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Abstract

Can an ideal / in a polynomial ring k[x] over a field be moved by a change of coor-
dinates into a position where it is generated by binomials x* — Ax? with A € k, or by
unital binomials (i.e., with A = 0 or 1)? Can a variety be moved into a position where
it is toric? By fibering the G-translates of I over an algebraic group G acting on affine
space, these problems are special cases of questions about a family Z of ideals over
an arbitrary base B. The main results in this general setting are algorithms to find the
locus of points in B over which the fiber of 7

is contained in the fiber of a second family Z’ of ideals over B;
defines a variety of dimension at least d;

is generated by binomials; or

is generated by unital binomials.

A faster containment algorithm is also presented when the fibers of 7 are prime. The
big-fiber algorithm is probabilistic but likely faster than known deterministic ones.
Applications include the setting where a second group 7T acts on affine space, in
addition to G, in which case algorithms compute the set of G-translates of /

e whose stabilizer subgroups in 7" have maximal dimension; or
e that admit a faithful multigrading by Z" of maximal rank r.

Even with no ambient group action given, the final application is an algorithm to
e decide whether a normal projective variety is abstractly toric.

All of these loci in B and subsets of G are constructible.
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Foundations of Computational Mathematics

1 Introduction

Ideals generated by binomials define schemes with much simpler geometry than arbi-
trary polynomial ideals [9], largely yielding to analysis by combinatorial methods
[7,18,19]. Similarly, ideals homogeneous with respect to some grading or multigrad-
ing are simpler than general ideals. In principle, much of this simplicity persists after
linear change of coordinates, or any other automorphism of the ambient affine space.
Therefore, it seems natural to ask for an algorithm to decide whether a given ideal has
any of these properties after applying an ambient automorphism.

Here, we present algorithms for this and related tasks. Let G be an affine algebraic
group acting on affine space A" = Speck[xy, ..., x,] viaamorphisma : G x A" —
A", For a given ideal I C k[x] = k[xy, ..., x,], we provide algorithms for the
following tasks, where 7.y means the image of / under the corresponding (right)
action of y € G on Kk[x].

(A1) Find the elements y € G such that /.y is generated by binomials (Algo-
rithm 4.2).

(A2) Find the elements y € G such that /.y is unital, meaning generated by mono-
mials and differences of monomials (Algorithm 4.5).

(A3) Find the elements ¥ € G such that /.y admits a faithful Z"-grading with r as
large as possible (Algorithm 3.12).

(A4) Given a second algebraic group 7" which also acts on A", find the elements
y € G such that /.y is stabilized by as large a subgroup of T as possible
(Algorithm 3.10).

In each item, we can in particular determine whether there exists y € G such that 7.y
has the respective property.

The case of G = GL,, in (A1) originated with Eisenbud and Sturmfels [9, page 6],
who raised the issue of determining when a given ideal is the image of a binomial
ideal under an ambient linear automorphism.

It would be desirable to have algorithms for these questions with G being the entire
automorphism group of affine space. However, as this group is currently a mystery
[28,30], it seems only fair to require that G be specified beforehand. In fact, the reader
will lose none of the flavor or difficulty by assuming that G = GL,, consists of all
linear changes of coordinates.

The most important class of binomial ideals consists of those that are foric, mean-
ing unital and prime. They define affine toric varieties, so (A2) can be used to find
automorphisms in G under which the image of a given affine variety is (equivariantly
embedded as) a toric variety. For varieties that are projective, we can even do better
and detect whether they are toric without having to specify a group G beforehand:

(A5) Given a normal, projective variety X C P, decide if it is toric (Algorithm 5.4).

Even if it is not toric, taking the group 7T in (A4) to be the algebraic torus (k*)", our
method finds a large subtorus acting on V (/.y), turning the latter optimally into a
T -variety. (If your definition of T-variety requires normality, then of course it can
only work if V' (I) is normal to begin with.)
Here are two examples where “hidden” toric structures turned out to be useful.
Elol:;ﬂ
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Example 1.1 (Phylogenetics and group-based models) Group-based models are special
statistical models: maps from the parameter space to the space of probability distri-
butions [8]. In their original coordinates the maps are not monomial, so the Zariski
closures of the images do not seem toric. However, a clever linear change of coordi-
nates, known as the Discrete Fourier Transform, turns the varieties to equivariantly
embedded toric varieties [14,27]. This fact inspired numerous mathematicians both in
statistics and in algebraic geometry [3,4,6,23].

Example 1.2 (Secant and tangential varieties of Segre—Veronese) Secant and tangential
varieties are classical topics in algebraic geometry [32]. As an example of the difficulty
of their geometric and algebraic properties, finding the defining equations of the secant
variety of any Segre—Veronese variety was an open conjecture of Garcia, Stillman,
and Sturmfels [12], solved only recently by Raicu [26]. Thus, it is surprising that
both secant and tangential varieties of Segre—Veronese are covered by open toric
varieties—complements of hyperplane sections [21,22,29]. Here, a nonlinear change
of coordinates, inspired by computation of cumulants in statistics [33] played a crucial
role.

Methods

The principle that guides our algorithms concerns the comparison of families
parametrized over a common base. When G acts on A", the G-translates of I fiber
over G (Definition 3.1 and Remark 3.2). If a second group 7 acts on A" and it is
desired to find a subgroup of 7T that stabilizes a G-translate of X € A", then ask for
7 € T and y € G such that y.X is stabilized by t. This problem fibers over T x G
(Sect. 3.2), the point being to find the locus Y € T x G over which 7.(y.X) = y.X.In
the context of (A4), where the goal is to move X so as to make its stabilizing subgroup
as large as possible, the algorithm then finds the locus of points in G over which the
fiber of Y — G has maximal dimension. This locus is closed (Proposition 3.8). Note
that Algorithm 3.12 for (A3) is the special case where T = (k*)" is the algebraic torus
acting diagonally on A" (Sect. 3.3).

The upshot is that our computational engine consists of two algorithms for a family
of ideals over an arbitrary affine base B: find the locus of points in B over which the fiber

(A6) is contained in the fiber of a second given family of ideals over B (Algo-
rithm 2.7) or
(A7) defines a variety of dimension at least d (Algorithm 2.10).

These rely on geometry of constructible sets (Sect. 2.1) and comprehensive Grébner
bases (Sect. 2.2 and Theorem 2.3). Deterministic algorithms for (A7) are known [16],
but Algorithm 2.10 is probabilistic and likely faster.

Having already the context of an arbitrary affine base B at our disposal, the algo-
rithms for (A1) and (A2) work as well for a family of ideals over B.

(A1”) Find the locus of points in B over which the fiber is binomial (Algorithm 4.2).
(A2') Find the locus of points in B over which the fiber is unital (Algorithm 4.5).

