
Noname manuscript No.
(will be inserted by the editor)

Average Case Constant Factor Time and Distance Optimal
Multi-Robot Path Planning in Well-Connected Environments

Jingjin Yu

Received: date / Accepted: date

Abstract Fast algorithms for optimal multi-robot path

planning are sought after in real-world applications. Known

methods, however, generally do not simultaneously guar-

antee good solution optimality and good (e.g., polynomial)

running time. In this work, we develop a first low-polynomial

running time algorithm, called SplitAndGroup (SaG),

that solves the multi-robot path planning problem on grids

and grid-like environments, and produces constant factor

makespan optimal solutions on average over all problem in-

stances. That is, SaG is an average caseO(1)-approximation

algorithm and computes solutions with sub-linear makespan.

SaG is capable of handling cases when the density of robots

is extremely high - in a graph-theoretic setting, the al-

gorithm supports cases where all vertices of the underly-

ing graph are occupied. SaG attains its desirable proper-

ties through a careful combination of a novel divide-and-

conquer technique, which we denote as global decoupling,

and network flow based methods for routing the robots.

Solutions from SaG, in a weaker sense, are also a constant

factor approximation on total distance optimality.

1 Introduction

Fast methods for multi-robot path planning have found

many real-world applications including shipping container

handling (Fig. 1(a)), order fulfillment (Fig. 1(b)), horti-

culture, among others, drastically improving the associ-

ated process efficiency. While commercial applications have

been able to scale quite well, e.g., a single Amazon fulfill-

ment center can operate thousands of Kiva mobile robots,

it remains unclear what level of optimality is achieved by

the underlying planning and scheduling algorithms in these

Jingjin Yu
Computer Science, Rutgers University at New Brunswick, E-
mail: jingjin.yu@rutgers.edu

(a) (b)

Fig. 1 (a) Automated straddle carriers at the port of Los An-
geles. Each straddle carrier is capable of autonomously navigate
to pick up or drop off a shipping container at a designated loca-
tion. (b) Amazon’s Kiva multi-robot system working at its order
fulfillment centers.

applications. As such, there remains the opportunity of un-

covering structural insights and novel algorithmic solutions

that substantially improve the throughput of current pro-

duction systems that contain some multi-robot (or more

generally, multi-body, where a single body may be actu-

ated using some external mechanism) sub-systems.

The disconnection that exists in applications regarding

multi-robot routing may be more formally characterized

as an optimality-efficiency gap that has been outstanding

in the multi-robot research domain for quite some time:

known algorithms for multi-robot path planning do not si-

multaneous guarantee good solution optimality and fast

running time. This is not entirely surprising as it is well

known that optimal multi-robot path planning problems

are generally NP-hard Goldreich (2011); Yu (2016); Banfi

et al (2017). Nevertheless, whereas these negative results

suggest that finding polynomial-time algorithms that com-

pute exact optimal solutions for multi-robot path plan-

ning problems is impossible, they do not preclude the exis-

tence of polynomial-time algorithms that compute approx-

imately optimal solutions.

Motivated by both practical relevance and theoreti-

cal significance, in this work, we narrow this optimality-

efficiency gap in multi-robot path planning, focusing on a

2 Jingjin Yu

class of grid-like, well-connected environments. Here, well-

connected environments (to be formally defined) include

the container shipping port scenario and the Amazon ful-

fillment center scenario. A key property of these environ-

ments is that sub-linear time-optimal solution is possible,

which is not true for general environments. Using a care-

ful combination of divide-and-conquer and network flow

techniques, we show that constant factor makespan opti-

mal solutions can be computed in low-polynomial running

time in the average case, where the average is computed

over all possible problem instances for an arbitrary fixed

environment. We call the resulting algorithm SplitAnd-

Group (SaG). In other words, SaG can efficiently com-

pute O(1)-approximate solutions on average. The current

paper is devoted to establishing the construction, correct-

ness, and key properties of SaG; we refer readers to Han

et al (2018) for implementations and performance charac-

teristics of SaG, where these issues are examined in detail.

Intuitively, when the density of the robots are high in a

given environment, computing solutions for optimally rout-

ing these robots will be more difficult. With this line of re-

search, our ultimate goal is to achieve a fine-grained struc-

tural understanding of the multi-robot path planning prob-

lem that allows the design of algorithms to gracefully bal-

ance between robot density and computational efficiency.

As we know, when the density of robots are low, planning

can be rather trivial: paths may be planned for individual

robots first and because conflicts are rare, they can be re-

solved on the fly. In the current work, we attack the other

end of the spectrum: we focus on the case of having a robot

occupy each vertex of the underlying discrete graph, i.e.,

we work with the case of highest possible density under the

given formulation. Beside the obvious theoretical challenge

that is involved, we believe the study benefits algorithm

design for lower density cases. Regarding this, a particu-

larly interesting tool developed in this work is the global
decoupling technique that enables the SaG algorithm.

Contributions. The main contribution brought forth

by this work is a first low-polynomial time, deterministic

algorithm, SaG, for solving the optimal multi-robot path

planning problem on grids and grid-like, well-connected en-

vironments. Under the prescribed settings, SaG computes

a solution with sub-linear makespan. Moreover, the solu-

tion is only a constant multiple of the optimal solution

on average. In a weaker sense, SaG also computes solu-

tions with total distance a constant multiple of the optimal

for a typical instance on average. The results presented in

this work expand over a conference publication Yu (2017).

Most notably, this paper (i) provides a fuller account of the

motivation and relevance that underlie the work, covering

both practical and theoretical aspects, and (ii) includes

complete proofs for all theorems; many of these proofs are

much improved versions that are more clear than what ap-

peared (as sketches) in Yu (2017).

Organization. The rest of the paper is organized as

follows. Related works are discussed in Sec. 2. In Sec. 3,

the discrete multi-robot path planning problem is formally

defined, followed by analysis on connectivity for achieving

good solution optimality. This leads us to the choice of

grid-like environments. We describe the details of SaG in

Sec. 4. In Sec. 5, complexity and optimality properties of

SaG are established. In Sec. 6, we show that SaG gener-

alizes to higher dimensions and (grid-like) well-connected

environments including continuous ones.

2 Related Work

In multi-robot path and motion planning, the main goal is

for the moving bodies, e.g., robots or vehicles, to reach their

respective destinations, collision-free. Frequently, certain

optimality measure (e.g., time, distance, communication)

is also imposed. Variations of the multi-robot path and

motion planning problem have been actively studied for

decades Erdmann and Lozano-Pérez (1986); LaValle and

Hutchinson (1998); Guo and Parker (2002); Silver (2005);

Ryan (2008); Jansen and Sturtevant (2008); Luna and Bekris

(2011); Standley and Korf (2011); van den Berg et al (2009);

Solovey and Halperin (2012); Yu and LaValle (2013a); Turpin

et al (2014); Choset et al (2005); van den Berg et al (2008);

Branicky et al (2006); Khatib (1986); Earl and D’Andrea

(2005); Bekris et al (2007); Knepper and Rus (2012); Alonso-

Mora et al (2015). As a fundamental problem, it finds ap-

plications in a diverse array of areas including assembly

Halperin et al (2000); Nnaji (1992), evacuation Rodriguez

and Amato (2010), formation Balch and Arkin (1998); Po-

duri and Sukhatme (2004); Shucker et al (2007); Smith et al

(2009); Tanner et al (2004), localization Fox et al (2000),

micro droplet manipulation Griffith and Akella (2005), ob-

ject transportation Matarić et al (1995); Rus et al (1995),

and search-rescue Jennings et al (1997). In industrial appli-

cations pertinent to the current work, centralized planners

are generally employed to enforce global control to drive

operational efficiency. The algorithm proposed in this work

also follows this paradigm.

Similar to single robot problems involving potentially

many degrees of freedom Reif (1985); Canny (1988), multi-

robot path planning is strongly NP-hard even for discs in

simple polygons Spirakis and Yap (1984) and PSPACE-

hard for translating rectangles Hopcroft et al (1984). The

hardness of the problem extends to unlabeled case Kloder

and Hutchinson (2006) where it remains highly intractable

Hearn and Demaine (2005); Solovey and Halperin (2015).

Nevertheless, under appropriate settings, the unlabeled case

can be solved near optimally Katsev et al (2013); Turpin

et al (2014); Adler et al (2015); Solovey et al (2015).

