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Abstract—We investigate the problem of optimally assigning a
large number of robots (or other types of autonomous agents) to
guard the perimeters of closed 2D regions, where the perimeter of
each region to be guarded may contain multiple disjoint polygonal
chains. Each robot is responsible for guarding a subset of a
perimeter and any point on a perimeter must be guarded by
some robot. In allocating the robots, the main objective is to
minimize the maximum 1D distance to be covered by any robot
along the boundary of the regions. For this optimization problem
which we call optimal perimeter guarding (OPG), thorough
structural analysis is performed, which is then exploited to develop
fast exact algorithms that run in guaranteed low polynomial
time. In addition to formal analysis and proofs, experimental
evaluations and simulations are performed that further validate
the correctness and effectiveness of our algorithmic results.

I. INTRODUCTION

Consider the scenario from Fig. 1, which contains a closed
region with its boundary or border demarcated by the red
and dotted blue polygonal chains (p-chains for short). To
secure the region, either from intrusions from the outside or
unwanted escapes from within, it is desirable to deploy a
number of autonomous robots to monitor or guard either the
entire boundary or selected portions of it, e.g., the three red p-
chains), with each robot responsible for a continuous section.
Naturally, one might also want to have an even coverage by the
robots, e.g., minimizing the maximum effort from any robot.
In practice, such effort may correspond to sensing ranges or
motion capabilities of robots, which are always limited. As an
intuitive example, the figure may represent the top view of
a castle with its entire boundary being a high wall on which
robots may travel. The portion of the wall marked with the three
red p-chains must be protected whereas the part marked by the
dotted blue p-chains may not need active monitoring (e.g., the
outside of which may be a cliff or a body of deep water). The
green and orange p-chains show an optimal distribution of the
workload by 8 robots that covers all red p-chains but skips two
of the three blue dotted p-chains.

More formally we study the problem of deploying a large
number of robots to guard a set of 1D perimeters. Each
perimeter is comprised of one or more 1D (p-chain) segments
that are part of a circular boundary (e.g., the red p-chains in
Fig. 1). Each robot is tasked to guard a continuous 1D p-chain
that covers a portion of a perimeter. As the main objective,
we seek an allocation of robots such that (i) the union of the
robots’ coverage encloses all perimeters and (ii) the maximum
coverage of any robot is minimized. We call this 1D deployment
problem the Optimal Perimeter Guarding (OPG) problem.

In this work, three main OPG variants are examined. The
settings regarding the perimeter in these three variants are: (i)

Fig. 1: An illustrative scenario where a perimeter, in this case represented as the red
polygonal chains (p-chains), must be guarded by n = 8 robots, which are constrained
to only travel along the perimeter boundary (the red p-chains plus the dotted blue ones,
which are gaps that do not need to be guarded). An optimal set of locations for the 8
robots and the coverage region for each robot are marked on the perimeter boundary in
green and orange, which minimizes the maximum coverage required for any robot.

multiple perimeters with each having a single connected com-
ponent; (ii) a single perimeter containing multiple connected
components; and (iii) multiple perimeters with each containing
multiple connected components (the most general case). For all
three variants, we have developed exact algorithms for solving
OPG that runs in low polynomial time. More specifically, let
there be n robots, m perimeters, with perimeter i (1 ≤ i ≤ m)
containing qi connected components. If m = 1, then let
the only perimeter contains q connected components. For the
three variants, our algorithm computes an optimal solution in
time O(m(log n + logm) + n), O(q2 log(n + q) + n), and
O((

∑︁
1≤i≤m q2i ) log(n+

∑︁
1≤i≤m qi)+n), respectively, which

are roughly quadratic in the worst case. The modeling of the
OPG problem and the development of the efficient algorithms
for OPG constitute the main contribution of this paper.

With an emphasis on the deployment of a large number of
robots, within multi-robot systems research [1]–[4], our study
is closely related to formation control, e.g., [5]–[11], where
the goal is to achieve certain distributions through continuous
(often, local sensing based) interactions among the agents or
robots. Depending on the particular setting, the distribution in
question may be spatial, e.g., rendezvous [5], [11], or maybe an
agreement in agent velocity is sought [6], [8]. In these studies,
the resulting formation often has some degree-of-freedoms left
unspecified. For example, rendezvous results [5], [11] often
come with exponential convergence guarantee, but the location
of rendezvous is generally unknown a priori.

On the other hand, in multi-robot task and motion plan-
ning problems (e.g., [12]–[19]), especially ones with a task
allocation element [12], [14]–[17], [19], the (permutation-
invariant) target configuration is often mostly known. The
goal here is finding a one-to-one mapping between individual
robots and the target locations (e.g., deciding a matching) and



then plan (possibly collision-free) trajectories for the robots
to reach their respective assigned targets [16], [17], [19]. In
contrast to formation control and multi-robot motion planning
research, our study of OPG seeks to determine an exact,
optimal distribution pattern of robots (in this case, over a fairly
arbitrary, bounded 1D topological domain). Thus, solutions to
OPG may serve as the target distributions for multi-robot task
and motion planning, which is the main motivation behind
our work. The generated distribution pattern is also potentially
useful in multi-robot persistent monitoring [20] and coverage
[21], [22] applications, where robots are asked to carry out
sensing tasks in some optimal manner.

As a multi-robot coverage problem, OPG is intimately
connected to Art Gallery problems [23], [24], with origins
traceable to half a century ago [25]. Art Gallery problems
assume a visibility-based [26] sensing model; in a typical setup
[23], the interior of a polygon must be visible to at least one
of the guards, which may be placed on the boundaries, corners,
or the interior of the polygon. Finding the optimal number
of guards are often NP-hard [27]. Alternatively, disc-based
sensing model may be used, which leads to the classical packing
problem [28], [29], where no overlap is allowed between the
sensors’ coverage area, the coverage problem [30]–[34], where
all workspace must be covered with overlaps allowed, or the
tiling problem [35], where the goal is to have the union of
sensing ranges span the entire workspace without overlap. For
a more complete account on Art Gallery, packing, and covering,
see Chapters 2, 3, and 33 of [36]. Despite the existence of a
large body of literature performing extensive studies on these
intriguing computational geometry problems, these types of
research mostly address domains that are 2D and higher. To
our knowledge, OPG, as an optimal coverage problem over
a non-trivial 1D topological space, represents a practical and
novel formulation yet to be fully investigated.