The reason is that the criterion for binomiality simply detects whether the reduced

Grobner basis is binomial (Sect. 4.1); it has nothing to do with a group action on the
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ambient affine space. Similarly, an ideal is unital precisely when its scheme is closed
under coordinatewise multiplication (Proposition 4.4), while this employs the monoid
structure on k”, which is defined only once a basis of k” has been given, that monoid
action is fixed from the outset, so it remains only to calculate which fibers respect it.

The final application, (AS5), observes that high Veronese embeddings of normal pro-
jective varieties are projectively normal, after which an ambient automorphism must
make the variety toric if anything can (Theorem 5.5). Thus our method applies (A2)
with G being the general linear group acting on projective space. A speedup (Algo-
rithm 5.1) for (A6) is available in this case because the fibers are known to be prime.

Conventions

Everything throughout the paper is over a field k. Implementation of the algorithms
would require that k be “computable” in some appropriate sense, but most of our
discussions are independent of this hypothesis. That said, we do assume, without
further comment, that all algebras and schemes are of finite type over k. Moreover,
unless stated otherwise we assume all schemes to be affine. See Remark 6.4 for possible
generalizations of our results to more general schemes.

Functions, variables, and spaces are denoted by English letters. Group elements
or points in spaces are denoted by Greek letters. Thus f(x) for x = x1,...,x, is a
function on a subscheme X of affine n-space A” whose action on a k-valued point
& € Xis& — f(&). Hopefully this eliminates confusion regarding left vs. right
actions on spaces vs. functions, the details of which are covered in Sect. 3.1. When
we wish to think of points algebraically, as prime ideals in rings, then we use Fraktur
letters. Thus p,, € k[G]is the prime ideal corresponding to the point y € G. For any
prime ideal p, its residue field is written kp . If p = pg, say, then we also write kg = Ky, .

2 Algorithms for Families of Schemes

Generally speaking, our algorithms are aimed at schemes over groups, thought of as
families of schemes (or ideals) parametrized by the group. But many of our results hold
over more arbitrary base schemes; we phrase those in terms of a commutative finitely
generated k-algebra S. The polynomial ring S[x], where x = x1, ..., x, denotes the
sequence of variables, has spectrum A’ = A" x Spec S, the affine space of dimension n
over (the spectrum of) S. An ideal J C S[x] corresponds to a subscheme X C A%,
usually thought of as a family of subschemes of A" = Ay parametrized by (the k-
valued points of) Spec S, or as a family of ideals of k[x]. Butif p is any prime ideal of S,
maximal or not, then the ideal defining the fiber X, C A’; over p is a specialization
of J, namely the extension J«yp[x] of J to the polynomial ring over the residue field

2.1 Constructible Sets

Let S be afinitely generated commutative k-algebra. A subset of Spec S is constructible
if it is a finite union
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s
U U, nc¢,

i=1

where each U; C Spec S is open and each C; € Spec S is closed. We assume access
to algorithms that

1. compute unions and intersections of constructible sets, and
2. determine whether a constructible set is empty.

See [2], for example.
For the sake of completeness, we recall an algebraic version of Baire’s theorem
needed in the proof of Lemma 2.2, which is in turn used in the proof of Proposition 4.6.

Theorem 2.1 (Baire’s Theorem) No irreducible scheme X of finite type over an
uncountable field k is, as a topological space, a countable union of closed proper
subsets.

Proof As only the topology is in play, there is no harm in assuming that all of the
schemes involved are reduced. Intersecting each subset in such a union [ J;2, Z; with
the members of an affine open cover reduces to the case where X is affine. Hence X
is a closed subscheme of A", and its coordinate ring is a domain because it is reduced
and irreducible. Noether normalization therefore reduces to the case X = A", because
it guarantees a finite surjective morphism to A%™ X while preserving the fact that each
Z; is a closed proper subset.

The goal is to show that | J°2, Z; is a proper subset of A" given that each Z; is a
proper closed subset. The proof is by induction on 7, the case n = 1 following from
the uncountability of k. Let H be a hyperplane that is not contained in any of the
(countably many) irreducible components of the Z;; such an H exists—simplest is
to choose it parallel to some given hyperplane—because k is uncountable and each
Z; contains only finitely many hyperplanes parallel to any given one. The induction
is concluded by noting that H N Z; is a proper closed subscheme of H for all i, so
H#J2,HNZ. O

Lemma 2.2 [f the field k is uncountable, then no countably infinite union of disjoint
nonempty constructible sets is constructible.

Proof Let U = | J;2, Z; be the union of disjoint nonempty constructible sets Z;. The
proof is inductive on dim U, the case dim U = 0 being trivial.

For contradiction, suppose U is a finite union of intersections C; N O; of closed
irreducible sets C; and open sets O;. One of the intersections, say C; N O1, must
intersect infinitely many Z; nontrivially. Let Zf :=272;,NC{. ThenC; = (C; ~ 0O1) U
Uz, Z;. Theorem 2.1 implies that one of the sets Z must equal Cy. By considering
the constructible set C1 \ Z; we conclude by induction on dimension. O

2.2 Comprehensive Grobner Bases

The notion of comprehensive Grobner basis [25,31] adapts to our case as follows. Let
S be a domain which is a finitely generated commutative k-algebra and let I C S[x]
FoC
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be an ideal. Fix any term order. Buchberger’s algorithm for / over the generic point—
that is, in the polynomial ring xo[x] over the fraction field xp of S—finds a finite set
of polynomials g; € I«o[x] that constitute a reduced Grobner basis. Step i of the
algorithm needs to assume that a leading coefficient f; € § is nonzero. Consider
the ideal J = <]_[l ﬁ) C S. Over any point p € Spec S \ V(J), the reduction of
gj is the reduced Grobner basis for the reduction of /. Indeed, over such a point the
usual Buchberger algorithm makes exactly the same steps as the algorithm run over the
generic point. Repeating the procedure for each irreducible component of V (J) yields:

e a partition of Spec § into irreducible, relatively open sets U;; and
o for each U; a finite set of polynomials g;; in I that specializes over any point of U;
to a reduced Grobner basis of the reduction of /.

This data structure is a relative reduced Grobner basis. We further assume that

e U; are irreducible and
o the leading coefficients of (g;;) do not vanish on U;, and hence by inverting them
that they are equal to 1.

2.3 The Locus of Fiber Containment

For two schemes fibered over a fixed base scheme B, the methods in later sections rely
on an ability to compute the locus of points in B where the fibers of the first scheme
are contained in the fibers of the second one. In an affine setting, this locus is described
by Theorem 2.3.

Theorem 2.3 Let S be a finitely generated commutative k-algebra. Given two ideals
11, I, C S[x], the set of points {p € Spec S | hkp[x] € hky [x]} is constructible in
Spec S. If I, is an extension of an ideal from K[X], then this set is closed.

