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Abstract

Identifying useful mathematical models of physical systems is an essential

part of computational modeling and simulation. Once appropriate models

are identified, they can be used for applications such as response predic-

tion, structural control, monitoring structural integrity, lifetime prognosis,

etc. The number of models and model classes available to the modeler to

represent a physical phenomenon, however, can be very large. Retaining all

available models throughout a study can be computationally burdensome,

so the modeler has the significant problem of identifying the valid models to

be used in further studies. To address this challenge, a probabilistic frame-

work is proposed herein for validating models by intertwining the concepts of

model falsification and Bayesian model selection. Model falsification, based
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on the philosophy that measurements can only be used to falsify models, is

used in this framework in both pre- and postprocessing steps to eliminate

models and model classes, respectively, that cannot explain the measure-

ments. This is the first study to propose a framework to integrate these two

paradigms. A likelihood-bound model falsification, previously introduced by

the authors, determines the validity of the initial candidate model classes,

using the false discovery rate (FDR), and removes most of the incorrect ones

without incurring any significant additional computational burden. Next,

Bayesian model selection, which assigns posterior model class probabilities

based on Bayes’ theorem, is applied to the remaining model classes to identify

the the model(s) and model class(es) that provide predictions that probabilis-

tically best fit the data. Finally, a postprocessing likelihood-bound falsifica-

tion checks the validity of the final model class(es). The proposed frame-

work is first illustrated through two nonlinear structural dynamics examples

that show the efficacy of the proposed framework in identifying models for

these structures as well as reducing the computational burden relative to

Bayesian model selection applied alone. Finally, a third example uses mea-

surement data from experiments performed on a full-scale four-story base-

isolated building at the world’s largest shake table in Japan’s “E-Defense”

laboratory.

Keywords: Model validation; model falsification; false discovery rate

(FDR); Bayesian model selection.
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1. Introduction

Even as computational capabilities continue to expand, facilitating in-

creasingly intricate and complex simulations, the results obtained from those

simulations will only be as accurate as the models used to represent real-world

phenomena. In diverse areas of science and engineering, from dynamics to

biomechanics, to fully harness advancing simulation power, significant gains

must be similarly achieved in modeling. When attempting to model a com-

plex dynamical system, the modeler (whether engineer or scientist, researcher

or practitioner) is often presented with several types, or classes, of models

that may be appropriate, but constraints on time and cost limit ensuing sim-

ulations and analysis to a single model class, or a select few, and sometimes

only to a limited set of models within those model class(es). In structural

dynamics, these models are used to design damping and control systems to

mitigate the effects of natural hazards based on the outcome of different

simulated scenarios [1]. A hysteretic element can be modeled using vari-

ous linear and nonlinear models, but a modeler must choose a single model

before designing an isolation layer using such devices. Changes in model

parameters can be monitored to indicate when critical maintenance must

be initiated, but these decisions first require identifying the model and/or

model class of the system. In the area of fluid mechanics, particularly aero-

dynamics, modeling turbulence is a critical issue [2, 3] since the predictive

performance of different models may vary based on problem specifics (e.g.,

geometry, boundary conditions, etc.) that will ultimately affect the aerody-

namic design. Climate models use different dynamic, thermodynamic, and

biological process equations to quantify the interactions between the environ-
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ment and its surroundings; the many models, of varying complexity, available

for climate applications require a validation process be used before predicting

future climates using these models.

Model selection refers to problems in which model(s) must be selected

from a larger set, which may or (more commonly) may not include the true

model [4]. The use of Bayesian inference to evaluate the plausibility of dif-

ferent models is known as Bayesian model selection, which has been applied

across diverse fields [5–12]. A common form of Bayesian model selection uses

the Bayes factor, which is a ratio of the marginal likelihood, or evidence,

of two models [13, 14]. Bayesian model class selection [15] is Bayesian in-

ference applied to quantify the likelihood of entire families of models, i.e.,

model classes. This tool has been applied to structural models using dynamic

response measurement data by Beck et al. [8–12]. The Occam’s razor prin-

ciple, which suggests that models with lesser complexity should be favored

among models of comparable accuracy, is also embedded in Bayesian model

selection, as discussed in Beck and Yuen [8], MacKay [16, 17], and Gull [18].

Another approach to model selection is model falsification, which is based

on Popper’s assertion first made in the 1930’s that scientific models cannot

be fully validated by data and can only be falsified [19]. In control theory,

the concept has been used to design and select robust controllers that satisfy

some performance criteria using measurement data by model unfalsification

[20–22]. Error domain model falsification [23] was developed by Smith and

Goulet and colleagues through a series of advances in structural modeling and

monitoring [24, 25], with early applications quantifying the uncertainty and,

subsequently, identifiability of models for civil structures, such as bridges and
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pipe networks, based on characteristics of the measurement and monitoring

systems, and linear dynamical systems using their natural frequencies [26–

29]; the strength of this technique has been compared [30] to other methods,

such as residual minimization and Bayesian inference. Beven and his col-

leagues [31–35] have proposed a different approach to model falsification by

using the likelihood values of the measurement data in hydrological exam-

ples while defining the bounds in a subjective manner; however, they have

been criticized for using empirical likelihood functions that do not represent

a probability density for the residual errors [36]. De et al. [37] compared

several approaches for model falsification and also proposed new ones that

facilitate falsification for systems with many measurements distributed over

multiple spatial and/or temporal domains.

The merits of both Bayesian model selection and model falsification are

obvious, yet each method alone has its own inherent weaknesses. When all

model classes in an initial set are inadequate representations of the system

(an entirely plausible scenario, particularly for systems with high complexity

or unknown features), Bayesian model selection will always choose a model

class but without clear warning or indication to the modeler of its inade-

quacy. Consequently, future predictions produced by the inadequate model

class may be highly inaccurate and, therefore, assumptions or decisions based

on these predictions may have catastrophic consequences. While model fal-

sification possesses the ability to eliminate incorrect models and inform the

modeler if none of the options are valid, further judgment on the usefulness of

a particular model class and parameter values are not possible in its current

form [37].
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Thus, this study proposes, and subsequently evaluates in numerical exam-

ples, a framework that selects one or more model(s) or model class(es) by in-

tegrating the principle of model falsification into Bayesian model selection to

mitigate the weaknesses of these different identification schemes. The frame-

work utilizes model falsification in a preprocessing step to eliminate models

and model classes that do not fit the data to a statistical significance, and in

a postprocessing step to ensure that the model classes evaluated via the cen-

tral step of Bayesian model class selection are, on average, validated by the

data as well. Exploiting model falsification’s ability to significantly shrink the

valid model class set will avoid numerous expensive computations required to

evaluate the posterior parameter distribution for Bayesian model selection;

these savings in computational cost will directly grow with increasing num-

bers of measurements, degrees of freedom (DOF), or space/time resolution.

As Bayesian model selection already includes the effect of Occam’s razor in

evidence, no further extraneous steps are needed to penalize model classes

with more parameters. Hence, the proposed framework not only identifies

the most plausible model class and parameter estimates, it also requires fewer

model simulations than other validation methods and provides checks on the

suitability of the resulting models and model classes. Finally, the proposed

framework extends Tarantola’s comments [38] that the candidate models are

from a prior distribution and the unfalsified models are from a posterior dis-

tribution; indeed, an alternate interpretation of the preprocessing falsification

is as if one used a truncated density function for the prediction errors in a

staged Bayesian selection. While the proposed framework remains true to his

comments during the preprocessing step, the unfalsified models are further
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processed to produce a posterior judgment between them as well as across

different unfalsified model classes.