The rest of the paper is organized as follows. The OPG
problem and some of its most basic properties are described in
Section II. In Section III, a thorough structural analysis of OPG
with single and multiple perimeters is performed, paving the
way for introducing the full algorithmic solutions in Section IV.
Then, in Section V, comprehensive numerical evaluations of
the multiple polynomial-time algorithms are carried out. In
addition, two realistic application scenarios are demonstrated.
In Section VI, we conclude with additional discussions.

II. THE OPTIMAL PERIMETER GUARDING PROBLEM

Let W ⊂ R2 be a compact (i.e., closed and bounded)
two-dimensional workspace. There are m pairwise disjoint
regions R = {R1, . . . , Rm} where each region Ri ⊂ W

is homeomorphic to the closed unit disc, i.e., there exists a
continuous bijection fi : Ri → {(x, y) | x2 + y2 ≤ 1} for
all 1 ≤ i ≤ m. For a given region Ri, let ∂Ri be its (closed)
boundary (therefore, fi maps ∂Ri to the unit circle S1). With
a slight abuse of notation, define ∂R = {∂R1, . . . , ∂Rm}. For
each Ri, Pi ⊂ ∂Ri is called the perimeter of Ri which is either
a single closed curve or formed by a finite number of possibly
curved line segments. In this paper, we assume a perimeter

is given as a single p-chain (possibly a polygon) or multiple
disjoint p-chains. Let P = {P1, . . . , Pm}, which must be
guarded. More formally, each Pi is homeomorphic to a compact
subset of the unit circle. For a given Pi, each of its maximal
connected component (a p-chain) is called a perimeter segment
or segment, whereas each maximal connected component of
∂Ri\Pi is called a perimeter gap or gap. An example is
illustrated in Fig. 2 with two regions.

R1

P1

R2

P2

W

Fig. 2: An example of a workspace W with two regions {R1, R2}. Due to three gaps
on ∂R1, marked as dotted lines within long rectangles, P1 ⊂ ∂R1 has three segments
(or maximal connected components); P2 = ∂R2 has a single segment with no gap.

There are n indistinguishable point robots residing in W.
These robots are to be deployed to cover the perimeters P

such that each robot 1 ≤ j ≤ n is assigned a continuous
closed subset Cj of some ∂Ri, 1 ≤ i ≤ m. All of P must
be covered by C = {C1, . . . , Cn}, i.e.,

⋃︁
Pi∈P Pi ⊂

⋃︁
Cj∈C Cj ,

which implies that elements of C need not intersect on their
interiors. Hence, it is assumed that any two elements of C may
share at most their endpoints. Such a C is called a cover of P.

Given a cover C, for a Cj ∈ C, 1 ≤ j ≤ n, let len(Cj)
denote its length (more formally, measure). It is desirable to
minimize the maximum len(Cj), i.e., the goal is to find a cover
C such that the value maxCj∈C len(Cj) is minimized. This
corresponds to minimizing the maximum workload for each
robot or agent. The formal definition of the Optimal Perimeter
Guarding (OPG) problem is provided as follows.

Problem 1 (Optimal Perimeter Guarding (OPG)). Given
the perimeter P = {P1, . . . , Pm} of a set of 2D regions
R = {R1, . . . , Rm}, find a set of n polygonal chains C∗ =
{C∗

1 , . . . , C
∗
n} such that C∗ covers P, i.e.,⋃︂

Pi∈P

Pi ⊂
⋃︂

C∗
j ∈C∗

C∗
j , (1)

with the maximum of len(C∗
j ), 1 ≤ j ≤ n minimized, i.e.,

among all covers C satisfying (1),

C∗ = argmin
C

max
Cj∈C

len(Cj). (2)

Here, we introduce the technical assumption that the ratio
between the length of ∂R and the length of ∂P is polynomial
in the input parameters. That is, the length of ∂R is not much
larger than the length of ∂P . The assumption makes intuitive
sense as any gap should not be much larger than the perimeter
in practice. We note that the assumption is not strictly necessary
but helps simplify the correctness proof of some algorithms.

Henceforth, in general, C∗ is used when an optimal cover is
meant whereas C is used when a cover is meant. We further



define the optimal single robot coverage length as

ℓ∗ = min
C

max
Cj∈C

len(Cj). (3)

Fig. 1 shows an example of an optimal cover by 8 robots of
a perimeter with three components. Note that one of the three
gaps (the one on the top area as part of the hexagon) is fully
covered by a robot, which leads to a smaller ℓ∗ as compared
to other feasible solutions. This interesting phenomenon, which
is actually a main source of the difficulty in solving OPG, is
explored more formally in Section III (Proposition 3).

Given the OPG formulation, additional details on ∂R must
be specified to allow the precise characterization of the compu-
tational complexity (of any algorithm developed for OPG). For
this purpose, it is assumed that each ∂Ri ∈ ∂R, 1 ≤ i ≤ m, is
a simple (i.e., non-intersecting and without holes) polygon with
an input complexity O(Mi), i.e., ∂Ri has about Mi vertices or
edges. If an OPG has a single region R, then let ∂R have an
input complexity of M . Note that the algorithms developed in
this work apply to curved boundaries equally well, provided
that the curves have similar input complexity and are given
in a format that allow the computation of their lengths with
the same complexity. Alternatively, curved boundaries may be
approximated to arbitrary precision with polygons.

