Noname manuscript No.
(will be inserted by the editor)

Average Case Constant Factor Time and Distance Optimal
Multi-Robot Path Planning in Well-Connected Environments

Jingjin Yu

Received: date / Accepted: date

Abstract Fast algorithms for optimal multi-robot path
planning are sought after in real-world applications. Known
methods, however, generally do not simultaneously guar-
antee good solution optimality and good (e.g., polynomial)
running time. In this work, we develop a first low-polynomial
running time algorithm, called SPLITANDGROUP (SAG),
that solves the multi-robot path planning problem on grids
and grid-like environments, and produces constant factor
makespan optimal solutions on average over all problem in-
stances. That is, SAG is an average case O(1)-approximation
algorithm and computes solutions with sub-linear makespan.
SAG is capable of handling cases when the density of robots
is extremely high - in a graph-theoretic setting, the al-
gorithm supports cases where all vertices of the underly-
ing graph are occupied. SAG attains its desirable proper-
ties through a careful combination of a novel divide-and-
conquer technique, which we denote as global decoupling,
and network flow based methods for routing the robots.
Solutions from SAG, in a weaker sense, are also a constant
factor approximation on total distance optimality.

1 Introduction

Fast methods for multi-robot path planning have found
many real-world applications including shipping container
handling (Fig. 1(a)), order fulfillment (Fig. 1(b)), horti-
culture, among others, drastically improving the associ-
ated process efficiency. While commercial applications have
been able to scale quite well, e.g., a single Amazon fulfill-
ment center can operate thousands of Kiva mobile robots,
it remains unclear what level of optimality is achieved by
the underlying planning and scheduling algorithms in these

Jingjin Yu
Computer Science, Rutgers University at New Brunswick, E-
mail: jingjin.yu@rutgers.edu

Fig. 1 (a) Automated straddle carriers at the port of Los An-
geles. Each straddle carrier is capable of autonomously navigate
to pick up or drop off a shipping container at a designated loca-
tion. (b) Amazon’s Kiva multi-robot system working at its order
fulfillment centers.

applications. As such, there remains the opportunity of un-
covering structural insights and novel algorithmic solutions
that substantially improve the throughput of current pro-
duction systems that contain some multi-robot (or more
generally, multi-body, where a single body may be actu-
ated using some external mechanism) sub-systems.

The disconnection that exists in applications regarding
multi-robot routing may be more formally characterized
as an optimality-efficiency gap that has been outstanding
in the multi-robot research domain for quite some time:
known algorithms for multi-robot path planning do not si-
multaneous guarantee good solution optimality and fast
running time. This is not entirely surprising as it is well
known that optimal multi-robot path planning problems
are generally NP-hard Goldreich (2011); Yu (2016); Banfi
et al (2017). Nevertheless, whereas these negative results
suggest that finding polynomial-time algorithms that com-
pute exact optimal solutions for multi-robot path plan-
ning problems is impossible, they do not preclude the exis-
tence of polynomial-time algorithms that compute approx-
imately optimal solutions.

Motivated by both practical relevance and theoreti-
cal significance, in this work, we narrow this optimality-
efficiency gap in multi-robot path planning, focusing on a

Jingjin Yu

class of grid-like, well-connected environments. Here, well-
connected environments (to be formally defined) include
the container shipping port scenario and the Amazon ful-
fillment center scenario. A key property of these environ-
ments is that sub-linear time-optimal solution is possible,
which is not true for general environments. Using a care-
ful combination of divide-and-conquer and network flow
techniques, we show that constant factor makespan opti-
mal solutions can be computed in low-polynomial running
time in the average case, where the average is computed
over all possible problem instances for an arbitrary fixed
environment. We call the resulting algorithm SPLITAND-
GROUP (SAG). In other words, SAG can efficiently com-
pute O(1)-approximate solutions on average. The current
paper is devoted to establishing the construction, correct-
ness, and key properties of SAG; we refer readers to Han
et al (2018) for implementations and performance charac-
teristics of SAG, where these issues are examined in detail.

Intuitively, when the density of the robots are high in a
given environment, computing solutions for optimally rout-
ing these robots will be more difficult. With this line of re-
search, our ultimate goal is to achieve a fine-grained struc-
tural understanding of the multi-robot path planning prob-
lem that allows the design of algorithms to gracefully bal-
ance between robot density and computational efficiency.
As we know, when the density of robots are low, planning
can be rather trivial: paths may be planned for individual
robots first and because conflicts are rare, they can be re-
solved on the fly. In the current work, we attack the other
end of the spectrum: we focus on the case of having a robot
occupy each vertex of the underlying discrete graph, i.e.,
we work with the case of highest possible density under the
given formulation. Beside the obvious theoretical challenge
that is involved, we believe the study benefits algorithm
design for lower density cases. Regarding this, a particu-
larly interesting tool developed in this work is the global
decoupling technique that enables the SAG algorithm.

Contributions. The main contribution brought forth
by this work is a first low-polynomial time, deterministic
algorithm, SAG, for solving the optimal multi-robot path
planning problem on grids and grid-like, well-connected en-
vironments. Under the prescribed settings, SAG computes
a solution with sub-linear makespan. Moreover, the solu-
tion is only a constant multiple of the optimal solution
on average. In a weaker sense, SAG also computes solu-
tions with total distance a constant multiple of the optimal
for a typical instance on average. The results presented in
this work expand over a conference publication Yu (2017).
Most notably, this paper (i) provides a fuller account of the
motivation and relevance that underlie the work, covering
both practical and theoretical aspects, and (i) includes
complete proofs for all theorems; many of these proofs are
much improved versions that are more clear than what ap-
peared (as sketches) in Yu (2017).

Organization. The rest of the paper is organized as
follows. Related works are discussed in Sec. 2. In Sec. 3,
the discrete multi-robot path planning problem is formally
defined, followed by analysis on connectivity for achieving
good solution optimality. This leads us to the choice of
grid-like environments. We describe the details of SAG in
Sec. 4. In Sec. 5, complexity and optimality properties of
SAG are established. In Sec. 6, we show that SAG gener-
alizes to higher dimensions and (grid-like) well-connected
environments including continuous ones.

2 Related Work

In multi-robot path and motion planning, the main goal is
for the moving bodies, e.g., robots or vehicles, to reach their
respective destinations, collision-free. Frequently, certain
optimality measure (e.g., time, distance, communication)
is also imposed. Variations of the multi-robot path and
motion planning problem have been actively studied for
decades Erdmann and Lozano-Pérez (1986); LaValle and
Hutchinson (1998); Guo and Parker (2002); Silver (2005);
Ryan (2008); Jansen and Sturtevant (2008); Luna and Bekris
(2011); Standley and Korf (2011); van den Berg et al (2009);
Solovey and Halperin (2012); Yu and LaValle (2013a); Turpin
et al (2014); Choset et al (2005); van den Berg et al (2008);
Branicky et al (2006); Khatib (1986); Earl and D’Andrea
(2005); Bekris et al (2007); Knepper and Rus (2012); Alonso-
Mora et al (2015). As a fundamental problem, it finds ap-
plications in a diverse array of areas including assembly
Halperin et al (2000); Nnaji (1992), evacuation Rodriguez
and Amato (2010), formation Balch and Arkin (1998); Po-
duri and Sukhatme (2004); Shucker et al (2007); Smith et al
(2009); Tanner et al (2004), localization Fox et al (2000),
micro droplet manipulation Griffith and Akella (2005), ob-
ject transportation Matari¢ et al (1995); Rus et al (1995),
and search-rescue Jennings et al (1997). In industrial appli-
cations pertinent to the current work, centralized planners
are generally employed to enforce global control to drive
operational efficiency. The algorithm proposed in this work
also follows this paradigm.

Similar to single robot problems involving potentially
many degrees of freedom Reif (1985); Canny (1988), multi-
robot path planning is strongly NP-hard even for discs in
simple polygons Spirakis and Yap (1984) and PSPACE-
hard for translating rectangles Hopcroft et al (1984). The
hardness of the problem extends to unlabeled case Kloder
and Hutchinson (2006) where it remains highly intractable
Hearn and Demaine (2005); Solovey and Halperin (2015).
Nevertheless, under appropriate settings, the unlabeled case
can be solved near optimally Katsev et al (2013); Turpin
et al (2014); Adler et al (2015); Solovey et al (2015).