Because general (labeled) optimal multi-robot path plan-

ning problems in continuous domains are extremely chal-

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 3

lenging, a common approach is to start with a discrete

setting from the onset. Significant progress has been made

on solving the problem optimally in discrete settings, in

particular on grid-based environments. Multi-robot mo-

tion planning is less computationally expensive in discrete

domains, with the feasibility problem readily solvable in

O(|V |3) time, in which |V | is the number of vertices of the

discrete graph where the robots may reside Auletta et al

(1999); Goraly and Hassin (2010); Yu (2013); Yu and Rus

(2015). In particular, Yu and Rus (2015) shows that the

setting considered in this paper is always feasible except

when the grid graph has only four vertices (which is a triv-

ial case that can be safely ignored).

Optimal versions of the problem remain computation-

ally intractable in a graph-theoretic setting Goldreich (2011);

Ratner and Warmuth (1990); Yu and LaValle (2013b); Yu

(2016); Banfi et al (2017), but the complexity has dropped

from PSPACE-hard to NP-complete in many cases. This

has allowed the application of the intuitive decoupling-

based heuristics Alami et al (1995); Qutub et al (1997);

Saha and Isto (2006) to address several different costs. In

Standley and Korf (2011), individual paths are planned

first. Then, interacting paths are grouped together for which

collision-free paths are scheduled using Operator Decom-

position (OD). The resulting algorithm can also be made

complete (i.e., an anytime algorithm). Sub-dimensional ex-

pansion techniques (M*) were used in Wagner and Choset

(2011); Ferner et al (2013) that actively restrict the search

domain for groups of robots. Conflict Based Search (CBS)

Sharon et al (2012, 2013); Boyarski et al (2015) maintains

a constraint tree (CT) for facilitating its search to resolve

potential conflicts. With Cohen et al (2016), efficient algo-

rithms are supplied that compute solutions with bounded

optimality guarantees. Robots with kinematic constraints

are dealt with in Hönig et al (2016). Beyond decoupling,

other ideas have also been explored, including casting the

problem as other known NP-hard problems Surynek (2012);

Erdem et al (2013); Yu and LaValle (2016) for which high-

performance solvers are available. More recently, robust-

ness, longer horizon, and other related issues have been

studied in detail Ma et al (2017); Atzmon et al (2018).

3 Preliminaries

In this section, we state the multi-robot path planning

problem and two important associated optimality objec-

tives, in a graph-theoretic setting. Then, we show that

working with arbitrary graphs may lead to rather sub-

optimal solutions (i.e., super-linear with respect to the

number of vertices). This necessitates the restriction of the

graphs if desirable optimality results are to be achieved.

3.1 Graph-Theoretic Optimal Multi-Robot Path Planning

Let G = (V,E) be a simple, undirected, and connected

graph. A set of N labeled robots may move synchronously

in a collision-free manner on G. At integer time steps start-

ing from t = 0, each robot resides on a unique vertex of

G, inducing a configuration X of the robots. Effectively, X

is an injective map X : {1, . . . , N} → V specifying which

robot occupies which vertex (see Fig. 2). From step t to

step t+1, a robot may move from its current vertex to an

adjacent one under two collision avoidance conditions: (i)

the new configuration at t+1 remains an injective map, i.e.,

each robot occupies a unique vertex, and (ii) no two robots

may travel along the same edge in opposite directions.

2
1

3

4

5

6

2

1

3

4

5

6

(a) (b)

Fig. 2 Graph-theoretic formulation of the multi-robot path
planning problem. (a) A configuration of six robots on a graph
(roadmap) with seven vertices. (b) A configuration that is reach-
able from (a) in a single synchronous move.

A multi-robot path planning problem (MPP) is fully

defined by a 3-tuple (G,XI , XG) in which XI and XG are

two configurations. In this work, we look at the most con-

straining case of |XI | = |XG| = |V |. That is, all vertices

of G are occupied. We are interested in two optimal MPP

formulations. In what follows, makespan is the time span

covering the start to the end of a task. All edges of G are

assumed to have a length of 1 so that a robot traveling at

unit speed can cross it in a single time step.

Problem 1 (Minimum Makespan (TMPP)) Given

G,XI , and XG, compute a sequence of moves that takes

XI to XG while minimizing the makespan.

Problem 2 (Minimum Total Distance (DMPP)) Given

G,XI , and XG, compute a sequence of moves that takes

XI to XG while minimizing the total distance traveled.

These two problems are NP-hard and cannot always be

solved simultaneously Yu and LaValle (2013b).

3.2 Effects of Environment Connectivity

The well-known pebble motion problems, which are highly

similar to MPP, may require Ω(|V |3) individual moves to

solve Kornhauser (1984). Since each pebble (robot) may

only move once per step, at most |V | individual moves can

4 Jingjin Yu

happen in a step. This implies that pebble motion prob-

lems, even with synchronous moves, can have an optimal

makespan of Ω(|V |2), which is super linear (i.e. ω(|V |)).
The same is true for TMPP under certain graph topolo-

gies. We first prove a simple but useful lemma for a class

of graphs we call figure-8 graphs. In such a graph, there

are |V | = 7n + 6 vertices for some integer n ≥ 0. The

graph is formed by three disjoint paths of lengths n, 3n+2,

and 3n+2, meeting at two common end vertices. Figure-8

graphs with n = 1 are illustrated in Fig. 3.

An interesting property of figure-8 graphs is that an

arbitrary MPP instance on such a graph is feasible.

Lemma 1 An arbitrary MPP instance (G,XI , XG) is fea-

sible when G is a figure-8 graph.

Proof Using the three-step plan provided in Fig. 3, we

may exchange the locations of robots 1 and 2 without

collision. This three-step plan is scale invariant and ap-

plies to any n. With the three-step plan, the locations

of any two adjacent robots (e.g., robots 4 and 5 in the

top left figure of Fig. 3) can be exchanged. To do so, we

may first rotate the two adjacent robots of interest to the

locations of robots 1 and 2, do the exchange using the

three-step plan, and then reverse the initial rotation. Let

us denote such a sequence of moves as a 2-switch (more

formally known as a transposition in group theory). Be-

cause the exchange of any two robots on the figure-8 graph

can be decomposed into a sequence of 2-switches, such ex-

changes are always feasible. As an example, the exchange of

robots 4 and 9 can be carried out using a 2-switch sequence

⟨(3, 4), (2, 4), (1, 4), (4, 9), (1, 9), (2, 9), (3, 9)⟩, of which each

individual pair consists of two adjacent robots after the

previous 2-switch is completed. Because solving the MPP

instance (G,XI , XG) can be always decomposed into a se-

quence of two-robot exchanges, arbitrary MPP instances

are solvable on figure-8 graphs. ⊓⊔

1 2 3

4

567

8

13

910

11

12

2 3 4

5

678

1

13

910

11

12

1 3 4

5

67

10 8

13

29

11 12

1 3

4

567

10

8

13

29

11

12

Fig. 3 A three-step plan for exchanging robots 1 and 2 on a
figure-8 graph with 7n+ 6 vertices (n = 1 in this case).

The introduction of figure-8 graphs allows us to for-

mally establish that sub-linear optimal solutions are not

possible on an arbitrary connected graph.

Proposition 1 There exists an infinite family of TMPP

instances on figure-8 graphs with ω(|V |) minimum makespan.

Proof We will establish the claim on the family of figure-

8 graphs. By Lemma 1, there exists a sequence of moves

that takes arbitrary configuration XI to arbitrary config-

uration XG. For a figure-8 graph with |V | vertices, there
are |V |! possible configurations. Starting from an arbitrary

configuration XI , let us build a tree of adjacent configu-

rations (two configurations are adjacent if a single move

changes one configuration to the other) with XI as the

root and estimate its height hT , which bounds the min-

imum possible makespan. In each move, only one of the

three cycles on the figure-8 graph may be used to move

the robots and each cycle may be moved in clockwise or

counterclockwise direction; no two cycles may be rotated

simultaneously. Therefore, the tree has a branching factor

of at most 6. Assume the best case in which the tree is

balanced and has no duplicate nodes (i.e., configuration),

we can bound hT as 6hT+1 ≥ |V |!. That is, the tree must

have at least |V |! unique configuration nodes derived from

the root XI , because all |V |! configurations are reachable

from XI . With Stirling’s approximation Bollobás (2013),

|V |! ≥
√︁
2π|V |(|V |

e
)|V |,

which yields

hT = Ω(|V | log |V |).