For deploying a robot to guard a Cj , one natural choice is
to send the robot to a target location tj ∈ Cj such that tj
is the centroid of Cj . Since Cj is one dimensional, tj is the
center (or midpoint) of Cj . After solving an OPG, there is the
remaining problem of assigning the n robots to the centers of
C∗ = {C∗

j } and actually moving the robots to these assigned
locations. As a secondary objective, it may also be desirable to
provide guarantees on the execution time required for deploying
the robots to reach target guarding locations. We note that, the
task assignment (after determining target locations) and motion
planning component for handling robot deployment, essential
for applications but not a key part of this work’s contribution,
is briefly addressed in Section V.

With some C∗ satisfying (1) and (2), we may further require
that len(C∗

j ) is minimized for all C∗
j ∈ C∗. This means that a

gap G ⊂ ((
⋃︁
∂Ri)\(

⋃︁
Pi)) will never be partially covered by

some C∗
j ∈ C∗. In the example from Fig. 2, G may be one of

the gaps on ∂R1; clearly, it is not beneficial to have some C∗
j

partially cover (i.e., intersect the interior of) one of these. This
rather useful condition (note that this is not an assumption but
a solution property) yields the following lemma.

Lemma 1. For a set of perimeters P = {P1, . . . , Pm} where
Pi ⊂ ∂Ri for 1 ≤ i ≤ m, there exists an optimal cover C∗ =
{C∗

1 , . . . , C
∗
n} such that, for any gap (or maximal connected

component) G ⊂ ((
⋃︁
∂Ri)\(

⋃︁
Pi)) and any C∗

j ∈ C∗, C∗
j ∩

G = G or C∗
j ∩G = ∅.

Remark. Our definition of coverage is but one of the possible
models of coverage. The definition restricts a robot deployed
to Cj , 1 ≤ j ≤ n, to essentially live on Cj . The definition
models scenarios where a guarding robot must travel along
Cj , which is one-dimensional. Nevertheless, the algorithms
developed for OPG have broader applications. For example,

subroutines in our algorithms readily solve the problem of
finding the minimum number of guards needed if each guard
has a predetermined maximum coverage. △

III. STRUCTURAL ANALYSIS

In designing efficient algorithms, the solution structure of
OPG induced by the problem formulation is first explored,
starting from the case where there is a single region.

A. Guarding a Single Region

Perimeter with a single connected component. For guarding
a single region R = {R}, i.e., there is a single boundary ∂R
to be guarded, all n robots can be directly allocated to ∂R. If
the single perimeter P ⊂ ∂R further has a single connected
component that is either homeomorphic to S1 or [0, 1], then
each robot j can be assigned a piece Cj ⊂ P such that⋃︁

Cj∈C Cj = P and len(Cj) = len(P )/n. Clearly, such a
cover C is also an optimal cover.
Perimeter with multiple maximal connected components.
When there are multiple maximal connected components (or
segments) in a single perimeter P , things become more
complex. To facilitate the discussion, assume here P has q
segments S1, . . . , Sq arranged in the clockwise direction (i.e.,
P = S1 ∪ . . . ∪ Sq), which leaves q gaps G1, . . . , Gq with Gk

immediately following Sk. Fig. 3 shows a perimeter with five
segments and five gaps.

S1

G1 S2 G2 S3

G3

S4

G4

S5

G5

Fig. 3: A perimeter with five segments S1, . . . , S5 and five gaps G1, . . . , G5.

Suppose an optimal set of assignments for the n robots
guarding P and satisfying (1) and (2) is C∗ = {C∗

j }. Let
Gmax be a largest gap, i.e., len(Gmax) = max1≤k≤q len(Gk).
Via small perturbations to the lengths of Gk, we may also
assume that Gmax is unique. On one hand, it must hold
that len(C∗

j ) ≤ (len(∂R) − len(Gmax))/n, as a solution
where n robots evenly cover all of ∂R with the gap Gmax

excluded, satisfies the condition. On the other hand, len(C∗
j ) ≥

(
∑︁

1≤k≤q len(Sk))/n always holds because the coverage con-
dition requires

∑︁
j C

∗
j ≥

∑︁
1≤k≤q len(Sk). These yield a pair

of basic upper and lower bounds for the optimal single robot
coverage length ℓ∗, summarized as follows.

Proposition 2. Define

ℓmin =

∑︁
1≤k≤q len(Sk)

n
and ℓmax =

len(∂R)− len(Gmax)

n
,

it holds that

ℓmin ≤ ℓ∗ ≤ ℓmax. (4)

Though some gap, if there at least one, must be skipped by
the optimal solution, it is not always the case that a largest gap
Gmax, even if unique, will be skipped by

⋃︁
Cj∈C∗ C∗

j . That is,
an optimal cover C∗ may enclose the largest gap.



Proposition 3. Given a region R and perimeter P ⊂ ∂R, let
Gmax be the unique longest connected component of ∂R\P .
Let C∗ be an optimal cover of P . Then, there exist OPG
instances in which Gmax ⊂ C∗

j for some C∗
j ∈ C∗.

Proof: The claim may be proved via contradiction with the
example illustrated in Fig. 4 which readily generalizes. In the
figure, there are four gaps G1, . . . , G4, in which three gaps (G1,
G2, and G4) have the same length (i.e., len(G1) = len(G2) =
len(G4)) and are evenly spaced (i.e., len(S1) = len(S2) =
len(S3 ∪G3 ∪S4)). Here, Gmax = G3, which is 1.5 times the
length of other gaps, i.e., len(G3) =

3
2 len(G1).

S1

G1

S2

G2

S3

G3

S4

G4

Fig. 4: A case where the perimeter has four segments or maximal connected components.
Three of the gaps, G1, G2, and G4 are of the same length and are evenly spaced, G3

is 0.5 times longer.