Proof Let fi, ..., f, generate I1. Then I1kp[X] € Ikp[x] if and only if I;Sp[x] +
pSplx] € LSp[x] + pSp[x], and this is in turn equivalent to f; € I Sp[x] + pSp[x]
for all i. Therefore, it suffices to treat the case where I is principal, say I} = (f).

Let (U;, (gij)) be the relative reduced Grobner basis for /5 introduced in Sect. 2.2.
To prove the first part of the theorem, fix an arbitrary stratum Uj,. In analogy to the
algorithm computing the comprehensive Grobner basis, reduce f modulo (g;, ;) j. This
yields a presentation of the reduction of f as a combination of standard monomials
with coefficients represented by elements of localizations of S. In Uj,, the locus p €
Spec S over which f € I Sp[x] + pSp[x] is the closed set given by vanishing of all
(numerators of) these coefficients of standard monomials. This finishes the proof of
the first statement. Further, note that the locus of interest is closed in Uj,.

If I, is an extension of an ideal from k[x] then the relative reduced Grobner basis
is just the (extension of) the usual reduced Grobner basis in k[x]. As before it suffices
to assume that /; is principal. Here U;, = Spec S and the result is a closed set. O

Definition 2.4 The constructible set in Theorem 2.3 is the containment locus for I
in I (or for X, in X1, where I; = I(X;)). Its intersection with the containment locus
for I, in I is the coincidence locus of I and I (or of X and X»).

Elol:;ﬂ
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Corollary 2.5 Let B = Spec S for a finitely generated commutative k-algebra S. Set
Ay = A% Let X C A" be a subscheme and X1 = X x B C A’y be the constant family
over B. Then the containment locus of X1 in X, is closed for any family X, C A
over B. More generally, if there exists an isomorphism : A’y — A’y of schemes over B
that transforms X to the constant family, then the containment locus is closed.

Proof In the constant family case, the ideal of X is simply (the extension of) the ideal
of X. Therefore, this case follows immediately from Theorem 2.3. The last statement
follows by first applying ¢ and then appealing to the case of the constant family. O

Example 2.6 The loci considered in Theorem 2.3 need not be closed. Indeed, let § =
k[s, t] and I1, I € S[x] be defined by I} = (x) and I, = (sx — ). Geometrically,
V(11) is just the sz-plane, while V (I») is the affine part of a blow-up of this plane at
the origin. The fibers coincide exactly when t = 0 and s # O.

We now present an algorithmic version of Theorem 2.3.

Algorithm 2.7 Compute the containment locus for two families over same base

Input: ideals 71, I € S[x] of families over a commutative finitely generated

k-algebra S
Output: containment locus for I, in I, as | J/_, Ni_, (VW) \ V(Jip) for
Ji/i’ Jie €S
DEFINE f1, ..., fx generators of I;
COMPUTE relative reduced Grobner basis {(U;, (gij)j) | i =1,...,r}of I, over §
WHILE i =1,...,r DO
DEFINE J;, J/ C Sideals, suchthat U; = V(J)) \ V(J;)
hi1, ..., his generators of J;
WHILE £=1,...,kDO

DEFINE  f/, reduction of f; modulo (g;;);, considered as an ele-
ment of S[x] after clearing denominatorsin S,, .5, [X]

Jie € S ideal generated by the coefficients of f/,
Ty =T+ T
Jie =i
END WHILE- DO
END WHILE- DO
RETURN Jig, J/, € Sfori=1,...,randl=1,...,k

Remark 2.8 In the situation of Theorem 2.3, the following stronger statement holds:
Let I> denote the homogenization of I, with respect to a new variable xg. If S[xg, x]/ I
is flat over S, then the set {p € Spec S | I1xp[X] € Ikp[x]} is closed in Spec S.

We only sketch the proof because the result is not used in later sections. Without
loss of generality, assume that I} is principal, with generator f € S[x]. Denote by f its
homogenization. The first step is to show that there is a nonnegative integer N € N—a
constant that depends on the ring S, the ideal 15, and the generator f—such that for all
p € Spec S, the equivalencexévf € izSp [x0, X]+pSp[x0, X] & f € LSp[x]+pSp[X]

EOE';W
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holds. Existence of this integer N can be proved by induction on dim(S) using a relative
reduced Grobner basis for fz.

Next, observe that the question of whether x(’)\' f liesin /5 is equivalent to solvability
of a certain inhomogeneous system of linear equations with coefficients in S. Such a
system is solvable if and only if the rank of the coefficient matrix equals the rank of
the “extended matrix” that is obtained by appending the right-hand side of the system
to the coefficient matrix. Since rank is determined by vanishing of minors, the locus
where the system is solvable is constructible. (This yields another proof of the first
part of Theorem 2.3.)

Finally, the rank of the coefficient matrix equals the value of the Hilbert function of
S[xo0, x]/ iz in the degree of xév f . The assumption that S[xq, X]/ iz is flat implies that
this Hilbert function is the same over every point p, so the rank of the matrix cannot
drop, and the set of points where the system is solvable is therefore closed.

2.4 The Locus of Large Fibers

Given a morphism of schemes X — B, we need to compute the locus B¢ C B of
fibers of dimension at least d. A deterministic algorithm for this task was given by
Kemper [16]. The probabilistic algorithm presented here is therefore not theoretically
required for algorithms in the rest of paper, but it is much easier to implement and we
expect it to run faster. In particular, Algorithm 2.10 has allowed us to compute explicit
examples, some of which are presented here.

Note on conventions: Algorithm 2.10 and its proof assume (and implicitly use)
that the field k is algebraically closed. The engine of the algorithm—and the only
interesting part—is the following subroutine that takes an affine scheme affine over
an affine base as input; it inherits the hypotheses from its parent algorithm where it is
applied.

Algorithm 2.9 Find locus of big fiber dimension, affine case

Input: a morphism f : X — B of affine schemes, say X C A%
Output: closure B=“ of the locus of points in B over which the fiber has dimension
>d
INITIALIZE By := &
By =B
i:=1
WHILE B;_1 # B; DO
CHOOSE random affine subspace L’ € Aj of codimension d
DEFINE P := closure of the projectionto B of (L’ x B) N X
Biy1:=B,NP
ADVANCE i <1+ 1
END WHILE- DO
RETURN B;

Algorithm 2.10 Find locus of big fiber dimension, general case
Elol:;ﬂ
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Input: integer d and affine morphism f : X — B of schemes over algebraically

closed k
Output: closure B=¢ of the locus of points in B over which the fiber has dimension
>d
COMPUTE open cover B = Ul;zl Bj by affine subschemes B;
DEFINE X; := f‘l(Bj) for j =1, ..., k (an affine open cover of X because f is
affine)
COMPUTE B‘/.Zd := locus where dim(fibersof X;) > d for j = 1,...,k (Algo-
rithm 2.9)

RETURN B7¢U...U B

Proposition 2.11 Algorithm 2.10 is correct.

