
A Network-Centric Hardware/Algorithm Co-Design

to Accelerate Distributed Training of Deep Neural Networks

Youjie Li1, Jongse Park2, Mohammad Alian1, Yifan Yuan1, Zheng Qu3, Peitian Pan4, Ren Wang5,

Alexander Gerhard Schwing1, Hadi Esmaeilzadeh6, Nam Sung Kim1

1University of Illinois, Urbana-Champaign, 2Georgia Institute of Technology, 3Tsinghua University,
4Shanghai Jiao Tong University, 5Intel Corporation, 6University of California, San Diego

Abstract—Training real-world Deep Neural Networks (DNNs)
can take an eon (i.e., weeks or months) without leveraging
distributed systems. Even distributed training takes inordinate
time, of which a large fraction is spent in communicating weights
and gradients over the network. State-of-the-art distributed
training algorithms use a hierarchy of worker-aggregator
nodes. The aggregators repeatedly receive gradient updates
from their allocated group of the workers, and send back the
updated weights. This paper sets out to reduce this significant
communication cost by embedding data compression accelerators
in the Network Interface Cards (NICs). To maximize the benefits
of in-network acceleration, the proposed solution, named
INCEPTIONN (In-Network Computing to Exchange and Process
Training Information Of Neural Networks), uniquely combines
hardware and algorithmic innovations by exploiting the following
three observations. (1) Gradients are significantly more tolerant
to precision loss than weights and as such lend themselves better
to aggressive compression without the need for the complex
mechanisms to avert any loss. (2) The existing training algorithms
only communicate gradients in one leg of the communication,
which reduces the opportunities for in-network acceleration
of compression. (3) The aggregators can become a bottleneck
with compression as they need to compress/decompress multiple
streams from their allocated worker group.

To this end, we first propose a lightweight and hardware-
friendly lossy-compression algorithm for floating-point gradients,
which exploits their unique value characteristics. This
compression not only enables significantly reducing the gradient
communication with practically no loss of accuracy, but also
comes with low complexity for direct implementation as a
hardware block in the NIC. To maximize the opportunities for
compression and avoid the bottleneck at aggregators, we also
propose an aggregator-free training algorithm that exchanges
gradients in both legs of communication in the group, while the
workers collectively perform the aggregation in a distributed
manner. Without changing the mathematics of training, this
algorithm leverages the associative property of the aggregation
operator and enables our in-network accelerators to (1) apply
compression for all communications, and (2) prevent the
aggregator nodes from becoming bottlenecks. Our experiments
demonstrate that INCEPTIONN reduces the communication time
by 70.9∼80.7% and offers 2.2∼3.1× speedup over the conven-
tional training system, while achieving the same level of accuracy.

I. INTRODUCTION

Distributed training [1–9] has been a major driver for

the constant advances in Deep Neural Networks (DNNs)

by significantly reducing the training time [7–9], which can

take weeks [10] or even months [11]. Although distributing

training unleashes more compute power, it comes with the

cost of inter-node communications, proportional to the DNN

(a) (b) (c)

Worker Node Aggregator NodeWorker Node Aggregator Node

Fig. 1: (a) State-of-the-art hierarchical distributed training. (b)
INCEPTIONN’s distributed training algorithm in the conventional hi-
erarchy. (c) Hierarchical use of INCEPTIONN’s distributed algorithm.

size (e.g., AlexNet and ResNet-50 consist of 232 MB and

98 MB of weights). Moreover, accelerators, which further

cut the computation time, make the cost of communication

more pronounced [12, 13]. As illustrated in Fig. 1(a), state-of-

the-art distributed training systems [6, 14, 15] are structured

as a hierarchy of worker-aggregator nodes. In each iteration,

the aggregator nodes gather the gradient updates from their

subnodes, communicate the cumulative gradients upwards (see

Fig. 1(a)) and send back the updated weights downwards. These

gradients and weights of real-world DNNs are often hundreds

of mega bytes (e.g., 525 MB for VGG-16 [16]), imposing

significant communication loads on the network. This paper sets

out to reduce this communication cost by embedding data com-

pression accelerators in the Network Interface Cards (NICs).

Simply using general-purpose compression techniques and

developing in-network accelerators for the compression would

provide limited gains due to substantial hardware complexity

and latency overhead. Thus, we instead propose a hardware-

algorithm co-designed solution, dubbed INCEPTIONN1, that

offers a novel gradient compression technique, its in-network

accelerator architecture, and a gradient-centric distributed

training algorithm to maximize the benefits of the in-network

acceleration. In designing and developing INCEPTIONN, we

exploit the three following observations:

(1) Compared to weights, gradients are significantly more

amenable to precision loss. Therefore, they lend themselves

better to aggressive compression without requiring

complicated mechanisms to alleviate their loss.

(2) The existing training algorithms communicate gradients

in only one leg of the communication, which reduces the

opportunities for compression and its in-network acceleration.

1INCEPTIONN: In-Network Computing to Exchange and Process Training
Information Of Neural Networks

175

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00023

(3) Using compression can make the aggregators a bottleneck

since they need to compress/decompress multiple streams

of data corresponding to each of their subnodes.

Building upon these observations, INCEPTIONN first comes

with a lightweight and hardware-friendly lossy-compression

algorithm for floating-point gradient values. This compression

exploits a unique value characteristic of gradients: their

values mostly fall in the range between -1.0 and 1.0 and the

distribution peaks tightly around zero with low variance. Given

this observation, we focus on the compression of floating-point

values in the range between -1.0 and 1.0 such that it minimizes

the precision loss while offering high compression ratio.

Moreover, the compression algorithm is developed while being

conscious of the implementation complexity to enable direct

hardware realization in the NIC. For seamless integration

of the in-network accelerators with the existing networking

software stack, we also provide a set of INCEPTIONN APIs that

interface the accelerators with the traditional TCP/IP network

stack and Open-MPI framework.

Although compressing the gradients is more effective than

weights, its benefits cannot be fully utilized with conventional

distributed training algorithms since they only pass the gradients

in only one leg of the communication. Moreover, the aggregator

would need to bear the burden of compressing/decompressing

multiple streams. To tackle these challenges, INCEPTIONN

comes with a gradient-centric, aggregator-free training algo-

rithm, which leverages the following algorithmic insight to

communicate gradients in both legs (see Fig. 1(b and c)). The

aggregation operator (typically sum) is associative and thus, the

gradients can be aggregated gradually by a group of workers.

The intuition is to pass the partial aggregate from one worker

to the other in a circular manner while they add their own

contribution to the partial aggregate. This algorithm eliminates

the need for a designated aggregator node in the group as it is

conventional. This algorithm enables the distributed nodes to

only communicate gradients and equally share the load of ag-

gregation, which provides more opportunities for compressing

gradients and improved load balance among the nodes. Fig. 1(b)

visually illustrates the grouping view of our algorithm when it

only replaces the leaf groups of conventional worker-aggregator

hierarchy. Fig. 1(c) depicts the view when our algorithm

replaces all the levels of hierarchy. These nodes form a worker

group, which is the the building block of distributed training

algorithms as depicted in all three organizations in Fig. 1.