For n = 3 robots, the optimal cover C∗ must allocate each
robot to guard each of S1, S2, and (S3∪G3∪S4). Without loss
of generality, let C∗

1 = S1, C∗
2 = S2, and C∗

3 = (S3∪G3∪S4).
This means that G3 is covered by C∗

3 and not skipped by C∗.
In this case, len(C∗

1 ) = len(C∗
2 ) = len(C∗

3 ) = len(S1).
To see that this must be the case, suppose on the contrary

that G3 is skipped and let C = {C1, C2, C3} be an alternative
cover. By Lemma 1, an optimal cover must skip G3 entirely.
In this case, some Cj , say C1, must have its left endpoint1

coincide with the right endpoint of of G3 (the point where G3

meets S4). Then C1 must cover S4 and G4; otherwise, C2 and
C3 must cover S1∪S2∪S3, which makes len(C2)+len(C3) ≥
len(S1 ∪ S2 ∪ S3) > 2len(S1) and C a worse cover than C∗.
By symmetry, similarly, some Cj , say C3, must have its right
endpoint coincide with the left endpoint of G3 and cover S3

and G2. However, this means that both G2 and G4 are covered
by C. Even if G1 is skipped, this makes len(C1 ∪C2 ∪C3) =
len(S4 ∪ G4 ∪ S1 ∪ S2 ∪ G2 ∪ S3) > len(S1 ∪ S2 ∪ S3 ∪
G3 ∪ S4) = 3len(S1), again making C sub-optimal. By the
pigeonhole principle, at least one of the C1, C2, or C3 must
be longer than len(S1). Therefore, skipping Gmax = G3 in
this case leads to a sub-optimal cover. The optimal cover with
n = 3 is to have C∗ = {S1, S2, (S3 ∪G3 ∪ S4)}.

Proposition 3 implies that in allocating robots to guard a
perimeter P ⊂ ∂R, an algorithm cannot simply start by
excluding the longest component from ∂R\P and then the next
largest, and so on. This makes solving OPG more challenging.
Referring back to Fig. 1, if the top gap is skipped by the cover,
then the three robots on the right side of the perimeter (two

1In this paper, for a non-circular segment or gap, its left endpoint is defined
as the limit point along the counterclockwise direction along the perimeter and
its right endpoint is defined as the limit point in the clockwise direction along
the perimeter. So, in Fig. 4, for S1, its left endpoint touches G4 and its right
endpoint touches G1.

orange and one green) need to cover the part of the perimeter
between the two hexagons. This will cause ℓ∗ to increase.

On the other hand, for an optimal cover C∗ = {C∗
1 , . . . , C

∗
n}

of P , some C∗
j ∈ C∗ must have at least one of its endpoint

aligned with an endpoint of a component Sk of P (assuming
that P ⊊ ∂R).

Proposition 4. For an optimal cover C∗ = {C∗
1 , . . . , C

∗
n} of a

perimeter P = S1 ∪ . . .∪Sq ⊂ ∂R = S1 ∪G1∪ . . .∪Sq ∪Gq ,
for some Si ⊂ P and C∗

j ∈ C∗, their right (or left) endpoints
must coincide.

Proof: By Lemma 1, for any Gk ⊂ ∂R\P , and C∗
j ∈ C∗,

Gk ∩ C∗
j = Gk or Gk ∩ C∗

j = ∅. Since at least one Gk, 1 ≤
k ≤ q, must be skipped by C∗

1 ∪ . . . C∗
n, some C∗

j , 1 ≤ j ≤ n
must have its right endpoint aligned with the right endpoint of
Sk, which is on the left of Gk. Following the same argument,
some C∗

j′ and Sk′ must have the same left endpoints.
Proposition 4 suggests that we may attempt to cover a

perimeter P starting from an endpoint of S1, S2, and so on.
Indeed, as we will show in Section IV, an efficient algorithm
can be designed exploiting this important fact.

B. Guarding Multiple Regions

In a multiple region setup, there is one additional level of
complexity: the number of robots that will be assigned to an
individual region is no longer fixed. This introduces another
set of variables n1, . . . , nm with n1 + . . . + nm = n, and ni,
1 ≤ i ≤ m being the number of robots allocated to guard
∂Ri. For a fixed ni, the results derived for a single region, i.e.,
Propositions 2–4 continue to hold.

IV. EFFICIENT ALGORITHMS FOR PERIMETER GUARDING

In presenting algorithms for OPG, we begin with the case
where each perimeter Pi ∈ P has a single connected component
(i.e., Pi is homeomorphic to S1 or [0, 1]). Then, we work
on the general single region case where the only perimeter is
composed of q > 1 connected components, before moving to
the most general multiple regions case.

A. Perimeters Containing Single Components

When there is a single perimeter P , the solution is straight-
forward with ℓ∗ = len(P )/n. With ℓ∗ determined, C∗ is also
readily computed.

In the case where there are m > 1 regions, let the optimal
distribution of the n robots among the m regions be given by
n∗
1, . . . , n

∗
m. For a given region Ri, the n∗

i robots must each
guard a length ℓi = len(Pi)/n

∗
i . At this point, we observe that

for at least one region, say Ri, the corresponding ℓi must be
maximal, i.e., ℓi = ℓ∗. The observation directly leads to a naive
strategy for finding ℓ∗: for each Ri, one may simply try all
possible 1 ≤ ni ≤ n and find the maximum len(Pi)/ni that is
feasible, i.e., n−ni robots can cover all other Ri′ , i′ ̸= i, with
each robot covering no more than len(Pi)/ni. Denoting this
candidate cover length len(Pi)/ni as ℓci and the corresponding
ni as nc

i , the smallest ℓci overall 1 ≤ i ≤ m is then ℓ∗.



The basic strategy mentioned above works and runs in poly-
nomial time. It is possible to carry out the computation much
more efficiently if the longest Pi is examined first. Without
loss of generality, assume that P1 is the longest perimeter, i.e.,
len(P1) ≥ len(Pi) for all 1 ≤ i ≤ m. Recall that nc

1 is the
number of robots allocated to P1 that yields ℓc1, it must hold
that

len(P1)

nc
1 + 1

< ℓ∗ ≤ len(P1)

nc
1

= ℓc1. (5)

For an arbitrary Pi, simple manipulating of (5) yields
len(Pi)

(nc
1 + 1) len(Pi)

len(P1)

< ℓ∗ ≤ len(Pi)

nc
1
len(Pi)
len(P1)

. (6)

This means that we only need to consider nc
i ∈[︁

⌈nc
1
len(Pi)
len(P1)

⌉, ⌊(nc
1 + 1) len(Pi)

len(P1)
⌋]. Moreover, since P1 is the

longest perimeter, len(Pi)
len(P1)

≤ 1. Therefore, the difference
between the two denominators of (6) is no more than 1, i.e.,

(nc
1 + 1)

len(Pi)

len(P1)
− nc

1

len(Pi)

len(P1)
≤ 1.

