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Abstract

Identifying useful mathematical models of physical systems is an essential
part of computational modeling and simulation. Once appropriate models
are identified, they can be used for applications such as response predic-
tion, structural control, monitoring structural integrity, lifetime prognosis,
etc. The number of models and model classes available to the modeler to
represent a physical phenomenon, however, can be very large. Retaining all
available models throughout a study can be computationally burdensome,
so the modeler has the significant problem of identifying the valid models to
be used in further studies. To address this challenge, a probabilistic frame-
work is proposed herein for validating models by intertwining the concepts of

model falsification and Bayesian model selection. Model falsification, based
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on the philosophy that measurements can only be used to falsify models, is
used in this framework in both pre- and postprocessing steps to eliminate
models and model classes, respectively, that cannot explain the measure-
ments. This is the first study to propose a framework to integrate these two
paradigms. A likelihood-bound model falsification, previously introduced by
the authors, determines the validity of the initial candidate model classes,
using the false discovery rate (FDR), and removes most of the incorrect ones
without incurring any significant additional computational burden. Next,
Bayesian model selection, which assigns posterior model class probabilities
based on Bayes’ theorem, is applied to the remaining model classes to identify
the the model(s) and model class(es) that provide predictions that probabilis-
tically best fit the data. Finally, a postprocessing likelihood-bound falsifica-
tion checks the validity of the final model class(es). The proposed frame-
work is first illustrated through two nonlinear structural dynamics examples
that show the efficacy of the proposed framework in identifying models for
these structures as well as reducing the computational burden relative to
Bayesian model selection applied alone. Finally, a third example uses mea-
surement data from experiments performed on a full-scale four-story base-
isolated building at the world’s largest shake table in Japan’s “E-Defense”
laboratory.

Keywords: Model validation; model falsification; false discovery rate

(FDR); Bayesian model selection.




1. Introduction

Even as computational capabilities continue to expand, facilitating in-
creasingly intricate and complex simulations, the results obtained from those
simulations will only be as accurate as the models used to represent real-world
phenomena. In diverse areas of science and engineering, from dynamics to
biomechanics, to fully harness advancing simulation power, significant gains
must be similarly achieved in modeling. When attempting to model a com-
plex dynamical system, the modeler (whether engineer or scientist, researcher
or practitioner) is often presented with several types, or classes, of models
that may be appropriate, but constraints on time and cost limit ensuing sim-
ulations and analysis to a single model class, or a select few, and sometimes
only to a limited set of models within those model class(es). In structural
dynamics, these models are used to design damping and control systems to
mitigate the effects of natural hazards based on the outcome of different
simulated scenarios [1]. A hysteretic element can be modeled using vari-
ous linear and nonlinear models, but a modeler must choose a single model
before designing an isolation layer using such devices. Changes in model
parameters can be monitored to indicate when critical maintenance must
be initiated, but these decisions first require identifying the model and/or
model class of the system. In the area of fluid mechanics, particularly aero-
dynamics, modeling turbulence is a critical issue [2, 3| since the predictive
performance of different models may vary based on problem specifics (e.g.,
geometry, boundary conditions, etc.) that will ultimately affect the aerody-
namic design. Climate models use different dynamic, thermodynamic, and

biological process equations to quantify the interactions between the environ-



ment and its surroundings; the many models, of varying complexity, available
for climate applications require a validation process be used before predicting
future climates using these models.

Model selection refers to problems in which model(s) must be selected
from a larger set, which may or (more commonly) may not include the true
model [4]. The use of Bayesian inference to evaluate the plausibility of dif-
ferent models is known as Bayesian model selection, which has been applied
across diverse fields [5-12]. A common form of Bayesian model selection uses
the Bayes factor, which is a ratio of the marginal likelihood, or evidence,
of two models [13, 14]. Bayesian model class selection [15] is Bayesian in-
ference applied to quantify the likelihood of entire families of models, .e.,
model classes. This tool has been applied to structural models using dynamic
response measurement data by Beck et al. [8-12]. The Occam’s razor prin-
ciple, which suggests that models with lesser complexity should be favored
among models of comparable accuracy, is also embedded in Bayesian model
selection, as discussed in Beck and Yuen [8], MacKay [16, 17], and Gull [18].

Another approach to model selection is model falsification, which is based
on Popper’s assertion first made in the 1930’s that scientific models cannot
be fully validated by data and can only be falsified [19]. In control theory,
the concept has been used to design and select robust controllers that satisfy
some performance criteria using measurement data by model unfalsification
[20-22]. Error domain model falsification [23] was developed by Smith and
Goulet and colleagues through a series of advances in structural modeling and
monitoring [24, 25|, with early applications quantifying the uncertainty and,

subsequently, identifiability of models for civil structures, such as bridges and



pipe networks, based on characteristics of the measurement and monitoring
systems, and linear dynamical systems using their natural frequencies [26—
29]; the strength of this technique has been compared [30] to other methods,
such as residual minimization and Bayesian inference. Beven and his col-
leagues [31-35] have proposed a different approach to model falsification by
using the likelihood values of the measurement data in hydrological exam-
ples while defining the bounds in a subjective manner; however, they have
been criticized for using empirical likelihood functions that do not represent
a probability density for the residual errors [36]. De et al. [37] compared
several approaches for model falsification and also proposed new ones that
facilitate falsification for systems with many measurements distributed over
multiple spatial and/or temporal domains.

The merits of both Bayesian model selection and model falsification are
obvious, yet each method alone has its own inherent weaknesses. When all
model classes in an initial set are inadequate representations of the system
(an entirely plausible scenario, particularly for systems with high complexity
or unknown features), Bayesian model selection will always choose a model
class but without clear warning or indication to the modeler of its inade-
quacy. Consequently, future predictions produced by the inadequate model
class may be highly inaccurate and, therefore, assumptions or decisions based
on these predictions may have catastrophic consequences. While model fal-
sification possesses the ability to eliminate incorrect models and inform the
modeler if none of the options are valid, further judgment on the usefulness of

a particular model class and parameter values are not possible in its current

form [37].



Thus, this study proposes, and subsequently evaluates in numerical exam-
ples, a framework that selects one or more model(s) or model class(es) by in-
tegrating the principle of model falsification into Bayesian model selection to
mitigate the weaknesses of these different identification schemes. The frame-
work utilizes model falsification in a preprocessing step to eliminate models
and model classes that do not fit the data to a statistical significance, and in
a postprocessing step to ensure that the model classes evaluated via the cen-
tral step of Bayesian model class selection are, on average, validated by the
data as well. Exploiting model falsification’s ability to significantly shrink the
valid model class set will avoid numerous expensive computations required to
evaluate the posterior parameter distribution for Bayesian model selection;
these savings in computational cost will directly grow with increasing num-
bers of measurements, degrees of freedom (DOF), or space/time resolution.
As Bayesian model selection already includes the effect of Occam’s razor in
evidence, no further extraneous steps are needed to penalize model classes
with more parameters. Hence, the proposed framework not only identifies
the most plausible model class and parameter estimates, it also requires fewer
model simulations than other validation methods and provides checks on the
suitability of the resulting models and model classes. Finally, the proposed
framework extends Tarantola’s comments [38] that the candidate models are
from a prior distribution and the unfalsified models are from a posterior dis-
tribution; indeed, an alternate interpretation of the preprocessing falsification
is as if one used a truncated density function for the prediction errors in a
staged Bayesian selection. While the proposed framework remains true to his

comments during the preprocessing step, the unfalsified models are further



processed to produce a posterior judgment between them as well as across

different unfalsified model classes.