Proof It suffices to prove Algorithm 2.9 works on affine morphisms of affine schemes,
because a fiber is large if and only if it is large in (at least) one member of an open
cover of the source. So assume X C A%. Fix an irreducible component Z of B4,

Claim For a general point 7 € Z and a general affine subspace L C A" of codimen-
sion d, the fiber f~1(z) intersects L.

Proof of the claim This is deduced by taking closures in projective space, where subva-
rieties of complementary dimension always intersect. Of course the projective closure
of L is only guaranteed to intersect the projective closure of the fiber, but the difference
between an affine algebraic subset and its projective closure has lower dimension.

The claim implies that (L’ x B) N X in Algorithm 2.9 contains general points of Z, so
B=? C B;. It remains to prove that the output B; cannot be strictly bigger. Consider
a component Q of any B; (not necessarily the output one). Assume the fiber over a
general point of Q has dimension smaller than d. To finish, we have to prove that
Bi+1 # B;. Consider a fiber F over a general point ¢ € Q. Since dimF < d, a
general subspace of codimension d in P" fails to meet the closure of F in P", and
this remains true in a neighborhood of ¢g. Thus the general point of Q is not in the
projection of L’ N X. Hence Q is not a component of B, . O

Remark 2.12 Most of the algorithms in this paper are too high-level to warrant speci-
fying precise algebraic formats for their input or output. For example, the contents of
Algorithms 2.9 and 2.10 do not care what form the input morphisms take, or precisely
how the sets B; are presented as output. A morphism of schemes can in general be
specified via open covers of the source and target by spectra of rings, with compat-
ible ring homomorphisms. An affine morphism might be handed to Algorithm 2.9
this way, even if there exists a simpler presentation in which the spectra covering the
source are in bijection with the spectra covering the target. Furthermore, an arbitrary
scheme morphism might not explicitly be given by open covers at all; it might be
specified by a homorphism of graded rings in projective cases, or multigraded rings
in toric situations, or some combination of ring inclusions and homomorphisms in a
context of cluster algebras, or some other method specific to the situation at hand.
The point is that (for example) Algorithm 2.10 only requires that an open cover in the
EOE';W
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COMPUTE step can in fact be calculated; it does not provide instruction on how the
geometric operations are actually carried out. It would obscure the mathematical and
computational content to place restrictions on the input or output formats.

Alas, the high-level nature of our pseudocode makes complexity analysis difficult
or impossible. But since the algorithms ultimately rely on Grobner bases, their worst-
case performance has hopelessly bad complexity anyway. Note that taken for granted
are standard methods of computational algebra, like checking normality of rings, or
computing homogenizations and radicals of ideals, implementations of which can be
found in, for example, Macaulay2 [11]. The problem is exacerbated by the need to
specify data structures for algebras over fields: Algorithm 4.2, for instance, does not
care whether S has been given as a quotient ring, a subalgebra, or an image of a ring
homomorphism.

Remark 2.13 The algorithms in this paper do not assume that constructible sets are
presented using radical ideals. In particular, the algorithm outputs might not be radical
ideals. However, when comparing two constructible sets to discover containment or
equality, it is sometimes simplest to take radicals. In the case of Algorithm 2.9, radicals
could be used (this occurs explicitly in Example 5.3, which uses Algorithm 2.10); but
for us it was faster to first run the subroutine a few times—with different linear forms—
without computing radicals, and only later compare sets by computing radicals.

3 Detecting Big Group Actions and Multigradings
3.1 Group Actions and Families

Let G be an algebraic group (over k, as always), acting on affine n-space A" over k.
The action is a morphism « : G x A" — A", and it is assumed to be a left action, so
y.(y'.§) = (yy’).£ for points v, y’ € G and & € A" over k.

The geometric action on A" is equivalent to an algebraic action on k[x]; fory € G
and f € k[x], the function f.y sends & — f(y.£) for all £ € A". As the group G
acts on the affine space one may assume that G is affine [1, Corollary 3.2.2]. Then, «
induces a ring homomorphism o* : k[x] — k[G]®k[x], where k[G] is the coordinate
ring of G (not its group algebra over k), satisfying the axioms dual to the group action
axioms. For any pointy € G letev,, : k|G] — «, be the evaluation map, meaning the
algebra morphism corresponding to the inclusion {y'} < G. Then for ak-valued group
element y, the composition (ev, ®id) o o™ gives a map o G = End(k[x], k[x]),
and f.y = a'(y)(f). For any ideal I C k[x] and point y € G over k, set .y =
{(fylfell

In the setting of schemes over G, the crucial families are the orbits. To define them,
one more bit of general notation helps: for any two schemes X and B over k, write
Xp = B x X and consider it as a family over B. The reader will lose little by thinking
always of B = G, as in the following definition.

Definition 3.1 The orbit morphism is w := ng x a : A — AY, where 7 is the
projection to G. If X C A" is a subscheme, then its orbit is Og X = w(Xg).

FoC'T
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Remark 3.2 On k-valued points, the orbit morphism is (y, §) — (y, y.£). Geometri-
cally, the orbit of X is a family over G whose fibers are the translates of X by group
elements. The terminology comes from the case where X is a point &, because the
projection of Og¢ to A" is indeed the G-orbit of £.

More formally, if X € A" is a subscheme, then y.X is the fiber of OgX over
y € G. Algebraically, X is defined by an ideal / < k[x], and Og X is defined by
the ideal J C S[x], where S = k[G] and J = (w*)’l(l). The ideal I.yfl defining
the subscheme y.X of the affine space A;’, over the residue field «,, is a specialization
of J, namely the extension J ) [x] of J to the polynomial ring over the residue field
of y.

Remark 3.3 Images of ideals are much easier to compute than preimages. Therefore,
in order to compute the ideal J above in a concrete case, it might be a good idea to
first compute the inverse map of e, which amounts to computing the map y > y ~!
on G, and then obtain J as push-forward of I along that map.

Remark 3.4 The locus where an orbit is contained in any given family is always closed,
by Corollary 2.5.

3.2 Finding Big Group Actions

In this section, T is an algebraic group acting on affine space viaamap 8 : T x A" —
A”". We are interested in finding those elements of G which make a given subscheme
X C A" invariant under T, or invariant under a subgroup of 7 whose dimension is
as big as possible. For terminology, we say that a group acting on a space stabilizes
a subspace if the subspace is preserved by the action (not necessarily pointwise); in
contrast, we say that the group fixes a subspace if every point in the subspace is fixed
by the group action.