The combination of (1) lossy compression algorithm

for gradients, (2) NIC-integrated compression accelerator,

and (3) gradient-centric aggregator-free training algorithm

constructs a cross-stack solution, INCEPTIONN, that significantly

alleviates the communication bottleneck without affecting

the mathematics of DNN training. To demonstrate the

efficacy of synergistically integrating the aforementioned three

components, we train state-of-the-art DNN models such as

AlexNet [17], VGG-16 [16], ResNet-50 [18]. Our experiments

show that, INCEPTIONN reduces the communication time by

70.9∼80.7% and offers 2.2∼3.1× speedup in comparison

with the conventional worker-aggregator based system, while

achieving the same level of accuracy.

II. DISTRIBUTED TRAINING FOR DEEP NEURAL NETWORKS

A. Mathematics of Distributed Training

DNN training involves determining weights w of a predictor

ŷ = F(x, w), which processes input data x and yields a

prediction ŷ. Supervised training finds w by minimizing a

loss function ℓ(F(x,w),y∗), which compares the ground-truth

output y∗ with the prediction ŷ=F(x,w) for given input data

x and current w. Data and groundtruth are available in a

training dataset D ={(x,y∗)} which is considered iteratively

for many epochs. The commonly used optimization process

for deep neural networks is gradient descent, which updates

the weights in the opposite direction of the loss function’s

gradient, g = ∂ℓD
∂w

, where ℓD denotes the loss accumulated

across all samples in the set D . Hence, the update rule that

captures the gradient descent training is as follows:

w(t+1)=w(t)−η ·
∂ℓD
∂w(t)

=w(t)−η ·g(t),

where w(t+1), w(t), and g(t) denote the next updated weights,

the current weights, and the current gradient, respectively. The

η parameter is the learning rate.

However, contemporary datasets D do not fit into the mem-

ory of a single computer or its GPUs, e.g. the size of popular

datasets such as ImageNet [19] is larger than 200GB. To tackle

this challenge, stochastic gradient descent emerged as a popular

technique. Specifically, we randomly sample a subset from D ,

often referred to as a minibatch B. Instead of evaluating the

gradient g on the entire dataset D , we approximate g using

the samples in a given B, i.e., we assume g≈ ∂ℓB
∂w

.

To parallelize this training process over a cluster, D can be

divided into partial datasets Di which are assigned to corre-

sponding worker node i. Each worker can then draw minibatch

Bi from its own Di to calculate local gradient gi=
∂ℓBi

∂w
and

send gi to an aggregator node to update the weights as follows:

w(t+1)=w(t)−η ·∑
i

∂ℓ
B

(t)
i

∂w(t)
=w(t)−η ·∑

i

g
(t)
i .

The aggregator node, then, can send back the updated

weights w(t+1) to all worker nodes. This mathematical formu-

lation avoids moving the training data and only communicates

the weights and gradients. Although the weights and gradients

are much smaller than the training data, they are still a few

hundreds of mega bytes and need to be communicated often.

B. Communication in Distributed Training

Building on this mathematical ground, there have been

many research and development efforts in distributing DNN

training [1–9]. State-of-the-art distributed training algorithms

take the hierarchical worker-aggregator approach [6, 13–15], as

illustrated in Fig. 2. In these algorithms, worker and aggregator

nodes construct a tree where the leaves are the worker nodes

that compute the local gradient (g
(t)
i) and the non-leaf nodes are

the aggregator nodes that collect the calculated local gradients

to update the weights (w(t)) and send back the updated weights

176

Data

W
o
rk
e
r

Data

W
o
rk
e
r

Data

W
o
rk
e
r

Data

W
o
rk
e
r

Gradients

Weights

Aggregator Aggregator

Aggregator

Fig. 2: Worker-aggregator approach for distributed training.

M
o

d
e
l
S

iz
e
 (
M

B
)

0

100

200

300

400

500

600

Al
ex

Ne
t

Re
sN

et
-1
52

VG
G-

16

C
o

m
m

u
n
ic

a
ti
o

n

T
im

e
 %

0%

25%

50%

75%

100%

Al
ex

Ne
t

Re
sN

et
-1
52

VG
G-

16

(a) (b)

Fig. 3: (a) The size of weights (or gradients). (b) The percentage
of the time spent to exchange g and w in total training time with a
conventional worker-aggregator approach.

(w(t+1)) to worker nodes. The hierarchical reduction tree of

aggregator nodes not only effectively disperses the networking

and aggregation workload to distributed nodes, but also

significantly reduces the size of system-wide data exchange by

performing the intermediate aggregations. However, even with

the hierarchical approach, each aggregator node should com-

municate with a group of worker nodes and aggregate the local

gradients, which becomes the communication and computation

bottleneck. Fig. 3 reports the exchanged weight/gradient size

and the fraction of communication time when training state-of-

the-art DNN models on a five-node cluster with 10Gb Ethernet

connections. For instance, per each iteration, AlexNet requires

233 MB of data exchange for each of gradients and weights.

Due to the large size of data exchange, 75% of training time for

AlexNet goes to the communication. Some recent DNNs (e.g.

ResNet-50: 98 MB) that have smaller sizes than AlexNet are

also included in our evaluations (Sec. VIII). Nonetheless, as the

complexity of tasks moves past simple object recognition, the

DNNs are expected to grow in size and complexity [20]. The

communication/computation ratio becomes even larger as the

specialized accelerators deliver higher performance and reduces

the computation time and/or more nodes are used for training.

III. GRADIENTS FOR COMPRESSION

To reduce the communication overhead, INCEPTIONN aims

to develop a compression accelerator in NICs. Utilizing

conventional compression algorithms for acceleration is

suboptimal since the complexity of algorithms will impose

significant hardware cost and latency overhead. Thus, in

designing the compression algorithm, we leverage the

following algorithmic properties: (1) the gradients have

significantly larger amenity to aggressive compression

T
o

p
-1

 a
c
c
u
ra

c
y

0.0

0.2

0.4

0.6

0.8

1.0

g only w only w & g

No trunc. 16b-T 22b-T 24b-T

T
o

p
-5

 a
c
c
u
ra

c
y

0.0

0.2

0.4

0.6

0.8

1.0

g only w only w & g

HDCAlexNet

Fig. 4: Impact of floating-point truncation of weight w only, gradient
g only, and both w and g on training accuracy of AlexNet and
Handwritten Digit Classification (HDC). Floating-point truncation
drops the LSB mantissa or even exponent bits of the 32-bit IEEE FP
format. xb-T represents truncation of x LSBs.

compared to weights, and (2) the gradients mostly fall in the

range between -1.0 and 1.0 and the distribution peaks tightly

around zero with low variance. These characteristics motivate

the design of our lossy compression for gradients.

A. Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training

are normally 32-bit floating-point values, whereas they are 16

or 32-bit fixed-point values in the inference phase [21, 22]. It

is widely known that floating-point values are not very much

compressible with lossless compression algorithms [23]. For

instance, using Google’s state-of-the-art lossless compression

algorithm, Snappy, not only offers a poor compression ratio

of ∼1.5, but also increases the overall time spent for the

training phase by a factor of 2 due to the computing overhead

of compression. Thus, we employ a more aggressive lossy

compression, exploiting tolerance of DNN training to imprecise

values at the algorithm level. While lossy compression provides

higher compression ratios and thus larger performance benefits

than lossless compression, it will affect the prediction (or

inference) accuracy of trained DNNs. To further investigate this,

we perform an experiment using a simple lossy compression

technique: truncating some Least Significant Bits (LSBs) of

the g and w values. Fig. 4 shows the effect of the lossy

compression on the prediction accuracy of both trained AlexNet

and an handwritten digit classification (HDC) net. This result

shows that the truncation of g affects the predictor accuracy

significantly less than that of w, and the aggressive truncation of

w detrimentally affects the accuracy for complex DNNs such as

AlexNet. This phenomenon seems intuitive since the precision

loss of w is accumulated over iterations while that of g is not.

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #000100

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #100000

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #300000

Fig. 5: Distribution of AlexNet gradient values at early, middle, and
final training stages.

177

DataWorker

Sum

Weights

DataWorker

Sum

Weights

Data
Worker

Sum

Weights

Data
Worker

Sum

Weights

Gradients

Weights

(a) Worker group organization.

Worker[0]

Worker[1]

Worker[2]

Worker[3]

Step 0: Block Partition

Step 1: Transmit and reduce (TR)

blk[0] blk[1] blk[2] blk[3]

Gradients

blk[0] blk[1] blk[2] blk[3]

Step 2: TR

blk[0] blk[1] blk[2] blk[3]

Step 3: TR

blk[0] blk[1] blk[2] blk[3]

Step 4: Send back reduced

results (SR)

blk[0] blk[1] blk[2] blk[3]

Step 5: SR

blk[0] blk[1] blk[2] blk[3]

Step 6: SR

(b) An example of distributed gradient exchange.

Fig. 6: INCEPTIONN gradient-centric distributed training algorithm in a worker group.

B. Tightness of Dynamic Range in Gradients

In designing the lossy compression algorithm, we leverage

the inherent numerical characteristics of gradient values, i.e.,

the values mostly fall in the range between -1.0 and 1.0 and

the distribution peaks tightly around zero with low variance.

We demonstrate the properties, analyzing the distribution

of gradients at three different phases during the training of

AlexNet. As plotted in Fig. 5, all the gradient values are

between -1 and 1 throughout the three training phases and

most values are close to 0. We also find a similar distribution

for other DNN models. Given this observation, we focus on the

compression of floating-point values in the range between -1.0

and 1.0 such that the algorithm minimizes the precision loss.

Our lossy compression algorithm (Section V) is built upon

these two properties of gradients, and exclusively aims to deal

with gradients. However, the gradients are only communicated

in one direction in the conventional distributed training

while the updated weights are passed around in the other

direction. Therefore, before delving into the details of our

compression technique and its hardware, we first discuss

our training algorithm that communicates gradients in all the

directions. Hence, this algorithm can maximize the benefits

of INCEPTIONN’s in-network acceleration of gradients.

IV. GRADIENT-CENTRIC DISTRIBUTED TRAINING

Fig. 6(a) depicts the worker group organization of the

INCEPTIONN training algorithm. In this algorithm, there is no

designated aggregator node in the worker group. Instead, each

worker node maintains its own model w (i.e., model replica),

and only exchanges and aggregates a subset of gradients g

with two neighboring nodes after each iteration. Fig. 6(b)

illustrates step-by-step the procedure of the algorithm using

an example. At the beginning, every worker node starts

with the same w0 and INCEPTIONN evenly partitions gradient

vectors into four blocks, blk[0], blk[1], blk[2], and blk[3] for

four worker nodes. Every training iteration, each node loads

and computes a mini-batch of data based on the current w

and then generates a local g to be exchanged. Subsequently,

INCEPTIONN exchanges and aggregates g in two phases.

On node[i] in a N-node cluster

1: Initialize by the same model weights w0, learning rate η
2: for iteration t=0,...,(T−1) do
3: Load a mini-batch B of training data
4: Forward pass to compute current loss ℓB
5: Backward pass to compute local gradient gi←

∂ℓB
∂w

6: (Compress local gradient gi←Compress(gi))
7: // Gradient Exchange Begin
8: Partition gi evenly into N blocks
9: for step s=1,...,N−1 do

10: Receive a block rb from node[(i−1)%N],
11: then blklocal[(i−s)%N]←rb

⊕
blklocal[(i−s)%N]

12: Send blklocal[(i−s+1)%N] to node[(i+1)%N]
13: end for
14: for step s=N,...,2N−2 do
15: Receive a block rb from node[(i−1)%N],
16: then blklocal[(i−s+1)%N]←rb

17: Send blklocal[(i−s+2)%N] to node[(i+1)%N]
18: end for
19: // Gradient Exchange End
20: (Decompress aggregated gradient gi←Decompress(gi))
21: Update w←w−η ·gi

22: end for

Algorithm 1: INCEPTIONN gradient-centric distributed training
algorithm for each worker node.

(P1) aggregation of gradients. worker[0] sends blk[0] to

its next node, worker[1]. As soon as the blk[0] is received,

worker[1] performs a sum-reduction on the received blk[0]

and its own blk[0] (of worker[1]). This concurrently happens

across all four workers (“Step 1”). This step is repeated two

more times (“Step 2” – “Step 3”) until worker[0], worker[1],

worker[2], and worker[3] have fully aggregated blk[1], blk[2],

blk[3], and blk[0] from all other 3 workers, respectively.

(P2) propagation of the aggregated gradients. worker[3]

sends blk[0] to worker[0]. Now, worker[0] has blk[0] and blk[1].

This concurrently happens across all four workers and every

worker has two fully aggregated blocks (“Step 4”). This step

is repeated two more times (“Step 5” – “Step 6”) until every

worker has g which is fully aggregated from all four workers.

Algorithm 1 formally describes the INCEPTIONN training

algorithm to generalize it for an arbitrary number of workers,

where the
⊕

denotes sum-reduction.