When len(Pi) ̸= len(P1), (nc
1 + 1) len(Pi)

len(P1)
− nc

1
len(Pi)
len(P1)

< 1

and there are two possibilities. One of these is ⌈nc
1
len(Pi)
len(P1)

⌉ =
⌊(nc

1+1) len(Pi)
len(P1)

⌋, which leaves a single possible candidate for

nc
i . The other possibility is ⌈nc

1
len(Pi)
len(P1)

⌉ = ⌊(nc
1+1) len(Pi)

len(P1)
⌋+1,

in which case there is actually no valid candidate for nc
i . That

is, after computing nc
1 and ℓc1, if len(Pi) = len(P1) then no

computation is needed for Pi. If len(Pi) < len(P1) then we
only need to check at most one candidate for nc

i .
Additional heuristics can be applied to reduce the required

computation. First, in finding nc
1, we may use bisection (binary

search) over [1,m] since if a given n1 is infeasible, any n′
1 > n1

cannot be feasible either because len(P1)/n1 < len(P1)/n
′
1.

Second, let ℓ = (
∑︁

1≤i≤m len(Pi))/n, it holds that ℓci ≥ ℓ∗ ≥
ℓ. This means that for each 1 ≤ i ≤ m, it is not necessary
to try any ni > ⌊ len(Pi)

ℓ ⌋. Third, if a candidate ℓci is at any
time larger than the current candidate for ℓ∗, that i does not
need to be checked further. We only use the first and the third
in our implementation since the second does not help much
once the bisection step is applied. The pseudo code is outlined
in Algorithm 1. Note that we assume the problem instance is
feasible (n ≥ m), which is easy to check.

It is straightforward to verify that Algorithm 1 runs in time
O(m log n + m2). The O(m log n) comes from the while
loop, which calls the function ISFEASIBLE(ℓci , nc

i , i) log n
times. The function checks whether the current ℓci is feasible
for perimeters other than Pi (note that it is assumed that
ISFEASIBLE(·) has access to the input to Algorithm 1 as well).
This is done by computing for i′ ̸= i, ni′ = ⌈len(Pi′)/ℓ

c
i⌉

and checking whether
∑︁

i′ ̸=i ni′ ≤ n − nc
i . The O(m2) term

comes from the for loop. The running time of Algorithm 1
may be further reduced by noting that the for loop examines
(m − 1) candidate ℓci . These ℓci can be first computed and
sorted, on which bisection can be applied. This drops the main
running time to O(m(log n + logm)). This second bisection
is not reflected in Algorithm 1 to keep the logic and notation

more straightforward. If we also consider input complexity, an
additional O(

∑︁
1≤i≤m Mi) is needed to compute len(Pi) from

the raw polygonal input and an additional O(n) time is needed
for generating the actual locations for the n robots. The total
complexity is then O(m(log n+ logm) +

∑︁
1≤i≤m Mi +n).

Algorithm 1: MULTIREGIONSINGLECOMP

Input : P1, . . . , Pm: each Pi a polygon or p-chain; assume
that P1 is a longest perimeter
n: the number of robots

Output: ℓ∗, i∗: the optimal coverage and the i realizing it
1 ℓ∗ ←∞; i∗ ← 1;
%Compute nc

1 and initial ℓ∗.

2 nmin
1 ← 1; nmax

1 ← n; nc
1 ← 1;

3 while nmin
1 ̸= nmax

1 do

4 n1 ← ⌈n
min
1 +nmax

1
2

⌉; ℓ1 ← len(P1)
n1

;
5 if ISFEASIBLE(ℓ1, n1, 1) then
6 ℓ∗ ← ℓ1; nc

1 ← n1; nmin
1 ← n1;

7 else
8 nmax

1 ← n1 − 1;
9 end

10 end
%Optimize ℓ∗ over all 2 ≤ i ≤ m.

11 for i ∈ {2, . . . ,m} do
12 n−

i = ⌈n
c
1len(Pi)

len(P1)
⌉; n+

i = ⌊ (n
c
1+1)len(Pi)

len(P1)
⌋; ℓi ← len(Pi)

n+
i

;

13 if n−
i == n+

i and ISFEASIBLE(ℓi, n+
i , i) and ℓi < ℓ∗

then
14 ℓ∗ ← ℓi; i∗ ← i;
15 end
16 end
17 return ℓ∗, i∗

B. Single Perimeter Containing Multiple Components

Additional structural analysis. In computing ℓ∗ for a single
perimeter P with multiple connected components, assume that
P is composed of q maximal connected components S1, . . . , Sq

(e.g., Fig. 3), leaving G1, . . . , Gq as the gaps on ∂R. Given an
optimal cover C∗ = {C∗

1 , . . . , C
∗
n}, by Proposition 4, we may

assume that the left endpoint of some C∗
j , 1 ≤ j ≤ n coincides

with the left endpoint of some Sk, 1 ≤ k ≤ q. We then look at
the right endpoint of C∗

j . If it does not coincide with the right
endpoint of some Sk′ (k and k′ may or may not be the same),
it must coincide with the left endpoint of C∗

j+1. Continuing like
this, eventually we will hit some C∗

j′ where the right endpoint
of C∗

j′ coincides with the right endpoint of some Sk′ . Within a
partitioned subset C∗

j , . . . , C
∗
j′ , the maximal coverage of each

robot is minimized when len(C∗
j ) = . . . = len(C∗

j′). Because
ℓ∗ = len(C∗

j ) for some 1 ≤ j ≤ n, at least one of the subsets
must have all robots cover exactly a length of ℓ∗. These two
key structural observations are summarized as follows.