2. Hybrid Framework for Model Validation

Since Bayesian model selection leaves as most plausible a model that

may be wrong, and model falsification can fail to falsify any model class,

leaving a large number of unfalsified models, and provides no relative confi-

dence in them, this section proposes the falsification of models in a Bayesian

framework. Further, this falsification approach [37] is designed (unlike other

falsification approaches) to accommodate many measurements such as those

over multiple spatial and temporal dimensions from dynamical systems, both

linear and nonlinear. The model validation framework proposed herein incor-

porates model falsification as both pre- and postprocessing steps before and

after Bayesian model selection to combine the usefulness of both approaches

while overcoming their individual shortcomings. These first and last steps

of the framework use a form of model falsification developed by the authors

[37]. A flowchart of the steps of the proposed validation procedure is given in

Figure 1. The flowchart shows that the preprocessing falsification step first

eliminates the model classes that do not reproduce reasonably well the re-

sponses of the physical system, thereby shrinking the set of candidate model

classes. The next step is to implement Bayesian model selection with the

remaining model classes by re-using computational results from the prepro-

cessing step. Finally, a postprocessing step checks the validity, on average,

of the final model class(es).

Clearly, just as with all other modeling and system identification tools,
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Figure 1: Proposed synergistic framework of model falsification and Bayesian model class
selection.

this framework requires the modeler to ensure that the measurement data

is sufficiently rich to exercise the ranges of system behavior for which the

resulting validated models will be used. For example, if the models of a non-

linear system are validated with the proposed framework (or calibrated with

any similar approach) using data that insufficiently exercises the nonlinear

behavior, linear models will be preferred; if the resulting models will only be

used for predictions of the system response when it is behaving essentially

linearly, then those models are sufficient; on the other hand, if the model will

be used to study and predict response over the entire breadth of the system

behaviors, then the modeler is responsible for ensuring that the validation

measurement data spans those behaviors.

Some other researchers have proposed different types of model valida-

tion frameworks. For example, a validation approach proposed by Babuška

et al. [39] employs a model rejection step using a validation dataset, but

only after fitting probability distributions to all model class parameters us-

ing a separate calibration dataset. Recently, Farrell et al. [40–42] proposed a

framework for model validation that first selects a subset of candidate model
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classes and calculates the calibrated posterior model parameter distribution,

the evidence values and, finally, the validated posterior parameter distribu-

tion (and probability distribution for a quantity of interest) using Monte

Carlo approaches; however, that framework is unable to find model classes

with higher evidence values but with more parameters because it starts with

the model class subsets that have the fewest parameters, stopping when it

finds a valid model class, and does not investigate further.

2.1. Intra-Model-Class Falsification: Framework’s Preprocessing Step

A model from a model class Mk, which is in the set M of all candidate

model classes, is specified by an nθ×1 parameter vector θ ∈ Θ. (Technically,

θ should be written θ(k) since its size may be different for different model

classes; however, the superscript (k) is omitted for notational simplicity.)

Herein, θ will be called a model as its value defines one model within the

corresponding model class. The difference between the No outputs h(θ) of

the model and their corresponding measurements d is known as the residual

error εεε [37]. These residuals are modeled as continuous random variables,

herein characterized by the probability density function pE(e|θ), where E is

a random vector, and e is a possible value of random vector E, whereas εεε is

the actual residual error. (The random vector E is henceforth omitted for

brevity but is implied by context.)

Conventional error domain model falsification sets bounds on each error

residual εi = hi(θ) − di; the bounds are chosen so that each residual has a

given probability, defined by the model’s assumptions on p(e|θ), of remaining

within the bounds. This approach ignores significant information that may

be available about the residuals, their uncertainty distributions and their
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correlations. Instead, following De et al. [37], the proposed framework’s first

step is to falsify models based on the likelihood of their residual; in the case

of a single measurement, the likelihood (omitting the model class Mk) is

L(θ;D) = p(D|θ) = p(ε|θ) = p
(

[h(θ)− d]
∣∣∣θ) (1)

The model would then be unfalsified (i.e., accepted) if the likelihood is larger

than some likelihood threshold, denoted L and computed as described in a

subsequent section, and falsified if below the threshold:

L(θ;D) < L ⇒ falsify model θ (2)

For an arbitrary number of measurements, including time history re-

sponses of dynamical systems, the predicted outputs of model Mk are given

again by h(θ) but in a stacked form (i.e., for predicted response time history

vector y(t;θ), sampled at times {t0, t1, · · · }, let h(θ) = [yT(t0;θ) yT(t1;θ) · · · ]T

or a similar arrangement). The No × 1 residual vector is εεε = h(θ) − d. If

the resulting residuals are zero-mean Gaussian distributed with covariance

matrix Σ, then the likelihood can be written

L(θ;D) = p
(
h(θ)− d

∣∣∣θ) =
exp

(
−1

2
[h(θ)− d]TΣ−1[h(θ)− d]

)
(2π)

No
2 |Σ| 12

=
exp

(
−1

2
εεεTΣ−1εεε

)
(2π)No/2|Σ|1/2

(3)

This approach directly frames model uncertainty in terms of the dynamic

response measurements with two advantages: (i) avoiding the intermediate
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use of modal parameters helps limit error introduced via system identification

methods and modal analysis; and (ii) the likelihood calculated for models

in a class can be used to subsequently compute the model class evidence, an

integral step in Bayesian model selection.

Figure 2 show the typical lower and upper bounds (εi and ε̄i) used by

model falsification for a two-data-point case; for a symmetric, unimodal prob-

ability density of the residual error such as that shown, these bounds have

the same likelihood L, though this is not the case for the more general resid-

ual densities, such as in Figure 3, where a likelihood threshold (chosen as

discussed in subsequent paragraphs) would shift the residual error bounds

to the area(s) of highest likelihood. Further, a likelihood threshold criteria

can accommodate more general residual densities (skewed or multimodal),

and allow the modeler to incorporate the correlation structure of multiple

pE1(e1|θ)

L′
1

L1

pE2
(e2
|θ)

L′
2

L2 L = L ′
1L2= L

1L ′
2

pE(e|θ)

e1
ε′1 ε′1

ε1
ε1

e2ε′2

ε′2

ε2

ε2

Figure 2: Likelihood bound for the two-measurement case [37]. Given a target identifi-
cation probability φ = 1 − α, the significance levels ᾱ1 = α/2 and ᾱ2 = α are used to
compute εj , εj and ε′j , ε

′
j , respectively. See Appendix A for details of this procedure.
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Figure 3: A likelihood-bound L defined for a multidimensional non-Gaussian probability
density of residual error.

measurement residuals.

Methods to calculate bounds on likelihood values

De et al. [37] discussed various model falsification approaches to deter-

mine the likelihood lower bound L based on the false discovery rate (FDR)

correction with the Benjamini-Hotchberg (BH) procedure [37, 43]. In multi-

ple comparison problems, FDR control ensures that, on average, the number

of false positives among all rejections will be below a specified value, and

provides a better statistical power while allowing some false positive results

[44]. (The statistical power, defined as the probability of rejecting a model

when it is invalid, is related to probability of making a type II error, which

is the error introduced by incorrectly accepting invalid models.) Herein, the

BH procedure is used, as summarized in Appendix A, to compute the resid-

ual error bounds [εi, εi] from the target identification probability φ (generally

assumed as 0.95 or 0.90). The significance level α = 1 − φ of the overall

falsification step is the probability of rejecting a model when it is, in fact,

valid. In short, the BH procedure first ranks the residual errors according to
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their p-values (the probability of exceeding the residual error in magnitude)

and compares them against their corresponding per-measurement significance

levels ᾱi (which would ᾱ1 = α/2 and ᾱ2 = α for a two-measurement case

such as depicted in Figure 2). Then, residual errors falling inside the lim-

its are accepted; for the two-measurement case, the limits are shown as the

solid thick lines on the joint probability density of residual errors in Figure 2

([ε1, ε1]× [ε′2, ε
′
2] if the residual error ε1 is less likely than the second ε2, and

[ε′1, ε
′
1]× [ε2, ε2] otherwise). These bounds are used next to compute L using

L =
No∏
i=1

min
εi≤ ei≤ εi

p(ei|θ) (4)

(As discussed in a prior study [37], there may be other ways to use the bounds

[εi, εi] or other information to decide the lower bound L.)