2. Hybrid Framework for Model Validation

Since Bayesian model selection leaves as most plausible a model that
may be wrong, and model falsification can fail to falsify any model class,
leaving a large number of unfalsified models, and provides no relative confi-
dence in them, this section proposes the falsification of models in a Bayesian
framework. Further, this falsification approach [37] is designed (unlike other
falsification approaches) to accommodate many measurements such as those
over multiple spatial and temporal dimensions from dynamical systems, both
linear and nonlinear. The model validation framework proposed herein incor-
porates model falsification as both pre- and postprocessing steps before and
after Bayesian model selection to combine the usefulness of both approaches
while overcoming their individual shortcomings. These first and last steps
of the framework use a form of model falsification developed by the authors
[37]. A flowchart of the steps of the proposed validation procedure is given in
Figure 1. The flowchart shows that the preprocessing falsification step first
eliminates the model classes that do not reproduce reasonably well the re-
sponses of the physical system, thereby shrinking the set of candidate model
classes. The next step is to implement Bayesian model selection with the
remaining model classes by re-using computational results from the prepro-
cessing step. Finally, a postprocessing step checks the validity, on average,
of the final model class(es).

Clearly, just as with all other modeling and system identification tools,



Figure 1: Proposed synergistic framework of model falsification and Bayesian model class
selection.

this framework requires the modeler to ensure that the measurement data
is sufficiently rich to exercise the ranges of system behavior for which the
resulting validated models will be used. For example, if the models of a non-
linear system are validated with the proposed framework (or calibrated with
any similar approach) using data that insufficiently exercises the nonlinear
behavior, linear models will be preferred; if the resulting models will only be
used for predictions of the system response when it is behaving essentially
linearly, then those models are sufficient; on the other hand, if the model will
be used to study and predict response over the entire breadth of the system
behaviors, then the modeler is responsible for ensuring that the validation
measurement data spans those behaviors.

Some other researchers have proposed different types of model valida-
tion frameworks. For example, a validation approach proposed by Babuska
et al. [39] employs a model rejection step using a validation dataset, but
only after fitting probability distributions to all model class parameters us-
ing a separate calibration dataset. Recently, Farrell et al. [40-42] proposed a

framework for model validation that first selects a subset of candidate model
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classes and calculates the calibrated posterior model parameter distribution,
the evidence values and, finally, the validated posterior parameter distribu-
tion (and probability distribution for a quantity of interest) using Monte
Carlo approaches; however, that framework is unable to find model classes
with higher evidence values but with more parameters because it starts with
the model class subsets that have the fewest parameters, stopping when it

finds a valid model class, and does not investigate further.

2.1. Intra-Model-Class Fualsification: Framework’s Preprocessing Step

A model from a model class My, which is in the set .#Z of all candidate
model classes, is specified by an ng x 1 parameter vector 8 € ©. (Technically,
0 should be written 8%*) since its size may be different for different model
classes; however, the superscript (k) is omitted for notational simplicity.)
Herein, 8 will be called a model as its value defines one model within the
corresponding model class. The difference between the N, outputs h(8) of
the model and their corresponding measurements d is known as the residual
error € [37]. These residuals are modeled as continuous random variables,
herein characterized by the probability density function pg(e|@), where E is
a random vector, and e is a possible value of random vector E, whereas € is
the actual residual error. (The random vector E is henceforth omitted for
brevity but is implied by context.)

Conventional error domain model falsification sets bounds on each error
residual ¢; = h;(0) — d;; the bounds are chosen so that each residual has a
given probability, defined by the model’s assumptions on p(e|@), of remaining
within the bounds. This approach ignores significant information that may

be available about the residuals, their uncertainty distributions and their
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correlations. Instead, following De et al. [37], the proposed framework’s first
step is to falsify models based on the likelihood of their residual; in the case

of a single measurement, the likelihood (omitting the model class My) is
£(6:D) = p(D8) = p(cl0) = p([n(6) — d][6) M

The model would then be unfalsified (i.e., accepted) if the likelihood is larger
than some likelihood threshold, denoted £ and computed as described in a
subsequent section, and falsified if below the threshold:

L(0;D) <L = falsify model 8 (2)

For an arbitrary number of measurements, including time history re-
sponses of dynamical systems, the predicted outputs of model M}, are given

again by h(0) but in a stacked form (i.e., for predicted response time history

vector y(t; @), sampled at times {tg, 1, }, let h(0) = [y (¢0;0) y*(t1;0) ---

or a similar arrangement). The N, x 1 residual vector is € = h(0) — d. If
the resulting residuals are zero-mean Gaussian distributed with covariance

matrix 3, then the likelihood can be written

exp (~3[h(0) — dI"='[h(6) — dJ)
(27) ¥ |22 (3)
exp (—3€TX )
(@m) N2 [S[1/2

L(0;D) = p<h(9) - d‘@) -

This approach directly frames model uncertainty in terms of the dynamic

response measurements with two advantages: (i) avoiding the intermediate
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use of modal parameters helps limit error introduced via system identification
methods and modal analysis; and (ii) the likelihood calculated for models
in a class can be used to subsequently compute the model class evidence, an
integral step in Bayesian model selection.

Figure 2 show the typical lower and upper bounds (¢; and €;) used by
model falsification for a two-data-point case; for a symmetric, unimodal prob-
ability density of the residual error such as that shown, these bounds have
the same likelihood L, though this is not the case for the more general resid-
ual densities, such as in Figure 3, where a likelihood threshold (chosen as
discussed in subsequent paragraphs) would shift the residual error bounds
to the area(s) of highest likelihood. Further, a likelihood threshold criteria
can accommodate more general residual densities (skewed or multimodal),

and allow the modeler to incorporate the correlation structure of multiple

Figure 2: Likelihood bound for the two-measurement case [37]. Given a target identifi-
cation probability ¢ = 1 — «, the significance levels @; = «/2 and a3 = « are used to

compute €;, €; and g;, e}, respectively. See Appendix A for details of this procedure.
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Figure 3: A likelihood-bound £ defined for a multidimensional non-Gaussian probability
density of residual error.

measurement residuals.

Methods to calculate bounds on likelithood values

De et al. [37] discussed various model falsification approaches to deter-
mine the likelihood lower bound £ based on the false discovery rate (FDR)
correction with the Benjamini-Hotchberg (BH) procedure [37, 43]. In multi-
ple comparison problems, FDR control ensures that, on average, the number
of false positives among all rejections will be below a specified value, and
provides a better statistical power while allowing some false positive results
[44]. (The statistical power, defined as the probability of rejecting a model
when it is invalid, is related to probability of making a type II error, which
is the error introduced by incorrectly accepting invalid models.) Herein, the
BH procedure is used, as summarized in Appendix A, to compute the resid-
ual error bounds [¢;, €] from the target identification probability ¢ (generally
assumed as 0.95 or 0.90). The significance level &« = 1 — ¢ of the overall
falsification step is the probability of rejecting a model when it is, in fact,

valid. In short, the BH procedure first ranks the residual errors according to
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their p-values (the probability of exceeding the residual error in magnitude)
and compares them against their corresponding per-measurement significance
levels @; (which would a3 = «/2 and ay = « for a two-measurement case
such as depicted in Figure 2). Then, residual errors falling inside the lim-
its are accepted; for the two-measurement case, the limits are shown as the
solid thick lines on the joint probability density of residual errors in Figure 2
([€1,€1] X [€), €] if the residual error e; is less likely than the second €,, and

[€], €] X [€,, €] otherwise). These bounds are used next to compute £ using

No
L =]], min_ p(el6) (4)
=17

(As discussed in a prior study [37], there may be other ways to use the bounds
l€;, €] or other information to decide the lower bound L.)