Because general (labeled) optimal multi-robot path plan-
ning problems in continuous domains are extremely chal-

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 3

lenging, a common approach is to start with a discrete
setting from the onset. Significant progress has been made
on solving the problem optimally in discrete settings, in
particular on grid-based environments. Multi-robot mo-
tion planning is less computationally expensive in discrete
domains, with the feasibility problem readily solvable in
O(|V'|?) time, in which |V] is the number of vertices of the
discrete graph where the robots may reside Auletta et al
(1999); Goraly and Hassin (2010); Yu (2013); Yu and Rus
(2015). In particular, Yu and Rus (2015) shows that the
setting considered in this paper is always feasible except
when the grid graph has only four vertices (which is a triv-
ial case that can be safely ignored).

Optimal versions of the problem remain computation-
ally intractable in a graph-theoretic setting Goldreich (2011);
Ratner and Warmuth (1990); Yu and LaValle (2013b); Yu
(2016); Banfi et al (2017), but the complexity has dropped
from PSPACE-hard to NP-complete in many cases. This
has allowed the application of the intuitive decoupling-
based heuristics Alami et al (1995); Qutub et al (1997);
Saha and Isto (2006) to address several different costs. In
Standley and Korf (2011), individual paths are planned
first. Then, interacting paths are grouped together for which
collision-free paths are scheduled using Operator Decom-
position (OD). The resulting algorithm can also be made
complete (i.e., an anytime algorithm). Sub-dimensional ex-
pansion techniques (M*) were used in Wagner and Choset
(2011); Ferner et al (2013) that actively restrict the search
domain for groups of robots. Conflict Based Search (CBS)
Sharon et al (2012, 2013); Boyarski et al (2015) maintains
a constraint tree (CT) for facilitating its search to resolve
potential conflicts. With Cohen et al (2016), efficient algo-
rithms are supplied that compute solutions with bounded
optimality guarantees. Robots with kinematic constraints
are dealt with in Honig et al (2016). Beyond decoupling,
other ideas have also been explored, including casting the
problem as other known NP-hard problems Surynek (2012);
Erdem et al (2013); Yu and LaValle (2016) for which high-
performance solvers are available. More recently, robust-
ness, longer horizon, and other related issues have been
studied in detail Ma et al (2017); Atzmon et al (2018).

3 Preliminaries

In this section, we state the multi-robot path planning
problem and two important associated optimality objec-
tives, in a graph-theoretic setting. Then, we show that
working with arbitrary graphs may lead to rather sub-
optimal solutions (i.e., super-linear with respect to the
number of vertices). This necessitates the restriction of the
graphs if desirable optimality results are to be achieved.

3.1 Graph-Theoretic Optimal Multi-Robot Path Planning

Let G = (V,E) be a simple, undirected, and connected
graph. A set of N labeled robots may move synchronously
in a collision-free manner on G. At integer time steps start-
ing from t = 0, each robot resides on a unique vertex of
G, inducing a configuration X of the robots. Effectively, X
is an injective map X : {1,..., N} — V specifying which
robot occupies which vertex (see Fig. 2). From step ¢ to
step t + 1, a robot may move from its current vertex to an
adjacent one under two collision avoidance conditions: ()
the new configuration at 41 remains an injective map, i.e.,
each robot occupies a unique vertex, and (7) no two robots
may travel along the same edge in opposite directions.

©
(2) (b)

Fig. 2 Graph-theoretic formulation of the multi-robot path
planning problem. (a) A configuration of six robots on a graph
(roadmap) with seven vertices. (b) A configuration that is reach-
able from (a) in a single synchronous move.

A multi-robot path planning problem (MPP) is fully
defined by a 3-tuple (G, X;, X¢) in which X; and X are
two configurations. In this work, we look at the most con-
straining case of |X;| = |X¢g| = |V|. That is, all vertices
of G are occupied. We are interested in two optimal MPP
formulations. In what follows, makespan is the time span
covering the start to the end of a task. All edges of G are
assumed to have a length of 1 so that a robot traveling at
unit speed can cross it in a single time step.

Problem 1 (Minimum Makespan (TMPP)) Given
G, X1, and Xg, compute a sequence of moves that takes
X1 to X¢ while minimizing the makespan.

Problem 2 (Minimum Total Distance (DMPP)) Given

G, X7, and X, compute a sequence of moves that takes
X1 to X while minimizing the total distance traveled.

These two problems are NP-hard and cannot always be
solved simultaneously Yu and LaValle (2013b).

3.2 Effects of Environment Connectivity

The well-known pebble motion problems, which are highly
similar to MPP, may require 2(|V|?) individual moves to
solve Kornhauser (1984). Since each pebble (robot) may
only move once per step, at most |V individual moves can

Jingjin Yu

happen in a step. This implies that pebble motion prob-
lems, even with synchronous moves, can have an optimal
makespan of 2(|V|?), which is super linear (i.e. w(|V])).
The same is true for TMPP under certain graph topolo-
gies. We first prove a simple but useful lemma for a class
of graphs we call figure-8 graphs. In such a graph, there
are |V| = Tn + 6 vertices for some integer n > 0. The
graph is formed by three disjoint paths of lengths n, 3n+2,
and 3n + 2, meeting at two common end vertices. Figure-8
graphs with n = 1 are illustrated in Fig. 3.

An interesting property of figure-8 graphs is that an
arbitrary MPP instance on such a graph is feasible.

Lemma 1 An arbitrary MPP instance (G, X1, X¢) is fea-
sible when G is a figure-8 graph.

Proof Using the three-step plan provided in Fig. 3, we
may exchange the locations of robots 1 and 2 without
collision. This three-step plan is scale invariant and ap-
plies to any n. With the three-step plan, the locations
of any two adjacent robots (e.g., robots 4 and 5 in the
top left figure of Fig. 3) can be exchanged. To do so, we
may first rotate the two adjacent robots of interest to the
locations of robots 1 and 2, do the exchange using the
three-step plan, and then reverse the initial rotation. Let
us denote such a sequence of moves as a 2-switch (more
formally known as a transposition in group theory). Be-
cause the exchange of any two robots on the figure-8 graph
can be decomposed into a sequence of 2-switches, such ex-
changes are always feasible. As an example, the exchange of
robots 4 and 9 can be carried out using a 2-switch sequence
((3,4),(2,4),(1,4),(4,9),(1,9),(2,9), (3,9)), of which each
individual pair consists of two adjacent robots after the
previous 2-switch is completed. Because solving the MPP
instance (G, X1, X¢) can be always decomposed into a se-
quence of two-robot exchanges, arbitrary MPP instances
are solvable on figure-8 graphs. 0O

Fig. 3 A three-step plan for exchanging robots 1 and 2 on a
figure-8 graph with 7n 4 6 vertices (n = 1 in this case).

The introduction of figure-8 graphs allows us to for-
mally establish that sub-linear optimal solutions are not
possible on an arbitrary connected graph.

Proposition 1 There exists an infinite family of TMPP
instances on figure-8 graphs with w(|V'|) minimum makespan.

Proof We will establish the claim on the family of figure-
8 graphs. By Lemma 1, there exists a sequence of moves
that takes arbitrary configuration X; to arbitrary config-
uration X¢. For a figure-8 graph with |V| vertices, there
are |V|! possible configurations. Starting from an arbitrary
configuration X7, let us build a tree of adjacent configu-
rations (two configurations are adjacent if a single move
changes one configuration to the other) with X; as the
root and estimate its height Ay, which bounds the min-
imum possible makespan. In each move, only one of the
three cycles on the figure-8 graph may be used to move
the robots and each cycle may be moved in clockwise or
counterclockwise direction; no two cycles may be rotated
simultaneously. Therefore, the tree has a branching factor
of at most 6. Assume the best case in which the tree is
balanced and has no duplicate nodes (i.e., configuration),
we can bound hr as 6"7*! > |V|l. That is, the tree must
have at least |V|! unique configuration nodes derived from
the root X, because all |V|! configurations are reachable
from X;. With Stirling’s approximation Bollobds (2013),

iz v,

which yields
hr = £2(|[V]log |V]).