This shows that solving some instances on figure-8 graphs

requiresΩ(|V | log |V |) steps, establishing that TMPP could

require a minimum makespan of ω(|V |).
Because n in the figure-8 graph is an arbitrary non-

negative integer, |V | has an infinite number of values. Hence,

there is an infinite family of such graphs. ⊓⊔

Proposition 1 implies that if the classes of graphs are

not restricted, we cannot always hope for the existence of

solutions with linear or better makespan with respect to

the number of vertices of the graphs, i.e.,

Corollary 1 TMPP does not admit solutions with linear

or sub-linear makespan on an arbitrary graph.

Corollary 1 suggests that seeking general algorithms

for providing linear or sub-linear makespan that apply to

all environments will be a fruitless attempt. With this in

mind, the paper mainly focuses on a restricted but very

practical class of discrete environments: grid graphs.

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 5

4 Routing Robots on Rectangular Grids with a

Sub-Linear Makespan

4.1 Main Result

We first outline the main algorithmic result of this work

and the key enabling idea behind it, a divide-and-conquer

scheme which we denote as global decoupling.

Assuming unit edge lengths, a rectangular grid is fully

specified by two integers mℓ andms, representing the num-

ber of vertices on the long and short sides of the grid, re-

spectively. Without loss of generality, assume that mℓ ≥
ms (see Fig. 4 for an 8 × 4 grid). We further assume that

mℓ ≥ 3 and ms ≥ 2 since an MPP on a smaller grid is

trivial. These assumptions are implicitly assumed in this

paper whenever grid is mentioned, unless otherwise stated.

We note that an MPP problem on such a grid is always fea-

sible, as established formally in Yu and Rus (2015). The

main result to be proven in this section is the following.

Theorem 1 Let (G,XI , XG) be an arbitrary TMPP in-

stance in which G is an mℓ×ms grid. The instance admits

a solution with O(mℓ) makespan.

Note that the O(mℓ) bound is sub-linear with respect to

the number of vertices, which is Ω(msmℓ) and Ω(m2
ℓ) for

square grids. We name the algorithm, to be constructed, as

SplitAndGroup (SaG) and first sketch how the divide-

and-conquer algorithm works at a high level. In this sec-

tion we focus on the makespan property of SaG. We delay

the establishment of polynomial-time complexity and ad-

ditional properties of the algorithm to Section 5.

Assume without loss of generality that mℓ = 2k1 and

ms = 2k2 for some integers k1 and k2 (we note that our

algorithm does not depend on mℓ and ms being powers of

2 at all; the assumption only serves to simplify this high-

level explanation). In the first iteration of SaG, it splits

the grid into two smaller rectangular grids, G1 and G2, of

size 2k1−1×2k2 each. Then, robots are moved so that at the

end of the iteration, if a robot has its goal in G1 (resp., G2)

in XG, it should be on some arbitrary vertex of G1 (resp.,

G2). This is the group operation. An example of a single

SaG iteration is shown in Fig. 4. We will show that such

an iteration can be completed in O(mℓ) = O(2k1) steps

(makespan). In the second iteration, the same process is

carried out on both G1 and G2 in parallel, which again

requires O(mℓ) = O(2k1) steps. In the third iteration, we

start with four 2k1−1 × 2k2−1 grids and the iteration can

be completed in O(2k1−1) = O(mℓ

2) steps. After 2k1 itera-

tions, the problem is solved with a makespan of

2O(mℓ) + 2O(
mℓ

2
) + 2O(

mℓ

4
) + . . .+ 2O(1) = O(mℓ).

The divide-and-conquer approach that we use share

similarities with other decoupling techniques in that it seeks

G1 G2

Fig. 4 Illustration of a single iteration of SaG on an 8× 4 grid.
Note that the grid is fully populated with robots and some are
not shown in the figure. The overall grid is split in the middle by
the dotted line to give two 4 × 4 grids, G1 and G2. The robots
shown on G1 (resp., G2) have goal locations on G2 (resp., G1).
In the group operation, these robots must move across the split
line after the operation is complete. Other robots (not shown) on
the grid must be where they were after the operation. In the next
iteration, the same procedure is applied to G1 and G2 in parallel.

to break down the overall problem into independent sub-

problems. On the other hand, it significantly differs from

previous decoupling schemes in that the decoupling in our

case is global. Therefore, we denote the scheme as the global

decoupling technique.

We proceed to describe an iteration of the SaG algo-

rithm in detail, which depends on following sub-routines,

in a sequential manner (i.e., a later sub-routine makes use

of the earlier ones):

– Concurrent exchange of multiple pairs robots embed-

ded in a grid in a constant number of steps (Lemma 2).

– Exchange of two groups of robots on a tree embedded in

a grid in time steps linear with respect to the diameter

(i.e., length of the longest path) of the tree (Lemma 3,

Lemma 4, and Theorem 2).

– Partitioning a split problem into multiple exchange prob-

lems on trees and solving them concurrently.

Each of these steps is covered in a sub-section that follows.

4.2 Pairwise Exchanges In A Constant Number of Steps

To achieve O(mℓ) makespan, SaG needs to enable concur-

rent robot movements. This is challenging because of our

worst case assumption that there are as many robots as the

number of vertices. This is where the grid graph assump-

tion becomes critical: it enables the concurrent “flipping”

or “bubbling” of robots. Let G = (V,E) be an mℓ × ms

grid graph whose vertices are fully occupied by robots. Let

E′ ⊂ E be a set of vertex disjoint edges of G. Suppose

for each edge e = (v1, v2) ∈ E′, we would like to simulate

the exchange of the two robots on v1 and v2 without in-

curring collision. Let us call this operation flip(E′). We

use flip(·) to mean the operation is applied to some un-

specified set of edges, which is to be determined for the

particular situation.

6 Jingjin Yu

Lemma 2 Let G = (V,E) be an mℓ×ms grid. Let E′ ⊂ E

be a set of vertex disjoint edges. Then the flip(E′) opera-

tion can be completed in a constant number of steps.

Proof A 3× 2 rectangular grid may be viewed as a figure-

8 graph with |V | = 6 vertices. Applying Lemma 1 to the

3× 2 grid tells us that any two robots on such a graph can

be exchanged without collision. Furthermore, all such ex-

changes can be pre-computed and performed in O(1) (i.e.,

a constant number of) steps.

To perform flip(E′) on an mℓ ×ms grid G, we parti-

tion the grid into multiple disjoint 3 × 2 blocks. Using up

to 4 different such partitions, it is always possible to cover

all edges of G. Therefore, the flip(E′) operation can be

broken down into parallel two-robot exchanges on the 3×2

blocks of these partitions. Because of the parallel nature

of the two-robot exchanges, the overall flip(E′) operation

can be completed O(1) steps. As an example, Fig. 5 illus-

trates how a flip(E′) operations can be carried out on a

7× 5 grid. Note that two partitions (the top two in Fig. 5)

are sufficient to cover all edges below the second row (in-

cluding the second row). Then, two more partitions (the

bottom two in Fig. 5) can cover all edges above the sec-

ond row. In the figure, the solid edges represent the edge

set E′. After each partition starting from the top left one,

two-robot exchanges can be performed which allow the re-

moval of the edges covered by the partition, as shown in

the subsequent picture. ⊓⊔

Fig. 5 Illustration of how the flip(E′) operation can be com-
pleted in a constant number of steps on an mℓ ×ms grid, which
requires up to 4 partitions of the grid into 3× 2 blocks.

4.3 Exchange of Groups Robots on an Embedded Tree

Lemma 2, in a nutshell, allows the concurrent exchange

of adjacent robots to be performed in O(1) steps. With

Lemma 2, to prove Theorem 1, we are left to show that

on an mℓ × ms grid, after splitting, the group operation

in the first SaG iteration can be decomposed into O(mℓ)

flip(·) operations. Because each flip(·) can be carried out

in O(1) steps, the overall makespan of the group operation

is O(mℓ). To obtain the desired decomposition, we need

to maximize parallelism along the split line. We achieve

the desired parallelism by partitioning the grid into trees

with limited overlap. Each such tree has a limited diameter

and crosses the split line. The group operation will then

be carried out on these trees. Before detailing the tree-

partitioning step, we show that grouping robots on trees

can be done efficiently. We start by showing that we can

effectively “herd” a group of robots to the end of a path.1

Note that we do not require a robot in the group to go to

a specific goal vertex; we do not distinguish robots within

the group.

Lemma 3 Let P be a path of length ℓ embedded in a grid.