The modeler must exercise judgement in choosing the number of candi-
date models from each model class. This number, which is problem depen-
dent, should be sufficiently large to explore the parameter space and its prior,
but also require reasonable computational resources. One approach for eval-
uating whether the number of candidate models is sufficient is to gradually
(linearly or exponentially) increase the number of models for several itera-
tions, stopping when the fraction of unfalsified models from the model class
remains stable. Here, the initial number of models can be decided following
the guidelines in Goulet and Smith [28].

When all models evaluated from a model class are falsified, the entire
model class is considered falsified. .#*, the set of model classes that passes

this preprocessing step, is used as the possible model class set for the subse-
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quent step of Bayesian model selection. (If .#" is empty, then the selection
of the initial set of model classes must be reconsidered.) By shrinking the
set of candidate model classes, this preprocessing step can achieve signifi-
cant computational savings in the Bayesian model selection, which requires
complete exploration of the high likelihood region, a computationally expen-
sive task (discussed in the next subsection), whereas a satisfactory coverage
of the high likelihood region is sufficient for model falsification. (It should
also be noted that it is possible for a model class with all models falsified to
occur because of an insufficient number of models sampled from that class
— e.g., any sampling-based approach is challenged when exploring a high-
dimensional parameter space — or if the priors are not chosen appropriately.
The modeler may choose to revisit and verify assumptions when a model

class is eliminated.)

2.2. Bayesian model class selection
With the remaining model classes in .#!, the posterior model class prob-
abilities (i.e., the probability of a model class conditioned on measurement

data ®) are given by Bayes’ theorem:

p(D|M;)P(M;,)
p(D)

P(M]|D) = , Mye.a! (5)
where the probability of an event is denoted by P(-); P(My) is an a pri-
ori measure of model plausibility assigned by the modeler based on past
experience, normalized so et P(My) = 1; and denominator p(D) =

> Myt D(D|My)P(My) using the theorem of total probability. For a par-
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ticular model class My, the model evidence £*) = p(D|M,,) is

£ — / p(D1[6, My)p(6]M,)d6
(C)

(6)
_ / £(0:D, My)p(6]|My)d0
®

where p(@|My,) is the prior probability, based on modeler judgment, of pa-
rameter vector @ for model class My; and L£(0;D, M) = p(D|0, M) is
the likelihood function already computed in Section 2.1. These evidence
values £¥) are required to evaluate the posterior model class probabilities
P(My|®), which can then be used to select a model class, or to be used as
weights for multiple validated model classes. At the end of this step, based on
the posterior model class probabilities, a smaller model class set .#? C .41,
typically only the one model class with the highest P(My|®), is retained
and will be subjected to the final postprocessing falsification step.

The assumption that the true model class is among the candidate model
classes may not always be true. In such scenarios, the application of Bayesian
model class selection alone may lead to erroneous conclusions; the frame-
work’s preprocessing falsification step avoids this error and ensures a mean-
ingful result from the Bayesian model selection. Note: The unfalsified mod-
els’” parameters can be used to formulate informative priors for the model
selection, though the question of using the data twice can be raised. In that
case, the dataset is divided in two datasets ©' and D", where the falsifi-
cation is done with ®'. The prior of the model parameters is then formed
using the unfalsified parameters for the model selection, which is performed

with .
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Sampling Algorithms

For efficient evaluation of the evidence, a notable computational challenge
for applications of Bayesian model selection, several methods have been pro-
posed, including the posterior harmonic mean estimator [45], importance
sampling [13], nested sampling technique [46], annealed sampling [47], the
Power Posterior method [48], the Transitional Markov Chain Monte Carlo
method [49], the Monte Carlo splitting and subset methods [50-53], stochas-
tic collocation [54], and polynomial chaos approaches [55]. For the numerical
examples herein, a nested sampling algorithm is used to evaluate the evidence
values. A brief description of this nested sampling algorithm is provided in
Appendix B. After several iterations of the nested sampling algorithm,
sampling from high likelihood region becomes difficult, especially if the high
likelihood region is concentrated within a very small region. In such a case,
Skilling [46] suggested using the Markov Chain Monte Carlo (MCMC) algo-
rithm for generating samples from the prior constrained to high likelihood
region. For the examples herein, the nested sampling uses conventional ran-
dom sampling with rejection but switches, when the average acceptance rate
drops below 5%, to an MCMC augmented by the modified Metropolis algo-
rithm, introduced in Au and Beck [56] (see Appendix C), which will provide
a high acceptance rate to efficiently sample from the high likelihood region.

2.3. Inter-Model-Class Falsification: Framework’s Postprocessing Step

A postprocessing falsification procedure, following the Bayesian model
class selection, is proposed here to provide a robust framework that is capable
of indicating whether the model class(es) in the current pool .#? are valid

in terms of their evidence value(s).
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The evidence £® for model class M, which is the likelihood (6) of
the data given a model class, can be written as the expected likelihood of
the residuals; i.e., E® = p(e|M;) = Eg [L(0;D, M})]. Similar to the
likelihood threshold L for a given model in the preprocessing falsification, an
entire model class can be falsified if the model class evidence £*) is below a
threshold &:

EW < £ = falsify model class M, (7)

As the evidence £ has already been computed in the Bayesian model class
selection, this proposed postprocessing falsification can be performed with
no extra calculation. While different choices can be made for evidence lower
bound &, it is taken herein to be equal to the likelihood threshold £ used in
the preprocessing step because the evidence £ is nothing but the expected
value of the likelihood function L£; since the likelihood threshold £ has al-
ready been computed, the choice £ = £ has the further convenience of not
requiring additional computation. Another evidence threshold that could be
used without further computation is £ = =~ [m]?x max L(6;;D, My)| with
v € (0,1) depending on the modeler’s expectation about the average likeli-
hood value in a model class.