In summary, the INCEPTIONN training algorithm utilizes the

178

Input : f : 32-bit single-precision FP value
Output :v: Compressed bit vector (32, 16, 8, or 0 bits)

t: 2-bit tag indicating the compression mechanism

s ← f [31] // sign
e ← f [30:23] // exponent
m ← f [22:0] // mantissa
if (e≥127) then

v← f [31:0]
t←NO COMPRESS // 2’b11

else if (e<error bound) then
v←{}
t←0BIT COMPRESS // 2’b00

else if (error bound≤e<127) then
n shi f t←127−e
shi f ted m←concat(1’b1, m)>>n shi f t
if (e≥error bound+⌈(127−error bound)/2⌉) then

v←concat(s, shi f ted m[22:8])
t←16BIT COMPRESS // 2’b10

else
v←concat(s, shi f ted m[22:16])
t←8BIT COMPRESS // 2’b01

end
end

Algorithm 2: Lossy compression algorithm for single-precision
floating-point gradients.

network bandwidth of every worker evenly unlike the worker-

aggregator approach, creating the communication bottleneck.

Furthermore, the algorithm performs the computation for

aggregating gradients across workers in a decentralized

manner, avoiding the computation bottleneck at a particular

node. Lastly, the INCEPTIONN algorithm can be efficiently

implemented with popular distributed computing algorithms

such as Ring AllReduce [24].

V. COMPRESSING GRADIENTS

Compression. Algorithm 2 elaborates the procedure of com-

pressing a 32-bit floating-point gradient value (f) into a com-

pressed bit vector (v) and a 2-bit tag indicating the used com-

pression mechanism (t). Note that this algorithm is described

based on the standard IEEE 754 floating-point representation

which splits a 32-bit value into 1 sign bit (s), 8 exponent bits (e),

and 23 mantissa bits (m). Depending on the range where f falls

in, the algorithm chooses one of the four different compression

mechanisms. If f is larger than 1.0 (i.e., e≥127), we do not

compress it and keep the original 32 bits (NO COMPRESS). If

f is smaller than an error bound, we do not keep any bits from f

(0BIT COMPRESS). When the gradient values are in the range

(error bound < f < 1.0), we should take a less aggressive

approach since we need to preserve the precision. The simplest

approach would be to truncate some LSB bits from the mantissa.

However, this approach not only limits the maximum obtainable

compression ratio since we need to keep at least 9 MSB

bits for sign and exponent bits, but also affects the precision

significantly as the number of truncated mantissa bits increases.

Instead, our approach is to always set e to 127 and to not include

the exponent bits in the compressed bit vector. Normalizing

e to 127 is essentially multiplying 2(127−e) to the input value;

therefore, we need to remember the multiplicand so that it can

be decompressed. To encode this information, we concatenate a

1-bit ‘1’ at the MSB of m and shift it to the right by 127−e bits.

Then we truncate some LSB bits from the shifted bit vector

and keep either 8 or 16 MSB bits depending on the range of

Input :v: Compressed bit vector (32, 16, 8, or 0 bits)
t: 2-bit tag indicating the compression mechanism

Output : f : 32-bit single-precision FP value

if (t=NO COMPRESS) then
f ←v[31:0]

else if (t=0BIT COMPRESS) then
f ←32’b0

else
if (t=8BIT COMPRESS) then

s←v[7]
n shi f t← f irst1 loc f rom MSB (v[6:0])

m←concat(v[6:0]<<n shi f t, 16’b0)
else if (t=16BIT COMPRESS) then

s←v[15]
n shi f t← f irst1 loc f rom MSB (v[14:0])

m←concat(v[14:0]<<n shi f t, 8’b0)
end
e←127−n shi f t
f ←concat(s, e, m)

end

Algorithm 3: Decompression algorithm.

value. Consequently, the compression algorithm produces a

compressed bit vector with the size of either 32, 16, 8, or 0

and 2-bit tag indicating the used compression mechanism.

Decompression. Algorithm 3 describes the decompression

algorithm that takes a compressed bit vector v and a 2-bit

tag t. When t is NO COMPRESS or 0BIT COMPRESS, the

decompressed output is simply 32-bit v or zero, respectively. If

t is 8BIT COMPRESS or 16BIT COMPRESS, we should recon-

struct the 32-bit IEEE 754 floating-point value from v. First, we

obtain the sign bit s by taking the first bit of v. Then we find the

distance from MSB to the first “1” in v, which is the multipli-

cand used for setting the exponent to 127 during compression.

Once we get the distance, e can be calculated by subtracting

the distance from 127. The next step is to obtain m by shifting

v to left by the distance and padding LSBs with zeros to fill

the truncated bits during compression. Since we now have s, e,

and m, we can concatenate them together as a 32-bit IEEE 754

floating-point value and return it as the decompression output.

VI.

IN-NETWORK ACCELERATION OF GRADIENT COMPRESSION

After applying compression algorithm in Section V, we may

significantly reduce the amount of data exchanged among nodes

in INCEPTIONN, but our final goal is to reduce the total training

time. In fact, although researchers in the machine learning

Fig. 7: Impact of software-based lossless (Snappy) and lossy
(SZ) compression algorithms on the total training time of AlexNet
and HDC. “Base” denotes baseline without compression. xb-T
represents truncation of x LSBs.

179

TCP/IP
Stack

DMA
and
NIC

Driver

Network
Applications

PCI
Express
(Gen3)

Packet
DMA

S2C

C2S

Compression

Engine

Decompression

Engine

Virtual
FIFO

WR

RD WR

RD

10G
Ethernet

IPs

10G
Ethernet

IPs

GTH
Transceiver

GTH
Transceiver

…

…

Network

Host CPU

FPGA Chip

FPGA Board

Fig. 8: Overview of NIC architecture integrated with compressor and decompressor.

community have proposed other compression algorithms [25–

29], most of them did not report the total training wall-clock

time after evaluating only the compression ratio and the

impact of compression on training accuracy. Directly running

these compression algorithms in software, though reducing

the communication time, can place heavy burden on the

computation resources and thus seriously increase computation

time. Specifically, such compression algorithms need to run on

the CPUs as GPUs cannot offer efficient bit manipulation (e.g.,

packing some bits from floating-point numbers) compared to

CPUs. Prior work [30] shows GPUs offer only ∼50% higher

throughput at lower compression ratios than Snappy [31].

Fig. 7 shows that the training time increases by a factor

of 2∼4× even when using the fastest lossless (Snappy) and

lossy (SZ [32]) compression algorithms. Even a simple lossy

truncation operation significantly increases the computation

time, because simply packing/unpacking a large number of g

values also significantly burdens the CPUs. This in turn consid-

erably negates the benefit of reduced communication time as

shown in Fig. 7, only slightly decreasing the total training time.

Therefore, to reduce both communication and computation

times, we need hardware-based compression for INCEPTIONN.