The modeler must exercise judgement in choosing the number of candi-

date models from each model class. This number, which is problem depen-

dent, should be sufficiently large to explore the parameter space and its prior,

but also require reasonable computational resources. One approach for eval-

uating whether the number of candidate models is sufficient is to gradually

(linearly or exponentially) increase the number of models for several itera-

tions, stopping when the fraction of unfalsified models from the model class

remains stable. Here, the initial number of models can be decided following

the guidelines in Goulet and Smith [28].

When all models evaluated from a model class are falsified, the entire

model class is considered falsified. M 1, the set of model classes that passes

this preprocessing step, is used as the possible model class set for the subse-
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quent step of Bayesian model selection. (If M 1 is empty, then the selection

of the initial set of model classes must be reconsidered.) By shrinking the

set of candidate model classes, this preprocessing step can achieve signifi-

cant computational savings in the Bayesian model selection, which requires

complete exploration of the high likelihood region, a computationally expen-

sive task (discussed in the next subsection), whereas a satisfactory coverage

of the high likelihood region is sufficient for model falsification. (It should

also be noted that it is possible for a model class with all models falsified to

occur because of an insufficient number of models sampled from that class

— e.g., any sampling-based approach is challenged when exploring a high-

dimensional parameter space — or if the priors are not chosen appropriately.

The modeler may choose to revisit and verify assumptions when a model

class is eliminated.)

2.2. Bayesian model class selection

With the remaining model classes in M 1, the posterior model class prob-

abilities (i.e., the probability of a model class conditioned on measurement

data D) are given by Bayes’ theorem:

P(Mk|D) =
p(D|Mk)P(Mk)

p(D)
, Mk ∈M 1 (5)

where the probability of an event is denoted by P(·); P(Mk) is an a pri-

ori measure of model plausibility assigned by the modeler based on past

experience, normalized so
∑
Mk∈M 1 P(Mk) = 1; and denominator p(D) =∑

Mk∈M 1 p(D|Mk)P(Mk) using the theorem of total probability. For a par-
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ticular model class Mk, the model evidence E (k) = p(D|Mk) is

E (k) =

∫
Θ

p(D|θ,Mk)p(θ|Mk)dθ

=

∫
Θ

L(θ;D,Mk)p(θ|Mk)dθ

(6)

where p(θ|Mk) is the prior probability, based on modeler judgment, of pa-

rameter vector θ for model class Mk; and L(θ;D,Mk) = p(D|θ,Mk) is

the likelihood function already computed in Section 2.1. These evidence

values E (k) are required to evaluate the posterior model class probabilities

P(Mk|D), which can then be used to select a model class, or to be used as

weights for multiple validated model classes. At the end of this step, based on

the posterior model class probabilities, a smaller model class set M 2 ⊆M 1,

typically only the one model class with the highest P(Mk|D), is retained

and will be subjected to the final postprocessing falsification step.

The assumption that the true model class is among the candidate model

classes may not always be true. In such scenarios, the application of Bayesian

model class selection alone may lead to erroneous conclusions; the frame-

work’s preprocessing falsification step avoids this error and ensures a mean-

ingful result from the Bayesian model selection. Note: The unfalsified mod-

els’ parameters can be used to formulate informative priors for the model

selection, though the question of using the data twice can be raised. In that

case, the dataset is divided in two datasets DI and DII, where the falsifi-

cation is done with DI. The prior of the model parameters is then formed

using the unfalsified parameters for the model selection, which is performed

with DII.
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Sampling Algorithms

For efficient evaluation of the evidence, a notable computational challenge

for applications of Bayesian model selection, several methods have been pro-

posed, including the posterior harmonic mean estimator [45], importance

sampling [13], nested sampling technique [46], annealed sampling [47], the

Power Posterior method [48], the Transitional Markov Chain Monte Carlo

method [49], the Monte Carlo splitting and subset methods [50–53], stochas-

tic collocation [54], and polynomial chaos approaches [55]. For the numerical

examples herein, a nested sampling algorithm is used to evaluate the evidence

values. A brief description of this nested sampling algorithm is provided in

Appendix B. After several iterations of the nested sampling algorithm,

sampling from high likelihood region becomes difficult, especially if the high

likelihood region is concentrated within a very small region. In such a case,

Skilling [46] suggested using the Markov Chain Monte Carlo (MCMC) algo-

rithm for generating samples from the prior constrained to high likelihood

region. For the examples herein, the nested sampling uses conventional ran-

dom sampling with rejection but switches, when the average acceptance rate

drops below 5%, to an MCMC augmented by the modified Metropolis algo-

rithm, introduced in Au and Beck [56] (see Appendix C), which will provide

a high acceptance rate to efficiently sample from the high likelihood region.

2.3. Inter-Model-Class Falsification: Framework’s Postprocessing Step

A postprocessing falsification procedure, following the Bayesian model

class selection, is proposed here to provide a robust framework that is capable

of indicating whether the model class(es) in the current pool M 2 are valid

in terms of their evidence value(s).
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The evidence E (k) for model class Mk, which is the likelihood (6) of

the data given a model class, can be written as the expected likelihood of

the residuals; i.e., E (k) = p(εεε|Mk) = EΘ [L(θ;D,Mk)]. Similar to the

likelihood threshold L for a given model in the preprocessing falsification, an

entire model class can be falsified if the model class evidence E (k) is below a

threshold E :

E (k) < E ⇒ falsify model class Mk (7)

As the evidence E (k) has already been computed in the Bayesian model class

selection, this proposed postprocessing falsification can be performed with

no extra calculation. While different choices can be made for evidence lower

bound E , it is taken herein to be equal to the likelihood threshold L used in

the preprocessing step because the evidence E is nothing but the expected

value of the likelihood function L; since the likelihood threshold L has al-

ready been computed, the choice E = L has the further convenience of not

requiring additional computation. Another evidence threshold that could be

used without further computation is E = γ
[
max
k

max
i
L(θi;D,Mk)

]
with

γ ∈ (0, 1) depending on the modeler’s expectation about the average likeli-

hood value in a model class.

This postprocessing falsification is particularly beneficial in identifying

the cases in which some few models remain from an entire model class after

the preprocessing falsification but, on average, the model class is incorrect

as well. The result, then, is a set M3 = {E (k) < E : Mk ∈ M 2} of final,

validated model classes.
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2.4. Computational Advantage of the Synergistic Framework

The proposed approach provides significant computational savings when

some competing model classes are excluded using the preprocessing step,

thereby eliminating the most computationally expensive step of calculating

evidence values for those model classes, as this step generally requires many

more model evaluations. The second reduction in computational effort is

obtained since the model likelihoods computed in the preprocessing falsifica-

tion can be used as initial starting values for (nested) sampling. Third, the

postprocessing model class falsification relies on evidence already computed

in the Bayesian model class evaluation, so does not incur additional cost. A

metric C for the computational savings can be introduced as

C =

∑
k 6∈M 1(N2,k −N1,k)∑

k∈M N2,k

× 100%

where N1,k and N2,k are number of model evaluations in the preprocessing fal-

sification and Bayesian model selection steps, respectively, for the kth model

class. Generally N2,k � N1,k because, in evidence estimation, a complete

exploration of the high likelihood region must be performed (as shown in

the two numerical illustrations given in the next section), leading to signifi-

cant computational savings. Also, if some of the model classes are nonlinear

and fail to pass the preprocessing step, additional savings in computation

time can be expected, compared to falsification of some linear model classes,

due to the additional computational complexity associated with the response

calculation of a nonlinear model.
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3. Numerical Illustrations

The proposed framework is illustrated using three numerical examples

from structural dynamics. In each of these examples, several model classes

are used to describe the system’s nonlinear behaviors. The proposed frame-

work is shown to systematically eliminate the incorrect candidate model

classes to choose and validate the model class that probabilistically best

fits the measurement data.