Example 3.5 Let T = (k*)" be the n-dimensional torus acting diagonally on A”". If
X C A" is a nondegenerate subvariety (reduced irreducible subscheme not contained
in a hyperplane) such that for some y € G L(n) the subvariety y.X C A" is stabilized
by a subtorus 7/ C T with dim 7’ = dim X, then by some definitions y.X is already
toric, and by others it becomes so after further rescaling the variables [9, Corollary 2.6].
In the latter case, y'. X is toric for some other Y’ € G L(n). (Yetother definitions require
X to be normal; we do not.)

We start with the following useful lemma.
Lemma 3.6 The stabilizer of any ideal 1 < Kk[X] is a closed subgroup of T.

Proof For the scheme X C A" defined by /, the containment loci both for X7 in O7 X
and for Or X in X7 are closed by Corollary 2.5, so their coincidence locus is closed.
]

Remark 3.7 The two containment loci in the proof of Lemma 3.6 are in fact equal,

because I.t € [ = I.t = [ fort € T.Indeed, I.t C I implies I.t" C I.7'~! for
all i € Z (including negative i), contradicting the noetherian property of k[x].

FoC Tl
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If a subgroup T’ C T stabilizes a subscheme X C A", then the action of T restricts
to an action of 7’ on X. We now consider the question for which y € G there is a
large subgroup of 7 stabilizing y.X.

Proposition 3.8 Let X C A" be a closed subscheme. Let further G' € G be the
locus of those y € G where the dimension of the stabilizer subgroup T (y.X) C T is
maximal. Then G’ is closed.

Proof Let Y C T x G be the coincidence locus for O7 (OgX) and (Og X) 7, viewed
as schemes over T x G. The fiber Y, of Y over y € G is the stabilizer T'(y.X) of y. X
in T. The subset Y € T x G is closed by Corollary 2.5, and G is the locus of points
y € G such that Y}, has maximal dimension.

If d(y) = dimY, then d(y) is the local dimension of Y, at t for all T € Y,,
in particular at T = 17, because Y, is a subgroup of 7. Upper semicontinuity of
fiber dimension locally on the source [10, 13.1.3] implies that the subset Z C Y with
maximal local fiber dimension is closed in Y. Therefore 17 x G’ = Z N (17 x G)
is closed in the identity section 17 x G. The result follows because G — 17 x G
is an isomorphism. O

Example 3.9 Proposition 3.8 says that stabilizer dimensions for fibers of orbits Og X g
are upper semicontinuous. In contrast, semicontinuity can fail for families that are not
orbits. The simplest instance has 7 = k*, § = k[s], and I = (sx, x(x — 1)) C S[x].
Then V (1) is the union of the s-axis with the point (0, 1). So fors # 0, V(1) is stable
under 7', while for s = 0 it is only stable under the trivial subgroup of 7. Thus, the
locus where the stabilizer has maximal dimension is not closed.

Algorithm 3.10 Act to make stabilizing subgroup of maximal dimension

Input: two algebraic groups 7" and G acting on A"
aclosed subscheme X C A"
Output: the closed set G’ € G such that for any y € G’ the dimension of the
subgroup of T stabilizing y.X is maximal
COMPUTE X := O7(OgX¢)
X2 :=(OcXe)T
coincidence locus Y € T x G for X; and X, (Algorithm 2.7; see also
Remark 3.7)
maximal fiber dimension locus G’ € G for Y — G (Algorithm 2.10)
RETURN G’

3.3 Finding Multigradings

AZ"-multigrading onk[x] is specified by n vectors ay, . .., a, € Z" to serve as degrees
of the variables: deg x; = a;. The multigrading is faithful if ay, ..., a, generate Z'.

Remark 3.11 Details on multigraded algebra in general can be found in [24, Chap-
ter 8]. A Z"-multigrading on k[x] corresponds uniquely to the action on k" of
the r-torus (k*)". (References for this are hard to locate. An exposition appears
FoC'T
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in Appendix A.l of the first arXiv version of [17], at http://arxiv.org/abs/math/
0110058v1.) An abelian group homomorphism Z" — Z” sending the standard basis
to aj, ..., a, corresponds (by applying the Homyz(—, k*) functor) to an algebraic
group homomorphism (k*)" — (k*)" that is injective precisely when the multigrad-
ing is faithful. The assertion that deg x; = a; means that the j’hsps generator 7; of
the r-torus acts on x; by x;.7; = t;'ij x;. Geometrically speaking, multigraded (i.e.,
homogeneous) ideals correspond to subschemes of k” that carry (k*)™-actions.

The following is the detailed algebraic phrasing of Algorithm 3.10 when T is the
standard algebraic n-torus acting diagonally on k”.

Algorithm 3.12 Act to find a faithful multigrading of maximal rank

Input: anideal I C k[x]
a morphism o™ : k[G] ® k[x] — k[G] ® k[x]
Output: anelementy € G,
a nonnegative integer r, and

vectors ay, ..., a, € Z" defining a faithful multigrading that makes 7.y
homogeneous and r as big as possible

DEFINE R := ]k[tli, R tf] = k[T], the Laurent polynomial ring
B* : k[x] — R ® k[x], the algebra map specified by x; — x;t; for
1<i<n

I == (d ®p") (@) () € ROKIG] @ kIx]
b := (") " (I)R € R @ k[G] ® k[X]
COMPUTE coincidence locus Y C Spec(k[G] ® R) of 11 and I, (Algorithm 2.7)
maximal fiber dimension locus G’ € G for Y — G (Algorithm 2.10)
any pointy € G’
generators for the kernel J, of R — k[Y, ] (a binomial ideal [9, Thm. 2.1])
abasis for Z" /L, where L = (a — b | t* — t? is a generator of J,)
RETURN group elementy~! € G,
integer r := n — rank(L), and
n images of standard basis elements in Z" /L expressed in the computed
basis

4 Detecting Binomial and Unital Ideals

This section presents algorithms to decide whether / € k[x] can be made binomial
or unital by an automorphism of k[x]. Let us recall the relevant definitions.

Definition 4.1 A binomial is a polynomial x* — AxP for some A € k and a, b € N".
An ideal in k[x] is

1. binomial if it is generated by binomials, and
2. unital (cf. [18]) if it is generated by monomials and differences of monomials,
meaning binomials x* — AxP with A € {0, 1}.
3. toric if it is unital and prime.
EOE';W
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4.1 Algorithm to Locate Binomial Models

The following algorithm is based on comprehensive Grobner bases (Sect. 2.2). Ateach
stratum, it forces all coefficients except for the leading coefficient and (at most) one
other to be 0; more precisely, it computes the locus where this is possible. The result
is the binomial locus because an ideal is binomial if and only if some (equivalently,
every) reduced Grobner basis consists of binomials [9, Corollary 1.2].