This shows that solving some instances on figure-8 graphs
requires £2(|V]log|V]) steps, establishing that TMPP could
require a minimum makespan of w(|V]).

Because n in the figure-8 graph is an arbitrary non-
negative integer, |V| has an infinite number of values. Hence,
there is an infinite family of such graphs. 0O

Proposition 1 implies that if the classes of graphs are
not restricted, we cannot always hope for the existence of
solutions with linear or better makespan with respect to
the number of vertices of the graphs, i.e.,

Corollary 1 TMPP does not admit solutions with linear
or sub-linear makespan on an arbitrary graph.

Corollary 1 suggests that seeking general algorithms
for providing linear or sub-linear makespan that apply to
all environments will be a fruitless attempt. With this in
mind, the paper mainly focuses on a restricted but very
practical class of discrete environments: grid graphs.

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 5

4 Routing Robots on Rectangular Grids with a
Sub-Linear Makespan

4.1 Main Result

We first outline the main algorithmic result of this work
and the key enabling idea behind it, a divide-and-conquer
scheme which we denote as global decoupling.

Assuming unit edge lengths, a rectangular grid is fully
specified by two integers m, and mg, representing the num-
ber of vertices on the long and short sides of the grid, re-
spectively. Without loss of generality, assume that m, >
ms (see Fig. 4 for an 8 x 4 grid). We further assume that
my > 3 and mg > 2 since an MPP on a smaller grid is
trivial. These assumptions are implicitly assumed in this
paper whenever grid is mentioned, unless otherwise stated.
We note that an MPP problem on such a grid is always fea-
sible, as established formally in Yu and Rus (2015). The
main result to be proven in this section is the following.

Theorem 1 Let (G, Xy, Xg) be an arbitrary TMPP in-
stance in which G is an my X mg grid. The instance admits
a solution with O(myg) makespan.

Note that the O(my) bound is sub-linear with respect to
the number of vertices, which is £2(msmy) and 2(m?) for
square grids. We name the algorithm, to be constructed, as
SPLITANDGROUP (SAG) and first sketch how the divide-
and-conquer algorithm works at a high level. In this sec-
tion we focus on the makespan property of SAG. We delay
the establishment of polynomial-time complexity and ad-
ditional properties of the algorithm to Section 5.

Assume without loss of generality that m, = 2 and
ms = 2*2 for some integers k; and k2 (we note that our
algorithm does not depend on my and mg being powers of
2 at all; the assumption only serves to simplify this high-
level explanation). In the first iteration of SAG, it splits
the grid into two smaller rectangular grids, G; and Gs, of
size 2¥171 x 2%2 each. Then, robots are moved so that at the
end of the iteration, if a robot has its goal in G (resp., G2)
in X¢, it should be on some arbitrary vertex of Gy (resp.,
G2). This is the group operation. An example of a single
SAG iteration is shown in Fig. 4. We will show that such
an iteration can be completed in O(my) = O(2%1) steps
(makespan). In the second iteration, the same process is
carried out on both G; and G2 in parallel, which again
requires O(my) = O(2%1) steps. In the third iteration, we
start with four 2°1=1 x 2*2~1 grids and the iteration can
be completed in O(2F171) = O(™2¢) steps. After 2k; itera-

2
tions, the problem is solved with a makespan of

20(my) + 20(%) + 20(%) + .. +20(1) = O(my).

The divide-and-conquer approach that we use share
similarities with other decoupling techniques in that it seeks

RPN
\|/KE

G1 G2

Fig. 4 Illustration of a single iteration of SAG on an 8 x 4 grid.
Note that the grid is fully populated with robots and some are
not shown in the figure. The overall grid is split in the middle by
the dotted line to give two 4 x 4 grids, G1 and Ga. The robots
shown on G (resp., G2) have goal locations on G2 (resp., G1).
In the group operation, these robots must move across the split
line after the operation is complete. Other robots (not shown) on
the grid must be where they were after the operation. In the next
iteration, the same procedure is applied to G; and G2 in parallel.

to break down the overall problem into independent sub-
problems. On the other hand, it significantly differs from
previous decoupling schemes in that the decoupling in our
case is global. Therefore, we denote the scheme as the global
decoupling technique.

We proceed to describe an iteration of the SAG algo-
rithm in detail, which depends on following sub-routines,
in a sequential manner (i.e., a later sub-routine makes use
of the earlier ones):

— Concurrent exchange of multiple pairs robots embed-
ded in a grid in a constant number of steps (Lemma 2).

— Exchange of two groups of robots on a tree embedded in
a grid in time steps linear with respect to the diameter
(i.e., length of the longest path) of the tree (Lemma 3,
Lemma 4, and Theorem 2).

— Partitioning a split problem into multiple exchange prob-
lems on trees and solving them concurrently.

Each of these steps is covered in a sub-section that follows.

4.2 Pairwise Exchanges In A Constant Number of Steps

To achieve O(my) makespan, SAG needs to enable concur-
rent robot movements. This is challenging because of our
worst case assumption that there are as many robots as the
number of vertices. This is where the grid graph assump-
tion becomes critical: it enables the concurrent “fipping”
or “bubbling” of robots. Let G = (V, E) be an my x ms
grid graph whose vertices are fully occupied by robots. Let
E’ C F be a set of vertex disjoint edges of G. Suppose
for each edge e = (v1,v2) € E’, we would like to simulate
the exchange of the two robots on v; and vy without in-
curring collision. Let us call this operation FLIP(E’). We
use FLIP(:) to mean the operation is applied to some un-
specified set of edges, which is to be determined for the
particular situation.

Jingjin Yu

Lemma 2 Let G = (V, E) be an my xmg grid. Let E' C E
be a set of vertex disjoint edges. Then the FLIP(E') opera-
tion can be completed in a constant number of steps.

Proof A 3 x 2 rectangular grid may be viewed as a figure-
8 graph with |V| = 6 vertices. Applying Lemma 1 to the
3 x 2 grid tells us that any two robots on such a graph can
be exchanged without collision. Furthermore, all such ex-
changes can be pre-computed and performed in O(1) (i.e.,
a constant number of) steps.

To perform FLIP(E’) on an my X ms grid G, we parti-
tion the grid into multiple disjoint 3 x 2 blocks. Using up
to 4 different such partitions, it is always possible to cover
all edges of G. Therefore, the FLIP(E’) operation can be
broken down into parallel two-robot exchanges on the 3 x 2
blocks of these partitions. Because of the parallel nature
of the two-robot exchanges, the overall FLIP(E") operation
can be completed O(1) steps. As an example, Fig. 5 illus-
trates how a FLIP(E') operations can be carried out on a
7 x 5 grid. Note that two partitions (the top two in Fig. 5)
are sufficient to cover all edges below the second row (in-
cluding the second row). Then, two more partitions (the
bottom two in Fig. 5) can cover all edges above the sec-
ond row. In the figure, the solid edges represent the edge
set E’. After each partition starting from the top left one,
two-robot exchanges can be performed which allow the re-
moval of the edges covered by the partition, as shown in
the subsequent picture. 0O

Fig. 5 [Illustration of how the FLIP(E’) operation can be com-
pleted in a constant number of steps on an m, x ms grid, which
requires up to 4 partitions of the grid into 3 x 2 blocks.

4.3 Exchange of Groups Robots on an Embedded Tree

Lemma 2, in a nutshell, allows the concurrent exchange
of adjacent robots to be performed in O(1) steps. With
Lemma 2, to prove Theorem 1, we are left to show that
on an my X myg grid, after splitting, the group operation

in the first SAG iteration can be decomposed into O(my)
FLIP(-) operations. Because each FLIP(-) can be carried out
in O(1) steps, the overall makespan of the group operation
is O(my). To obtain the desired decomposition, we need
to maximize parallelism along the split line. We achieve
the desired parallelism by partitioning the grid into trees
with limited overlap. Each such tree has a limited diameter
and crosses the split line. The group operation will then
be carried out on these trees. Before detailing the tree-
partitioning step, we show that grouping robots on trees
can be done efficiently. We start by showing that we can
effectively “herd” a group of robots to the end of a path.!
Note that we do not require a robot in the group to go to
a specific goal vertex; we do not distinguish robots within
the group.