A. Accelerator Architecture and Integration with NIC

NIC architecture. To evaluate our system in a real world

setting, we implement our accelerators on a Xilinx VC709

evaluation board [33] that offers 10Gbps network connectivity

along with programmable logic. We insert the accelerators

within the NIC reference design [34] that comes with the

board. Fig. 8 illustrates this integration of the compression and

decompression engines. For output traffic, as in the reference

design, the packet DMA collects the network data from the host

system through the PCIe link. These packets then go through

the Compression Engine that stores the resulting compressed

data in the virtual FIFOs that are used by the 10G Ethernet

MACs. These MACs drive the Ethernet PHYs on the board and

send or receive the data over the network. For input traffic, the

Ethernet MACs store the received data from the PHYs in the

virtual FIFOs. Once a complete packet is stored in the FIFOs,

the Decompression Engine starts processing and passing it to

the packet DMA for transfer to the CPU. Both engines use the

standard 256-bit AXI-stream bus to interact with other modules.

Although hardware acceleration of the compression and

decompression algorithms is straightforward, their integration

within the NIC poses several challenges. These algorithms are

devised to process streams of floating-point numbers, while

the NIC deals with TCP/IP packets. Hence, the accelerators

need to be customized to transparently process TCP/IP

packets. Furthermore, the compression is lossy, the NIC

needs to provide the abstraction that enables the software to

activate/deactivate the lossy compression per packet basis. The

following discusses the hardware integration and Section VI-B

elaborates on the software abstraction.

Compression Engine. Not to interfere with the regular packets

that should not be compressed, the Compression Engine

first needs to identify which packets are intended for lossy

compression. Then, it needs to extract their payload, compress

it, and then reattach it to the packet. The Compression Engine

processes packets in bursts of 256 bits, which is the number

of bits an AXI interface can deliver in one cycle. Our engines

process the packet in this burst granularity to avoid curtailing

the processing bandwidth of the NIC. Our software API marks

a packet compressible by setting the Type of Service (ToS)

field [35] in the header to a special value. Since the ToS field

is always loaded in the first burst, the Compression Engine

performs the sequence matching at the first burst and identifies

the compressible packets. If the ToS value does not match,

compression is bypassed. The Compression Engine also does

not compress the header and the compression starts as soon

as the first burst of the payload arrives.

Fig. 9 depicts the architecture of the compression hardware.

The payload burst feeds into the Compression Unit equipped

with eight Compression Blocks (CBs), each of which performs

the compression described in Algorithm 2. Each CB produces

+

<<

+
CB

CB
Concat

Concat

<<

+
CB

CB
Concat

<<

<<

<<

+
CB

CB
Concat

Concat

<<

+
CB

CB
Concat

<<

Concat

Compression Unit

32

32

32

32

32

32

32

32

Concat+

+

2
7

2
 (
1

6
 -

 2
7

2
)

<<

Concat

256

F
IF

O

Alignment Unit

256

F
IF

O

>>

M
a
s
k 2

5
6

F
IF

O

Fig. 9: 256-bit burst compressor architecture.

180

256

Tag

Decoder
B

u
rs

t
B

u
ffe

r

16

256

(0~256)

C
o

n
c
a
t

Decompression

Unit

256

DB

DB

DB

DB

DB

DB

DB

DB

F
IF

O

F
IF

O

<<
512

Fig. 10: 256-bit burst decompressor architecture.

a variable-size output in the size of either 32, 16, 8, or 0 bits,

which need to be aligned as a single bit vector. We use a

simple binary shifter tree that produces the aligned bit vector

of which possible size is from 0 to 256. The 2-bit tags of the

eight CBs are simply concatenated as a 16-bit vector. Finally,

the aligned bit vector and tag bit vector are concatenated as

the final output of the Compression Unit, of which size is

at least 16 bits and can go up to 272 bits. For each burst,

the Compression Unit produces a variable-size (16 – 272) bit

vector; therefore, we need to align these bit vectors so that

we can transfer the 256-bit burst via the AXI interface. The

Alignment Unit accumulates a series of compressed bit vectors

and outputs a burst when 256 bits are collected.

Decompression Engine. Similar to the Compression Engine,

the Decompression Engine processes packets in the burst

granularity and identifies whether or not the received packet is

compressed through the sequence matching of the ToS field at

the first burst. If the packet is identified as incompressible or the

burst is header, decompression is bypassed. The payload bursts

of compressible packets is fed into the decompression hardware,

of which its architecture is delineated in Fig. 10. Since the

compressed burst that contains 8 FP numbers can overlap two

consecutive bursts at the Decompression Engine, reading only a

single burst could be insufficient to proceed to the decompres-

sion. Therefore, the Decompression Engine has a Burst Buffer

that maintains up to two bursts (i.e., 512 bits). When the Burst

Buffer obtains two bursts, it feeds the 16-bit tag to the Tag

Decoder to calculate the size of the eight compressed bit vectors.

Given the sizes, the eight compressed bit vectors are obtained

from the buffered 512 bits. Since each compressed bit vector

has a variable size of either 32, 16, 8 or 0 bits, the possible size

of the eight compressed bit vectors is from 0 and 256. These

eight compressed bit vectors (0 – 256) and the tag bit vector (16)

are fed into the eight Decompression Blocks (DBs) in the De-

compression Unit, which executes the decompression algorithm

described in Algorithm 3. Then, the Decompression Unit simply

concatenates the outputs from the eight DBs and transfers it via

the AXI interface. For the next cycle, Burst Buffer shifts away

the consumed bits and reads the next burst if a burst (i.e., 256

DNN Training Applications

U
s
e

r

S
p

a
c

e

O
p

e
n

M
P

I Application API

Networking API

K
e

rn
e

l

S
p

a
c

e

N
IC

H
a

rd
w

a
re

Other

Applications

Packets

System Call

collec_comm_comp

Packets (ToS = 28)

setsockopt

System Call

Compression Engine

collec_comm

System Call

Packets

… ……

Network

 subsystem

Fig. 11: Dataflow across the software stack and NIC hardware.

bits) has been consumed and the left bits are fewer than a burst.

B. APIs for Lossy Compression of Gradients

As mentioned previously, we identify the context of a

TCP/IP packet [36] by utilizing the ToS field in the IP header.

ToS is an 8-bit field in the header of a TCP/IP packet and

is used to prioritize different TCP/IP streams. We tag packets

that need to be compressed/decompressed with a reserved ToS

value of 0x28. For each socket connection, we can call the

setsockopt function to set the ToS field or update it on the fly.

Fig. 11 demonstrates how we tag TCP/IP packets that need

to be compressed/decompressed in the OpenMPI framework.

It shows a scenario where we co-run DNN training application

and some other networking applications on a server. To properly

tag TCP/IP packets that require compression/decompression,

we introduce MPI collective communication comp, which is a

specialized MPI collective communication API set. We imple-

ment our INCEPTIONN algorithm described in Section V without

compression with the default MPI collective communication

APIs. MPI collective communication comp propagates a vari-

able down to the OpenMPI networking APIs and sets the ToS op-

tion of the corresponding TCP sockets used for communication.