3.1. Example I: 3DOF Model with Nonlinear Stiffnesses

Consider the three DOF model shown in Figure 4 subjected to support

acceleration ẍs. The equations of motion of the structure are given by

Mẍ + Cẋ + Kx + Lg(x) = −M13×1ẍg (8)

m1

ẍg

k̄1

k1

c1

x1

m2

k̄2

k2

c2

x2

m3

k̄3

k3

c3

x3

Figure 4: 3 DOF model with nonlinear stiffnesses.
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where the mass matrix is

M =


m1 0 0

0 m2 0

0 0 m3

 (9)

with m1 = m2 = m3 = 300 Mg; the nominal stiffness matrix is

K =


k̄1 + k̄2 −k̄2 0

−k̄2 k̄2 + k̄3 −k̄3

0 −k̄3 k̄3

 (10)

with k̄1 = k̄2 = k̄3 = 8 MN/m; g(x) is a (possibly nonlinear) restoring force

function with its influence matrix

L =


1 −1 0

0 1 −1

0 0 1

 (11)

13×1 is a column vector of ones; and the mass displacement vector relative to

the support is x = [x1 x2 x3]T. Rayleigh damping, i.e., C = β1M + β2K,

is assumed with 3% damping for each of the first two modes, where β1 and

β2 are constants evaluated from the damping ratios and the nominal natural

frequencies.

3.1.1. Candidate Model Classes

Three possibilities for each element of g(x) are assumed — linear, quadratic

and cubic stiffnesses — for a total of 3 × 3× 3 = 27 different model classes:
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Table 1: Means and standard deviations of lognormal prior distributions for model class
stiffness coefficients (units are MN/mpi).

Story Stiffness linear (pi = 1) quadratic (pi = 2) cubic (pi = 3)
i coeff. mean σ mean σ mean σ

1 k1 25 2.5 250 25 2500 250
2 k2 0.18 0.025 1.8 0.25 18 2.5
3 k3 1.8 0.25 18 2.5 180 25

i.e., gi = ki |xi − xi−1|pi sgn(xi − xi−1), where x0 ≡ 0 and pi ∈ {1, 2, 3}
for i = 1, 2, 3. These model classes are denoted by concatenating the ex-

ponent values p1 − p2 − p3; e.g., combination 1 − 2 − 3 has the vector

g(x) = [k1x1 k2|x2 − x1|2 sgn(x2 − x1) k3(x3 − x2)3]T. The prior distri-

butions for parameters k1, k2, and k3 are assumed to be lognormal with

means and standard deviations as shown in Table 1. These choices of model

parameters for the different exponents are chosen so that the force levels are

similar with different exponents given the responses of this system (i.e., the

interstory drifts are on the order of 0.1 m, so the coefficients in the linear,

quadratic and cubic stiffness models have ratios of 1 : 10 : 100).

3.1.2. True Model Class and the Measurement Data

The measurement data D, containing the time history x1(t) of the first

mass displacement relative to the support, is generated using (8) for model

class 1−3−2 with g(x) = [k1x1, k2(x2 − x1)3, k3|x3 − x2|2 sgn(x3 − x2)]T —

i.e., p1 = 1, p2 = 3 and p3 = 2 — with stiffness coefficients k1 = 22.5 MN/m,

k2 = 20.0 MN/m3 and k3 = 20.0 MN/m2. The measurements are sampled at

20 Hz and include additive Gaussian pulse process sensor noise, in which the

sensor noises at every time step are independent and identically-distributed

zero-mean Gaussian random variables with a standard deviation that is 20%
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of the noise-free RMS response. The support excitation ẍg(t) is the first

30 s of the N-S component of the 18 May 1940 Imperial Valley earthquake

recorded at the Imperial Valley Irrigation District substation in El Centro,

California, sampled at 50 Hz, with peak acceleration 3.42 m/s2.

3.1.3. Preprocessing: Intra-Model-Class Falsification

Model falsification is performed with probability density p(εi) of each

residual error assumed to be independent zero-mean Gaussian with a stan-

dard deviation σ that is 20% of the RMS of the measured first-mass dis-

placement and with the target identification probability set at φ = 0.95

resulting in an FDR-based likelihood bound of L = 266.4, computed us-

ing (4) and Appendix A, that will be used to falsify models. 1000 mod-

els are randomly generated for each model class using the prior parame-

ter Gaussian distribution statistics listed in Table 1. Out of the 27 possi-

ble combinations of different nonlinear stiffnesses of the three stories, only

nine remain after the preprocessing step of intra-model class falsification:

M 1 = {1− i− j | i ∈ {1, 2, 3}, j ∈ {1, 2, 3}}, which means that the nonlin-

ear models of the first spring are clearly unsuitable. The fractions of models

unfalsified in each of the 27 model classes are shown in Table 2. The result

of this step also shows the limitation of using model falsification alone as all

model classes in M 1 have almost the same fraction of unfalsified models.

3.1.4. Bayesian Model Selection

Bayesian model selection is performed next for only the nine model classes

that passed the preprocessing falsification step, with prior model class proba-

bilities set as P(Mk) = 1/9. The posterior model class probabilities are given
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Table 2: Unfalsified models using proposed intra-model class falsification. (Bold means
unfalsified model classes.)

Model Unfalsified Model Unfalsified Model Unfalsified
class (Mk) (%) class (Mk) (%) class (Mk) (%)

1− 1− 1 54.9 2− 1− 1 0.0 3− 1− 1 0.0
1− 1− 2 63.9 2− 1− 2 0.0 3− 1− 2 0.0
1− 1− 3 65.5 2− 1− 3 0.0 3− 1− 3 0.0

1− 2− 1 53.8 2− 2− 1 0.0 3− 2− 1 0.0
1− 2− 2 63.4 2− 2− 2 0.0 3− 2− 2 0.0
1− 2− 3 64.7 2− 2− 3 0.0 3− 2− 3 0.0

1− 3− 1 50.5 2− 3− 1 0.0 3− 3− 1 0.0
1− 3− 2 61.4 2− 3− 2 0.0 3− 3− 2 0.0
1− 3− 3 63.4 2− 3− 3 0.0 3− 3− 3 0.0

Table 3: Posterior model class probabilities after most of the model classes are rejected
using a preprocessing step of intra-model-class falsification. (Relative log-evidence is with
respect to the model class with the largest log-evidence.)

Model class (Mk) log(Evidence) rel. log(Evidence) P(Mk|D)

1− 1− 1 2290.7 −72.1 ≈ 0.0
1− 1− 2 2315.5 −47.3 ≈ 0.0
1− 1− 3 2309.7 −53.1 ≈ 0.0
1− 2− 1 2317.6 −45.2 ≈ 0.0
1− 2− 2 2351.0 −11.8 ≈ 0.0
1− 2− 3 2334.3 −28.5 ≈ 0.0
1− 3− 1 2338.0 −24.8 ≈ 0.0
1− 3− 2 2362.8 0.0 1.0
1− 3− 3 2334.2 −28.6 ≈ 0.0

in Table 3, which shows that the model class 1 − 3 − 2 has the maximum

posterior model class probability of essentially 1.0; i.e., M 2 = {1 − 3 − 2}
and P(1− 3− 2|D) ≈ 1.0. The means and the standard deviations of the

posterior distribution of the stiffness parameters are obtained from the nested

sampling algorithm and are shown in Table 4 along with their true values.
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Table 4: Posterior mean and standard deviation of model parameters for model class
1− 3− 2, and the true values.

Stiffness coeff.
True Posterior

value mean Std. dev.

k1 [MN/m] 22.5 22.5224 0.0630
k2 [MN/m3] 20.0 20.7529 0.9928
k3 [MN/m2] 20.0 19.3070 0.5485

In this numerical example, due to the intra-model class falsification step,

18 out of 27 model classes are entirely falsified, requiring no evidence cal-

culation for them. As N2,k � N1,k for all model classes, the computational

savings here is given by C ≈ 66.67%.