Lemma 3 Let P be a path of length { embedded in a grid.
An arbitrary group of up to |£/2] robots on P can be re-
located to one end of P in O({) steps. Furthermore, the
relocation may be performed using FLIP(-) on P.

Proof Because we are to do the relocation using parallel
two-robot exchanges on disjoint edges based on the FLIP(-)
operation, without loss of generality, we may assume that
the path is straight and we are to move the robots to the
right end of the path. An example illustrating the scenario
is given in Fig. 6. For a robot in the group, let its initial
location on the path be of distance k from the right end.
We inductively prove the claim that it takes O(k) steps
from the beginning of all moves to “shift” such a robot to
its desired goal location.

O-O0-0-C-C-0- 0000000
O-O-O-O0-C-O0-O0O000000

Fig. 6 The initial and goal configurations of a group of 4 robots
on a path, before and after a herding operation.

At the beginning (i.e., t = 0), let the robot on P that
is of distance k to the right end be denoted as rp. The
hypothesis trivially holds for £ = 0. Suppose it holds for
k — 1 and we need to show that the claim extends to k.
If r, does not belong to the group of robots to be moved,
then there is nothing to do. Otherwise, there are two cases.

In the first case, robot r;p_; does not belong to the
group of robots to be moved. Then at ¢t = 0, 7 and r,_1
may be exchanged in O(1) steps. Now 7y, is of distance k—1
to the right and the inductive hypothesis yields that the
rest of the moves for r, can be completed in O(k—1) steps.
The total number of steps is then O(k).

1 We emphasize that the group operation and groups of robots
are related but bear different meanings.

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 7

In the second case, robot 7 _1 also belongs to the group
of robots to be moved. By the inductive hypothesis, ri_1
can be moved to its desired goal in O(k—1) steps. However,
once 7,1 is moved to the right, it will allow r; to follow it
with a gap between them of at most 2. Once ry_1 reaches
its goal, rg, whose goal is on the right of r,_1, can reach
its goal in O(1) additional steps. The total number of steps
from the beginning is again O(k).

It is clear that all operations can be performed using
FLIP(-) on edges of P when embedded in a grid. O

Using the herding operation, the locations of two dis-
joint groups of robots, equal in number, can also be ex-
changed efficiently.

Lemma 4 Let P be a path of length ¢ embedded in a grid.
Let two groups, equal in number, reside on two segments of
P that do not intersect. Then positions of the two groups of
robots may be exchanged in O({) steps without net move-
ments of other robots. The relocation may be performed
using FLIP(+) on P.

Proof We may again assume that P is straight. An im-
plicit assumption is that each group contains at most |¢/2|
robots. Fig. 7 illustrates an example in which two groups
of 4 robots each need to switch locations on such a path.

Fig. 7 The initial (first row), goal (last row) and intermediate
configurations of two groups of 4 robots to be exchanged. Each
group is marked with a different color/shade. The unshaded discs
do not belong to either of the two group.

To do the grouping, we first apply a herding operation
that moves one group of robots to one end of P. In Fig. 7,
this is done to the group of lightly-shaded robots to move
them to the right side (the second row of Fig. 7). Then,
another herding operation is performed to move the other
group to the other end of P (the third row of Fig. 7). In
the third and last step, two parallel “reversed” herding
operations are carried out on two disjoint segments of P
to move them to their desired goal locations. This is best
understood by viewing the process as applying the herd-
ing operation to the goal configuration. As an example,
in Fig. 7, from the goal configuration (last row), we may
readily apply two herding operations to move two groups
of robots to the two ends of P as shown in the third row
of the figure. Because each herding operation takes O({)
steps, the overall operation takes O({) steps as well. It is

clear that in the end, a robot not in the two groups will not
have any net movement on P because the relative orders of
these robots (unshaded ones in Fig. 7) never change. 0O

Next, we generalize Lemma 4 to a tree embedded in
a grid. On a tree graph T, we call a subgraph a path
branch of T if the subgraph is a path with no other at-
tached branches. That is, all vertices of the subgraph have
degrees one or two in T

Theorem 2 Let T be a tree of diameter d embedded in a
grid. Let P be a length ¢ path branch of T. Then, a group
of robots on P can be exchanged with robots on T outside
P in O(d) steps without net movement of other robots. The
relocation may be performed using FLIP(-) on T.

Proof We temporarily limit the tree T' such that, after
picking a proper main path that contains P and deleting
this main path, there are only paths left. That is, we as-
sume all vertices with degree three or four are on a single
path containing P. An example of such a tree T and the
exchange problem is given in the top row of Fig. 8. In the
figure, the main path is the long horizontal path and P is
the path on the left of the dotted split line. We call other
paths off the main path side branches. Once this version is
proven, the general version readily follows because all pos-
sible tree structures are considered in this special example,
i.e., there may be either one or two branches coming out
of a node on the main branch. The rest of the paper will
only use the less general version. For ease of reference, for
the two groups of robots, we denote the group fully on P
as ¢' and the other group as ¢g2. In the example, ¢! has a
light shade and g2 has a darker shade.

To start, we first solve part of the relocation problem
on the main path, which can be done in O(d) steps by
Lemma 4. After the step, the robots involved in the first
step are no longer relevant. In the example, this is to ex-
change the robots marked with small arrows in the first row
of Fig. 8. After the relocation of these robots is completed,
we remove their shades.

In the second step, the relevant robots in g2 on the
side branch are moved so that they are just off the main
path. We also assign priorities to these robots based on
their closeness to P and break ties randomly. For a robot
labeled i in a group ¢7, we denote the robot as r{ . For our
example, this current step yields the third row of Fig. 8
with the priorities marked. Since the moves are done in
parallel and each branch is of length at most d, only O(d)
steps are needed.

In the third step, robots from g2 will move out of the
side branches in the order given, one immediately after
the other (when possible). For the example (third row of
Fig. 8), r? will move first. 73 will follow. Then r2, followed
by r%. Using the same inductive argument from the proof
of Lemma 3, we observe that all robots from ¢? on the

Jingjin Yu

Fig. 8 The initial (first row) and three intermediate configura-
tions in solving the problem of switching the location of these
robots on a tree.

side branch can be moved off the side branches (and reach
their goals on the main path) in O(d) time. As the relevant
robots from ¢! also move across the split line, they will
fill in side branches in opposite order to when the robots
from go are moved out of the branches. In the example,
this means that the branch where 73 and r? were on will
be populated with robots from g' first, followed by the
branch where 73 was, and finally the branch where r? was.
This ensures that at the end of this step, any robot not in
g' and g2 will have no net movement. The number of steps
for this is again O(d).

In the last step, we simply reverse the second step,
which takes another O(d) steps. Putting everything to-
gether, O(d) steps are sufficient for completing the task.

Combining all steps, only O(d) steps are required to
complete the desired exchange. To see that the same con-
clusion holds for more general trees with side branches that
are not simple paths, we simply need to do the second step
and third step more carefully. But, because we are only
moving at most O(d) robots, using an amortization argu-
ment, it is straightforward to see that the O(d) bound does
not change. 0O

We note that many of the operations used to prove
Lemma 3, Lemma 4, and Theorem 2 can be combined with-
out changing the outcome. However, doing so will make the
proofs less modular. Given the focus of the current paper
which is to construct a polynomial time algorithm with
constant factor optimality guarantee, we opt for clarity in-
stead of pursuing a smaller asymptotic constant.

4.4 Tree Forming and Robot Routing

We proceed to prove Theorem 1 by showing in detail how
to carry out a single iteration of SAG, which boils down to
partitioning the robot exchanges into robot exchanges on
trees, to which Theorem 2 can then be applied. The proof
itself can be subdivided into three steps:

— Splitting and initial tree forming, where a grid is
partitioned into two roughly equal halves and trees are
initially formed across the partition line for facilitating
exchanging of two groups of robots.

— Tree post-processing, which addresses the issue where
two initial trees might have “+” like crossovers.

— Final robot routing, which actually carries through
the robot routing process and resolve some final issues.