Theorem 5. Let C∗ = {C∗
1 , . . . , C

∗
n} be a solution to an OPG

instance with a single perimeter P = S1 ∪ . . . ∪ Sq and gaps
G1, . . . , Gq . Then, C∗ may be partitioned into disjoint subsets
with the following properties

1) the union of the individual elements from any subset forms
a continuous p-chain,



2) the left endpoint of such a union coincides with the left
endpoint of some Sk, 1 ≤ k ≤ q,

3) the right endpoint of such a union coincides with the right
endpoint of some Sk′ , 1 ≤ k′ ≤ q, and

4) the respective unions of elements from any two subsets are
disjoint, i.e., they are separated by at least one gap.

Moreover, for at least one such subset, {C∗
j , . . . , C

∗
j′}, it holds

that ℓ∗ = len(C∗
j ) = . . . = len(C∗

j′).
In the example from Fig. 1, C∗ is partitioned into two subsets

satisfying the conditions stated in Theorem 5.
A baseline algorithm. The theorem provides a way for com-
puting ℓ∗. For fixed 1 ≤ k, k′ ≤ q, denote the part of ∂R
between Sk and Sk′ following a clockwise direction (with Sk

and Sk′ included) as Sk−k′ . Theorem 5 says that for some
k, k′, len(Sk−k′) = n∗

k−k′ℓ∗ for some integer n∗
k−k′ ∈ [1, n].

We may find k, k′, and n∗
k−k′ , ℓ∗ by exhaustively going through

all possible k, k′, and nc
k−k′ (as a candidate of n∗

k−k′). For each
combination of k, k′ and nc

k−k′ , we can compute a

ℓck−k′ =
len(Sk−k′)

nc
k−k′

(7)

and check ℓck−k′ ’s feasibility. The largest feasible ℓck−k′ is ℓ∗.
Partial feasibility check: For checking feasibility of a particular
ℓck−k′ , i.e., whether ℓck−k′ is long enough for the rest of the
robots to cover the rest of the perimeter, we simply tile (n −
nc
k−k′) copies ℓck−k′ over the rest of the perimeter, starting

from S(k′ mod q)+1. As an example, see Fig. 5 where n = 6
robots are to cover the perimeter (in red, with five components
S1, . . . , S5). Suppose that the algorithm is currently working
with S1−2 (i.e., k = 1 and k′ = 2). If nc

1−2 = 2, then ℓc1−2 =
len(S1−2)/2. Each of the five green line segments C1, . . . , C5

in the figure has this length. As visualized in the figure, it is
possible to cover P\S1−2 with three more robots, which is no
more than n− nc

1−2 = 4. Therefore, this ℓc1−2 is feasible; note
that it is not necessary to exhaust all n = 6 robots. In the figure,
C3 covers the entire S3 and G3, as well as part of S4. The rest
of S4 is covered by C4. As C4 is tiled, it ends in the middle of
G4, so C5 starts at the beginning of S5. On the other hand, if
nc
1−2 = 3, the resulting ℓc1−2 (each of the orange line segments

has this length) is infeasible as S5 is now left uncovered.

S1 S2 S3 S4 S5

C1 C2 C3 C4 C5

Fig. 5: An illustration of the feasibility check of ℓc1−2. The single rectangular region and
the perimeter (five red segments S1–S5) are shown at the bottom. The orange and green
line segments show two potential covers.

The tiling-based feasibility check takes O(q) time as there
are at most q segments to tile; it takes constant time to tile
each using a given length. Let us denote this feasibility check
ISTILINGFEASIBLEPARTIAL(k, k′, nc

k−k′ ), we have obtained
an algorithm that runs in O(nq3) times since it needs to go
through all 1 ≤ k ≤ q, 1 ≤ k′ ≤ q, and 1 ≤ nc

k−k′ ≤ n.
For each combination of k, k′, and nc

k−k′ , it makes a call to
ISTILINGFEASIBLEPARTIAL(·). While a O(nq3) running time
is not bad, we can do significantly better.

A much faster algorithm. In the baseline algorithm, for each
k−k′ combination, up to n candidate nc

k−k′ may be attempted.
To gain speedups, the first phase of the improved algorithm
reduces the range of ℓ∗ to limit the choice of nc

k−k′ . For the
faster algorithm, a new feasibility checking routine is needed.

Full feasibility check: We introduce a feasibility check given
only a length ℓ. That is, a check is done to see whether n robots
are sufficient for covering P without any covering more than
length ℓ. This feasibility check is performed in a way similar
to ISTILINGFEASIBLEPARTIAL(·) but now k and k′ are not
specified. We instead try all Sk, 1 ≤ k ≤ q as the possible
starting segment for the tiling. Let us denote this procedure
ISTILINGFEASIBLEFULL(ℓ), which runs in O(q2).

Using bisection to limit the search range for ℓ∗: Starting from
the initial bounds for ℓ∗ given in Proposition 2 and with
ISTILINGFEASIBLEFULL(ℓ), we can narrow the bound to be
arbitrarily small, using bisection, since ℓ∗ is the minimum
feasible ℓ. To do this, we start with ℓ as the middle point
of initial lower bound ℓmin and upper bound ℓmax, and run
ISTILINGFEASIBLEFULL(ℓ). If ℓ is feasible, the upper bound
is lowered to ℓ. Otherwise, the lower bound is raised to ℓ. In
doing this, our goal in the first phase of the faster algorithm
is to reduce the range for ℓ∗ so that there is at most a single
choice for nc

k−k′ , regardless of the values of k and k′. The
stopping criteria for the bisection is given as follows, the proof
of which can be found in [37].