This postprocessing falsification is particularly beneficial in identifying
the cases in which some few models remain from an entire model class after
the preprocessing falsification but, on average, the model class is incorrect
as well. The result, then, is a set M> = {E®) < £ : M, € .#?} of final,

validated model classes.
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2.4. Computational Advantage of the Synergistic Framework

The proposed approach provides significant computational savings when
some competing model classes are excluded using the preprocessing step,
thereby eliminating the most computationally expensive step of calculating
evidence values for those model classes, as this step generally requires many
more model evaluations. The second reduction in computational effort is
obtained since the model likelihoods computed in the preprocessing falsifica-
tion can be used as initial starting values for (nested) sampling. Third, the
postprocessing model class falsification relies on evidence already computed
in the Bayesian model class evaluation, so does not incur additional cost. A

metric C' for the computational savings can be introduced as

o Zkg/fll (NQ,k - Nl,k)

C
Zké/// NQ’k

x 100%

where N, ; and Ny are number of model evaluations in the preprocessing fal-
sification and Bayesian model selection steps, respectively, for the £* model
class. Generally Nyj > N;j because, in evidence estimation, a complete
exploration of the high likelihood region must be performed (as shown in
the two numerical illustrations given in the next section), leading to signifi-
cant computational savings. Also, if some of the model classes are nonlinear
and fail to pass the preprocessing step, additional savings in computation
time can be expected, compared to falsification of some linear model classes,
due to the additional computational complexity associated with the response

calculation of a nonlinear model.
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3. Numerical Illustrations

The proposed framework is illustrated using three numerical examples
from structural dynamics. In each of these examples, several model classes
are used to describe the system’s nonlinear behaviors. The proposed frame-
work is shown to systematically eliminate the incorrect candidate model
classes to choose and validate the model class that probabilistically best

fits the measurement data.

3.1. Example I: 3DOF Model with Nonlinear Stiffnesses

Consider the three DOF model shown in Figure 4 subjected to support

acceleration #;. The equations of motion of the structure are given by

Mx + Cx + Kx + Lg(x) = —M13,,& (8)
3Ix1dg
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Figure 4: 3 DOF model with nonlinear stiffnesses.
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where the mass matrix is

mi 0 0
M=| 0 my 0 (9)
0 0 ms

with m; = my = mz = 300 Mg; the nominal stiffness matrix is

ki+ky —ke 0

K= —k‘Q ffg + ]2'3 —kg (10)
0 —ks ks

with ky = ky = k3 = 8 MN/m; g(x) is a (possibly nonlinear) restoring force

function with its influence matrix

1 -1 0
L= 0 1 —1 (11)
0 0 1

13,1 is a column vector of ones; and the mass displacement vector relative to
the support is x = [x1 9 azg]T. Rayleigh damping, i.e., C = 5{M + 5K,
is assumed with 3% damping for each of the first two modes, where 3; and
(o are constants evaluated from the damping ratios and the nominal natural

frequencies.

3.1.1. Candidate Model Classes

Three possibilities for each element of g(x) are assumed — linear, quadratic

and cubic stiffnesses — for a total of 3 x 3 x 3 = 27 different model classes:
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Table 1: Means and standard deviations of lognormal prior distributions for model class
stiffness coefficients (units are MN/mP??).

Story | Stiffness | linear (p; = 1) | quadratic (p; =2) | cubic (p; = 3)
i coeff. mean o mean o mean o
1 k1 25 2.5 250 25 2500 250
2 ko 0.18 0.025 1.8 0.25 18 2.5
3 ks 1.8 0.25 18 2.5 180 25
i€, gi = k;ilv; —x;_1|Pisgn(x; — x;_1), where g = 0 and p; € {1,2,3}

for « = 1,2,3. These model classes are denoted by concatenating the ex-
ponent values p; — po — p3; e.g., combination 1 — 2 — 3 has the vector
g(x) = [kiz1 ko|lra — 1P sgn(ze — x1)  ks(ws — x9)3|T. The prior distri-
butions for parameters ki, ks, and k3 are assumed to be lognormal with
means and standard deviations as shown in Table 1. These choices of model
parameters for the different exponents are chosen so that the force levels are
similar with different exponents given the responses of this system (i.e., the
interstory drifts are on the order of 0.1m, so the coefficients in the linear,

quadratic and cubic stiffness models have ratios of 1 : 10 : 100).

3.1.2. True Model Class and the Measurement Data

The measurement data ®, containing the time history x;(¢) of the first
mass displacement relative to the support, is generated using (8) for model
class 1 —3—2 with g(x) = [k1z1, ko(ze — 21)3, k3|3 — xo|? sgn(zz — 22)]T —
i.e., p1 = 1, pp = 3 and p3 = 2 — with stiffness coefficients k; = 22.5 MN/m,
ko = 20.0 MN/m? and k3 = 20.0 MN/m?. The measurements are sampled at
20 Hz and include additive Gaussian pulse process sensor noise, in which the
sensor noises at every time step are independent and identically-distributed

zero-mean Gaussian random variables with a standard deviation that is 20%
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of the noise-free RMS response. The support excitation Z,(t) is the first
30s of the N-S component of the 18 May 1940 Imperial Valley earthquake
recorded at the Imperial Valley Irrigation District substation in El Centro,

California, sampled at 50 Hz, with peak acceleration 3.42m/s?.

3.1.3. Preprocessing: Intra-Model-Class Falsification

Model falsification is performed with probability density p(e;) of each
residual error assumed to be independent zero-mean Gaussian with a stan-
dard deviation o that is 20% of the RMS of the measured first-mass dis-
placement and with the target identification probability set at ¢ = 0.95
resulting in an FDR-based likelihood bound of £ = 266.4, computed us-
ing (4) and Appendix A, that will be used to falsify models. 1000 mod-
els are randomly generated for each model class using the prior parame-
ter Gaussian distribution statistics listed in Table 1. Out of the 27 possi-
ble combinations of different nonlinear stiffnesses of the three stories, only
nine remain after the preprocessing step of intra-model class falsification:
MY ={1—i—j|i€{1,2,3},5 €{1,2,3}}, which means that the nonlin-
ear models of the first spring are clearly unsuitable. The fractions of models
unfalsified in each of the 27 model classes are shown in Table 2. The result
of this step also shows the limitation of using model falsification alone as all

model classes in . have almost the same fraction of unfalsified models.

3.1.4. Bayesian Model Selection

Bayesian model selection is performed next for only the nine model classes
that passed the preprocessing falsification step, with prior model class proba-

bilities set as P(My) = 1/9. The posterior model class probabilities are given
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Table 2: Unfalsified models using proposed intra-model class falsification. (Bold means
unfalsified model classes.)

Model Unfalsified Model Unfalsified Model Unfalsified
class (My) (%) class (My) (%) class (My) (%)
1-1-1 54.9 2—1—-1 0.0 3—1-—-1 0.0
1—-1-2 63.9 2—1-2 0.0 3—1—-2 0.0
1-1-3 65.5 2—1-3 0.0 3—1-3 0.0
1-2-1 53.8 2—2-1 0.0 3—2—-1 0.0
1—-2-2 63.4 2—2-2 0.0 3—2-2 0.0
1-2-3 64.7 2—2-3 0.0 3—2-3 0.0
1-3-1 50.5 2—-3-—1 0.0 3—-3-1 0.0
1-3-2 61.4 2—-3-2 0.0 3—3-2 0.0
1-3-3 63.4 2—3-3 0.0 3—3-3 0.0

Table 3: Posterior model class probabilities after most of the model classes are rejected
using a preprocessing step of intra-model-class falsification. (Relative log-evidence is with

respect to the model class with the largest log-evidence.)