An arbitrary group of up to ⌊ℓ/2⌋ robots on P can be re-

located to one end of P in O(ℓ) steps. Furthermore, the

relocation may be performed using flip(·) on P .

Proof Because we are to do the relocation using parallel

two-robot exchanges on disjoint edges based on the flip(·)
operation, without loss of generality, we may assume that

the path is straight and we are to move the robots to the

right end of the path. An example illustrating the scenario

is given in Fig. 6. For a robot in the group, let its initial

location on the path be of distance k from the right end.

We inductively prove the claim that it takes O(k) steps

from the beginning of all moves to “shift” such a robot to

its desired goal location.

Fig. 6 The initial and goal configurations of a group of 4 robots
on a path, before and after a herding operation.

At the beginning (i.e., t = 0), let the robot on P that

is of distance k to the right end be denoted as rk. The

hypothesis trivially holds for k = 0. Suppose it holds for

k − 1 and we need to show that the claim extends to k.

If rk does not belong to the group of robots to be moved,

then there is nothing to do. Otherwise, there are two cases.

In the first case, robot rk−1 does not belong to the

group of robots to be moved. Then at t = 0, rk and rk−1

may be exchanged in O(1) steps. Now rk is of distance k−1

to the right and the inductive hypothesis yields that the

rest of the moves for rk can be completed in O(k−1) steps.

The total number of steps is then O(k).

1 We emphasize that the group operation and groups of robots
are related but bear different meanings.

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 7

In the second case, robot rk−1 also belongs to the group

of robots to be moved. By the inductive hypothesis, rk−1

can be moved to its desired goal in O(k−1) steps. However,

once rk−1 is moved to the right, it will allow rk to follow it

with a gap between them of at most 2. Once rk−1 reaches

its goal, rk, whose goal is on the right of rk−1, can reach

its goal in O(1) additional steps. The total number of steps

from the beginning is again O(k).

It is clear that all operations can be performed using

flip(·) on edges of P when embedded in a grid. ⊓⊔

Using the herding operation, the locations of two dis-

joint groups of robots, equal in number, can also be ex-

changed efficiently.

Lemma 4 Let P be a path of length ℓ embedded in a grid.

Let two groups, equal in number, reside on two segments of

P that do not intersect. Then positions of the two groups of

robots may be exchanged in O(ℓ) steps without net move-

ments of other robots. The relocation may be performed

using flip(·) on P .

Proof We may again assume that P is straight. An im-

plicit assumption is that each group contains at most ⌊ℓ/2⌋
robots. Fig. 7 illustrates an example in which two groups

of 4 robots each need to switch locations on such a path.

Fig. 7 The initial (first row), goal (last row) and intermediate
configurations of two groups of 4 robots to be exchanged. Each
group is marked with a different color/shade. The unshaded discs
do not belong to either of the two group.

To do the grouping, we first apply a herding operation

that moves one group of robots to one end of P . In Fig. 7,

this is done to the group of lightly-shaded robots to move

them to the right side (the second row of Fig. 7). Then,

another herding operation is performed to move the other

group to the other end of P (the third row of Fig. 7). In

the third and last step, two parallel “reversed” herding

operations are carried out on two disjoint segments of P

to move them to their desired goal locations. This is best

understood by viewing the process as applying the herd-

ing operation to the goal configuration. As an example,

in Fig. 7, from the goal configuration (last row), we may

readily apply two herding operations to move two groups

of robots to the two ends of P as shown in the third row

of the figure. Because each herding operation takes O(ℓ)

steps, the overall operation takes O(ℓ) steps as well. It is

clear that in the end, a robot not in the two groups will not

have any net movement on P because the relative orders of

these robots (unshaded ones in Fig. 7) never change. ⊓⊔

Next, we generalize Lemma 4 to a tree embedded in

a grid. On a tree graph T , we call a subgraph a path

branch of T if the subgraph is a path with no other at-

tached branches. That is, all vertices of the subgraph have

degrees one or two in T .

Theorem 2 Let T be a tree of diameter d embedded in a

grid. Let P be a length ℓ path branch of T . Then, a group

of robots on P can be exchanged with robots on T outside

P in O(d) steps without net movement of other robots. The

relocation may be performed using flip(·) on T .

Proof We temporarily limit the tree T such that, after

picking a proper main path that contains P and deleting

this main path, there are only paths left. That is, we as-

sume all vertices with degree three or four are on a single

path containing P . An example of such a tree T and the

exchange problem is given in the top row of Fig. 8. In the

figure, the main path is the long horizontal path and P is

the path on the left of the dotted split line. We call other

paths off the main path side branches. Once this version is

proven, the general version readily follows because all pos-

sible tree structures are considered in this special example,

i.e., there may be either one or two branches coming out

of a node on the main branch. The rest of the paper will

only use the less general version. For ease of reference, for

the two groups of robots, we denote the group fully on P

as g1 and the other group as g2. In the example, g1 has a

light shade and g2 has a darker shade.

To start, we first solve part of the relocation problem

on the main path, which can be done in O(d) steps by

Lemma 4. After the step, the robots involved in the first

step are no longer relevant. In the example, this is to ex-

change the robots marked with small arrows in the first row

of Fig. 8. After the relocation of these robots is completed,

we remove their shades.

In the second step, the relevant robots in g2 on the

side branch are moved so that they are just off the main

path. We also assign priorities to these robots based on

their closeness to P and break ties randomly. For a robot

labeled i in a group gj , we denote the robot as rji . For our

example, this current step yields the third row of Fig. 8

with the priorities marked. Since the moves are done in

parallel and each branch is of length at most d, only O(d)

steps are needed.

In the third step, robots from g2 will move out of the

side branches in the order given, one immediately after

the other (when possible). For the example (third row of

Fig. 8), r21 will move first. r22 will follow. Then r23, followed

by r24. Using the same inductive argument from the proof

of Lemma 3, we observe that all robots from g2 on the

8 Jingjin Yu

r21

r22

r23 r24

Fig. 8 The initial (first row) and three intermediate configura-
tions in solving the problem of switching the location of these
robots on a tree.

side branch can be moved off the side branches (and reach

their goals on the main path) in O(d) time. As the relevant

robots from g1 also move across the split line, they will

fill in side branches in opposite order to when the robots

from g2 are moved out of the branches. In the example,

this means that the branch where r23 and r24 were on will

be populated with robots from g1 first, followed by the

branch where r22 was, and finally the branch where r21 was.

This ensures that at the end of this step, any robot not in

g1 and g2 will have no net movement. The number of steps

for this is again O(d).

In the last step, we simply reverse the second step,

which takes another O(d) steps. Putting everything to-

gether, O(d) steps are sufficient for completing the task.

Combining all steps, only O(d) steps are required to

complete the desired exchange. To see that the same con-

clusion holds for more general trees with side branches that

are not simple paths, we simply need to do the second step

and third step more carefully. But, because we are only

moving at most O(d) robots, using an amortization argu-

ment, it is straightforward to see that the O(d) bound does

not change. ⊓⊔

We note that many of the operations used to prove

Lemma 3, Lemma 4, and Theorem 2 can be combined with-

out changing the outcome. However, doing so will make the

proofs less modular. Given the focus of the current paper

which is to construct a polynomial time algorithm with

constant factor optimality guarantee, we opt for clarity in-

stead of pursuing a smaller asymptotic constant.

4.4 Tree Forming and Robot Routing

We proceed to prove Theorem 1 by showing in detail how

to carry out a single iteration of SaG, which boils down to

partitioning the robot exchanges into robot exchanges on

trees, to which Theorem 2 can then be applied. The proof

itself can be subdivided into three steps:

– Splitting and initial tree forming, where a grid is

partitioned into two roughly equal halves and trees are

initially formed across the partition line for facilitating

exchanging of two groups of robots.

– Tree post-processing, which addresses the issue where

two initial trees might have “+” like crossovers.

– Final robot routing, which actually carries through

the robot routing process and resolve some final issues.

Proof (Proof of Theorem 1) Splitting and initial tree

forming. In a split, we always split along the longer side of

the current grid. Since mℓ ≥ ms, the mℓ ×ms grid is split

into two grids of dimensions ⌈mℓ/2⌉ × ms and ⌊mℓ/2⌋ ×
ms, respectively. For convenience, we denote the two split

grids as G1 and G2, respectively. Recall that in the group

operation, we want to exchange robots so that a robot with

goal in G1 (resp., G2) resides in G1 (resp., G2) at the end of

the operation. To do this efficiently, we need to maximize

the parallelism. This is achieved through the computation

of a set of ms trees with which we can apply Theorem 2.