3.1.5. Postprocessing: Inter-Model-Class Falsification

Using the likelihood-bound falsification approach with the FDR/BH pro-

cedure, the lower limit for the model class evidence for validation is again

log E = logL = 266.4. For model class 1− 3− 2, log E (k) = 2362.8 > log E =

266.4, i.e., on average this model class also passes the postprocessing falsifica-

tion step. Note that, with the current choice of E , all of the model classes that

pass through the preprocessing step will also pass through the postprocessing

step. However, if other model classes, e.g., 2 − 1 − 1 or 2 − 3 − 2 somehow

pass through the preprocessing, then this choice of E would stop them since

log E (2−1−1) = −2148.48 < log E and log E (2−3−2) = −2899.43 < log E .

3.1.6. Variations on the Method

One way to improve the validity of the model classes in M 1, is to ad-

just their prior parameter distributions based on those retained after prepro-

cessing falsification, using insights gained by applying the likelihood-bound

falsification. This optional step, shown after the preprocessing block in Fig-
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ure 1, is implemented here; the measurement data is divided in to two sets:

DI consisting of every odd numbered measurement of the response and DII

consisting every even numbered measurement of the response. (Other simple

divisions of the data in the time domain can be used but, for a response to

a historical earthquake record that is nonstationary, this division of data is

chosen to ensure that the nonlinear behavior of the system is pronounced in

both datasets; a detailed discussion on dividing D into DI and DII is beyond

the scope of this study.) The results from the preprocessing falsification step

using DI again give the same nine unfalsified model classes as before. For

each of these nine model classes, the priors (which were originally lognormal)

are adjusted by fitting new lognormal distributions to the unfalsified mod-

els’ parameters using maximum likelihood estimation, and are then used as

priors for the next step of Bayesian model selection. For example, for the

model class 1 − 2 − 2, the prior for k1 is changed to lognormal with mean

23.59 MN/m and standard deviation 1.47 MN/m; i.e., the mean is closer to

the true value and the standard deviation is about half that of the original

prior. The Bayesian model selection is performed with DII for the nine model

classes that pass the preprocessing step with adjusted priors for the model

parameters. The results for two best model classes are shown in Table 5,

which shows that the proposed framework is able to again find the correct

model class. Table 5 also shows that using DI to inform the priors makes

model class 1 − 2 − 2 more competitive with true model class 1 − 3 − 2, as

evidenced their relative log-evidence values reducing from a difference of 11.3

to only 3.9, though the posterior probability of 1 − 3 − 2 is still near unity.

Hence, this modification in the proposed framework is very useful in making
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Table 5: Posterior model class probabilities of the two best model classes after some model
classes are rejected using preprocessing intra-model-class falsification and an adjustment
of prior parameter distribution for model selection.

Model class (Mk) log(Evidence) rel. log(Evidence) P(Mk|D)

1− 2− 2 1169.3 −4.6 0.01

1− 3− 2 1173.9 0.0 0.99

the candidate model classes competitive when they are very close to each

other in their respective behavior.

A second variation is to adjust the choice of the target identification prob-

ability φ, changed here from 0.95 to 0.90, which gives fewer unfalsified models

but still nine unfalsified model classes after the preprocessing intra-model-

class falsification step, as shown in Table 6. Using these nine unfalsified

model classes, the Bayesian model class selection and postprocessing again

chooses the 1 − 3− 2 model class as the valid model class. This shows that

adjusting φ within conventional ranges does not significantly affect the result

(the effect of other values of φ is beyond the scope of this paper).

Table 6: Unfalsified models using proposed intra-model class falsification with target iden-
tification probability φ = 0.90.

Model class (Mk) Unfalsified (%)

1− 1− 1 44.9
1− 1− 2 55.3
1− 1− 3 55.5

1− 2− 1 44.5
1− 2− 2 55.2
1− 2− 3 54.8

1− 3− 1 40.4
1− 3− 2 53.3
1− 3− 3 53.3
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3.2. Example II: 4DOF model with Hysteretic Isolation layer

Consider the base-isolated building or mechanical equipment models shown

in Figure 5. The isolation often exhibits hysteretic behavior, introducing non-

linearity into an otherwise linear dynamical system. To simulate the system

response to various classes of inputs, the behavior of the hysteretic elements

in the isolation layer must be accurately modeled. The true isolation model

here is an elastoplastic element (e.g., a lead-rubber bearing in building iso-

lation) with modest linear viscous damping. This four DOF system is sub-

jected to base excitation ẍg, a stationary filtered white noise generated using
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Figure 5: 4DOF models
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a Kanai-Tajimi filter [57] with spectral density

Sẍgẍg(ω) =
S0

(
4ζ2

gω
2
gω

2 + ω4
g

)(
ω2 − ω2

g

)2
+ 4ζ2

gω
2
gω

2
(12)

where ωg = 17 rad/s and ζg = 0.3 are assumed following Ramallo et al. [58],

and the spectral intensity S0 is calculated using

S0 = σ2
w

0.03ζg

πωg

(
4ζ2

g + 1
)g2 (13)

where g is the gravitational acceleration. The constant σw = 2 is selected

such that the nonlinearity in the system response is pronounced but not so

large that the isolation layer is always beyond its yield point. Figure 6 shows

a representative time history realization of ẍg(t).

The equations of motion of the superstructure, if it were fixed base, are

Time (s)
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g
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/s

2
)
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Figure 6: Representative time history realization of ẍg(t).
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given by

MsẌs + CsẊs + KsXs = −Ms1ẍg (14)

where Ms is the 3×3 mass matrix as in (9) with m1 = m2 = m3 = 300 Mg; Ks

is the 3 × 3 stiffness matrix similar to (10) with k̄1 = k̄2 = k̄3 = 40 MN/m;

13×1 is a column vector of ones; and Xs = [x1 x2 x3]T is the vector of

floor displacements relative to the ground. Again, Rayleigh damping, i.e.,

Cs = β1Ms + β2Ks, is assumed with 3% damping for the first two modes,

where β1 and β2 are constants evaluated from the damping ratios and the

superstructure natural frequencies. Combining the isolation layer and the

superstructure equations of motion, the full system can be described by

MsẌs + CsẊs + KsXs = −Ms1ẍg + Cs1ẋb + Ks1xb (15)

mbẍb + 1TCs1ẋb + 1TKs1xb + fb = −mbẍg + 1TCsẊs + 1TKsXs

where mb = 500 Mg is the base mass; model classes for fb, the sum of the

isolation-layer damping and restoring forces, are discussed in the following

paragraphs.

3.2.1. Candidate Model classes

A total of six model classes — four linear and two nonlinear (Bouc-Wen

and bilinear) — are considered and described as follows.

Nonlinear Models for Hysteretic Damping

The two nonlinear model classes considered here (Figure 7) are a bilinear

model and a Bouc-Wen hysteresis model [59], which is smoother and more
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Figure 7: Model classes for hysteresis.

realistic [60]. In these nonlinear models, kpre, kpost, and Qy are the pre-yield

and post-yield stiffnesses, and yield force, respectively. The Bouc-Wen model

uses qyz as the non-elastic force, where qy = Qy (1− 1/rk), rk = kpost/kpre is

the hardening ratio, and z is an evolutionary variable given by

ż = Au̇b − βu̇b|z|npow − γz|u̇b||z|npow−1 (16)

where A = 2β = 2γ = kpre/Qy makes z stay in [−1, 1] and consistent loading

and unloading stiffnesses. For the Bouc-Wen model, npow = 1 is assumed. As

n→∞, the model approaches a bilinear hysteresis model; herein, npow = 100

is used to represent the bilinear model. The effect of degradation can be

incorporated by replacing (16) with the Baber-Wen model [61, 62]

ż =
1

η

[
Au̇b − ν

(
βu̇b|z|npow + γz|u̇b||z|npow−1

)]
(17)

where the degradation shape functions are ν(e) = 1 + δνe and η(e) = 1 + δηe,

with strength degradation parameter δν , stiffness degradation parameter δη,
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and e =
∫ t

0
z(τ)u̇b(τ)dτ is a measure of response duration and severity. The

total force exerted by the isolation layer, the sum of the viscous damping

and restoring forces, is given by

fb = cbẋb + kpostub + qyz (18)

Linear Models for Hysteretic Damping

The linear model classes are approximately equivalent to a bilinear model

of hysteresis in terms of energy dissipation in each cycle. The linear model

classes represent the total isolator force as

fb = [cb + ceq] ẋb + kequb

=

[
cb + 2ζeq

√
keq(mb +ms)

]
ẋb + kequb.