Model class (M) | log(Evidence) | rel. log(Evidence) | P(M|D)
1—-1-1 2290.7 —72.1 ~ 0.0
1—-1-2 2315.5 —47.3 ~ 0.0
1-1-3 2309.7 —53.1 ~ 0.0
1—-2-1 2317.6 —45.2 ~ 0.0
1—-2-2 2351.0 —11.8 ~ 0.0
1-2-3 2334.3 —28.5 ~ 0.0
1-3-1 2338.0 —24.8 ~ 0.0
1-3-2 2362.8 0.0 1.0
1-3-3 2334.2 —28.6 ~ 0.0

in Table 3, which shows that the model class 1 — 3 — 2 has the maximum

posterior model class probability of essentially 1.0; i.e., .#? = {1 — 3 — 2}
and P(1 —3 —2|®) =~ 1.0. The means and the standard deviations of the

posterior distribution of the stiffness parameters are obtained from the nested

sampling algorithm and are shown in Table 4 along with their true values.
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Table 4: Posterior mean and standard deviation of model parameters for model class
1 —3 — 2, and the true values.

True Posterior
Stiff ff.
HHess coe value | mean | Std. dev.
k1 [MN /m] 22.5 | 22.5224 | 0.0630

ky [MN/m® | 20.0 | 20.7529 | 0.9928
ks [MN/m? | 20.0 | 19.3070 | 0.5485

In this numerical example, due to the intra-model class falsification step,
18 out of 27 model classes are entirely falsified, requiring no evidence cal-
culation for them. As Njj; > N; for all model classes, the computational

savings here is given by C = 66.67%.

3.1.5. Postprocessing: Inter-Model-Class Falsification

Using the likelihood-bound falsification approach with the FDR/BH pro-
cedure, the lower limit for the model class evidence for validation is again
log £ = log £ = 266.4. For model class 1 —3 — 2, log E®) = 2362.8 > log £ =
266.4, i.e., on average this model class also passes the postprocessing falsifica-
tion step. Note that, with the current choice of £, all of the model classes that
pass through the preprocessing step will also pass through the postprocessing
step. However, if other model classes, e.g., 2—1—1 or 2 — 3 — 2 somehow
pass through the preprocessing, then this choice of £ would stop them since

log £2-171 = —2148.48 < log £ and log £?7372 = —2899.43 < log .

3.1.6. Variations on the Method

One way to improve the validity of the model classes in .Z*!, is to ad-
just their prior parameter distributions based on those retained after prepro-
cessing falsification, using insights gained by applying the likelihood-bound

falsification. This optional step, shown after the preprocessing block in Fig-
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ure 1, is implemented here; the measurement data is divided in to two sets:
D' consisting of every odd numbered measurement of the response and D'
consisting every even numbered measurement of the response. (Other simple
divisions of the data in the time domain can be used but, for a response to
a historical earthquake record that is nonstationary, this division of data is
chosen to ensure that the nonlinear behavior of the system is pronounced in
both datasets; a detailed discussion on dividing ® into ®' and D" is beyond
the scope of this study.) The results from the preprocessing falsification step
using ' again give the same nine unfalsified model classes as before. For
each of these nine model classes, the priors (which were originally lognormal)
are adjusted by fitting new lognormal distributions to the unfalsified mod-
els” parameters using maximum likelihood estimation, and are then used as
priors for the next step of Bayesian model selection. For example, for the
model class 1 — 2 — 2, the prior for k; is changed to lognormal with mean
23.59 MN/m and standard deviation 1.47 MN/m; i.e., the mean is closer to
the true value and the standard deviation is about half that of the original
prior. The Bayesian model selection is performed with ® for the nine model
classes that pass the preprocessing step with adjusted priors for the model
parameters. The results for two best model classes are shown in Table 5,
which shows that the proposed framework is able to again find the correct
model class. Table 5 also shows that using @' to inform the priors makes
model class 1 — 2 — 2 more competitive with true model class 1 — 3 — 2, as
evidenced their relative log-evidence values reducing from a difference of 11.3
to only 3.9, though the posterior probability of 1 — 3 — 2 is still near unity.

Hence, this modification in the proposed framework is very useful in making
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Table 5: Posterior model class probabilities of the two best model classes after some model
classes are rejected using preprocessing intra-model-class falsification and an adjustment
of prior parameter distribution for model selection.

Model class (M) | log(Evidence) | rel. log(Evidence) | P(My|®D)

1-2-2 1169.3 —4.6 0.01
1-3-2 1173.9 0.0 0.99

the candidate model classes competitive when they are very close to each
other in their respective behavior.

A second variation is to adjust the choice of the target identification prob-
ability ¢, changed here from 0.95 to 0.90, which gives fewer unfalsified models
but still nine unfalsified model classes after the preprocessing intra-model-
class falsification step, as shown in Table 6. Using these nine unfalsified
model classes, the Bayesian model class selection and postprocessing again
chooses the 1 — 3 — 2 model class as the valid model class. This shows that
adjusting ¢ within conventional ranges does not significantly affect the result
(the effect of other values of ¢ is beyond the scope of this paper).

Table 6: Unfalsified models using proposed intra-model class falsification with target iden-
tification probability ¢ = 0.90.

Model class (M) | Unfalsified (%)
1—-1-1 44.9
1—-1-2 55.3
1-1-3 595.95
1-2-1 44.5
1—-2-2 59.2
1-2-3 54.8
1-3-1 40.4
1—-3-2 53.3
1-3-3 53.3
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3.2. Example 1I: 4DOF model with Hysteretic Isolation layer

Consider the base-isolated building or mechanical equipment models shown
in Figure 5. The isolation often exhibits hysteretic behavior, introducing non-
linearity into an otherwise linear dynamical system. To simulate the system
response to various classes of inputs, the behavior of the hysteretic elements
in the isolation layer must be accurately modeled. The true isolation model
here is an elastoplastic element (e.g., a lead-rubber bearing in building iso-
lation) with modest linear viscous damping. This four DOF system is sub-

jected to base excitation Z,, a stationary filtered white noise generated using

B m3 |
1 1 1 1
§k3, 7C3 §k3, 7C3
RN my |
1 1 1 1
ka, 7C2 ka, 7C2
BN M|
1 1 1 1
Xp le,zcl le,zcl

Ground

= BT
o 1 kol k)
aam 1 mlﬁ m; m;
Hoxo OO0 0G0O0

Xg

Figure 5: 4DOF models
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a Kanai-Tajimi filter [57] with spectral density

So (4 gwguﬂ + wg)

(@ — )+ auu?

Sjg;ﬁg(u}) == (12)
where w, = 17rad/s and ¢, = 0.3 are assumed following Ramallo et al. [58],

and the spectral intensity Sy is calculated using

, 003

SO = wawg (4C§ + 1)9

(13)

where ¢ is the gravitational acceleration. The constant oy, = 2 is selected
such that the nonlinearity in the system response is pronounced but not so
large that the isolation layer is always beyond its yield point. Figure 6 shows
a representative time history realization of Z,(t).

The equations of motion of the superstructure, if it were fixed base, are

Ey (m/ 52)

10 15 20 25 30
Time (s)

[e]
9]

Figure 6: Representative time history realization of Z4(t).
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given by
M. X, + C X, + KX, = —M,1i, (14)

where Mg is the 3 x 3 mass matrix as in (9) with m; = my = m3 = 300 Mg; K
is the 3 x 3 stiffness matrix similar to (10) with k; = ky = k3 = 40 MN /m;
1341 is a column vector of ones; and X; = [x; 9 xg]T is the vector of
floor displacements relative to the ground. Again, Rayleigh damping, i.e.,
C, = /iM; + (K, is assumed with 3% damping for the first two modes,
where (8, and [y are constants evaluated from the damping ratios and the
superstructure natural frequencies. Combining the isolation layer and the

superstructure equations of motion, the full system can be described by

M, X, + C.X, + KX, = —M,1i, + Cyliy, + Kolay, (15)

mpiy + 17Cyliy, + 1 K lay, + fi, = —mpi, + 1TCX, + 17K X,

where my, = 500 Mg is the base mass; model classes for fi,, the sum of the
isolation-layer damping and restoring forces, are discussed in the following

paragraphs.