Algorithm 4.2 Find the locus of binomial fibers

Input: finitely generated commutative k-algebra S that is an integral domain

ideal I C S[x]

Output: constructible subset Z C Spec S such that I«,[x] is binomial precisely
forpe Z

COMPUTE relative reduced Grobner basis {(U;, (gij);j) | i =1,...,k}of I over§

INITIALIZE i = 1

WHILE i =1,...,kDO

DEFINE NL; := Hj{nonleading monomials of g;;}, which is a cartesian product
of sets
ideal numF := (numerator of f | f € F) C S forany set F C k( of
fractions
ideal J;y:= Zj num{coefficients of g;; neither Ejth nor leading} C S for
¢ e NL;

ADVANCE i <« i +1
END WHILE- DO
RETURN (J_, Z; for Zi = Ui N (Ugen, V (Ji0))

4.2 Algorithm to Locate Unital Models

Itis possible for a group G to have the power to transform a given ideal / into binomial
form without G being able to transform / into unital form, even though a larger group
G could succeed in making / unital. Trivial examples exist: any principal nonunital
binomial ideal with G = {1} suffices. But it is even possible for G to contain the entire
torus. (See also Example 4.8.)

Example 4.3 Consider the binomial ideal I = (xz,z(z—1),z(y —2), x(x — 1), x(y —
1)). Its variety consists of the two points p; = (0, 2, 1) and py = (1, 1, 0) and the line
{(0,&,0) | &€ € C}. The map that fixes x and z but sends y — y + z makes [ unital.

On the other hand, scaling by 7 € ((C*)3 is unable to make I unital. Indeed, if
T € (C*)3 then y(t.p1) # 1 or y(t.p2) # 1. As both cases are analogous, say
y(t.p1) # 1 and thus 7.p; # (0, 1, 1). Any monomial evaluated on (0, 1, 1) is either
0 or 1, and it is equal to O if and only if it is equal to O when evaluated on 7.p;.
Thus if two monomials are equal when evaluated on 7.p; then they are also equal
when evaluated on (0, 1, 1). Hence, any unital binomial or monomial that vanishes on
7.p1 vanishes also on (0, 1, 1). If 7.t were unital, this would contradict that t.p; is
the only point with z # 0.

Elol:;ﬂ
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The main idea of our algorithm is that unital ideals / can be characterized by the
fact that the variety V (/) is closed under coordinatewise multiplication. It turns out
to be more convenient to work with the algebraic counterpart of the multiplication,
which is the diagonal map A.

Precisely, let A : k[x] — k[x] ® k[x] be the algebra homomorphism defined by
A(x;) = x; ® x;. This makes k[x] into a bialgebra. The induced map A* : A" x A" —
A" is the coordinatewise multiplication map.

Proposition 4.4 The following are equivalent for an ideal I C k[x].

1. I is unital.
2. 1 is a coideal with respect to A; that is, A(I) C k[x] ®k I + I ®k k[x].

Proof The implication “1 = 2” follows from the definitions, because

A =x* @ x* e k[x] ®k I + I ® k[x],
A —x") =x*® x® —x") + x* —x") ® x? € k[x] ® I + I Q k[x].

The implication “2 = 1" is essentially due to Artin, cf. [9, Remark p. 15]. Let us recall
the argument.

If I is a coideal, then A induces A : kix]/I — k[x]/I ® k[x]/I compati-
ble with the canonical projection 7 : k[x] — k[x]/I. Now suppose that 7w (mg) =
Zle Aim(m;) is a relation among classes of monomials with £ minimal (and hence
Ai 0 fori > 0). Then

> himm) @ wmp) = A( Y ximmi)
i>0 i>0

= Z(n(mo)) = w(mo) ® mw(mo)

= (Zkin(mi)) ® (Zkiﬂ(mi))

i>0 i>0
= Z AiAjm(m;) @ m(m ).
i,j>0

As ¢ is minimal, the 7 (m;) are independent for i > 0. Hence the 7 (m;) ® 7 (m ) are
also independent. But A;1; # O fori # j,sof =1land 4| = A%, whence A = 1. O

Algorithm 4.5 Find the locus of unital fibers

Input: ideal I C S[x]

Output: constructible subset Z C Spec S such that /«,[x] is unital precisely for
peZz

DEFINE [; := A(I) C S[x] ®s S[x]
J1:S[x] = S[X]® S[x]vias — s ® 1
fr:S[x] — S[xX]® S[x]vias—> 1Q®s
L= fill) + fo(I) € S[x] ® S[x]

RETURN containment locus of I} in I as families over S (Algorithm 2.7)

FolCT
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4.3 Unital Loci from Group Actions

This subsection assumes k is uncountable.

Algorithm 4.5 works over an arbitrary affine base. The setup in Sect. 3, where
the base is a group of ambient automorphisms, yields a further structural property of
unital loci.

Proposition 4.6 The set of points y € G such that 1.y is unital is a finite union

L Gy

yeU
of cosets of the stabilizer G(I). In particular; this set is closed.

Proof First, k[x] has only countably many monomials. As every unital ideal is gen-
erated by finitely many monomials and differences of monomials, there are also only
countably many unital ideals of the form /.y. The set of points y € G such that /.y
is unital has the form

L Gy

yelU

and is constructible by Theorem 2.3 and Proposition 4.4. Lemma 2.2 implies that the
union has to be finite. Finally, stabilizers are closed by Lemma 3.6, so their cosets are,
as well, and so are finite unions thereof. O

Example 4.7 Under the componentwise action of the usual torus, any binomial prime
ideal becomes unital—and hence toric—after rescaling the variables appropriately [9,
Corollary 2.6]. The prime assumption here is essential, as Example 4.8 shows.

Example 4.8 1t need not be possible to find a group action—or any family with iso-
morphic fibers—taking a given ideal to a unital one, even if the original is a binomial
ideal. Indeed, the ideal I = (u°(u — v), v (u — 2v)) is binomial but C[u, v]// is not
(abstractly) isomorphic to a quotient of a polynomial ring R by a unital ideal J.

To see why, suppose such a J exists and consider R of smallest possible dimension.
Since C[u, v]/I is supported at the origin (both u!! and v'! lie in 1), the quotient R/.J
is supported at a single point. As J is unital, the variables can be numbered so that its
support pointis £ = (1,...,1,0,...,0). Extending J by all x; such that x;(§) = 0
then yields a reduced ideal [18, Theorem 9.12]. Hence x;(§) = 1 = x1 — 1 € J,
which contradicts minimality of dim R. Thus £ = 0. Note that R/J has tangent space
of dimension 2. Consequently, R = C[x1, x»]. Indeed, if dim R > 2 then J contains
a binomial of the form x — g, where g is a monomial and x is a variable. If x { g then
x — g eliminates x, contradicting minimality of dim R. And if x | g then repeatedly
replace x in g to get binomials of the form x — g; € J with deg g; — o0; the fact that
R/J is Artinian proves that x € J, again leading to a contradiction.