We will use the example from Fig. 9 to facilitate the higher

level explanation.

G2

G1

(a) (b)

Fig. 9 (a) A 9× 7 grid is split into two grids G1 and G2 of sizes
4× 7 and 5× 7, respectively. The dark-shaded robots’ final goals
are in G2. (b) The grid is partitioned into (possibly non-disjoint)
trees to allow the dark-shaded robots that are not already in
G2 to exchange with robots (lightly-shaded ones) that should be
moved to G1.

Assume that the grid is oriented so that ms is the num-

ber of columns and mℓ is the number of rows (see Fig. 9).

The trees that will be built will be based on the columns of

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 9

one of the split graphs, say G2. A column i of G2 is a path

of length ⌊mℓ/2⌋−1 with ⌊mℓ/2⌋ robots on it. Suppose ki of

these robots have goals outside G2 (the lightly-shaded ones

in Fig. 9 (b)), then it is always possible to find ki robots

(the dark-shaded ones in Fig. 9(b)) on G1 that must go to

G2. A tree Ti is built to allow the exchange of these 2ki
robots such that the part of Ti in G2 is simply column i.

That is, the ms trees to be built do not overlap in G2.

For a column i in G2 with ki robots to be moved to

G1, it is not always possible to find exactly ki robots on

column i of G1. This makes the construction of the trees in

G1 more complex. The construction is done in two steps.

In the first step, robots to be moved to G2 are grouped in a

distance optimal manner, which induces a preliminary tree

structure. Focusing on G1, we know the number of robots

that must be moved across the split line in each column (see

Fig. 10). For each robot to be moved across the split line,

the distance between the robot and all the possible exits

of G1 is readily computed. Once these distances are com-

puted, a standard matching procedure can be run to assign

each robot an exit point that minimizes the total distance

traveled by these robots Kuhn (1955); Solovey et al (2015).

The assignment has a powerful property that we will use

later. For each robot, either a straight or an L shaped path

can be obtained based on the assignment. Merging these

paths for robots exiting from the same column then yields

a tree for each column (see Fig. 9(b)). Note that each tree

has a single vertical segment.

2 3 2 4 0 1 3

Fig. 10 For the example given in Fig. 9, this figure highlights G1,
the robots that must be moved to G2, and how many robot need
to be moved through the top of G1 along each column. Regarding
distance, the bottom left robot needs to travel 4 edges to exit G1

through the left most column. It needs to travel 4 + 7 − 1 = 10
edges to exit from the right most column.

Tree post-processing. In the second step, the trees are

post-processed to remove crossings between them. Exam-

ple of such a crossing we refer to is illustrated in Fig. 11(a)

(dotted lines). Formally, we say two trees T1 and T2 has a

crossover if a horizontal path of T1 intersects with a ver-

tical path of T2, with the additional requirement that one

of the involved horizontal path from one tree forms a +

with the vertical segment of the other tree. For example,

Fig. 11(b) is not considered a crossover.

(a) (b) (c)

Fig. 11 (a) Example of a tree crossover (dotted paths) and its
removal (solid paths) without increasing the total distance. Note
that only the relevant paths of the two trees are shown. (b) An
intersection that is not considered a crossover. (c) An impossible
crossover scenario.

For each crossover, we update the two trees to remove

the crossover, as illustrated in Fig. 11(a). The removal will

not change the total distance traveled by the two (or more)

affected robots but will change the path for these robots.

To see that the process will end, note that one of the two

involved paths is shortened. Since there are finite number

of such paths and each path can only be shortened a finite

number of times, the crossover removal process can get rid

of all crossovers. We will show later this can be done in

polynomial computation time when we perform algorith-

mic analysis. We note here that the crossover scenario in

Fig. 11(c) cannot happen because a removal would shorten

the overall length, which contradicts the assumption that

these paths have the shortest total distance.

Final robot routing. At the end of the crossover removal

process, we may first route all robots on a tree branch

that do not have overlaps with other trees. However, this

does not route all robots because it is possible for the

tree structures for different columns to overlap horizon-

tally (see Fig. 12). For two trees that partially overlap with

each other (e.g., the left and middle two trees in Fig. 12),

one of the trees does not extend lower (row wise) than

the row where the overlap occurs. Otherwise, this yields

a crossover, which should have already been removed. For

two overlapping trees T1 and T2, we say T1 is a follower of

T2 if a robot going to T2 must pass through the vertical

path of T1. In the example from Fig. 12, T1 is a follower of

T2. Similarly, the right (green) tree is a follower of T1.

We state some readily observable properties of overlap-

ping trees: (i) two trees may have at most one overlap-

ping horizontal branch (otherwise, there must be a path

crossover), (ii) because of (i), any three trees cannot pair

wise overlap at different rows, and (iii) there must be at

least one tree that is not a follower, e.g., the left (purple)

tree in Fig. 12. We call this tree a leader. From a leader

tree, we can recursively collect its followers, and the fol-

10 Jingjin Yu

1 2 1

T2

T1

Fig. 12 Illustration of overlaps between tree structures for dif-
ferent columns. For the four shaded robots to be moved, one
must be moved through the left most vertical path, two must be
moved through the middle vertical path, and the last must be
moved through the right most vertical path.

lowers of these followers, and so on and so forth. We call

such a collection an interacting bundle (e.g., Fig. 12).

With these properties in mind, the group operation in

a SaG iteration is carried out as follows. Because robots

to be moved from G2 to G1 are on straight vertical paths,

there are no interactions among them between different

trees. Therefore, we only need to consider interactions of

robots on G1. For trees that have no overlap with other

trees, Theorem 2 directly applies to complete the robot

exchange on these trees in O(mℓ) steps because each tree

has a diameter of at most 2mℓ. In parallel, we can also

complete the movement of all robots that should go from

G1 to G2 which are not residing on a horizontal tree branch

that overlaps with other trees, also in O(mℓ) steps. After

these robots are exchanged, we can effectively forget about

them.

After the previous step, we are left to deal with robots

on overlapping horizontal tree branches that must be moved

(e.g., the shaded robots in Fig. 12). It is clear that different

interacting bundles do not have any interactions; we only

need to focus on a single bundle. This is actually straight-

forward; we use the example from Fig. 13 to facilitate the

proof explanation. The routing of robots in this case follows

a greedy approach starting from the left most tree, i.e., we

essentially try to “flush” the shaded robots in the left-up

direction, which can always be realized in two phases, each

of which using at most O(mℓ) makespan.

Observe that the problem can be solved for the leader

tree (left most tree in Fig. 13). At the same time, for each

successive follower tree, the movement of robots can be

partially solved for these follower trees. The middle row of

Fig. 13 shows how this can be done for each tree. Formally,

if a horizontal branch is shared by two trees, say T2 and its

follower T1, then we obtain a simple exchange problem of

moving a few robots through a path on T2. In the figure,

these are the first and fourth trees from the left, with the

dotted lines marking the path. If a horizontal branch is

shared by three or more trees, we get an exchange problem

on a tree. In the figure, the middle three trees create such

a problem. For this, Theorem 2 applies with minor mod-

ifications. All the exchange problems can be carried out

3 3 2 6 1

Fig. 13 An example interacting bundle in detail. The top row
is the initial configuration of the robots on the overlapping hori-
zontal tree branches to be moved through the vertical paths. The
numbers on the top of the vertical paths mark how many robots
should be moved through that path. For example, 3 of the shaded
robots must be routed through the left most vertical path. The
middle row and the bottom rows mark how the exchanges can be
completed in two steps or phases.

in parallel because there is no further interaction between

them. It takes O(mℓ) steps to complete, after which we are

left with another set of exchange problems, each of which

is on a path (e.g., the three problems in the last row of

Fig. 13). Lemma 4 applies to yield O(mℓ) required steps.

Stitching everything together, the first iteration of SaG

on anmℓ×ms grid can be completed in O(mℓ) steps. In the

next iteration, we are working with grids of sizes ⌈mℓ/2⌉×
ms, which requires O(max{⌈mℓ/2⌉,ms}) steps. Following

the simple recursion, which terminates after O(logmℓ) it-
erations, we readily obtain that O(mℓ) steps are sufficient

for solving the entire problem. ⊓⊔

5 Complexity and Solution Optimality Properties

of the SaG Algorithm

In this section, we establish two key properties of SaG,

namely, its polynomial running-time and asymptotic solu-

tion optimality.