Proposition 6. Assume that the bisection search stops with
lower and upper bound being ℓfmin and ℓfmax. If

ℓfmax − ℓfmin <

[︂∑︁
1≤k≤q len(Sk)

]︂2
n2len(∂R)

, (8)

then there is at most a single choice for nc
k−k′ for all k, k′.

Finding ℓ∗: Equation (8) gives the stopping criteria used for
refining the bounds for ℓ∗. After completing the first phase, the
algorithm moves to the second phase of actually pinning down
ℓ∗. In this phase, instead of checking ℓck−k′ one by one, we
collect ℓck−k′ for all possible combinations of k, k′. Because
the first phase already ensures for each k, k′ combination there
is at most one pair of nc

k−k′ and ℓck−k′ , there are at most q2 total
candidates. After all candidates are collected, they are sorted
and another bisection is performed over these sorted candidates.
Feasibility check is done using ISTILINGFEASIBLEPARTIAL(·).
The complete algorithm is given in Algorithm 2. Note that ℓmin

and ℓmax, which change as the algorithm runs, are not the same
as the fixed ℓmin and ℓmax from Proposition 2.

In terms of running time, the first while loop starts with
ℓmax − ℓmin = len(∂R)−len(Gmax)

n −
∑︁

1≤k≤q len(Sk)

n ≤ len(∂R)
n

and stops when ℓmax − ℓmin ≤ [
∑︁

1≤k≤q len(Sk)]
2

n2len(∂R) . Therefore,

the bisection is executed log n[len(∂R)]2

[
∑︁

1≤k≤q len(Sk)]2
times, which

by the assumption that len(∂R) is a polynomial factor over∑︁
1≤k≤q len(Sk), is O(log(n+q)). Since each feasibility check

takes O(q2) time, the first while loop takes O(q2 log(n+ q))
time. The for loops work with a total of O(q2) candidates



and must sort them, taking time O(q2 log q2) = O(q2 log q).
Then, the second while loop bisects O(q2) candidates and
calls ISTILINGFEASIBLEPARTIAL(·) for each check, taking
time O(q log q2) = O(q log q). The total running time of
Algorithm 2 is then O(q2 log(n+ q) +M + n).2

Algorithm 2: SINGLEREGIONMULTICOMP

Input : ∂R = S1 ∪G1 ∪ . . . ∪ Sq ∪Gq: a single boundary
with the perimeter P = S1 ∪ . . . ∪ Sq .
n: the number of robots

Output: ℓ∗, k∗, k′∗: the optimal coverage and the pair of k
and k′ that realize the optimal coverage

%Phase one: narrow the range of ℓ∗.

1 ℓmin ←
∑︁

1≤k≤q len(Sk)

n
, ℓmax ← len(∂R)−len(Gmax)

n
;

2 while ℓmax − ℓmin >
[
∑︁

1≤k≤q len(Sk)]
2

n2len(∂R)
do

3 ℓ← ℓmax+ℓmin

2
;

4 ( ISTILINGFEASIBLEFULL(ℓ)? ℓmax ← ℓ : ℓmin ← ℓ );
5 end
%Phase two: pin down ℓ∗.

6 sm← []; %sm is a sorted map.
7 for k, k′ ∈ {1, . . . , q} do

8 nmax
k−k′ ← ⌊

len(Sk−k′ )

ℓmin ⌋; nmin
k−k′ ← ⌈

len(Sk−k′ )

ℓmax ⌉;
9 for nc

k−k′ ∈ {nmin
k−k′ , . . . , nmax

k−k′} do
10 sm.put(

len(Sk−k′ )

nc
k−k′

, (nc
k−k′ ,

len(Sk−k′ )

nc
k−k′

, k, k′));

11 end
12 end
13 ℓ∗ ←∞; k∗ ← 0; k′∗ ← 0;
14 while sm.size() > 1 do

%Extract the element from sm in the middle.
15 (nc, ℓc, k, k′)← sm.middleValue();
16 if ISTILINGFEASIBLEPARTIAL(k, k′, nc) then
17 ℓ∗ ← ℓc; k∗ ← k; k′∗ ← k′;
18 sm← sm.range(sm.minKey(), ℓc);
19 else
20 sm← sm.removeRange(sm.minKey(), ℓc);
21 end
22 end
23 return ℓ∗, k∗, k′∗

C. Multiple Perimeters Containing Multiple Components
The algorithm for the multiple perimeter case is a direct

generalization Algorithm 2. To facilitate the description, let
the perimeter Pi, 1 ≤ i ≤ m, contain qi maximal connected
components, i.e., Pi = Si,1 ∪ . . . ∪ Si,qi and the boundary
∂Ri = Si,1 ∪ Gi,1 ∪ . . . ∪ Si,qi ∪ Gi,qi . We extend the
definition of Sk−k′ for a single perimeter to Si,k−k′ for multiple
perimeters. By a straightforward generalization of Theorem 5
to multiple perimeters, for an OPG instance, the length of
some Si,k−k′ must be an integer multiple of ℓ∗. Similar to
the single perimeter case, we can try all Si,k−k′ and for each
try all possible 1 ≤ nc

i,k−k′ ≤ n. This gives us ℓci,k−k′ =

2We note that the assumption that len(∂R) is a polynomial factor over∑︁
1≤k≤q len(Sk) is not necessary. However, the corresponding analysis

becomes much more involved without it. Since the assumption makes practical
sense and also due to space limit, the more general result is omitted from the
current paper. Many additional interesting but non-essential details, including
this one, will be included in an extended version.

len(Si,k−k′ )

nc
i,k−k′

as candidates for ℓ∗; there are n(
∑︁

1≤i≤m q2i ) such
candidates. For checking the feasibility of ℓci,k−k′ , we may use
ISTILINGFEASIBLEPARTIAL(·) for the rest of Pi (taking O(qi)
time) and ISTILINGFEASIBLEFULL(·) for all 1 ≤ i′ ≤ m and
i′ ̸= i (taking O(

∑︁
1≤i′≤m,i′ ̸=i q

2
i′) time). This yields a baseline

algorithm that runs in O(n(
∑︁

1≤i≤m q2i )
2) time.