Proof (Proof of Theorem 1) Splitting and initial tree
forming. In a split, we always split along the longer side of
the current grid. Since my, > mg, the my x m; grid is split
into two grids of dimensions [m;/2] x ms and |mg/2] x
mg, respectively. For convenience, we denote the two split
grids as G; and G, respectively. Recall that in the group
operation, we want to exchange robots so that a robot with
goal in Gy (resp., G3) resides in G; (resp., G2) at the end of
the operation. To do this efficiently, we need to maximize
the parallelism. This is achieved through the computation
of a set of my trees with which we can apply Theorem 2.
We will use the example from Fig. 9 to facilitate the higher
level explanation.

Ga

G1

@ L @

(a) (b)
Fig. 9 (a) A 9x 7 grid is split into two grids G1 and G2 of sizes
4 x 7 and 5 x 7, respectively. The dark-shaded robots’ final goals
are in Ga. (b) The grid is partitioned into (possibly non-disjoint)
trees to allow the dark-shaded robots that are not already in
G2 to exchange with robots (lightly-shaded ones) that should be
moved to G1.

Assume that the grid is oriented so that mg is the num-
ber of columns and my is the number of rows (see Fig. 9).
The trees that will be built will be based on the columns of

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 9

one of the split graphs, say G3. A column ¢ of G5 is a path
of length |my/2]—1 with |m/2] robots on it. Suppose k; of
these robots have goals outside G5 (the lightly-shaded ones
in Fig. 9 (b)), then it is always possible to find k; robots
(the dark-shaded ones in Fig. 9(b)) on G; that must go to
Gs. A tree T; is built to allow the exchange of these 2k;
robots such that the part of 7T; in G5 is simply column <.
That is, the m, trees to be built do not overlap in Go.

For a column 7 in G5 with k; robots to be moved to
G4, it is not always possible to find exactly k; robots on
column 7 of G1. This makes the construction of the trees in
(G1 more complex. The construction is done in two steps.
In the first step, robots to be moved to G are grouped in a
distance optimal manner, which induces a preliminary tree
structure. Focusing on G, we know the number of robots
that must be moved across the split line in each column (see
Fig. 10). For each robot to be moved across the split line,
the distance between the robot and all the possible exits
of G is readily computed. Once these distances are com-
puted, a standard matching procedure can be run to assign
each robot an exit point that minimizes the total distance
traveled by these robots Kuhn (1955); Solovey et al (2015).
The assignment has a powerful property that we will use
later. For each robot, either a straight or an L shaped path
can be obtained based on the assignment. Merging these
paths for robots exiting from the same column then yields
a tree for each column (see Fig. 9(b)). Note that each tree
has a single vertical segment.

Fig. 10 For the example given in Fig. 9, this figure highlights G1,
the robots that must be moved to G2, and how many robot need
to be moved through the top of G1 along each column. Regarding
distance, the bottom left robot needs to travel 4 edges to exit G
through the left most column. It needs to travel 4 +7 —1 = 10
edges to exit from the right most column.

Tree post-processing. In the second step, the trees are
post-processed to remove crossings between them. Exam-
ple of such a crossing we refer to is illustrated in Fig. 11(a)
(dotted lines). Formally, we say two trees Ty and T3 has a
crossover if a horizontal path of T intersects with a ver-
tical path of T, with the additional requirement that one
of the involved horizontal path from one tree forms a +

with the vertical segment of the other tree. For example,
Fig. 11(b) is not considered a crossover.

(b) (©)

Fig. 11 (a) Example of a tree crossover (dotted paths) and its
removal (solid paths) without increasing the total distance. Note
that only the relevant paths of the two trees are shown. (b) An
intersection that is not considered a crossover. (¢) An impossible
crossover scenario.

For each crossover, we update the two trees to remove
the crossover, as illustrated in Fig. 11(a). The removal will
not change the total distance traveled by the two (or more)
affected robots but will change the path for these robots.
To see that the process will end, note that one of the two
involved paths is shortened. Since there are finite number
of such paths and each path can only be shortened a finite
number of times, the crossover removal process can get rid
of all crossovers. We will show later this can be done in
polynomial computation time when we perform algorith-
mic analysis. We note here that the crossover scenario in
Fig. 11(c) cannot happen because a removal would shorten
the overall length, which contradicts the assumption that
these paths have the shortest total distance.

Final robot routing. At the end of the crossover removal
process, we may first route all robots on a tree branch
that do not have overlaps with other trees. However, this
does not route all robots because it is possible for the
tree structures for different columns to overlap horizon-
tally (see Fig. 12). For two trees that partially overlap with
each other (e.g., the left and middle two trees in Fig. 12),
one of the trees does not extend lower (row wise) than
the row where the overlap occurs. Otherwise, this yields
a crossover, which should have already been removed. For
two overlapping trees 71 and 15, we say 17 is a follower of
T5 if a robot going to T» must pass through the vertical
path of T;. In the example from Fig. 12, T} is a follower of
T5. Similarly, the right (green) tree is a follower of 7.

We state some readily observable properties of overlap-
ping trees: (i) two trees may have at most one overlap-
ping horizontal branch (otherwise, there must be a path
crossover), (i) because of (i), any three trees cannot pair
wise overlap at different rows, and (i) there must be at
least one tree that is not a follower, e.g., the left (purple)
tree in Fig. 12. We call this tree a leader. From a leader
tree, we can recursively collect its followers, and the fol-

10

Jingjin Yu

" o S
o - @
1

Fig. 12 [Illustration of overlaps between tree structures for dif-
ferent columns. For the four shaded robots to be moved, one
must be moved through the left most vertical path, two must be
moved through the middle vertical path, and the last must be
moved through the right most vertical path.

lowers of these followers, and so on and so forth. We call
such a collection an interacting bundle (e.g., Fig. 12).

With these properties in mind, the group operation in
a SAG iteration is carried out as follows. Because robots
to be moved from G5 to G; are on straight vertical paths,
there are no interactions among them between different
trees. Therefore, we only need to consider interactions of
robots on G;. For trees that have no overlap with other
trees, Theorem 2 directly applies to complete the robot
exchange on these trees in O(my) steps because each tree
has a diameter of at most 2my,. In parallel, we can also
complete the movement of all robots that should go from
(1 to G2 which are not residing on a horizontal tree branch
that overlaps with other trees, also in O(my) steps. After
these robots are exchanged, we can effectively forget about
them.

After the previous step, we are left to deal with robots
on overlapping horizontal tree branches that must be moved
(e.g., the shaded robots in Fig. 12). Tt is clear that different
interacting bundles do not have any interactions; we only
need to focus on a single bundle. This is actually straight-
forward; we use the example from Fig. 13 to facilitate the
proof explanation. The routing of robots in this case follows
a greedy approach starting from the left most tree, i.e., we
essentially try to “flush” the shaded robots in the left-up
direction, which can always be realized in two phases, each
of which using at most O(my) makespan.

Observe that the problem can be solved for the leader
tree (left most tree in Fig. 13). At the same time, for each
successive follower tree, the movement of robots can be
partially solved for these follower trees. The middle row of
Fig. 13 shows how this can be done for each tree. Formally,
if a horizontal branch is shared by two trees, say T and its
follower T3, then we obtain a simple exchange problem of
moving a few robots through a path on 75. In the figure,
these are the first and fourth trees from the left, with the
dotted lines marking the path. If a horizontal branch is
shared by three or more trees, we get an exchange problem
on a tree. In the figure, the middle three trees create such
a problem. For this, Theorem 2 applies with minor mod-
ifications. All the exchange problems can be carried out

Fig. 13 An example interacting bundle in detail. The top row
is the initial configuration of the robots on the overlapping hori-
zontal tree branches to be moved through the vertical paths. The
numbers on the top of the vertical paths mark how many robots
should be moved through that path. For example, 3 of the shaded
robots must be routed through the left most vertical path. The
middle row and the bottom rows mark how the exchanges can be
completed in two steps or phases.

in parallel because there is no further interaction between
them. It takes O(my) steps to complete, after which we are
left with another set of exchange problems, each of which
is on a path (e.g., the three problems in the last row of
Fig. 13). Lemma 4 applies to yield O(my) required steps.