We do not modify the Linux kernel network stack and the pack-

ets with ToS set to 0x28 reach to the NIC like regular TCP pack-

ets. Inside the NIC, a simple comparator checks the ToS field

of each incoming packet; if the ToS field is set to 0x28, then

the packet is sent to the compression engine, otherwise we do

not perform compression for the outgoing packet. On a receiver

node NIC, we have the same comparator for incoming packets.

If the ToS field is set to 0x28, then we perform decompression

on the packet. Otherwise, the received packet is a regular Eth-

ernet packet and is directly sent to the processor for reception.

VII. METHODOLOGY

A. DNN Models

Table I enumerates the list of evaluated DNN models with

the used hyper-parameters for training.

AlexNet. AlexNet [17] is a CNN model for image classification,

which consists of 5 convolutional layers and 3 fully connected

layers with rectified linear unit (ReLU) as the activation

function. Before the first and the second fully connected layers,

the dropout layers are applied. The model size of AlexNet is

181

TABLE I: Hyperparameters of different benchmarks.

233 MB. For our experiments, we use 1,281,167 training and

50,000 test examples from the ImageNet dataset [19].

Handwritten Digit Classification (HDC). HDC [37–41] is a

DNN model composed of five fully-connected layers, which

performs Handwritten Digits Recognition. The dimension of

each hidden layer is 500 and the model size is 2.5 MB. The

used dataset is MNIST [42], which contains 60,000 training

and 10,000 test images of digits.

ResNet-50. ResNet [18] is a state-of-the-art DNN model for the

image classification task, which offers several variants that have

different number of layers. Our experiments use the most pop-

ular variant, ResNet-50, which contains 49 convolution layers

and 1 fully connected layer at the end of the network. ResNet-

50 has a model size of 98 MB and uses the ImageNet dataset.

VGG-16. VGG-16 [16] is another CNN model for image

classification, which consists of 13 convolutional layers and

3 fully connected layers. VGG-16 also uses ImageNet dataset

and its model size is 525 MB.

B. Distributed DNN Training Framework

We develop a custom distributed training framework in

C++ using NVIDIA CUDA 8.0 [43], Intel Math Kernel

Library (MKL) 2018 [44], and OpenMPI 2.0 [45]. Note that

INCEPTIONN can be implemented in publicly-released DNN

training frameworks such as TensorFlow [46]. However, our

custom distributed execution framework is more amenable for

integration with software and hardware implementation of our

lossy compression algorithm. In our custom training framework,

all the computation steps of DNN training such as forward and

backward propagations are performed on the GPU (also CPU

compatible), while communication is handled via OpenMPI

APIs. Besides, our framework implements diverse distributed

training architectures and communication algorithms using vari-

ous types of OpenMPI APIs to exchange gradients and weights.

C. Measurement Hardware Setup

We use a cluster of four nodes, each of which is equipped

with a NVIDIA Titan XP GPU [47], an Intel Xeon CPU

E5-2640 @2.6GHz [48], 32GB DDR4-2400T [49], and a

Xilinx VC709 board [33] that implements a 10Gb Ethernet

reference design along with our compression/decompression

accelerators. We employ an additional node as an aggregator

to support the conventional worker-aggregator based approach.

We also extend our cluster up to eight nodes to evaluate the

INCEPTIONN’s scalability, while the rest of experiments are

performed on the four-node cluster due to limited resources.

All nodes are connected to a NETGEAR ProSafe 10Gb Ethernet

switch [50]. Note that the state-of-the-art network architectures

TABLE II: Detailed time breakdown of training different
benchmarks using the worker-aggregator based five-node cluster.
Measurements are based on 100-iteration training time in seconds.

of datacenter at large Internet companies such as Google and

Facebook use 1∼10Gbps network connections within a rack

and 10∼100Gbps connections for the oversubscribed links

between the top of rack switches [51, 52]. As the servers

running the training applications are connected to the top of rack

switches, we did not consider supporting 40∼100Gbps network

connections for our experiments. Furthermore, we designed

the compression/decompression accelerators such that they do

not affect the operating frequency (100 MHz) and bandwidth

while successfully demonstrating the full functionality with the

modified NIC driver and OpenMPI APIs. Our distributed train-

ing framework runs concurrently on every node in our cluster

and all performance evaluations are based on the real wall

clock time. As we discover that the 10Gb Ethernet reference

design implemented in a Xilinx VC709 board can achieve only

∼2.1 Gb due to inefficiency in its driver and design, we use Intel

X540T1 10Gb Ethernet NICs [53] to measure the total training

and communication times when we do not deploy hardware

compression. That is, we use the Intel X540T1 NIC for all

the baseline measurements. To measure the communication

time after deploying hardware compression, we first measure

the breakdown of communication time (e.g., driver time, NIC

hardware time, and TX/RX time through links) from both NICs

based on Xilinx VC709 board and Intel X540T1 10Gb Ethernet

NICs. Then, we scale the TX/RX time through the link of the

Intel NIC based on a compression ratio corresponding to a

given iteration to calculate the total communication time while

accounting for the compression/decompression time.

VIII. EVALUATION

A. Performance Improvement with INCEPTIONN

We implement the conventional worker-aggregator training

algorithm in a cluster of four workers and one aggregator, as

the reference design. Table II shows a detailed breakdown of

the training time of AlexNet, HDC, ResNet-50 and VGG-16,

on the cluster. We report both the absolute and normalized

time for 100 iterations of training. Irrespective of which DNN

model we consider, Table II shows that (1) less than 30% of

the wall-clock time is spent for local computations including

the forward/backward propagations and update steps, and (2)

more than 70% of the time is used for communication, which

clearly indicates that the communication is the bottleneck.

Fig. 12 first compares the training time of the reference

design (WA) with that of the INCEPTIONN (INC), when

both run for the same number of iterations/epochs without

applying compression. We also provide the training time

182

T
ra

in
in

g
 T

im
e
 (
N

o
rm

)

HDCAlexNet VGG-16ResNet-50

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

Fig. 12: Comparison of training time between the worker-aggregator
based approach (WAx) and the INCEPTIONN (INCx) with and with-
out hardware-based compression in NICs. WA denotes the worker-
aggregator baseline without compression, and WA+C denotes WA
integrated with our compression only on gradient communication
with an error bound of 2−10. INC denotes INCEPTIONN baseline with-
out compression, and INC+C denotes with our compression given
an error bound of 2−10. Training time is measured in a cluster of four
workers for INCx and one more aggregator for WAx. Note that these
measurements are based on the same number of training iterations.

breakdown between computation and communication. This

result shows that even in a small cluster without compression,

the INCEPTIONN’s training algorithm offers 52%, 38%, 49%,

and 31% shorter total training time than the worker-aggregator

based algorithm for AlexNet, HDC, ResNet-50 and VGG-16,

respectively. This is due to 55%, 39%, 58%, and 36% reduction

in communication time in comparison with the reference design.