Since I is a complete intersection, J = (f1, f2). Since R/J is supported at the
origin, it equals its localization at (x1, x2). As J is unital, Nakayama’s lemma produces

Elol:;ﬂ
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unital binomials by, by such that J = (by, by) as ideals of the localization R. More
generally, minimal systems of generators of an ideal in a local ring have the same
cardinality.

The local Hilbert function of C[u, v]/I implies that (i) neither b1 nor b, has nonzero
monomials of degree less than 6, and (ii) each of them contains a monomial of degree 6.

Now note that there are, up to scaling, precisely two distinct pairs of nonzero
elements {1 ;,¢2; € (u,v)/(u, v)2 for i = 1,2 such that Z?’iﬂg,i = 0 €
(u,v)®/(u,v)”  Clu, vl/(I + (u, v)7) for a + b = 6. Further, the exponents satisfy
a=1andb =5o0ra = 5and b = 1. Indeed, suppose ¢; ;, £ ; satisfy the above
condition. If £1 ; # u and £ ; # u — v (which provides one possible pair), it must be
that

j”iﬁg,i = A (u — v) + v (u — 2v)

for some A € C. Dividing by u® and setting r = v/u, the equality above means that
the polynomial P(r) = A(1 — ) + > — 2¢° has two roots of multiplicity a and b,
respectively. Swapping if necessary, assume a > 3. Vanishing of the second derivative
forces the root to satisfy 203 — 60t* = 0,ie.,t =0ort = 1/3.If t = 0 is the root
of P(t), then A = 0 and a second pair of linear forms {v, u — 2v} arises. When
t = 1/3, nonvanishing of (d*P(t)/dt*)(1/3) means it can be a root of multiplicity at
most three, and a second root of multiplicity three would be required, but none exists.

The next goal is to exclude cases where b1, by are monomials or fail to be homoge-
neous. So assume b; is a monomial or inhomogeneous binomial. Then b; has image
xfxg ~“in R /{x1, x2)7; without loss of generality assume it is xf X7, providing the first
pair {€1.1, £2,1} = {x1, x2}. This forces b, to be homogeneous, as it would otherwise
provide a second monomial, necessarily equal to x 1x§ , contradicting the fact that the
pairs £1 ;, £2,; are distinct for i = 1, 2. Hence, b, is a homogeneous degree 6 binomial.

Observe that for any nonzero element & € (u, v)/(u, v)> € Clu, v]/I + (u, v)?
there is at most a 1-dimensional family of elements of (i, v)>/(u, v)° that annihilate
it modulo 7 + (u, v)7. Indeed, otherwise AP} = aju’(u — v) + ﬂlvs(u — 2v) and
hPy = aou”(u—v)+ B2 v (u —2v) for some linearly independent polynomials Py, P>
of degree 5. However, then 7 would be a common divisor of u? (u—v) and v° (u —2v),
which is not possible.

Hence, b, cannot be divisible by x; or x and thus must equal x16 — xg. But then
there is no second pair of linear forms £1 2, €22 € Clx1, x21/(J + (x1, x2)7) such that
5?26272 = 0, because a polynomial of the form At + ® — 1 cannot have a root of
multiplicity 3, so it must have more than two distinct roots. This concludes the proof
that by and b are both homogeneous and that neither is a monomial. But this means
that x; — x> divides both b; and by, which contradicts dim R /J =0.

5 Detecting Toric Ideals and Varieties

This section presents an algorithm to check whether a given homogeneous prime ideal
defines a variety that is abstractly isomorphic to a toric one (Sect. 5.2). While this could
Eo oy
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be done using our earlier algorithms, the hypothesis that / is prime allows significant
simplifications (Sect. 5.1).

5.1 Faster Algorithm for Fiber Containment of an Irreducible Family

The procedure in Sect. 5.2 is made faster by the following alternative to Algorithm 2.7
in the special case that the ideal that is requested to be larger (that is, I5) has fibers that
are known to be prime. The advantage is that we expect this algorithm to run much
faster than Algorithm 2.7.

Algorithm 5.1 Compute containment locus families when one has prime fibers

Input: ideal I} C S[x]
ideal I, C S[x] with prime fiber I« [x] for every prime ideal p € Spec §
Output: containment locus for I in I as a constructible set
DEFINE X := V(| + D)
B := Spec S
d :=dim V()
RETURN locus B¢ C B where fibers have dimension > d (Algorithm 2.10 or [16])

Proposition 5.2 Algorithm 5.1 is correct.

Proof In any finitely generated commutative k-algebra R (we apply it to xy, [x]), if one
ideal / contains a prime ideal J, then / = J if and only if dim(R//) = dim(R/J).O

Example 5.3 This is a Macaulay?2 [11] demonstration of testing whether there exists
y € G = (C, +) such that 1.y is toric, where I = (xy + 2y%> — 1) and (C, +) acts
on C? by y.(x, y) = (x + ¥y, y). The code applies Algorithm 4.5, relying on the fast
Algorithm 5.1 instead of Algorithm 2.7 to compute containment. Moreover, in view
of Remark 3.3, it works with the inverse group action, so as to obtain the ideal I as
the image of a map.

R = Q0[x,v];

I = ideal (x*y+2*y"2-1);

GxR = QQla,x,vy];

GxRxR = QQlaa,xxl,yyl,xx2,yy2];

alpha = map(GxR,R, {x-a*y, y}); -- action by the inverse
IdotDelta = map (GxRxR,GxR, {aa,xx1*xx2,yy1l*yy2});

I1 = IdotDelta(alpha(I));

1idfl = map (GxRxR, GxR, {aa,xxl,yyl});

1df2 = map (GxRxR, GxR, {aa,xx2,yy2});

I2 = idfl(alpha(I))+idf2(alpha(I));

I3 = I1+41I2;
BPrimn = ideal (sub(0,GxRxR)), BPrimo = ideal (sub(l,GxRxR)) ;
while (not ((radical BPrimn)==BPrimo))
do {
L = 0;
for i from 1 to (2*(dim I))
Elol:;ﬂ
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L = L+ideal (sub(random(1l,GxRxR), {aa=>random QQ}))

I4 = I3+L;
BPrimo = BPrimn,
BPrimn = radical (BPrimo+eliminate(I4, {xx1,yyl,xx2,yy2}));
}
M = map (GxR,GxRxR, {a,x,vy,0,0});
eliminate (M(BPrimn)+alpha(I),a);
eliminate (M(BPrimn)+alpha(I), {x,v})

5.2 Toric Varieties

This section shows how to detect whether a projective variety is toric without any
prespecified group or other family of ambient automorphisms.