Stitching everything together, the first iteration of SAG
on an my X mg grid can be completed in O(my) steps. In the
next iteration, we are working with grids of sizes [my/2] x
ms, which requires O(max{[m¢/2],ms}) steps. Following
the simple recursion, which terminates after O(logmy) it-
erations, we readily obtain that O(my) steps are sufficient
for solving the entire problem. O

5 Complexity and Solution Optimality Properties
of the SaG Algorithm

In this section, we establish two key properties of SAG,
namely, its polynomial running-time and asymptotic solu-
tion optimality.

5.1 Time Complexity of SAG
The SAG algorithm is outlined in Algorithm 1, which sum-

marizes the results from Section 4 in the form of an algo-
rithm. At Lines 1-2, a partition of the current grid G is

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 11

made, over which initial path planning is performed to gen-
erate the trees for grouping the robots into the proper sub-
graph. Then, at Line 3, crossovers are resolved. At Line 4,
the final paths are scheduled, from which the robot moves
can be extracted. This step also yields where each robot
will end up at in the end of the iteration, which becomes the
initial configuration for the next iteration (if there is one).
After the main iteration steps are complete, at Lines 5-10,
the algorithm recursively calls itself on smaller problem
instances. The special case here is when the problem is
small enough (Line 7), in which case the problem is di-
rectly solved without further splitting.

Algorithm 1: SPLITANDGROUP (G, X7, z¢)

: G = (V,E): an my x ms grid graph

X7: initial robot configurations

X¢g: goal robot configurations
Output: M = (M1, Ma,...): a sequence of moves

Input

%Run matching and construct initial trees
1 (G1,G2) + SpuIT(G)
2 P < MATCHANDPLANPATH(G, X1, X&)

%Remove crossovers
3 P’ + RESOLVECROSSOVERS(P)

%Schedule the sequence of moves
4 (M, X}) < ScHEDULEMOVES(P’)

%Recursively solve smaller sub-problems
foreach G;,i =1,2 do
if row(G;) < 3 and col(G;) < 3 then
| M =M+ Sowr(Gi, Xila,, Xala,)
else
| M =M +SaG(Gi, X}la,, Xala,)
10 end

© W N 0 «

11 end

12 return M

We now proceed to bound the running time of SAG.
It is straightforward to see that the SPLIT routine takes
O(|V]) = O(mgmy) running time. MATCHANDPLANPATH
can be implemented using the standard Hungarian algo-
rithm Kuhn (1955), which runs in O(|V|?) time.

For RESOLVECROSSOVERS, we may implement it by
starting with an arbitrary robot that needs to be moved
across the split line and check whether the path it is on
has crossovers that need to be resolved. Checking one path
with another can be done in constant time because each
path has only two straight segments. Detecting a crossover
then takes up to O(|V|) running time. We note that, as a
crossover is resolved, one of the two paths will end up being
shorter (see, e.g., Fig. 11). We then repeat the process with
this shorter path until no more crossover exists. Naively,
because the path keeps getting shorter, this process will
end in at most O(]V|) steps. Therefore, all together, RE-
SOLVECROSSOVERS can be completed in O(|V[?) time.

The SCHEDULEMOVES routine simply extracts infor-
mation from the already planned path set P’ and can
be completed in O(|V]) running time. The SOLVE routine
takes constant time.

Adding everything up, an iteration of SAG can be car-
ried out in O(]V|?) time using a naive implementation.
Summing over all iterations, the total running time is

o(vf?) +20((1y 1 a0((V)

which is low-polynomial with respect to the input size.

) +...=0(VP),

5.2 Optimality Guarantees

Having established that SAG is a polynomial time algo-
rithm that solves MPP with sub-linear makespan, we now
show that SAG is an O(1)-approximate makespan optimal
algorithm for MPP in the average case. Moreover, SAG
also computes a constant factor distance optimal solution
in a weaker sense. To establish these, we first show that
for fixed mymy that is large, the number of MPP instances
with o(my + ms) makespan is negligible.

Lemma 5 The fraction of MPP instances on a fived graph
G as an myxmg grid with o(mg+ms) makespan is no more
than (%)TZ for sufficiently large mym.

Proof Let (G, X1, X¢) be an MPP instance wth G being a
myg X mg grid. Without loss of generality, we may assume
that X is arbitrary and X is a row-major ordering of the
robots, i.e., with the i-th row containing the robots labeled
(i—1me+1,(i —1)mg+ 2,...,imy, in that order. Then,
over all possible instances, i of instances have X; with
robot 1 having a distance of %(mg +mg) or less from robot
1's location in X¢ (note that the number is 1 instead of
% because ms maybe as small as 2). Let these 1 instances
be P1. Among Py, again about i of instances have have
X7 with robot 2 having a distances of i(mg + myg) or less
from robot 2’s location in Xg. Following this reasoning and
limiting to the first ¢ robots, we may conclude that the
fraction of instances with o(mg+m;) makespan is no more

than (%)”4J for sufficiently large mems. O

Lemma 5 is conservative but sufficient for establishing
that SAG delivers an average case O(1)-approximation for
makespan. That is, since only an exponentially small num-
ber of instances have small makespan, the average makespan
ratio is clearly constant, that is,

Theorem 3 On average and in polynomial time, SAG com-
putes O(1)-approximate makespan optimal solutions for MPP.

Proof For a fixed G as an my X mg grid, Lemma 5 says
that no more than a (%)Te fraction of instances have sub-
linear makespan (the minimum possible makespan is 1).

12

Jingjin Yu

For the rest of the instances, their makespan is linear, i.e.,
2(mg + ms). On the other hand, Algorithm 1 guarantees
a makespan of O(my + ms). We may then compute the
expected (i.e., average) makespan ratio over all instances
of MPP for the same G as no more than (for sufficiently
large my)

})% O(my + my) 1

; 20 (1 (5)%)

O(myg +my)

(2(mg+ my)

= 0(1).

This establishes the claim of the theorem. O

SAG can also provide guarantees on total distance opti-
mality. In this case, because every robot contributes to the
total distance, a weaker guarantee is ensured (in the case of
makespan, one robot’s makespan dominates the makespan
of all other robots). This leads us to work with a typical
(i.e., average) MPP instance instead of working with aver-
ages of makespan optimality ratio over all instances. That
is, for the makespan case, we first compute the optimality
ratio for each instance, which is subsequently averaged. For
total distance, we work with a typical random instance and
compute the optimality ratio for such a typical instance.

Theorem 4 For an average MPP instance, SAG com-
putes an O(1)-approzimate total distance optimal solution.

Proof For an average MPP instance, each robot incurs a
minimum travel distance of 2(my); therefore, the mini-

mum total distance for all robots, in expectation, is £2(msm?)

because there are mgmy robots. On the other hand, be-
cause SAG produces a solution with an O(my) makespan,
each robot travels a distance of O(my). Summing this over
all robots, the solution from SAG has a total distance of
O(msm3). This matches the lower bound 2(mym3). O

6 Extensions

In this section, we show that SAG readily generalizes to
environments other than 2D rectangular grids, including
high dimensional grids and continuous environments.

6.1 High Dimensions

SAG can be extended to work for grids of arbitrary dimen-
sions. For dimensions d > 2, let the grid be mq X ... X mg.
Two updates to SAG are needed to make it work for higher
dimensions. First, the split line should be updated to a split
plane of dimension d — 1. In the case of d = 2, two iter-
ations will halve all dimensions. In the case of general d,
d iterations are required. Thus, the approach produces a
makespan of O(d(my+...mgq)) where m, is the side length
of the i-th dimension. Second, the crossover check becomes
more complex; each check now takes O(d) time instead of

O(1) time because each path, though still having up to
two straight pieces, requires O(d) coordinates to describe.
Other than these changes, the rest of SAG continues to
work with some minor modifications to the scheduling pro-
cedure (which can again be proven to be correct using in-
ductive proofs). The updated SAG algorithm for dimension
d therefore runs in O(d?|V|?) time because d iterations of
split and group are need to halve all dimensions and each
iteration takes O(d|V|?) time. The optimality guarantees,
e.g., Theorems 3 and 4, also carry over.