5.1 Time Complexity of SaG

The SaG algorithm is outlined in Algorithm 1, which sum-

marizes the results from Section 4 in the form of an algo-

rithm. At Lines 1-2, a partition of the current grid G is

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 11

made, over which initial path planning is performed to gen-

erate the trees for grouping the robots into the proper sub-

graph. Then, at Line 3, crossovers are resolved. At Line 4,

the final paths are scheduled, from which the robot moves

can be extracted. This step also yields where each robot

will end up at in the end of the iteration, which becomes the

initial configuration for the next iteration (if there is one).

After the main iteration steps are complete, at Lines 5-10,

the algorithm recursively calls itself on smaller problem

instances. The special case here is when the problem is

small enough (Line 7), in which case the problem is di-

rectly solved without further splitting.

Algorithm 1: SplitAndGroup (G, XI , xG)

Input : G = (V,E): an mℓ ×ms grid graph
XI : initial robot configurations
XG: goal robot configurations

Output: M = ⟨M1,M2, . . .⟩: a sequence of moves

%Run matching and construct initial trees

1 (G1, G2)← Split(G)
2 P ←MatchAndPlanPath(G,XI , XG)

%Remove crossovers

3 P ′ ← ResolveCrossovers(P)

%Schedule the sequence of moves

4 (M,X′
I)← ScheduleMoves(P ′)

%Recursively solve smaller sub-problems

5 foreach Gi, i = 1, 2 do
6 if row(Gi) ≤ 3 and col(Gi) ≤ 3 then
7 M = M + Solve(Gi, X

′
I |Gi

, XG|Gi
)

8 else

9 M = M + SaG(Gi, X
′
I |Gi

, XG|Gi
)

10 end

11 end

12 return M

We now proceed to bound the running time of SaG.

It is straightforward to see that the Split routine takes

O(|V |) = O(mℓms) running time. MatchAndPlanPath

can be implemented using the standard Hungarian algo-

rithm Kuhn (1955), which runs in O(|V |3) time.

For ResolveCrossovers, we may implement it by

starting with an arbitrary robot that needs to be moved

across the split line and check whether the path it is on

has crossovers that need to be resolved. Checking one path

with another can be done in constant time because each

path has only two straight segments. Detecting a crossover

then takes up to O(|V |) running time. We note that, as a

crossover is resolved, one of the two paths will end up being

shorter (see, e.g., Fig. 11). We then repeat the process with

this shorter path until no more crossover exists. Naively,

because the path keeps getting shorter, this process will

end in at most O(|V |) steps. Therefore, all together, Re-

solveCrossovers can be completed in O(|V |3) time.

The ScheduleMoves routine simply extracts infor-

mation from the already planned path set P ′ and can

be completed in O(|V |) running time. The Solve routine

takes constant time.

Adding everything up, an iteration of SaG can be car-

ried out in O(|V |3) time using a naive implementation.

Summing over all iterations, the total running time is

O(|V |3) + 2O((
|V |
2

)3) + 4O((
|V |
4

)3) + . . . = O(|V |3),

which is low-polynomial with respect to the input size.

5.2 Optimality Guarantees

Having established that SaG is a polynomial time algo-

rithm that solves MPP with sub-linear makespan, we now

show that SaG is an O(1)-approximate makespan optimal

algorithm for MPP in the average case. Moreover, SaG

also computes a constant factor distance optimal solution

in a weaker sense. To establish these, we first show that

for fixed mℓms that is large, the number of MPP instances

with o(mℓ +ms) makespan is negligible.

Lemma 5 The fraction of MPP instances on a fixed graph

G as an mℓ×ms grid with o(mℓ+ms) makespan is no more

than (12)
mℓ
4 for sufficiently large mℓms.

Proof Let (G,XI , XG) be an MPP instance wth G being a

mℓ ×ms grid. Without loss of generality, we may assume

that XI is arbitrary and XG is a row-major ordering of the

robots, i.e., with the i-th row containing the robots labeled

(i− 1)mℓ + 1, (i− 1)mℓ + 2, . . . , imℓ, in that order. Then,

over all possible instances, 1
4 of instances have XI with

robot 1 having a distance of 1
4 (mℓ+ms) or less from robot

1’s location in XG (note that the number is 1
4 instead of

1
16 because ms maybe as small as 2). Let these 1

4 instances

be P1. Among P1, again about 1
4 of instances have have

XI with robot 2 having a distances of 1
4 (mℓ +ms) or less

from robot 2’s location inXG. Following this reasoning and

limiting to the first mℓ

4 robots, we may conclude that the

fraction of instances with o(mℓ+ms) makespan is no more

than (12)
mℓ
4 for sufficiently large mℓms. ⊓⊔

Lemma 5 is conservative but sufficient for establishing

that SaG delivers an average case O(1)-approximation for

makespan. That is, since only an exponentially small num-

ber of instances have small makespan, the average makespan

ratio is clearly constant, that is,

Theorem 3 On average and in polynomial time, SaG com-

putes O(1)-approximate makespan optimal solutions for MPP.

Proof For a fixed G as an mℓ × ms grid, Lemma 5 says

that no more than a (12)
mℓ
4 fraction of instances have sub-

linear makespan (the minimum possible makespan is 1).

12 Jingjin Yu

For the rest of the instances, their makespan is linear, i.e.,

Ω(mℓ +ms). On the other hand, Algorithm 1 guarantees

a makespan of O(mℓ + ms). We may then compute the

expected (i.e., average) makespan ratio over all instances

of MPP for the same G as no more than (for sufficiently

large mℓ)

(
1

2
)

mℓ
4
O(mℓ +ms)

1
+ (1− (

1

2
)

mℓ
4)

O(mℓ +ms)

Ω(mℓ +ms)
= O(1).

This establishes the claim of the theorem. ⊓⊔

SaG can also provide guarantees on total distance opti-

mality. In this case, because every robot contributes to the

total distance, a weaker guarantee is ensured (in the case of

makespan, one robot’s makespan dominates the makespan

of all other robots). This leads us to work with a typical

(i.e., average) MPP instance instead of working with aver-

ages of makespan optimality ratio over all instances. That

is, for the makespan case, we first compute the optimality

ratio for each instance, which is subsequently averaged. For

total distance, we work with a typical random instance and

compute the optimality ratio for such a typical instance.

Theorem 4 For an average MPP instance, SaG com-

putes an O(1)-approximate total distance optimal solution.

Proof For an average MPP instance, each robot incurs a

minimum travel distance of Ω(mℓ); therefore, the mini-

mum total distance for all robots, in expectation, isΩ(msm
2
ℓ)

because there are msmℓ robots. On the other hand, be-

cause SaG produces a solution with an O(mℓ) makespan,

each robot travels a distance of O(mℓ). Summing this over

all robots, the solution from SaG has a total distance of

O(msm
2
ℓ). This matches the lower bound Ω(msm

2
ℓ) . ⊓⊔

6 Extensions

In this section, we show that SaG readily generalizes to

environments other than 2D rectangular grids, including

high dimensional grids and continuous environments.

6.1 High Dimensions

SaG can be extended to work for grids of arbitrary dimen-

sions. For dimensions d ≥ 2, let the grid be m1 × . . .×md.

Two updates to SaG are needed to make it work for higher

dimensions. First, the split line should be updated to a split

plane of dimension d − 1. In the case of d = 2, two iter-

ations will halve all dimensions. In the case of general d,

d iterations are required. Thus, the approach produces a

makespan of O(d(m1+ . . .md)) where mi is the side length

of the i-th dimension. Second, the crossover check becomes

more complex; each check now takes O(d) time instead of

O(1) time because each path, though still having up to

two straight pieces, requires O(d) coordinates to describe.

Other than these changes, the rest of SaG continues to

work with some minor modifications to the scheduling pro-

cedure (which can again be proven to be correct using in-

ductive proofs). The updated SaG algorithm for dimension

d therefore runs in O(d2|V |3) time because d iterations of

split and group are need to halve all dimensions and each

iteration takes O(d|V |3) time. The optimality guarantees,

e.g., Theorems 3 and 4, also carry over.

6.2 Well-Connected Environments

The selection of G as a grid plays a critical role in proving

the desirable properties of SaG. In particular, two features

of grid graphs are used. First, grids are composed of small

cycles, which allow the 2-switch operation to be carried out

locally. This in turn allows multiple 2-switch operations to

be carried out in parallel. Second, restricting to two adja-

cent rows (or columns) of a rectangular grid (e.g., row 4 and

row 5 in Fig. 9(a)), multiple 2-switches can be completed

between these two rows in a constant number of steps. As

long as the environment possesses these two features, SaG

works. We call such environments well-connected.