Algorithm 5.4 Decide whether a normal projective variety is abstractly toric

Input: normal projective variety X < P”"
Output: a projective toric embedding of X if it is toric, else FALSE
COMPUTE a projectively normal Veronese embedding of X[13, Exercise I1.5.14]
a homogeneous prime ideal I C S such that X = Proj(S/I)
y € GLy such that I.y ! is toric (Algorithm 4.5)
RETURN y.X or FALSE, accordingly

Theorem 5.5 Algorithm 5.4 is correct.

Proof The re-embedding can be done by attempting successively higher Veronese
maps and checking whether each is projectively normal. The cited source guarantees
that this procedure terminates.

It remains only to show that if X is toric, then there really exists y € GLy such that
y.X isequivariantly embedded. The embedding of X distinguishes a very ample divisor
L on X.If X is toric, then L is equivalent to a toric divisor L’ by [5, Theorem 4.2.1].
Therefore, the projectively normal embedding yields a surjection I'(PY, O(1)) —
I'(X, L'). In particular, X is toric if and only if there exists an automorphism of PV
under which 7 (X) goes to a toric ideal. But all automorphisms of PV are (projectively)
linear, so the desired one is represented by some matrix y € GLy. O

Remark 5.6 To check if a variety X is toric it is essential that X be projective. For
example, it is an open problem to decide whether the affine variety defined by the
ideal (x + x2y +722+ t3) c Clx, vy, z, t, w] is isomorphic to A4 [20, Remark 5.3].

6 Conclusion

In retrospect, many of our algorithms apply not only to a group of automorphisms of an
affine space but to an arbitrary family of transformations. To be precise, fix an arbitrary
morphism « : ¥ x A" — A" thought of as a family of maps A" — A" parametrized
FoC
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by Y. For a k-valued closed point n € Y denote by o, : A" — A" the morphism
obtained by composition of the isomorphism A" — {1} x A" and (the restriction of)
«. Given an affine variety X € A" one may ask for the locus of points 1 € Y such that
o, 1(X) is defined by a unital ideal. In the group action setting, where ¥ = G is a group
and « is an action (Sect. 3.1), working with images and preimages are more or less
equivalent: they amount to taking orbits for y or y ~!. But in this more general setting,
working with preimages means computing inverse images of subschemes (images
of ideals), which is trivial, instead of computing images of schemes (kernels of ring
maps), which is a hard problem known as implicitization. Furthermore, the inverse
image is closed, whereas for images of morphisms the global closure may be not
compatible with closure fiberwise, which creates additional problems.

Remark 6.1 Even using preimages of subschemes instead of images, extending our
algorithms to this more general setting requires special attention. For example,
although two families over Y can still be compared as in Algorithm 4.5, the dimension
argument in Sect. 5.1 no longer necessarily applies.

Remark 6.2 In contrast, the methods to test binomiality in Sect. 4.1 adapt verbatim to
the case of arbitrary maps, as they only rely on comprehensive Grobner bases.

Remark 6.3 1t is similarly easy to check if an ideal is generated by monomials in a
similar way to Algorithm 4.2. Indeed, for each U; one only needs to check if it is
possible for all coefficients of nonleading monomials to vanish. Alternatively, note
that an ideal / C k[xy, ..., x,] is monomial if and only if it is stable under the whole
torus 7 = (k*)" and apply Algorithm 3.10.

Remark 6.4 Some of our algorithms easily generalize to work over a base that is not
necessarily affine. Algorithms 2.7 and 5.1 can generalize by covering the base with
affine open sets, as the problem is local on the base. On the other hand, an algebraic
group acting faithfully on the affine space is automatically affine [1, Corollary 3.2.2],
so there is no need to generalize the algorithms related to group actions. That said,
Algorithm 3.10 should generalize to the case where neither the base nor the fiber is
assumed to be affine. This indicates how some of the other algorithms might proceed
in the case of a nonaffine group acting on a nonaffine scheme.

In view of our results, we find the following three problems of particular importance.

Problem 1 Is the problem of determining if an affine variety is affine space decidable?
Equivalently, is it decidable to test if a finitely generated k-algebra is a polynomial
ring?

Problem 2 (a) Is the problem of determining if a projective (nonnormal) variety
admits a torus action with a dense orbit decidable?

(b) Is the problem of determining if a projective (nonnormal) variety is (abstractly)
isomorphic to the (closure of) the image of a monomial map decidable?

Problem 3 Is the problem of determining if a given affine variety is toric decidable?
Elol:;ﬂ
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The last problem may be asked both for normal and arbitrary affine varieties.

Finally, a natural continuation of the results in Sect. 4 would be to try to find
an algorithm which detects whether a given ideal contains at least one binomial after
applying an automorphism of k[x]. (See [15] for an algorithm which detects binomials
in ideals in fixed coordinates.) In general, this seems to be a difficult problem. The
following example illustrates that the set of points y € G where y.I contains a
binomial can fail to be constructible.

Example 6.5 Consider the additive group G = (C?, +) acting on A?C by the matrices

—

10
gap= |0 1 B
00 1

Theideal I = ((x — )%, z) C R[x, y, z] yields gup.I = ((x — ), z—ax + By). The
claim s that g,g./ contains a binomial if and only if & and 8 are Q-linearly dependent.

Start with the “only if” direction. Assume that gog.1 contains a binomial Ax® — zxP
for some scalars A, u € C and exponents a, b € N°. Both generators of gap-1 have a
zero at (1, 1, @ — B), so this is also a zero of Ax® — uxP. This implies that

0= Al —B)™ — (@ — B)».

By symmetry assume that az > b3. As A # 0, there is no harm in assuming that A = 1
and 1 = (a — B)® b3 The differential operator D = 9, + «d has the property that
D(f)(1,1,a — B) =0forall f € gup.I because this holds for the generators of the
ideal. Now compute:

D —(a — BB 7x) (1, 1, a—B) = ((e — B) (a1 —b1) — a(az — b3)) (e — By

It follows that either « = 8 or a(a; — b1 — a3z + b3) = B(a; — by). In both cases, o
and B are Q-linearly dependent.

Turning to the “if” direction, assume that « and g are linearly dependent over Q.
Consider only the case where @ > B > 0, as the other cases are similar. In the given
case, there exist p,q € N with p > ¢ > 0 and ga — pB = 0. To see that g,g./
contains the binomial (o« — 8)?~9xP — y9zP~4, consider the lexicographic term order
on C[x, y, z] with z > x > y. Computing the normal form of (¢« — 8)?~9x” and
y9zP~49 with respect to the given generators of gog./ and the given term order yields
in both cases (o« — B)P~4yP~! (px +(p—- 1)y). Hence, their difference lies in gog.17.
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