6.2 Well-Connected Environments

The selection of G as a grid plays a critical role in proving
the desirable properties of SAG. In particular, two features
of grid graphs are used. First, grids are composed of small
cycles, which allow the 2-switch operation to be carried out
locally. This in turn allows multiple 2-switch operations to
be carried out in parallel. Second, restricting to two adja-
cent rows (or columns) of a rectangular grid (e.g., row 4 and
row 5 in Fig. 9(a)), multiple 2-switches can be completed
between these two rows in a constant number of steps. As
long as the environment possesses these two features, SAG
works. We call such environments well-connected.

More precisely, a well-connected environment, £, is one
with the following properties. Let G be an my X mg rect-
angular grid that contains £. Unlike earlier grids, here, G
is not required to have unit edge lengths; a cell of G is
only required to be of rectangular shape with O(1) side
lengths. Let r; and 5 be two arbitrary adjacent rows of G,
and let ¢; € r1, co € r2 be two neighboring cells (see, e.g.,
Fig. 14). The only requirement over £ is that a robot in ¢y
and a robot in co may exchange residing cells locally, with-
out affecting the configuration of other robots. In terms
of the example in Fig. 14, the two shaded robots (other
robots are not drawn) must be able to exchange locations
in constant makespan within a region of constant radius.
The requirement then implies that parallel exchanges of
robots between r; and ro can be performed with a con-
stant makespan. The same requirement applies to two ad-
jacent columns of G. Subsequently, given an arbitrary well-
connected environment £ and an initial robot configuration
X7, the steps from SAG can be readily applied to reach an
arbitrary X that is a permutation of X;. As long as pair-
wise robot exchanges can be computed efficiently, the over-
all generalized SAG algorithm also runs efficiently while
maintaining the optimality guarantees. We note that the
definition of well-connectedness can be further generalized
to certain continuous settings. Fig. 15 provides a discrete
example and a continuous example of well-connected set-
tings, which include both the environment and the robots.

As mentioned in Sec. 1, well-connected environments
are frequently found in real-world applications, e.g., auto-

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 13

Fig. 15 Examples of well-connected settings, with both environ-
ments and robots.

mated warehouses at Amazon and road networks in cities
like Manhattan. Our theoretical results imply that such
environments are in fact quite optimal in their design in
terms of being able to efficiently route robots.

7 Conclusion and Future Work

In this work, we developed a low-polynomial time algo-
rithm, SAG, for solving the multi-robot path planning prob-
lem in grids and grid-like, well-connected environments.
The solution produced by SAG is within a constant fac-
tor of the best possible makespan on average. In a weaker
sense, SAG also provides a constant factor approximation
on total distance optimality. SAG applies to problems with
the maximum possible density in graph-based settings and
supports certain continuous problems as well.

The development of SAG opens up many possibilities
for promising future work. On the theoretical side, SAG
gets us closer to the goal of a finding a PTAS (polyno-
mial time approximation scheme) for optimal multi-robot
path planning. Also, it would be desirable to remove the
probabilistic element (i.e., the “in expectation” part) from
the guarantees. On the practical side, noting that we have
only looked at the case with the highest robot density, it
is promising to exploit the combination of global decou-
pling and network flow techniques to seek more optimal
algorithms for cases with lower robot density.

Acknowledgments

This work was supported by NSF grants 11S-1617744, 1IS-
1734419, and IIS-1845888. Opinions or findings expressed
in this paper do not necessarily reflect the views of the
SpONSOrs.

References

Adler A, De Berg M, Halperin D, Solovey K (2015) Effi-
cient multi-robot motion planning for unlabeled discs
in simple polygons. In: Algorithmic Foundations of
Robotics XI, Springer, pp 1-17

Alami R, Robert F, Ingrand F, Suzuki S (1995) Multi-
robot cooperation through incremental plan-merging.
In: Robotics and Automation, 1995. Proceedings., 1995
IEEE International Conference on, IEEE, vol 3, pp 2573—
2579

Alonso-Mora J, Knepper R, Siegwart R, Rus D (2015) Lo-
cal motion planning for collaborative multi-robot ma-
nipulation of deformable objects. In: 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
IEEE, pp 5495-5502

Atzmon D, Stern R, Felner A, Wagner G, Bartdk R,
Zhou NF (2018) Robust multi-agent path finding. In:
Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, Interna-
tional Foundation for Autonomous Agents and Multia-
gent Systems, pp 1862-1864

Auletta V, Monti A, Parente M, Persiano P (1999) A
linear-time algorithm for the feasbility of pebble motion
on trees. Algorithmica 23:223-245

Balch T, Arkin RC (1998) Behavior-based formation
control for multirobot teams. IEEE Transactions on
Robotics & Automation 14(6):926-939

Banfi J, Basilico N, Amigoni F (2017) Intractability
of time-optimal multirobot path planning on 2d grid
graphs with holes. IEEE Robotics and Automation Let-
ters 2(4):1941-1947

Bekris KE, Tsianos KI, Kavraki LE (2007) A decentral-
ized planner that guarantees the safety of communicat-
ing vehicles with complex dynamics that replan online.
In: 2007 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IEEE, pp 3784-3790

van den Berg J, Lin MC, Manocha D (2008) Reciprocal ve-
locity obstacles for real-time multi-agent navigation. In:
Proceedings IEEE International Conference on Robotics
& Automation, pp 1928-1935

van den Berg J, Snoeyink J, Lin M, Manocha D (2009)
Centralized path planning for multiple robots: Optimal
decoupling into sequential plans. In: Robotics: Science
and Systems

14

Jingjin Yu

Bollobds B (2013) Modern graph theory, vol 184. Springer
Science & Business Media

Boyarski E, Felner A, Stern R, Sharon G, Betzalel O,
Tolpin D, Shimony E (2015) Icbs: The improved conflict-
based search algorithm for multi-agent pathfinding. In:
Eighth Annual Symposium on Combinatorial Search

Branicky MS, Curtiss MM, Levine J, Morgan S (2006)
Sampling-based planning, control and verification of hy-
brid systems. IEE Proceedings Control Theory and Ap-
plications 153(5):575

Canny JF (1988) The Complexity of Robot Motion Plan-
ning. MIT Press, Cambridge, MA

Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard
W, Kavraki LE, Thrun S (2005) Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT
Press, Cambridge, MA

Cohen L, Uras T, Kumar T, Xu H, Ayanian N, Koenig S
(2016) Improved bounded-suboptimal multi-agent path
finding solvers. In: International Joint Conference on Ar-
tificial Intelligence

Earl MG, D’Andrea R (2005) Iterative milp methods
for vehicle-control problems. IEEE Transactions on
Robotics 21(6):1158-1167

Erdem E, Kisa DG, Oztok U, Schueller P (2013) A general
formal framework for pathfinding problems with multi-
ple agents. In: AAAI

Erdmann MA, Lozano-Pérez T (1986) On multiple moving
objects. In: Proceedings IEEE International Conference
on Robotics & Automation, pp 1419-1424

Ferner C, Wagner G, Choset H (2013) Odrm™* optimal mul-
tirobot path planning in low dimensional search spaces.
In: Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, IEEE, pp 3854-3859

Fox D, Burgard W, Kruppa H, Thrun S (2000) A prob-
abilistic approach to collaborative multi-robot localiza-
tion. Autonomous Robots 8(3):325-344

Goldreich O (2011) Finding the shortest move-sequence in
the graph-generalized 15-puzzle is np-hard. In: Studies in
Complexity and Cryptography. Miscellanea on the Inter-
play between Randomness and Computation, Springer,
pp 1-5

Goraly G, Hassin R (2010) Multi-color pebble motion on
graph. Algorithmica 58:610-636

Griffith EJ, Akella S (2005) Coordinating multiple droplets
in planar array digital microfluidic systems. Interna-
tional Journal of Robotics Research 24(11):933-949

Guo Y, Parker LE (2002) A distributed and optimal mo-
tion planning approach for multiple mobile robots. In:
Proceedings IEEE International Conference on Robotics
& Automation, pp 2612-2619

Halperin D, Latombe JC, Wilson R (2000) A general
framework for assembly planning: The motion space ap-
proach. Algorithmica 26(3-4):577-601