More precisely, a well-connected environment, E , is one
with the following properties. Let G be an mℓ ×ms rect-

angular grid that contains E . Unlike earlier grids, here, G

is not required to have unit edge lengths; a cell of G is

only required to be of rectangular shape with O(1) side

lengths. Let r1 and r2 be two arbitrary adjacent rows of G,

and let c1 ∈ r1, c2 ∈ r2 be two neighboring cells (see, e.g.,

Fig. 14). The only requirement over E is that a robot in c1
and a robot in c2 may exchange residing cells locally, with-

out affecting the configuration of other robots. In terms

of the example in Fig. 14, the two shaded robots (other

robots are not drawn) must be able to exchange locations

in constant makespan within a region of constant radius.

The requirement then implies that parallel exchanges of

robots between r1 and r2 can be performed with a con-

stant makespan. The same requirement applies to two ad-

jacent columns of G. Subsequently, given an arbitrary well-

connected environment E and an initial robot configuration

XI , the steps from SaG can be readily applied to reach an

arbitrary XG that is a permutation of XI . As long as pair-

wise robot exchanges can be computed efficiently, the over-

all generalized SaG algorithm also runs efficiently while

maintaining the optimality guarantees. We note that the

definition of well-connectedness can be further generalized

to certain continuous settings. Fig. 15 provides a discrete

example and a continuous example of well-connected set-

tings, which include both the environment and the robots.

As mentioned in Sec. 1, well-connected environments

are frequently found in real-world applications, e.g., auto-

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 13

G

E
r1

r2

c1

c2

Fig. 14 Illustration of a well-connected non-grid graph.

Fig. 15 Examples of well-connected settings, with both environ-
ments and robots.

mated warehouses at Amazon and road networks in cities

like Manhattan. Our theoretical results imply that such

environments are in fact quite optimal in their design in

terms of being able to efficiently route robots.

7 Conclusion and Future Work

In this work, we developed a low-polynomial time algo-

rithm, SaG, for solving the multi-robot path planning prob-

lem in grids and grid-like, well-connected environments.

The solution produced by SaG is within a constant fac-

tor of the best possible makespan on average. In a weaker

sense, SaG also provides a constant factor approximation

on total distance optimality. SaG applies to problems with

the maximum possible density in graph-based settings and

supports certain continuous problems as well.

The development of SaG opens up many possibilities

for promising future work. On the theoretical side, SaG

gets us closer to the goal of a finding a PTAS (polyno-

mial time approximation scheme) for optimal multi-robot

path planning. Also, it would be desirable to remove the

probabilistic element (i.e., the “in expectation” part) from

the guarantees. On the practical side, noting that we have

only looked at the case with the highest robot density, it

is promising to exploit the combination of global decou-

pling and network flow techniques to seek more optimal

algorithms for cases with lower robot density.

Acknowledgments

This work was supported by NSF grants IIS-1617744, IIS-

1734419, and IIS-1845888. Opinions or findings expressed

in this paper do not necessarily reflect the views of the

sponsors.

References

Adler A, De Berg M, Halperin D, Solovey K (2015) Effi-

cient multi-robot motion planning for unlabeled discs

in simple polygons. In: Algorithmic Foundations of

Robotics XI, Springer, pp 1–17

Alami R, Robert F, Ingrand F, Suzuki S (1995) Multi-

robot cooperation through incremental plan-merging.

In: Robotics and Automation, 1995. Proceedings., 1995

IEEE International Conference on, IEEE, vol 3, pp 2573–

2579

Alonso-Mora J, Knepper R, Siegwart R, Rus D (2015) Lo-

cal motion planning for collaborative multi-robot ma-

nipulation of deformable objects. In: 2015 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

IEEE, pp 5495–5502

Atzmon D, Stern R, Felner A, Wagner G, Barták R,

Zhou NF (2018) Robust multi-agent path finding. In:

Proceedings of the 17th International Conference on

Autonomous Agents and MultiAgent Systems, Interna-

tional Foundation for Autonomous Agents and Multia-

gent Systems, pp 1862–1864

Auletta V, Monti A, Parente M, Persiano P (1999) A

linear-time algorithm for the feasbility of pebble motion

on trees. Algorithmica 23:223–245

Balch T, Arkin RC (1998) Behavior-based formation

control for multirobot teams. IEEE Transactions on
Robotics & Automation 14(6):926–939

Banfi J, Basilico N, Amigoni F (2017) Intractability

of time-optimal multirobot path planning on 2d grid

graphs with holes. IEEE Robotics and Automation Let-

ters 2(4):1941–1947

Bekris KE, Tsianos KI, Kavraki LE (2007) A decentral-

ized planner that guarantees the safety of communicat-

ing vehicles with complex dynamics that replan online.

In: 2007 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, IEEE, pp 3784–3790

van den Berg J, Lin MC, Manocha D (2008) Reciprocal ve-

locity obstacles for real-time multi-agent navigation. In:

Proceedings IEEE International Conference on Robotics

& Automation, pp 1928–1935

van den Berg J, Snoeyink J, Lin M, Manocha D (2009)

Centralized path planning for multiple robots: Optimal

decoupling into sequential plans. In: Robotics: Science

and Systems

14 Jingjin Yu

Bollobás B (2013) Modern graph theory, vol 184. Springer

Science & Business Media

Boyarski E, Felner A, Stern R, Sharon G, Betzalel O,

Tolpin D, Shimony E (2015) Icbs: The improved conflict-

based search algorithm for multi-agent pathfinding. In:

Eighth Annual Symposium on Combinatorial Search

Branicky MS, Curtiss MM, Levine J, Morgan S (2006)

Sampling-based planning, control and verification of hy-

brid systems. IEE Proceedings Control Theory and Ap-

plications 153(5):575

Canny JF (1988) The Complexity of Robot Motion Plan-

ning. MIT Press, Cambridge, MA

Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard

W, Kavraki LE, Thrun S (2005) Principles of Robot

Motion: Theory, Algorithms, and Implementations. MIT

Press, Cambridge, MA

Cohen L, Uras T, Kumar T, Xu H, Ayanian N, Koenig S

(2016) Improved bounded-suboptimal multi-agent path

finding solvers. In: International Joint Conference on Ar-

tificial Intelligence

Earl MG, D’Andrea R (2005) Iterative milp methods

for vehicle-control problems. IEEE Transactions on

Robotics 21(6):1158–1167

Erdem E, Kisa DG, Öztok U, Schueller P (2013) A general

formal framework for pathfinding problems with multi-

ple agents. In: AAAI

Erdmann MA, Lozano-Pérez T (1986) On multiple moving

objects. In: Proceedings IEEE International Conference

on Robotics & Automation, pp 1419–1424

Ferner C, Wagner G, Choset H (2013) Odrm* optimal mul-

tirobot path planning in low dimensional search spaces.

In: Robotics and Automation (ICRA), 2013 IEEE Inter-

national Conference on, IEEE, pp 3854–3859

Fox D, Burgard W, Kruppa H, Thrun S (2000) A prob-

abilistic approach to collaborative multi-robot localiza-

tion. Autonomous Robots 8(3):325–344
Goldreich O (2011) Finding the shortest move-sequence in

the graph-generalized 15-puzzle is np-hard. In: Studies in

Complexity and Cryptography. Miscellanea on the Inter-

play between Randomness and Computation, Springer,

pp 1–5

Goraly G, Hassin R (2010) Multi-color pebble motion on

graph. Algorithmica 58:610–636

Griffith EJ, Akella S (2005) Coordinating multiple droplets

in planar array digital microfluidic systems. Interna-

tional Journal of Robotics Research 24(11):933–949

Guo Y, Parker LE (2002) A distributed and optimal mo-

tion planning approach for multiple mobile robots. In:

Proceedings IEEE International Conference on Robotics

& Automation, pp 2612–2619

Halperin D, Latombe JC, Wilson R (2000) A general

framework for assembly planning: The motion space ap-

proach. Algorithmica 26(3-4):577–601

Han SD, Rodriguez EJ, Yu J (2018) Sear: A polynomial-

time expected constant-factor optimal algorithmic

framework for multi-robot path planning. In: Proceed-

ings IEEE/RSJ International Conference on Intelligent

Robots & Systems

Hearn RA, Demaine ED (2005) PSPACE-completeness of

sliding-block puzzles and other problems through the

nondeterministic constraint logic model of computation.