(19)

where ms = mass of the superstructure. AASHTO (American Association of

State Highway and Transportation Officials) and JPWRI (Japanese Public

Works Research Institute) specified equivalent linear model classes [63, 64],

where the equivalent damping ratio ζeq and equivalent stiffness keq to ap-

proximate the energy dissipation of a hysteretic component are given by

ζeq =
2(1− rk)(1− ρ−1)

π[1 + rk(ρ− 1)]

keq =
kpre

ρ
[1 + rk(ρ− 1)]

(20)

The parameter ρ = rd for the AASHTO model and ρ = 0.7rd for the JPWRI

model, where rd = xd/xy is the shear ductility ratio of the design displace-

ment xd to the yield displacement xy. Hwang and Chiou [64] proposed a
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correction to the AASHTO model using two correction factors, r0.58
d /4.5 and

[1− 0.737(rd − 1)/r2
d]
−2

for keq and ζeq, respectively. The AASHTO linear

model with the correction factor is used here as the third linear model class.

In the CALTRANS model [64], the equivalent damping ratio and stiffness

are given by

ζeq = 0.0587(rd − 1)0.371

keq = kpre{1 + ln[1 + 0.13(rd − 1)1.137]}−2
(21)

To assess the effectiveness of the proposed model validation framework for

a nonlinear system, the Baber-Wen model with δν = 0.04 and δη = 0.02, to

introduce degradation within 30 s [62], is used to generate a set of nonlinear

dynamic response data for base acceleration ẍb at a sampling rate of 20 Hz

for 30 s, giving No = 601, to which 20% Gaussian noise is added (i.e., the

standard deviation of the Gaussian pulse process sensor noise is 0.2 times

the noise-free RMS response).

3.2.2. Preprocessing: Intra-Model-Class Falsification

For each of the six model classes, 1000 models are drawn from independent

distributions of the constitutive parameters using their prior distributions

given in Table 7. The model falsification is applied with a zero-mean Gaussian

likelihood function with standard deviation σ assumed to be 25% of the noisy

RMS base acceleration measurements; i.e., to 25% of the standard deviation

of the data in D. This assumed residual standard deviation is close to

the actual noise present in the measurement data. The target probability

level is set at φ = 0.95 for the falsification method. The results in Table 8
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Table 7: Priors for model parameters as applicable to each model class.

Parameter True value Distribution Mean Std. dev.

kpost 4.0 MN/m Lognormal 4.5 MN/m 0.25 MN/m
cb 20 kN·s/m Lognormal 18 kN·s/m 4 kN·s/m
rk 0.1667 Uniform 0.1600 0.0058
rd n/a† Uniform 2.5 0.2887
Qy (% of W )∗ 5.00 Uniform 4.75 0.2887
∗ W = weight of the structure = (ms +mb)g.
† Measurement data generated from Baber-Wen model does not require this

parameter.

Table 8: Unfalsified models using proposed intra-model class falsification.

Model class (Mk) Unfalsified (%)

AASHTO 0
JPWRI 0
CALTRANS 0
mod. AASHTO 0
Bouc-Wen 82.1
Bilinear 5.2

demonstrate that the FDR likelihood bounds successfully falsify all linear

model classes. Further, the results indicate that both Bouc-Wen and bilinear

models may be valid representations and, therefore, deserving candidates for

Bayesian model selection.

For this four DOF example, combined computational savings become

C ≈ 66.67%. (The actual savings will be slightly smaller than this because

the ease of simulation of the linear systems compared to a nonlinear system,

but this will not be a significant factor since the structure in this example

has only four degrees of freedom.)
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3.2.3. Bayesian Model Selection

By falsifying all linear model classes with FDR, the subsequent Bayesian

model selection is significantly reduced in scale, from six plausible model

classes to two, saving computation time by avoiding unnecessary evidence

calculations. Assuming equal priors P(Mk) = 1/2 for the nonlinear model

classes, a subsequent Bayesian model class analysis assigns the Bouc-Wen

model a posterior model class probability of essentially unity, leaving nearly

zero probability of the bilinear model class (see Table 9).

3.2.4. Postprocessing: Inter-Model-Class Falsification

The Bouc-Wen model class also passes the postprocessing step of inter-

model-class falsification step as the log of evidence value for this model class

log E (Bouc-Wen) = 490.3 > log E = −986.5 = logL. (The evidence is the

expected value of likelihood of the measurement data for a model class; hence,

a wide range of values are expected.) This result is expected since the Bouc-

Wen model is very similar to the true Baber-Wen model class. For example,

the evolution of degradation parameters and hysteresis loops of the Bouc-

Wen and Baber-Wen models for this building model are shown in Figure 8.

The current choice of E = L accepts the bilinear model class as well; it

would also have rejected all of the linear model classes if they had passed

Table 9: Posterior model class probabilities after some model classes are rejected using a
preprocessing step of intra-model-class falsification.

Model class (Mk) log(Evidence) rel. log(Evidence) P(Mk|D)

Bouc-Wen 490.3 0.0 ≈ 1.0
Bilinear 27.2 −463.1 ≈ 0.0
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Figure 8: Degradation parameters and hysteresis loops of the Bouc-Wen and Baber-Wen
models using the true values of the parameters.

through the preprocessing. A stricter E can be chosen, for example E =

0.5
[
max
k

max
i
L(θi;D,Mk)

]
, which will reject the bilinear model class even

if it passes the preprocessing step and only accepts the Bouc-Wen model

class. However, if the Baber-Wen model parameters were chosen so that it

were to degrade faster, then the Bouc-Wen model might not remain a valid

model class.

This framework identifies the Bouc-Wen model class as the valid one, and

does so efficiently, drawing from a smaller candidate pool in which invalid

model classes were systematically removed. The model validation framework

here eliminates other model classes but validates the Bouc-Wen model class.

However, the hysteresis loops for both Bouc-Wen and Baber-Wen models

with the same parameter values are very similar, which justifies the result

that the framework validates the Bouc-Wen model class. The posterior pa-

rameter means and standard deviations for the validated Bouc-Wen model

class, shown in Table 10, are very close to the true values (as expected).
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Table 10: Posterior model parameters and their true values for Bouc-Wen model class.

Parameter True value Mean Std. dev.

kpost [MN/m] 4.0 MN/m 3.9082 MN/m 0.0764 MN/m
cb 20 kN·s/m 18.0486 kN·s/m 1.1822 kN·s/m
rk 0.1667 0.1628 0.0024
Qy (% of W ) 5.00 5.0017 0.0919

Table 11: Unfalsified models using the proposed intra-model class falsification with φ =
0.90.