3.2.1. Candidate Model classes

A total of six model classes — four linear and two nonlinear (Bouc-Wen

and bilinear) — are considered and described as follows.
Nonlinear Models for Hysteretic Damping

The two nonlinear model classes considered here (Figure 7) are a bilinear

model and a Bouc-Wen hysteresis model [59], which is smoother and more
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Figure 7: Model classes for hysteresis.

realistic [60]. In these nonlinear models, kpre, kpost, and @)y are the pre-yield
and post-yield stiffnesses, and yield force, respectively. The Bouc-Wen model
uses ¢yz as the non-elastic force, where ¢y = Qy (1 — 1/7x), rx = kpost/Kpre 18

the hardening ratio, and z is an evolutionary variable given by
2= Ay, — Bl |z — yz|iy || 2] e (16)

where A = 20 = 27y = kpye/Qy makes z stay in [—1, 1] and consistent loading
and unloading stiffnesses. For the Bouc-Wen model, n,o, = 1 is assumed. As
n — 00, the model approaches a bilinear hysteresis model; herein, npqy, = 100
is used to represent the bilinear model. The effect of degradation can be

incorporated by replacing (16) with the Baber-Wen model [61, 62]

1
z= n [Ad, — v (B2 + yz]in| |2 ) ] (17)

where the degradation shape functions are v(e) = 1+d,e and n(e) = 1+9,¢,

with strength degradation parameter ¢,, stiffness degradation parameter o,
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and e = fg z(T)up(7)dT is a measure of response duration and severity. The
total force exerted by the isolation layer, the sum of the viscous damping

and restoring forces, is given by
Jbo = b@p + Kpostn + ¢y 2 (18)

Linear Models for Hysteretic Damping
The linear model classes are approximately equivalent to a bilinear model
of hysteresis in terms of energy dissipation in each cycle. The linear model

classes represent the total isolator force as

fb = [Cb + Ceq] j:b + kequb
= |:Cb + 2Ceq\ / keq(mb + ms)} .Ci?b + kequb.

where ms = mass of the superstructure. AASHTO (American Association of

(19)

State Highway and Transportation Officials) and JPWRI (Japanese Public
Works Research Institute) specified equivalent linear model classes [63, 64],
where the equivalent damping ratio (., and equivalent stiffness k., to ap-
proximate the energy dissipation of a hysteretic component are given by

21 —r)(1—p7")
w1+ nr(p —1)]

ch =
(20)

kre
ke = 22 (1 i 1)

The parameter p = rq for the AASHTO model and p = 0.7rq for the JPWRI
model, where rq = x4/, is the shear ductility ratio of the design displace-

ment x4 to the yield displacement zy. Hwang and Chiou [64] proposed a
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correction to the AASHTO model using two correction factors, r§-°%/4.5 and
[1—0.737(rq — 1)/r2] 2 for keq and (o, respectively. The AASHTO linear
model with the correction factor is used here as the third linear model class.

In the CALTRANS model [64], the equivalent damping ratio and stiffness

are given by

Coq = 0.0587(rq — 1)%37
) (21)
keq = kpre{1 + In[1 + 0.13(rq — 1)"137]} 72

To assess the effectiveness of the proposed model validation framework for
a nonlinear system, the Baber-Wen model with ¢, = 0.04 and ¢,, = 0.02, to
introduce degradation within 30s [62], is used to generate a set of nonlinear
dynamic response data for base acceleration Zy, at a sampling rate of 20 Hz
for 30s, giving N, = 601, to which 20% Gaussian noise is added (i.e., the
standard deviation of the Gaussian pulse process sensor noise is 0.2 times

the noise-free RMS response).

3.2.2. Preprocessing: Intra-Model-Class Falsification

For each of the six model classes, 1000 models are drawn from independent
distributions of the constitutive parameters using their prior distributions
given in Table 7. The model falsification is applied with a zero-mean Gaussian
likelihood function with standard deviation o assumed to be 25% of the noisy
RMS base acceleration measurements; i.e., to 25% of the standard deviation
of the data in ®. This assumed residual standard deviation is close to
the actual noise present in the measurement data. The target probability

level is set at ¢ = 0.95 for the falsification method. The results in Table 8
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Table 7: Priors for model parameters as applicable to each model class.

Parameter True value Distribution Mean Std. dev.
Kpost 40MN/m Lognormal  4.5MN/m 0.25 MN/m
Ch 20kN-s/m  Lognormal  18kN-s/m 4kN-s/m
o 0.1667 Uniform 0.1600 0.0058

rq n/al Uniform 2.5 0.2887

Qy (% of W)* 5.00 Uniform 4.75 0.2887

* W = weight of the structure = (ms + my,)g.
 Measurement data generated from Baber-Wen model does not require this

parameter.

Table 8: Unfalsified models using proposed intra-model class falsification.

Model class (M) | Unfalsified (%)
AASHTO 0
JPWRI 0
CALTRANS 0

mod. AASHTO 0
Bouc-Wen 82.1
Bilinear 5.2

demonstrate that the FDR likelihood bounds successfully falsify all linear
model classes. Further, the results indicate that both Bouc-Wen and bilinear
models may be valid representations and, therefore, deserving candidates for
Bayesian model selection.

For this four DOF example, combined computational savings become
C' =~ 66.67%. (The actual savings will be slightly smaller than this because
the ease of simulation of the linear systems compared to a nonlinear system,
but this will not be a significant factor since the structure in this example

has only four degrees of freedom.)
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3.2.3. Bayesian Model Selection

By falsifying all linear model classes with FDR, the subsequent Bayesian
model selection is significantly reduced in scale, from six plausible model
classes to two, saving computation time by avoiding unnecessary evidence
calculations. Assuming equal priors P(My) = 1/2 for the nonlinear model
classes, a subsequent Bayesian model class analysis assigns the Bouc-Wen
model a posterior model class probability of essentially unity, leaving nearly

zero probability of the bilinear model class (see Table 9).

3.2.4. Postprocessing: Inter-Model-Class Falsification

The Bouc-Wen model class also passes the postprocessing step of inter-
model-class falsification step as the log of evidence value for this model class
log £Boue-Wen) — 490.3 > log€ = —986.5 = logL. (The evidence is the
expected value of likelihood of the measurement data for a model class; hence,
a wide range of values are expected.) This result is expected since the Bouc-
Wen model is very similar to the true Baber-Wen model class. For example,
the evolution of degradation parameters and hysteresis loops of the Bouc-
Wen and Baber-Wen models for this building model are shown in Figure 8.
The current choice of £ = L accepts the bilinear model class as well; it
would also have rejected all of the linear model classes if they had passed

Table 9: Posterior model class probabilities after some model classes are rejected using a
preprocessing step of intra-model-class falsification.