Intuitively, INCEPTIONN is much more communication-

efficient, because it not only removes the bottleneck link, but

also enables concurrent utilization of all the links among nodes.

Besides, this balanced gradient exchange also contributes to

the reduction of computation time as the gradient summation

is done by all the nodes in a distributed manner, whereas the

worker-aggregator based algorithm burdens the designated

aggregator nodes to perform the aggregation of the gradients

collected from a group of subnodes.

Furthermore, Fig. 12 compares the training time of the

reference design and INCEPTIONN system, when both are

equipped with our gradient compression (WA+C, INC+C).

From the result, we see that the conventional worker-aggregator

based approach can still benefit from our compression with

a ∼30.8% reduction in communication time compared to its

baseline (WA), although only one direction of communication

is applicable for compression. On the other hand, our gradient-

centric INCEPTIONN algorithm offers maximized compression

opportunities such that INCEPTIONN with hardware compression

(INC+C) gives ∼80.7% and ∼53.9% lower communication

time than the conventional worker-aggregator baseline (WA)

and INCEPTIONN baseline (INC), respectively. Therefore, the

full INCEPTIONN system (INC+C) demonstrates a training time

speedup of 2.2∼3.1× over the conventional approach (WA)

for the four models trained over the same number of epochs.

B. Effect of INCEPTIONN Compression on Final Accuracy

The accuracy loss in gradients due to lossy compression

may affect the final accuracy and/or prolong the training

because of the necessity to run more epochs to converge to the

S
p

e
e
d

u
p

o
v
e
r

W
A

0

1

2

3

4

AlexNet HDC ResNet-50 VGG-16

Fig. 13: Speedup of INCEPTIONN over the conventional approach
when both achieve the same level of accuracy. We use the same
notations with Fig. 12.

lossless baseline accuracy. To understand the effect of our lossy

compression on accuracy (and on prolonged training), we take

the conventional worker-aggregator system (WA) and the INCEP-

TIONN system (INC+C), and train the models until both systems

converge to the same level of accuracy. Fig. 13 presents the total

number of epochs and the final speedup of INCEPTIONN system

over the conventional training system to achieve the same level

of accuracy. From this, we observe that only a modest number

of more epochs (1 or 2) are required to reach the final accuracy

and thus INCEPTIONN system still offers a speedup of 2.2×
(VGG-16) to 3.1× (AlexNet) over the convention approach,

which matches the performance in Sec. VIII-A. Furthermore,

we find that the extra number of training epochs is small but es-

sential, without which an accuracy drop of ∼1.5% might incur.

C. Evaluation of INCEPTIONN Compression Algorithm

Fig. 14 compares the compression ratios among various lossy

compression schemes, and the impact of these compressions

on relative prediction accuracy of DNNs which are trained

through our training algorithm for the same number of epochs.

Specifically, we evaluate truncation of 16, 22, and 24 LSBs

A
v
e
ra

g
e

C
o

m
p

re
s
s
io

n
 R

a
ti
o

0

3

6

9

12

15

AlexNet HDC ResNet-50 VGG-16

Base 16b-T 22b-T 24b-T INC() INC() INC()2-10 2-8 2-6

R
e
la

ti
v
e
 T

o
p

-1

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

AlexNet HDC ResNet-50 VGG-16

0
.5

7
2

0
.9

8
5

0
.7

5
3

0
.7

1
5

Fig. 14: Comparison of (a) compression ratio and (b) impacts on
prediction accuracy of DNNs trained by INCEPTIONN training
algorithm with various lossy compression schemes. Note that the
accuracy is based on the same epochs of training (without extra
epochs) for each model. (“Base” denotes the baseline without
compression. The number on top of each “Base” bar denotes the
absolute prediction accuracy. xb-T represents truncation of x LSBs.
“INC” bars are the results of INCEPTIONN lossy compression with
a given error bound.)

183

TABLE III: The bitwidth distribution of compressed gradients. The
compressed gradients are composed of two bits for indication tag
and compressed data bits (0, 8, 16, or 32 bits).

of gradients and INCEPTIONN compression with the absolute

error bound of 2−10, 2−8 and 2−6. We observe that the naı̈ve

truncation of floating-point values only provides low constant

compression ratios (i.e., 4× at most) while suffering from

substantial accuracy loss (i.e., up to 62.4% degradation in

prediction accuracy of trained ResNet-50). This is due to the

fact that the compression errors introduced by naı̈ve truncation

are uncontrolled and open ended. Moreover, the potential of

truncation is limited by the length of the mantissa. Dropping

more bits will perturb the exponent (e.g., “24b-T” in Fig. 14),

which results in a significant loss of accuracy of trained

DNNs. In general, the truncation methods are only suitable for

simpler DNNs such as HDC and are not suitable for complex

DNNs such as AlexNet, VGG-16, or ResNet-50.

In contrast, our lossy compression shows much higher

compression ratios (i.e., up to 14.9×) as well as better

preserves the training quality than the truncation cases even for

those complex DNNs. Fig. 14 shows that the errors induced

by compression are well controlled by our algorithm and

the average compression ratios are boosted by the relaxation

of a given error bound. With the most relaxed error-bound

(2−6), almost all benchmarks demonstrate a compression

ratio close to 15× and the final accuracies of trained DNNs

are only degraded slightly, i.e., < 2% in absolute accuracy.

Note that this slight drop of accuracies incurs only when

DNNs are trained for the same number of epochs as their

lossless baselines and such drop can be easily compensated by

negligible extra epochs of training, as discussed in Sec. VIII-B.

To further understand the significant gains from our

compression algorithm, we analyze the bitwidth distribution of

compressed gradients. Table III reports the collected statistics.

When the error bound is 2−6, for all the evaluated models, our

algorithm compresses larger than 90% of gradients into two-bit

vectors. Even with 2−10 as the error bound, 75% to 94% of

gradients are compressed into the two-bit vectors. Leveraging

this unique value property of gradients, our lossy compression

algorithm achieves significantly larger compression ratio than

general-purpose compression algorithms.

Lastly, we find that the compression ratio of the gradients is

not necessarily proportional to the reduction in communication

time, as shown in Fig. 12 where the compression with an error

bound of 2−10 should have compressed the communication

Fig. 15: Scalability of INCEPTIONN training algorithm (INC) as com-
pared to the conventional worker-aggregator based algorithm (WA)
with different number of worker nodes. Gradient exchange time
consists of both gradient/weight communication and gradient sum-
mation time. All values are normalized against four-node WA case.

time by a factor of 5.5∼ 11.6×. This is because we do not

reduce the total number of packets and the network stack

overhead such as sending network packet headers remains

the same. Consequently, the use of more relaxed error bounds

(e.g., 2−8 and 2−6) only provides marginally additional

reduction in the overall communication time.