Model class (Mk) Unfalsified (%)

AASHTO 0
JPWRI 0
CALTRANS 0
mod. AASHTO 0
Bouc-Wen 69.7
Bilinear 2.0

3.2.5. Variations on the Method

To evaluate the framework with a different choice of target probabil-

ity φ to assess its effects on this framework’s performance, the preprocessing

intra-model-class falsification step is applied using another conventional value

φ = 0.90, resulting in the fractions of remaining models listed in Table 11,

which shows that two model classes, Bouc-Wen and bilinear, remain unfal-

sified. The Bayesian model selection and postprocessing inter-model-class

falsification are applied next, resulting in validating the Bouc-Wen model

class as before. This shows that the effect of this user-chosen parameter, the

target identification probability φ, (if altered modestly) does not change the

number of unfalsified model classes after the preprocessing step.
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3.3. Example III: Full-scale Four-story Building Experiment

In 2013, a full-scale four-story base-isolated building was tested [65] on the

world’s largest six degree-of-freedom shake table at Japan’s “E-Defense” lab-

oratory, formally called the Hyogo Earthquake Engineering Research Center,

part of Japan’s National Research Institute for Earth Science and Disaster

Resilience (NIED). The 676.6-ton asymmetric moment frame has dimensions

14 m×10 m×15 m; its isolation layer, on the testing day 8 August 2013 con-

cerned herein, consisted of two rubber bearings, two elastic sliding bearings,

and two pairs of passive U-shaped steel yielding dampers. Random excita-

tions along different table axes (which are the experimental data used herein)

and scaled versions of historical and synthetic earthquake ground motions

were used during that day of testing.

Figure 9: The experimental set-up.
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 Figure 3. Configuration of accelerometers at levels 0–3 Figure 4. Finite element model (FEM) 

3 Linear System ID and Nonlinear Isolation Device Modelling 
The primarily linear responses to the low-level random excitations were used to estimate 

modal parameters (natural frequencies, damping ratios and mode shapes) using the N4SID 
subspace system identification method.[10] The linear dynamic characteristics of the building 
were identified using the 12 table acceleration responses as inputs and the 42 superstructure 
acceleration responses as outputs [11]. The details of this system identification and its results are 
given in Brewick et al.[11] The rubber bearings behaved mainly linearly, so they were modelled 
with linear spring elements with stiffnesses computed from linear regressions of the 
experimental data. The elastic sliding bearings and U-shaped steel damper pairs were modelled 
with bi-directional Bouc-Wen[8] models of hysteresis with optimized parameters. The optimized 
parameters were chosen so that the mean square error between the model-predicted restoring 
forces and those measured were minimized.[12]  

4 Numerical Model and Calibration† 

4.1 Linear Model Updating 
A FEM (Figure 4) was developed based on the structure design drawings. The beams, 

columns, and shear walls were modeled with solid concrete elements and embedded reinforcing 
steel bars were modeled with truss elements. The floor slabs and the nonstructural walls 
(autoclaved lightweight concrete [ALC] plates) were modeled with shell elements. The 
isolation-layer devices were modeled with spring elements.  

The FEM was parameterized by a 30-element parameter vector θ, which included the 
Young’s moduli of: the x- and y-direction floor beams; the vertical columns; the nonstructural 
walls; the shear walls; the floor slabs; and the stairs. For these Young’s moduli, the initial values 
were either taken from design codes or chosen as typical, and were allowed to vary by up to 
30% from their initial values (this is considered large enough to account for the approximation 
error of FEM). The parameter vector θ also included the x- and y-direction stiffnesses of: the 
rubber bearings, the sliding bearings, and the U-shaped steel damper pairs; the initial values and 
the variation ranges were chosen according to a force-displacement linear regression analysis 
of the isolation devices.[12]  

An error metric J(θ), a weighted average of relative frequency errors and mode shape 
orthogonality, was defined as 

  (1) 

                                                
† This is a very brief summary of a study introduced in Yu et al.[13] and detailed in Yu et al. [14]. 
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Figure 10: Typical accelerometer placements for the bottom three floors.

Tridirectional accelerometers recorded the responses at three corners of

each floor (only two on the roof due to the structure set-back); four similar

accelerometers were located on the shake table. Displacement transducers

measured the displacements across the isolation layer and force transducers

measured the forces induced by the isolation-layer devices. Measurements

were recorded at 1 kHz sampling rate with a low-pass filtering using a 35 Hz

cut-off frequency.

3.3.1. Candidate Model Classes

A finite element model with about 80,000 degrees of freedom was devel-

oped from design drawings. Beams, columns, and shear walls were modeled

using solid elements, the steel reinforced bars using truss elements, and floor

slabs and nonstructural walls using shell elements. For this example, the

isolation-layer devices are modeled using bi-directional springs as the test

responses used here showed a clear linear force-displacement relationship for
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Figure 11: The finite element model with about 80,000 degrees of freedom.

the random excitation tests. The equations of motion of this model can be

written as

Mü + C(θ)u̇ + K(θ)u = −Mrüt (22)

where M, C, and K are model’s mass, damping, and stiffness matrices; θ

is the vector of uncertain parameters; u is the displacement vector of the

building with respect to the shake table; r consists of zeros and ones based

on the table motion’s influence on that degree-of-freedom; and üt is the table

acceleration.

The candidate model classes are constructed by choosing a combination

of different elastic moduli for different components of the building model. As

shown in Table 12, model class M1 assumes all building components have

same elastic modulus. Different elastic moduli are assumed for the floor
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Table 12: Model classes with the list of each class’s parameters (subscripts “Beam” and
“Col” represent beams and columns in the building, respectively; subscript numbers repre-
sent floor/story numbers) and the means and standard deviations of their prior truncated
Gaussian distributions.

Model Class Mk Parameter Mean Standard deviation

M1 EBeam,Col 27 GPa 2.5 GPa

M2
EBeam 27 GPa 2.5 GPa
ECol 23 GPa 2.5 GPa

M3

EBeam,1 27 GPa 2.5 GPa
Ex

Beam,2,3,4 27 GPa 2.5 GPa
Ey

Beam,2,3,4 23 GPa 2.5 GPa
ECol 23 GPa 2.5 GPa

M4

EBeam,1 27 GPa 2.5 GPa
Ex

Beam,2,3,4 27 GPa 2.5 GPa
Ey

Beam,2,3,4 23 GPa 2.5 GPa
ECol,1,2,3 23 GPa 2.5 GPa
ECol,4 24 GPa 2.5 GPa

beams and vertical columns in Model class M2. Similarly, model classes

M3 and M4 differentiate between beams in different floors and different

directions and columns in different stories. Prior distributions for these pa-

rameters, assumed as independent truncated Gaussians (truncated at zero

to avoid negative stiffnesses), are shown in Table 12.

3.3.2. Preprocessing: Intra-Model-Class Falsification

The N4SID subspace identification algorithm [66] was used to identify

the natural frequencies (see Table 13) and the mode shapes from Tests 010–

012 that used low-intensity random excitations in the three table coordinate

directions [67]. The measurements in this example are the first six natural

frequency estimates and the 36 entries in the 6 × 6 MAC (modal assurance
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Table 13: First six natural frequencies identified using the 42 responses and 12 recorded
table acceleration inputs [67].

Mode Natural frequency (Hz)

1st 0.6853
2nd 0.6975
3rd 0.7095
4th 4.7812
5th 5.1749
6th 6.1199

criterion) matrix; thus, No = 42. The probability density of residual error

is assumed to be Gaussian for all entries, with a unit mean for the diagonal

entries of the MAC matrix (as the ideal MAC matrix is an identity matrix)

and zero-mean for all other MAC values and frequency residual errors. The

assumed standard deviation of the residual errors are 0.02 Hz for the natural

frequencies and 0.25 for MAC values based on a preliminary error analysis

of the N4SID algorithm. With φ = 0.90, the falsification results are shown

in Table 14. By reducing the candidate model class set by half, the compu-

tational burden of evaluating such large models multiple times is reduced by

approximately 50%.

Table 14: Results of preprocessing step for Example III.

Model Class % Unfalsified

M1 0.0
M2 0.0
M3 3.7
M4 4.0
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Table 15: Posterior model class probabilities after two candidate model classes are rejected
using a preprocessing step of intra-model-class falsification.

Model class (Mk) log(Evidence) rel. log(Evidence) P(Mk|D)

M3 1852.70 0.00 ≈ 0.60
M4 1852.30 −0.40 ≈ 0.40

3.3.3. Bayesian Model Selection and Postprocessing

Next, Bayesian model selection is applied to the remaining two model

classes assuming equal prior P(Mk) = 1/2 for each of them, resulting in

posterior model class probabilities of 0.60 and 0.40, as shown in Table 15.