Theoretical Computer Science 343(1):72–96

Hönig W, Kumar TS, Cohen L, Ma H, Xu H, Ayanian N,

Koenig S (2016) Multi-agent path finding with kinematic

constraints. In: ICAPS, pp 477–485

Hopcroft JE, Schwartz JT, Sharir M (1984) On the com-

plexity of motion planning for multiple independent ob-

jects; PSPACE-hardness of the “warehouseman’s prob-

lem”. The International Journal of Robotics Research

3(4):76–88

Jansen R, Sturtevant N (2008) A new approach to coop-

erative pathfinding. In: In International Conference on

Autonomous Agents and Multiagent Systems, pp 1401–

1404

Jennings JS, Whelan G, Evans WF (1997) Cooperative

search and rescue with a team of mobile robots. In: Pro-

ceedings IEEE International Conference on Robotics &

Automation

Katsev M, Yu J, LaValle SM (2013) Efficient formation

path planning on large graphs. In: Proceedings IEEE

International Conference on Robotics & Automation, pp

3606–3611

Khatib O (1986) Real-time obstacle avoidance for manip-

ulators and mobile robots. The international journal of

robotics research 5(1):90–98

Kloder S, Hutchinson S (2006) Path planning for

permutation-invariant multirobot formations. IEEE

Transactions on Robotics 22(4):650–665

Knepper RA, Rus D (2012) Pedestrian-inspired sampling-

based multi-robot collision avoidance. In: 2012 IEEE

RO-MAN: The 21st IEEE International Symposium on

Robot and Human Interactive Communication, IEEE,

pp 94–100

Kornhauser DM (1984) Coordinating pebble motion on

graphs, the diameter of permutation groups, and appli-

cations. PhD thesis, Massachusetts Institute of Technol-

ogy

Kuhn HW (1955) The Hungarian method for the assign-

ment problem. Naval Research Logistics Quarterly 2:83–

97

LaValle SM, Hutchinson SA (1998) Optimal motion plan-

ning for multiple robots having independent goals. IEEE

Transactions on Robotics & Automation 14(6):912–925

Luna R, Bekris KE (2011) Push and swap: Fast cooperative

path-finding with completeness guarantees. In: Proceed-

ings International Joint Conference on Artificial Intelli-

gence, pp 294–300

Average Case Constant Factor Time and Distance Optimal Multi-Robot Path Planning in Well-Connected Environments 15

Ma H, Li J, Kumar T, Koenig S (2017) Lifelong multi-

agent path finding for online pickup and delivery tasks.

In: Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems, International Founda-

tion for Autonomous Agents and Multiagent Systems,

pp 837–845

Matarić MJ, Nilsson M, Simsarian KT (1995) Cooperative

multi-robot box pushing. In: Proceedings IEEE/RSJ In-

ternational Conference on Intelligent Robots & Systems,

pp 556–561

Nnaji B (1992) Theory of Automatic Robot Assembly and

Programming. Chapman & Hall

Poduri S, Sukhatme GS (2004) Constrained coverage for

mobile sensor networks. In: Proceedings IEEE Interna-

tional Conference on Robotics & Automation

Qutub S, Alami R, Ingrand F (1997) How to solve deadlock

situations within the plan-merging paradigm for multi-

robot cooperation. In: Intelligent Robots and Systems,

1997. IROS’97., Proceedings of the 1997 IEEE/RSJ In-

ternational Conference on, IEEE, vol 3, pp 1610–1615

Ratner D, Warmuth M (1990) The (n2 − 1)-puzzle and

related relocation problems. Journal of Symbolic Com-

putation 10:111–137

Reif JH (1985) Complexity of the generalized mover’s prob-

lem. Tech. rep., DTIC Document

Rodriguez S, Amato NM (2010) Behavior-based evacua-

tion planning. In: Proceedings IEEE International Con-

ference on Robotics & Automation, pp 350–355

Rus D, Donald B, Jennings J (1995) Moving furniture with

teams of autonomous robots. In: Proceedings IEEE/RSJ

International Conference on Intelligent Robots & Sys-

tems, pp 235–242

Ryan MRK (2008) Exploiting subgraph structure in multi-

robot path planning. Journal of Artificial Intelligence

Research 31:497–542

Saha M, Isto P (2006) Multi-robot motion planning by
incremental coordination. In: 2006 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems,

IEEE, pp 5960–5963

Sharon G, Stern R, Felner A, Sturtevant N (2012) Conflict-

Based Search for Optimal Multi-Agent Path Finding. In:

Proc of the Twenty-Sixth AAAI Conference on Artificial

Intelligence

Sharon G, Stern R, Goldenberg M, Felner A (2013)

The increasing cost tree search for optimal multi-agent

pathfinding. Artificial Intelligence 195:470–495

Shucker B, Murphey T, Bennett JK (2007) Switching rules

for decentralized control with simple control laws. In:

American Control Conference, pp 1485–1492

Silver D (2005) Cooperative pathfinding. In: The 1st Con-

ference on Artificial Intelligence and Interactive Digital

Entertainment, pp 23–28

Smith B, Egerstedt M, Howard A (2009) Automatic gener-

ation of persistent formations for multi-agent networks

under range constraints. ACM/Springer Mobile Net-

works and Applications Journal 14(3):322–335

Solovey K, Halperin D (2012) k-color multi-robot mo-

tion planning. In: Proceedings Workshop on Algorithmic

Foundations of Robotics

Solovey K, Halperin D (2015) On the hardness of unlabeled

multi-robot motion planning. In: Robotics: Science and

Systems (RSS)

Solovey K, Yu J, Zamir O, Halperin D (2015) Motion plan-

ning for unlabeled discs with optimality guarantees. In:

Robotics: Science and Systems

Spirakis P, Yap CK (1984) Strong NP-hardness of moving

many discs. Information Processing Letters 19(1):55–59

Standley T, Korf R (2011) Complete algorithms for co-

operative pathfinding problems. In: Proceedings Inter-

national Joint Conference on Artificial Intelligence, pp

668–673

Surynek P (2012) Towards optimal cooperative path plan-

ning in hard setups through satisfiability solving. In:

Proceedings 12th Pacific Rim International Conference

on Artificial Intelligence

Tanner H, Pappas G, Kumar V (2004) Leader-to-formation

stability. IEEE Transactions on Robotics & Automation

20(3):443–455

Turpin M, Mohta K, Michael N, Kumar V (2014) CAPT:

Concurrent assignment and planning of trajectories for

multiple robots. International Journal of Robotics Re-

search 33(1):98–112

Wagner G, Choset H (2011) M*: A complete multirobot

path planning algorithm with performance bounds. In:

Proceedings IEEE/RSJ International Conference on In-

telligent Robots & Systems, pp 3260–3267

Yu J (2013) A linear time algorithm for the feasibility of

pebble motion on graphs. arXiv:13012342

Yu J (2016) Intractability of optimal multi-robot path

planning on planar graphs. IEEE Robotics and Automa-

tion Letters 1(1):33–40

Yu J (2017) Expected constant-factor optimal multi-robot

path planning in well-connected environments. In: Multi-

Robot and Multi-Agent Systems (MRS), 2017 Interna-

tional Symposium on, IEEE, pp 48–55

Yu J, LaValle SM (2013a) Multi-agent path planning and

network flow. In: Algorithmic Foundations of Robotics

X, Springer Tracts in Advanced Robotics, vol 86,

Springer Berlin/Heidelberg, pp 157–173

Yu J, LaValle SM (2013b) Structure and intractability of

optimal multi-robot path planning on graphs. In: Pro-

ceedings AAAI National Conference on Artificial Intel-

ligence, pp 1444–1449

Yu J, LaValle SM (2016) Optimal multi-robot path plan-

ning on graphs: Complete algorithms and effective

heuristics. IEEE Transactions on Robotics 32(5):1163–

1177

16 Jingjin Yu

Yu J, Rus D (2015) Pebble motion on graphs with rota-

tions: Efficient feasibility tests and planning. In: Algo-

rithmic Foundations of Robotics XI, Springer Tracts in

Advanced Robotics, Springer Berlin/Heidelberg, vol 107,

pp 729–746

	Introduction
	Related Work
	Preliminaries
	Routing Robots on Rectangular Grids with a Sub-Linear Makespan
	Complexity and Solution Optimality Properties of the SaG Algorithm
	Extensions
	Conclusion and Future Work