Model class (My) | log(Evidence) | rel. log(Evidence) | P(My|®D)

Bouc-Wen 490.3 0.0 ~ 1.0
Bilinear 27.2 —463.1 ~ 0.0
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Figure 8: Degradation parameters and hysteresis loops of the Bouc-Wen and Baber-Wen
models using the true values of the parameters.

through the preprocessing. A stricter £ can be chosen, for example £ =
0.5 max max L£(6;D, ./\/lk)], which will reject the bilinear model class even
if it passes the preprocessing step and only accepts the Bouc-Wen model
class. However, if the Baber-Wen model parameters were chosen so that it
were to degrade faster, then the Bouc-Wen model might not remain a valid
model class.

This framework identifies the Bouc-Wen model class as the valid one, and
does so efficiently, drawing from a smaller candidate pool in which invalid
model classes were systematically removed. The model validation framework
here eliminates other model classes but validates the Bouc-Wen model class.
However, the hysteresis loops for both Bouc-Wen and Baber-Wen models
with the same parameter values are very similar, which justifies the result
that the framework validates the Bouc-Wen model class. The posterior pa-
rameter means and standard deviations for the validated Bouc-Wen model

class, shown in Table 10, are very close to the true values (as expected).
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Table 10: Posterior model parameters and their true values for Bouc-Wen model class.

Parameter True value Mean Std. dev.
kpost [MN/m] 4.0MN/m  3.9082MN/m 0.0764 MN/m
Ch 20kN-s/m  18.0486 kN-s/m 1.1822kN-s/m
Tk 0.1667 0.1628 0.0024

Qy (% of W) 5.00 5.0017 0.0919

Table 11: Unfalsified models using the proposed intra-model class falsification with ¢ =
0.90.

Model class (M) | Unfalsified (%)
AASHTO 0
JPWRI 0
CALTRANS 0

mod. AASHTO 0
Bouc-Wen 69.7
Bilinear 2.0

3.2.5. Variations on the Method

To evaluate the framework with a different choice of target probabil-
ity ¢ to assess its effects on this framework’s performance, the preprocessing
intra-model-class falsification step is applied using another conventional value
¢ = 0.90, resulting in the fractions of remaining models listed in Table 11,
which shows that two model classes, Bouc-Wen and bilinear, remain unfal-
sified. The Bayesian model selection and postprocessing inter-model-class
falsification are applied next, resulting in validating the Bouc-Wen model
class as before. This shows that the effect of this user-chosen parameter, the
target identification probability ¢, (if altered modestly) does not change the

number of unfalsified model classes after the preprocessing step.
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3.83. FExample III: Full-scale Four-story Building Fxperiment

In 2013, a full-scale four-story base-isolated building was tested [65] on the
world’s largest six degree-of-freedom shake table at Japan’s “E-Defense” lab-
oratory, formally called the Hyogo Earthquake Engineering Research Center,
part of Japan’s National Research Institute for Earth Science and Disaster
Resilience (NIED). The 676.6-ton asymmetric moment frame has dimensions
14mx10mx15m; its isolation layer, on the testing day 8 August 2013 con-
cerned herein, consisted of two rubber bearings, two elastic sliding bearings,
and two pairs of passive U-shaped steel yielding dampers. Random excita-
tions along different table axes (which are the experimental data used herein)
and scaled versions of historical and synthetic earthquake ground motions

were used during that day of testing.

Figure 9: The experimental set-up.
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Figure 10: Typical accelerometer placements for the bottom three floors.

Tridirectional accelerometers recorded the responses at three corners of
each floor (only two on the roof due to the structure set-back); four similar
accelerometers were located on the shake table. Displacement transducers
measured the displacements across the isolation layer and force transducers
measured the forces induced by the isolation-layer devices. Measurements
were recorded at 1kHz sampling rate with a low-pass filtering using a 35 Hz

cut-off frequency.

3.3.1. Candidate Model Classes

A finite element model with about 80,000 degrees of freedom was devel-
oped from design drawings. Beams, columns, and shear walls were modeled
using solid elements, the steel reinforced bars using truss elements, and floor
slabs and nonstructural walls using shell elements. For this example, the
isolation-layer devices are modeled using bi-directional springs as the test

responses used here showed a clear linear force-displacement relationship for
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Figure 11: The finite element model with about 80,000 degrees of freedom.

the random excitation tests. The equations of motion of this model can be
written as

Mii + C(0)a + K(8)u = —Mrii, (22)

where M, C, and K are model’s mass, damping, and stiffness matrices; 6
is the vector of uncertain parameters; u is the displacement vector of the
building with respect to the shake table; r consists of zeros and ones based
on the table motion’s influence on that degree-of-freedom; and 1y is the table
acceleration.

The candidate model classes are constructed by choosing a combination
of different elastic moduli for different components of the building model. As
shown in Table 12, model class M; assumes all building components have

same elastic modulus. Different elastic moduli are assumed for the floor
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Table 12: Model classes with the list of each class’s parameters (subscripts “Beam” and
“Col” represent beams and columns in the building, respectively; subscript numbers repre-
sent floor/story numbers) and the means and standard deviations of their prior truncated
Gaussian distributions.

Model Class M, | Parameter Mean Standard deviation
M, Epeamcol 27 GPa 2.5GPa
M, EBeam 27 GPa 2.5 GPa

Ecol 23 GPa 2.5 GPa
EBeam,1 27 GPa 2.5 GPa
Efamoss 27GPa 2.5GPa
Ms EY .. 23GPa 2.5GPa
Beam,2,3,4
Eco 23 GPa 2.5 GPa
EBecam,1 27 GPa 2.5 GPa
Eﬁeam,2,3,4 27GPa 2.5 GPa
M4 E%eam,2,3,4 23 GPa 2.5GPa
Eco1,2,3 23 GPa 2.5 GPa
Ecola 24 GPa 2.5 GPa

beams and vertical columns in Model class M. Similarly, model classes
Mz and M, differentiate between beams in different floors and different
directions and columns in different stories. Prior distributions for these pa-
rameters, assumed as independent truncated Gaussians (truncated at zero

to avoid negative stiffnesses), are shown in Table 12.

3.8.2. Preprocessing: Intra-Model-Class Falsification

The N4SID subspace identification algorithm [66] was used to identify
the natural frequencies (see Table 13) and the mode shapes from Tests 010
012 that used low-intensity random excitations in the three table coordinate
directions [67]. The measurements in this example are the first six natural

frequency estimates and the 36 entries in the 6 x 6 MAC (modal assurance

40



Table 13: First six natural frequencies identified using the 42 responses and 12 recorded
table acceleration inputs [67].

Mode | Natural frequency (Hz)
15t 0.6853
nd 0.6975
3rd 0.7095
4th 4.7812
5th 5.1749
6t 6.1199

criterion) matrix; thus, N, = 42. The probability density of residual error
is assumed to be Gaussian for all entries, with a unit mean for the diagonal
entries of the MAC matrix (as the ideal MAC matrix is an identity matrix)
and zero-mean for all other MAC values and frequency residual errors. The
assumed standard deviation of the residual errors are 0.02 Hz for the natural
frequencies and 0.25 for MAC values based on a preliminary error analysis
of the N4SID algorithm. With ¢ = 0.90, the falsification results are shown
in Table 14. By reducing the candidate model class set by half, the compu-
tational burden of evaluating such large models multiple times is reduced by

approximately 50%.