Although model classM4 has more parameters, it is not assigned the highest

posterior probability, likely due to the Occam’s razor principle that is inher-

ent in Bayesian model class selection. Finally, the postprocessing step using

L confirms the validity of both of these model classes. Hence, the proposed

framework validates two of the four initial model classes.

4. Conclusions

The proposed hybrid probabilistic framework unites the philosophical

ideas of model falsification and model selection into a single integrated model

validation methodology. This framework applies falsification in a likelihood

domain with false discovery rate control as pre- and postprocessing steps.

This framework is shown to not only identify the correct models, but to also

overcome the shortcomings of each of these methods applied alone, by effi-

ciently and systematically eliminating incorrect model classes. The numerical

examples demonstrate the efficacy of this framework and its enhanced com-

putational efficiency for dynamical system modeling. The first example shows
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how the proposed framework reduces the available model classes by 66.67%,

giving large computational savings in the next step of Bayesian model selec-

tion, which requires the calculation of evidence — a costly enterprise. The

second example uses a candidate model class set that does not contain the

true model class used to generate the measurements, but the validated model

class is very close to the true one. Further, this framework provides computa-

tional savings of approximately 66.67% by eliminating most of the incorrect

model classes. (Note that the elimination of two-thirds of the model classes

in the preprocessing is particular to these examples, and it is coincidence that

they eliminated the same fraction of model classes.) The third example uses

high-fidelity finite element model, with about 80,000 degrees of freedom, of a

full-scale structure tested at E-Defense. Again, the proposed framework elim-

inates half of the candidate model classes during the preprocessing step. For

more complex models, with more measurements and a higher-dimensional pa-

rameter space Θ, much greater savings are expected. Finally, computational

efficiency can be further enhanced by exploring other sampling algorithms

and exploiting the localized nature of uncertainties and/or nonlinearities in

dynamical systems. In future studies, a feedback structure to this framework

will be added where some of the previous measurements will be used to in-

telligently select the probability density of residual error and the parameter

priors at the next time step for its on-line implementation.
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Appendix A. Use of False Discovery Rate (FDR) to Compute the

Residual Error Bounds [37]

The false discovery rate introduced in 1995 by Benjamini and Hotchberg

[43] is defined as the expected value of the ratio of the number of times the

model is falsely rejected (Nvr) to total number of times the model is rejected

(Nr), where this ratio (Nvr/Nr) is assumed to be zero when Nr = 0, i.e.,

FDR = E
[
Nvr

Nr

∣∣∣Nr > 0
]
P(Nr > 0). An algorithm, known as the Benjamini-

Hotchberg (BH) procedure, is used here for keeping FDR at a prechosen level
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α. Here, the residual errors are first sorted according to their p-values2

0 ≤ p1 ≤ p2 ≤ · · · ≤ pNo ≤ 1 (A.1)

and the significance level for residual error εi is chosen to be

ᾱi =
i

No

α, i = 1, . . . , No (A.2)

where the target identification probability is φ = 1 − α, which comes from

hypothesis testing (typically φ = 0.95). The residual error bounds εi and ε̄i

are next computed from ᾱi using

1

2
ᾱi = P(Ei ≤ εi|θ) = P(Ei ≥ ε̄i|θ)

=

∫ εi

−∞
p(ei|θ)dei =

∫ ∞
ε̄i

p(ei|θ)dei, i = 1, . . . , No

(A.3)

Appendix B. Nested Sampling Algorithm [46, 68]

Evidence integral (6) for model classMk is rewritten using a probability

integral transformation [46, 68]

E (k) =

∫ 1

0

ϕ(χ(λ))dχ(λ) ≈
∑
i

ϕ(χ(λi))∆χ(λi) (B.1)

2The p-values for two-sided distributions can be defined as:

pi = 2 min {P (Ei ≤ εi|θ) ,P (Ei ≥ εi|θ)} , i = 1, . . . , No

= 2 min

{∫ εi

−∞
p(ei|θ)dei,

∫ ∞
εi

p(ei|θ)dei

}
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where χ(λ) is the probability mass enclosed in the parameter space subset

where likelihoods L(θ) exceed λ and ϕ(χ) denotes its inverse, i.e., ϕ (χ(λ)) ≡
λ. This one-dimensional integral is then evaluated using Algorithm 1. A stop-

ping criterion of 1
Ei max{L(θi)}ns

i=1 < 0.01, suggested in Skilling [46], is used

for the numerical examples in this paper. The outputs of the nested sam-

pling algorithm can be further used to estimate the moments of the posterior

distribution of the parameters of a model class, as shown in Algorithm 1.

1 Initialization: Set χ0 = 1, E0 = 0, mθ = 0nθ×1, and sθ = 0nθ×1;
2 Generate ns samples θi, i = 1, . . . , ns, from prior p(θ) with

corresponding likelihoods L(θi) ;
3 Start the sample counter: i = 1;
4 while stopping criteria = FALSE do
5 Find j = arg min

k=1,...,ns

L(θk);

6 Assign χi = [ns/(ns + 1)]i;
7 Assign ∆χi = χi−1 − χi;
8 Update evidence estimate by ∆Ei = ∆χiL(θj) and

Ei = Ei−1 + ∆Ei;
9 Update statistics mθ = mθ + ∆Eiθj and sθ = sθ + ∆Eiθ2

j ;

10 Replace θj with a new sample θnew that satisfies L(θnew) > L(θj);
11 i = i+ 1;

12 end
13 Elast = Ei−1 + 1

ns

∑ns

k=1 L(θk)χi,

14 E[θ] = mθ/Elast,

15 Var[θ] = (sθ/Elast)− (E[θ])2 ;
Result: Evidence E = Elast, posterior parameter mean E[θ], and

posterior parameter variance Var[θ].

Algorithm 1: Evidence calculation using nested sampling. The expo-
nents (·)2 in lines 9 and 15 are element-by-element, and Var[θ] is a vector
of the variances of the elements of θ (not the covariance matrix of θ).
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Appendix C. Modified Metropolis-Hastings Algorithm [56]

The modified Metropolis-Hastings algorithm proposed in Au and Beck

[56] is used here to generate θnew with a high acceptance rate in Algo-

rithm 1. The joint prior distribution of parameters is assumed to be written

as p(θ) =
∏nθ

i=1 pi(θi), at least using some approximate transformation, where

θ ∈ Rnθ×1. At any iteration of the nested sampling, the chain starts from

θk, which is chosen from one of the remaining samples. The proposal density

to generate candidates is assumed as q(θc|θ) =
∏nθ

i=1 qi(θ
c
i |θi). A sequence of

θ(l) can then be generated such that L(θ(l)) > L(θj) using the steps shown

in Algorithm 2. Please note that no burn-ins are required in this case since

the new samples generated will always have Lnew > L.
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1 Initialization: Set l = 0 and θ(l) = θk ;
2 /* Select candidate θc */

3 for i = 1, . . . , nθ do

4 Generate ϕ ∼ qi

(
ϕ|θ(l)

i

)
;

5 Evaluate acceptance probability pa = min

(
1,

pi(ϕ)qi

(
θ
(l)
i |ϕ

)
pi

(
θ
(l)
i

)
qi

(
ϕ|θ(l)i

)
)

;

6 Generate u ∼ U(0, 1) (i.e., from a uniform distribution in (0, 1));
7 if u < pa then
8 Set θc

i = ϕ ;
9 else

10 Set θc
i = θ

(l)
i ;

11 end

12 end
13 /* Accept or reject θc */

14 if L(θc) > L(θj) then
15 Set θ(l+1) = θc ;
16 else
17 Set θ(l+1) = θ(l) ;
18 end
19 Set l = l + 1 ;
20 Repeat ;

Algorithm 2: Modified Metropolis-Hastings algorithm.
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