Han SD, Rodriguez EJ, Yu J (2018) Sear: A polynomial-
time expected constant-factor optimal algorithmic
framework for multi-robot path planning. In: Proceed-
ings IEEE/RSJ International Conference on Intelligent
Robots & Systems

Hearn RA, Demaine ED (2005) PSPACE-completeness of
sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computation.
Theoretical Computer Science 343(1):72-96

Honig W, Kumar TS, Cohen L, Ma H, Xu H, Ayanian N,
Koenig S (2016) Multi-agent path finding with kinematic
constraints. In: ICAPS, pp 477-485

Hopcroft JE, Schwartz JT, Sharir M (1984) On the com-
plexity of motion planning for multiple independent ob-
jects; PSPACE-hardness of the “warehouseman’s prob-
lem”. The International Journal of Robotics Research
3(4):76-88

Jansen R, Sturtevant N (2008) A new approach to coop-
erative pathfinding. In: In International Conference on
Autonomous Agents and Multiagent Systems, pp 1401—
1404

Jennings JS, Whelan G, Evans WF (1997) Cooperative
search and rescue with a team of mobile robots. In: Pro-
ceedings IEEE International Conference on Robotics &
Automation

Katsev M, Yu J, LaValle SM (2013) Efficient formation
path planning on large graphs. In: Proceedings IEEE
International Conference on Robotics & Automation, pp
3606-3611

Khatib O (1986) Real-time obstacle avoidance for manip-
ulators and mobile robots. The international journal of
robotics research 5(1):90-98

Kloder S, Hutchinson S (2006)
permutation-invariant multirobot formations.
Transactions on Robotics 22(4):650-665

Knepper RA, Rus D (2012) Pedestrian-inspired sampling-
based multi-robot collision avoidance. In: 2012 IEEE
RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication, IEEE,
pp 94-100

Kornhauser DM (1984) Coordinating pebble motion on
graphs, the diameter of permutation groups, and appli-
cations. PhD thesis, Massachusetts Institute of Technol-
ogy

Kuhn HW (1955) The Hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly 2:83—
97

LaValle SM, Hutchinson SA (1998) Optimal motion plan-
ning for multiple robots having independent goals. IEEE
Transactions on Robotics & Automation 14(6):912-925

Luna R, Bekris KE (2011) Push and swap: Fast cooperative
path-finding with completeness guarantees. In: Proceed-
ings International Joint Conference on Artificial Intelli-
gence, pp 294-300

Path planning for
IEEE

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 15

Ma H, Li J, Kumar T, Koenig S (2017) Lifelong multi-
agent path finding for online pickup and delivery tasks.
In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, International Founda-
tion for Autonomous Agents and Multiagent Systems,
pp 837-845

Matari¢ MJ, Nilsson M, Simsarian KT (1995) Cooperative
multi-robot box pushing. In: Proceedings IEEE/RSJ In-
ternational Conference on Intelligent Robots & Systems,
pp 556-561

Nnaji B (1992) Theory of Automatic Robot Assembly and
Programming. Chapman & Hall

Poduri S, Sukhatme GS (2004) Constrained coverage for
mobile sensor networks. In: Proceedings IEEE Interna-
tional Conference on Robotics & Automation

Qutub S, Alami R, Ingrand F (1997) How to solve deadlock
situations within the plan-merging paradigm for multi-
robot cooperation. In: Intelligent Robots and Systems,
1997. TROS’97., Proceedings of the 1997 IEEE/RSJ In-
ternational Conference on, IEEE, vol 3, pp 1610-1615

Ratner D, Warmuth M (1990) The (n? — 1)-puzzle and
related relocation problems. Journal of Symbolic Com-
putation 10:111-137

Reif JH (1985) Complexity of the generalized mover’s prob-
lem. Tech. rep., DTIC Document

Rodriguez S, Amato NM (2010) Behavior-based evacua-
tion planning. In: Proceedings IEEE International Con-
ference on Robotics & Automation, pp 350-355

Rus D, Donald B, Jennings J (1995) Moving furniture with
teams of autonomous robots. In: Proceedings IEEE/RSJ
International Conference on Intelligent Robots & Sys-
tems, pp 235242

Ryan MRK (2008) Exploiting subgraph structure in multi-
robot path planning. Journal of Artificial Intelligence
Research 31:497-542

Saha M, Isto P (2006) Multi-robot motion planning by
incremental coordination. In: 2006 TEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
IEEE, pp 5960-5963

Sharon G, Stern R, Felner A, Sturtevant N (2012) Conflict-
Based Search for Optimal Multi-Agent Path Finding. In:
Proc of the Twenty-Sixth AAAT Conference on Artificial
Intelligence

Sharon G, Stern R, Goldenberg M, Felner A (2013)
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470-495

Shucker B, Murphey T, Bennett JK (2007) Switching rules
for decentralized control with simple control laws. In:
American Control Conference, pp 1485-1492

Silver D (2005) Cooperative pathfinding. In: The 1st Con-
ference on Artificial Intelligence and Interactive Digital
Entertainment, pp 23-28

Smith B, Egerstedt M, Howard A (2009) Automatic gener-
ation of persistent formations for multi-agent networks

under range constraints. ACM/Springer Mobile Net-
works and Applications Journal 14(3):322-335

Solovey K, Halperin D (2012) k-color multi-robot mo-
tion planning. In: Proceedings Workshop on Algorithmic
Foundations of Robotics

Solovey K, Halperin D (2015) On the hardness of unlabeled
multi-robot motion planning. In: Robotics: Science and
Systems (RSS)

Solovey K, Yu J, Zamir O, Halperin D (2015) Motion plan-
ning for unlabeled discs with optimality guarantees. In:
Robotics: Science and Systems

Spirakis P, Yap CK (1984) Strong NP-hardness of moving
many discs. Information Processing Letters 19(1):55-59

Standley T, Korf R (2011) Complete algorithms for co-
operative pathfinding problems. In: Proceedings Inter-
national Joint Conference on Artificial Intelligence, pp
668-673

Surynek P (2012) Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In:
Proceedings 12th Pacific Rim International Conference
on Artificial Intelligence

Tanner H, Pappas G, Kumar V (2004) Leader-to-formation
stability. IEEE Transactions on Robotics & Automation
20(3):443-455

Turpin M, Mohta K, Michael N, Kumar V (2014) CAPT:
Concurrent assignment and planning of trajectories for
multiple robots. International Journal of Robotics Re-
search 33(1):98-112

Wagner G, Choset H (2011) M*: A complete multirobot
path planning algorithm with performance bounds. In:
Proceedings IEEE/RSJ International Conference on In-
telligent Robots & Systems, pp 3260-3267

Yu J (2013) A linear time algorithm for the feasibility of
pebble motion on graphs. arXiv:13012342

Yu J (2016) Intractability of optimal multi-robot path
planning on planar graphs. IEEE Robotics and Automa-
tion Letters 1(1):33-40

Yu J (2017) Expected constant-factor optimal multi-robot
path planning in well-connected environments. In: Multi-
Robot and Multi-Agent Systems (MRS), 2017 Interna-
tional Symposium on, IEEE, pp 48-55

Yu J, LaValle SM (2013a) Multi-agent path planning and
network flow. In: Algorithmic Foundations of Robotics
X, Springer Tracts in Advanced Robotics, vol 86,
Springer Berlin/Heidelberg, pp 157173

Yu J, LaValle SM (2013b) Structure and intractability of
optimal multi-robot path planning on graphs. In: Pro-
ceedings AAAI National Conference on Artificial Intel-
ligence, pp 1444-1449

Yu J, LaValle SM (2016) Optimal multi-robot path plan-
ning on graphs: Complete algorithms and effective
heuristics. IEEE Transactions on Robotics 32(5):1163—
1177

16 Jingjin Yu

Yu J, Rus D (2015) Pebble motion on graphs with rota-
tions: Efficient feasibility tests and planning. In: Algo-
rithmic Foundations of Robotics XI, Springer Tracts in
Advanced Robotics, Springer Berlin/Heidelberg, vol 107,
pp 729-746

	Introduction
	Related Work
	Preliminaries
	Routing Robots on Rectangular Grids with a Sub-Linear Makespan
	Complexity and Solution Optimality Properties of the SaG Algorithm
	Extensions
	Conclusion and Future Work

