To test the effectiveness of combining DiscretizeOLDR and TriILP, we
constructed many instances similar to Fig. 11 but with different environment
sizes, always packing as many robots as possible with separation of exactly 8

3 .
The computational performance of this case is compiled in Fig. 12. With the 8-
way split heuristic, our method can solve tightly packed problems of 120 robots
in 21.93 seconds with a 3.88 optimality ratio. We note that the (underestimated)
optimality ratio in this case actually decreases as the number of robots increases.
This is expected because when the number of robots are small, the corresponding
environment is also small. The optimality loss due to discretization is more
obvious when the environment is smaller.

A second evaluation of OLDR carries out a comparison between TriILP
(plus DiscretizeOLDR) and HexILP (the main algorithm from [22], which is
based on a hexagonal grid discretization). We fix W with w = 42 and h = 43.57;
the number of vertices in the triangular grid and hexagonal grid are 312 and 252,
respectively. For each fixed number of robots n, S and G are randomly generated
within W that are at least 8

3 apart. Note that this means that collisions may po-
tentially happen for HexILP during the discretization phase, which are ignored
(to our disadvantage). The evaluation result is provided in Fig. 13. Since dis-
cretization based on a triangular grid produces larger models, the running time

0 50 100
Number of Robots

10−1

100

101

102

C
om

pu
ta
tio

n
Ti
m
e
(s
)

0 50 100
Number of Robots

100

101

O
pt
im
al
ity
 R
at
io

TriILP 2-way Split 4-way Split 8-way Split

Fig. 12: Performance of TriILP (plus DiscretizeOLDR) on dense OLDR in-
stances.

is generally a bit higher when compared with discretization based on hexagonal
grids. However, TriILP can solve problems with many more robots and also
produce solutions with much better optimality guarantees.

https://youtu.be/2-QHESZ_p3E illustrates a few typical runs of TriILP.

0 50 100 150
Number of Robots

10−1

100

101

102

C
om

pu
ta

tio
n

Ti
m

e
(s

)

0 50 100 150
Number of Robots

1.0

1.5

2.0
O

pt
im

al
ity

 R
at

io

TriILP TriILP 4-way Split HexILP HexILP 4-way Split

Fig. 13: Performance comparison between TriILP and HexILP (with and with-
out 4-way split heuristic) on randomly generated OLDR instances with a fixed
W.

6 Conclusion and Future Work
In this work, we have developed a complete, polynomial-time algorithm for multi-
robot routing in a bounded environment under extremely high robot density.
The algorithm produces plans that are constant-factor time-optimal. We also
provide a fast and more practical ILP-based algorithm capable of generating
near-optimal solutions. We mention here that extensions to 3D settings, which
may be more applicable to drones and other airborne robot vehicles, can be
readily realized under the same framework with only minor adjustments.

Given the theoretical and practical importance of multi-robot (and more
generally, multi-agent) routing in crowded settings, in future work, we would
like to push robot density to be significantly higher than 50%. To achieve this
while retaining optimality assurance, we believe the computation-based method
developed in this work can be leveraged, perhaps in conjunction with a more
sophisticated version of the DiscretizeOLDR algorithm. On the other hand,
a triangular grid supports a maximum density of 66%; it may be of interest to
explore alternatives structures for accommodating denser robot configurations.

https://youtu.be/2-QHESZ_p3E

Acknowledgement. This work is supported by NSF awards IIS-1617744 and
IIS-1734419. Opinions or findings expressed here do not reflect the views of the
sponsor.

References

1. Boyarski, E., Felner, A., Stern, R., Sharon, G., Betzalel, O., Tolpin, D., Shimony,
E.: Icbs: The improved conflict-based search algorithm for multi-agent pathfinding.
In: Eighth Annual Symposium on Combinatorial Search (2015)

2. Cohen, L., Uras, T., Kumar, T., Xu, H., Ayanian, N., Koenig, S.: Improved
bounded-suboptimal multi-agent path finding solvers. In: International Joint Con-
ference on Artificial Intelligence (2016)

3. Enright, J., Wurman, P.R.: Optimization and coordinated autonomy in mobile
fulfillment systems. In: Automated action planning for autonomous mobile robots,
pp. 33–38 (2011)

4. Erdmann, M.A., Lozano-Pérez, T.: On multiple moving objects. In: Proceedings
IEEE International Conference on Robotics & Automation, pp. 1419–1424 (1986)

5. Ghrist, R., O’Kane, J.M., LaValle, S.M.: Computing Pareto Optimal Coordinations
on Roadmaps. International Journal of Robotics Research 24(11), 997–1010 (2005)

6. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2018)

7. Han, S.D., Rodriguez, E.J., Yu, J.: Sear: A polynomial-time expected constant-
factor optimal algorithmic framework for multi-robot path planning. In: Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots & Systems (2018).
To appear

8. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion plan-
ning for multiple independent objects; PSPACE-hardness of the “warehouseman’s
problem”. The International Journal of Robotics Research 3(4), 76–88 (1984)

9. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications. In: Proceedings IEEE Sym-
posium on Foundations of Computer Science, pp. 241–250 (1984)

10. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots
having independent goals. IEEE Transactions on Robotics & Automation 14(6),
912–925 (1998)

11. Peasgood, M., Clark, C., McPhee, J.: A complete and scalable strategy for coor-
dinating multiple robots within roadmaps. IEEE Transactions on Robotics 24(2),
283–292 (2008)

12. Solovey, K., Halperin, D.: k-color multi-robot motion planning. In: Proceedings
Workshop on Algorithmic Foundations of Robotics (2012)

13. Solovey, K., Halperin, D.: On the hardness of unlabeled multi-robot motion plan-
ning. In: Robotics: Science and Systems (RSS) (2015)

14. Solovey, K., Yu, J., Zamir, O., Halperin, D.: Motion planning for unlabeled discs
with optimality guarantees. In: Robotics: Science and Systems (2015)

15. Spirakis, P., Yap, C.K.: Strong NP-hardness of moving many discs. Information
Processing Letters 19(1), 55–59 (1984)

16. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems.
In: Proceedings International Joint Conference on Artificial Intelligence (2011)

17. Turpin, M., Mohta, K., Michael, N., Kumar, V.: CAPT: Concurrent assignment
and planning of trajectories for multiple robots. International Journal of Robotics
Research 33(1), 98–112 (2014)

18. Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with
performance bounds. In: Proceedings IEEE/RSJ International Conference on In-
telligent Robots & Systems, pp. 3260–3267 (2011)

19. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine 29(1), 9–19 (2008)

20. Yu, J.: Constant factor time optimal multi-robot routing on high-dimensional grid.
In: Robotics: Science and Systems (2018)

21. Yu, J., LaValle, S.M.: Optimal multi-robot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics 32(5), 1163–
1177 (2016)

22. Yu, J., Rus, D.: An effective algorithmic framework for near optimal multi-robot
path planning. In: Robotics Research, pp. 495–511. Springer (2018)

	Coordinating the Motion of Labeled Discs with Optimality Guarantees under Extreme Density