Table 14: Results of preprocessing step for Example III.

Model Class | % Unfalsified
My 0.0
Mo 0.0
M 3.7
My 4.0
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Table 15: Posterior model class probabilities after two candidate model classes are rejected
using a preprocessing step of intra-model-class falsification.

Model class (M) | log(Evidence) | rel. log(Evidence) | P(M|D)

M; 1852.70 0.00 ~ 0.60
M, 1852.30 —0.40 ~ 0.40

3.3.3. Bayesian Model Selection and Postprocessing

Next, Bayesian model selection is applied to the remaining two model
classes assuming equal prior P(My) = 1/2 for each of them, resulting in
posterior model class probabilities of 0.60 and 0.40, as shown in Table 15.
Although model class M, has more parameters, it is not assigned the highest
posterior probability, likely due to the Occam’s razor principle that is inher-
ent in Bayesian model class selection. Finally, the postprocessing step using
L confirms the validity of both of these model classes. Hence, the proposed

framework validates two of the four initial model classes.

4. Conclusions

The proposed hybrid probabilistic framework unites the philosophical
ideas of model falsification and model selection into a single integrated model
validation methodology. This framework applies falsification in a likelihood
domain with false discovery rate control as pre- and postprocessing steps.
This framework is shown to not only identify the correct models, but to also
overcome the shortcomings of each of these methods applied alone, by effi-
ciently and systematically eliminating incorrect model classes. The numerical
examples demonstrate the efficacy of this framework and its enhanced com-

putational efficiency for dynamical system modeling. The first example shows
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how the proposed framework reduces the available model classes by 66.67%,
giving large computational savings in the next step of Bayesian model selec-
tion, which requires the calculation of evidence — a costly enterprise. The
second example uses a candidate model class set that does not contain the
true model class used to generate the measurements, but the validated model
class is very close to the true one. Further, this framework provides computa-
tional savings of approximately 66.67% by eliminating most of the incorrect
model classes. (Note that the elimination of two-thirds of the model classes
in the preprocessing is particular to these examples, and it is coincidence that
they eliminated the same fraction of model classes.) The third example uses
high-fidelity finite element model, with about 80,000 degrees of freedom, of a
full-scale structure tested at E-Defense. Again, the proposed framework elim-
inates half of the candidate model classes during the preprocessing step. For
more complex models, with more measurements and a higher-dimensional pa-
rameter space ®, much greater savings are expected. Finally, computational
efficiency can be further enhanced by exploring other sampling algorithms
and exploiting the localized nature of uncertainties and/or nonlinearities in
dynamical systems. In future studies, a feedback structure to this framework
will be added where some of the previous measurements will be used to in-
telligently select the probability density of residual error and the parameter

priors at the next time step for its on-line implementation.
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Appendix A. Use of False Discovery Rate (FDR) to Compute the
Residual Error Bounds [37]

The false discovery rate introduced in 1995 by Benjamini and Hotchberg
[43] is defined as the expected value of the ratio of the number of times the
model is falsely rejected (IVy;) to total number of times the model is rejected
(N;), where this ratio (Ny,/N,) is assumed to be zero when N, = 0, i.e.,
FDR = E | o

N

N, > 0} P(N; > 0). An algorithm, known as the Benjamini-
Hotchberg (BH) procedure, is used here for keeping FDR at a prechosen level
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«. Here, the residual errors are first sorted according to their p-values?

0<p1 <py<---<pn, <1 (A1)

and the significance level for residual error ¢; is chosen to be
a=-—a, di=1,... N, (A.2)

where the target identification probability is ¢ = 1 — «, which comes from
hypothesis testing (typically ¢ = 0.95). The residual error bounds ¢, and €;

are next computed from &; using

Appendix B. Nested Sampling Algorithm [46, 68]

Evidence integral (6) for model class My, is rewritten using a probability

integral transformation [46, 68]

£0) — / PO = 37X AX(A) (B.1)

2The p-values for two-sided distributions can be defined as:

pl:Qmm{P(EzSez|0),]P’(E12q\0)}, ’iil,...,No

=2 min{/ Z p(ei|9)dei,/ p(ei|9)dez}
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where () is the probability mass enclosed in the parameter space subset
where likelihoods £(0) exceed A and () denotes its inverse, i.e., ¢ (x(\)) =
A. This one-dimensional integral is then evaluated using Algorithm 1. A stop-
ping criterion of & max{L(6;)}=, < 0.01, suggested in Skilling [46], is used
for the numerical examples in this paper. The outputs of the nested sam-
pling algorithm can be further used to estimate the moments of the posterior
distribution of the parameters of a model class, as shown in Algorithm 1.

1 Initialization: Set xo =1, & =0, mg = 0,,,x1, and sg = 0,y x1;

2 Generate ng samples 6;, i =1,...,ng, from prior p(@) with

corresponding likelihoods £(;) ;
Start the sample counter: ¢ = 1;

while stopping criteria = FALSE do
Find j = arg k}?in L(6);

(31 SN

Assign x; = [ns/(ns + 1)];
Assign Ax; = Xi-1 — X&)
Update evidence estimate by AE; = Ax;£(0;) and

& = &1 + AE;;

9 Update statistics mg = mg + AE;0; and sg = sg + AEZOJZ;
10 Replace 0; with a new sample 60, that satisfies L£(Onew) > L£(6;);
11 1=1+1;
12 end
13 glast = gz‘—l + nLS ZZLI E(ek)Xm
14 E[0] = mg /&,
15 Var[0] = (sg/East) — (E[6])” ;

Result: Evidence & = &4, posterior parameter mean E[@], and

posterior parameter variance Var|0)].

Algorithm 1: Evidence calculation using nested sampling. The expo-
nents ()% in lines 9 and 15 are element-by-element, and Var[)] is a vector
of the variances of the elements of @ (not the covariance matrix of ).
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Appendix C. Modified Metropolis-Hastings Algorithm [56]

The modified Metropolis-Hastings algorithm proposed in Au and Beck
[56] is used here to generate O, with a high acceptance rate in Algo-
rithm 1. The joint prior distribution of parameters is assumed to be written
asp(0) =[], pi(0:), at least using some approximate transformation, where
0 € R™*! At any iteration of the nested sampling, the chain starts from
0;., which is chosen from one of the remaining samples. The proposal density
to generate candidates is assumed as q(6°]0) =[], 4;(65]0;). A sequence of
0" can then be generated such that £(6") > £(6;) using the steps shown
in Algorithm 2. Please note that no burn-ins are required in this case since

the new samples generated will always have L, > L.
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N =

© o N o

10
11
12
13
1

S~

15
16
17
18
19
20

Initialization: Set [ =0 and 8% = @, :
/* Select candidate O° */
fori=1,... ng do

Generate p ~ q; (30|9§l)) ;

pi(¥)di (95-[) |¢7) > )

Evaluate acceptance probability p, = min (1, W

Generate u ~ U(0,1) (i.e., from a uniform distribution in (0, 1));
if u < p, then
‘ Set 05 = ¢ ;
else
| Set 65 =6 ;
end

end
/* Accept or reject 6° */
if £(6°) > L£(0;) then

else

end

| Set 80D =6° ;
| Set 60+ =90 ;
Set [ =1+1;

Repeat ;

Algorithm 2: Modified Metropolis-Hastings algorithm.
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