From here, speedups can be obtained as in the single perime-
ter case using the same reasoning. This yields a two-phase al-
gorithm, which we call MULTIREGIONMULTICOMP, that runs
in O((

∑︁
1≤i≤m q2i ) log(n+

∑︁
1≤i≤m qi) +

∑︁
1≤i≤m Mi + n).

V. PERFORMANCE EVALUATION AND APPLICATIONS

Our evaluation first verifies the algorithms’ running time
matches the claimed bounds. Then, two practical scenarios are
illustrated to show how OPG may be adapted to applications.

A. Algorithm Performance
In the performance results presented here, a data point is

the average from 10 randomly generated OPG instances. All
algorithms are implemented in Python 2.7, and all experiments
are executed on an Intel® Xeon® CPU at 3.0GHz.

For the case of m perimeters each containing a single seg-
ment, for each 1 ≤ i ≤ m, we set len(∂Ri) = 1 and let len(Pi)
be uniformly distributed in (0, 1]. Fig. 6 shows the result for
an example with m = 10 and n = 30. For various values
of m,n, the running time of MULTIREGIONSINGLECOMP is
summarized in Table I, which scales very well with m and n
(note that the n ≤ m case does not make much sense here).

Fig. 6: An example problem instance when m = 10 and n = 30. The black dots
indicate deployed robot locations; the green and orange p-chains indicate the coverage.

m
n

108 109 1010 1011 1012

106 1.152 1.442 1.508 1.652 1.617

107 13.963 17.281 18.796 20.354 20.627

108 NA 176.115 223.186 227.250 230.000

TABLE I. MULTIREGIONSINGLECOMP running time (seconds)

For the case of a single perimeter with multiple components,
a random polygon is generated on which 2q points are randomly
sampled that yield q segments (that form the perimeter) and q
gaps. An example instance and the optimal solution with q = 3
and n = 10 is illustrated in Fig. 7. The computation time for
various q and n combinations is given in Table II.

For multiple perimeters containing multiple components, m
polygons are created with len(∂Ri) randomly distributed in
[1, 10]. For setting qi, we fix a q and let qi = q(0.5 +
random(0, 1)). Representative computation results of MUL-
TIREGIONMULTICOMP are listed in Table III.



Fig. 7: An example problem instance when q = 3 and n = 10. In this case, the optimal
cover actually covers one gap.

q
n

101 102 103 104 105

102 0.013 0.015 0.016 0.016 0.017

103 1.363 1.595 1.622 1.634 1.641

104 159.404 188.497 210.492 212.473 212.780

TABLE II. SINGLEREGIONMULTICOMP computation time (seconds)

q n
m

10 20 30 40 50

101 103 0.047 0.063 0.076 0.091 0.108

102 103 2.191 3.771 5.523 7.707 9.369

102 104 7.105 9.619 11.369 12.760 15.107

TABLE III. MULTIREGIONMULTICOMP computation time (seconds)

Due to limited space, only selected essential performance
data is presented here. More complete performance data and
associate analysis can be found [37].

B. Two Applications Scenarios

Securing a perimeter. As a first application, consider a situ-
ation where a crime has just been committed at the Edinburgh
Castle (see Fig. 8). The culprit remains in the confines of
the castle but is mixed within many guests at the scene. As
the situation is being investigated and suppose that the brick
colored buildings are secured, guards (either personnel or a
number of drones) may be deployed to ensure the culprit does
not escape by climbing down the castle walls. Using SIN-
GLEREGIONMULTICOMP, a deployment plan can be quickly
computed given the amount of resources at hand so that each
guard only needs to secure a minimum length along the castle
walls. Fig. 8 shows the optimal deployment plan for 15 guards.

Fig. 8: Optimal deployment of 15 guards around walls of the Edinburgh Castle. The
brick colored structures are buildings that create gaps along the boundary.

Fire monitoring. In a second application, consider Fig. 9 where
a forest fire has just been put out in multiple regions. As there
is still some chance that the fire may rekindle and spread, for
prevention, a team of firefighters is to be deployed to watch
for the possible spreading of the fire. Here, in addition to using
MULTIREGIONMULTICOMP to compute optimal locations for

deploying the firefighters, we also generate minimum time
trajectories for the firefighters to reach their target locations
while avoiding going through the dangerous forests. This is
done via solving a bottleneck assignment problem [38]. Note
that the lake region creates gaps that cannot be traveled by the
firefighters; this can be handled by making these gaps infinitely
large. Fig. 9 shows the optimal locations for 34 firefighters.
Animations of the deployment process and other test cases can
be found in the accompanying video.

Fig. 9: Optimal deployment of 34 firefighters for forest fire rekindling prevention.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose the OPG problem to model the
allocation of a large number of robots to cover complex 1D
topological domains with optimality guarantees. For all variants
under the OPG formulation umbrella, we have developed
highly efficient algorithms for solving OPG exactly. In addi-
tion to rigorous proofs backed by formal analysis, extensive
computational experiments further confirm the effectiveness
of these algorithms. Moreover, practical relevance of OPG is
demonstrated through the integration of OPG into realistic task
(assignment) and motion planning scenarios.

The study raises many additional interesting open questions;
we mention a few here. First, the approach taken in this work
is a centralized one where decision is made at the global level.
It would be highly interesting to explore whether the same
can be achieved with decentralized methods, which have many
advantages. For example, it may be the case that the gaps along
the boundaries are not known a priori and must be measured
by the robots. In such cases, a centralized plan can be hard
to come by. Second, as mentioned in Section II, the current
OPG formulation assumes that the robots are confined to the
boundaries ∂R, which is one of many possible choices in terms
of the robots’ sensing and/or motion capabilities. In future
study, we plan to examine additional practical robot sensing
and motion models. Third, as exact optimal algorithms are
emphasized here, issues including uncertainty and robustness
have not been touched in the current treatment, which are
important elements when it comes to the deployment of a
robotic swarm to tackle real-world challenges.
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