D. Scalability Evaluation of INCEPTIONN Training Algorithm

We also evaluate the scalability of our INCEPTIONN training

algorithm by extending our cluster up to eight worker nodes.

Since we had only four GPUs available at our disposal, we

only measured the gradient exchange time for the scalability

experiments. The gradient exchange time consists of both

gradient/weight communication and gradient summation time,

and represents the metric in the scalability evaluation, because

only communication and summation overheads scale with the

number of nodes, while the time consumed by other DNN

training steps such as forward pass, backward pass, weight

update are constant due to their local computation nature.

Fig. 15 compares the gradient exchange time between the

INCEPTIONN baseline (INC) and the worker-aggregator baseline

approach (WA), both without compression across different num-

ber of worker nodes. As shown in Fig. 15, the gradient exchange

time increases almost linearly with the number of worker nodes

in the WA cluster; however, it remains almost constant in the IN-

CEPTIONN cluster, especially when training larger models such

as AlexNet, VGG-16, and ResNet-50 where the network band-

width is the bottleneck. This phenomenon seems intuitive, since

in WA cluster both the communication and summation loads

congest the aggregator node, while the INCEPTIONN approach

balances these two loads by distributing them evenly among

worker nodes. Analytically, by adopting the communication

models in [24], the gradient exchange time in a WA cluster is:

(1+ log(p)) ·α+(p+ log(p)) ·n ·β +(p−1) ·n ·γ , where p de-

184

notes the number of workers, α the network link latency, n the

model size in bytes, β the byte transfer time, and γ the byte sum

reduction time. In practice, for distributed DNN training, the

first term is negligible compared to the second and third term,

due to the large model size n and the limited network bandwidth

β . The above equation explains clearly why the conventional

WA approach is not scalable with increasing number of nodes p,

i.e., the gradient exchange time is linear in cluster size. In con-

trast, the communication-balanced INCEPTIONN offers the gra-

dient exchange time of: 2(p−1)·α+2(p−1
p
)·n·β+(p−1

p
)·n·γ ,

where the effect of large cluster size p cancels in the second

and third term, making INCEPTIONN much more scalable.

IX. RELATED WORK

Acceleration for ML. There has been a large body of work that

leverage specialized accelerators for machine learning. Most of

the work have concentrated on the inference phase [22, 54–70]

while INCEPTIONN specifically aims for accelerating the training

phase. Google proposes the TPU [22], which is an accelerator

with the systolic array architecture for the inference of neural

networks. Microsoft also unveiled Brainwave [68] that uses

multiple FPGAs for DNN inference. Eyeriss is also an accelera-

tor for CNN inference of which compute units set a spatial array

connected through the reconfigurable multicast on-chip network

to support varying shape of CNNs and maximize data reuse.

While the inference phase has been the main target of ML

acceleration, the community has recently started looking into

the acceleration of training phase [13, 71–75]. ScaleDeep [72]

and Tabla [73] are ASIC and FPGA accelerators for the training

phase while offering higher performance and efficiency com-

pared to GPUs, which are the most widely used general-purpose

processors for ML training. Google Cloud TPU [71] is the next-

generation TPU capable of accelerating the training computa-

tion on the Google’s distributed machine learning framework,

Tensorflow [76]. CoSMIC [13] provides a distributed and

accelerated ML training system using multiple FPGA or ASIC

accelerators. Others [74, 75] focus on the acceleration of neural

nets training with approximate arithmetic on FPGA. These

ML training accelerators are either single-node solutions or

accelerators deployed on the centralized training systems based

on worker-aggregator approach, while INCEPTIONN provides

a decentralized gradient-based training system and an efficient

in-network gradient compression accelerators.

Distributed training algorithms. Li et al. [78, 79] proposed

a worker-aggregator based framework for distributed training

of deep nets and a few approaches to reduce the cost of

communication among compute nodes. More specifically, they

first explored the key-value store approach that exchanges

nonzero weight values, leveraging the sparsity of the weight

matrix. Secondly, they adopted a caching approach to reduce

the number of key lists that need to be transmitted by caching

repeatedly used key lists on both the sending and receiving

compute nodes. Third, they deployed approaches that randomly

or selectively skip some keys and/or values. Note that these

approaches assume that (1) the weights are indeed sparse

and (2) the framework updates and maintains weights using

centralized nodes. In contrast, our work is a gradient-centric

framework that exchanges only gradient values among compute

nodes to update each weight, exploiting our observation that

the gradient values are much more tolerant to more aggressive

lossy compression than weight values. Consequently, our

framework efficiently supports dense weights without notably

compromising the accuracy of the training procedure.

Recently, Iandola et al. [6] diverted from the worker-

aggregator architecture and developed a reduction tree based

approach. More specifically, instead of workers directly

communicating with the aggregators, gradients are reduced

by employing a tree based topology. Despite this topology,

a central unit remains, which takes care of the weight

vectors. Importantly, Iandola et al. [6] did not change the

communication paradigm, i.e., transmitting gradients to a

central unit which then broadcasts the weights.

Similar to the aforementioned algorithms, HogWild! [80],

DistBelief [1] and SSP [81] also take the worker-aggregator

approach, while they perform asynchronous update of gradients

during training to reduce synchronization overhead. These

works not only need to deal with stale gradient update, but

also significantly rely on centralized aggregators.

Gradient reduction techniques. There has been a

series of work that proposes techniques for gradient

reductions [12, 25, 26, 82, 83]. Quantization techniques for

gradients [25, 26, 82, 83] provide algorithmic solutions to

reduce the gradient precision while preserving the training

capability. Deep Gradient Compression [12] is a complementary

approach that reduces the amount of communication by

skipping the communication of the gradients in each

iteration. It will only communicate the gradients if the locally

accumulated gradient exceeds a certain threshold. These works

do not change the worker-aggregator nature of distributed

training, nor propose in-network acceleration of compression.

X. CONCLUSION

Communication is a significant bottleneck in distributed

training. The community has pushed forward to address this

challenge by offering algorithmic innovations and employing

the higher speed networking fabric. However, there has been

a lack of solution that conjointly considers these aspects

and provides an interconnection infrastructure tailored for

distributed training. INCEPTIONN is an initial step in this

direction that co-design hardware and algorithms to (1) provide

an in-network accelerator for the lossy compression of gradients,

and (2) maximize its benefits by introducing the gradient-

centric distributed training. Our experiments demonstrate that

INCEPTIONN reduces the communication time by 70.9∼80.7%

and offers 2.2∼3.1× speedup over the conventional training

system, while achieving the same level of accuracy.

ACKNOWLEDGMENT

This work is supported in part by grants from NSF (CNS-

1705047 and CNS-1557244) and SRC/JUMP Applications

Driving Architectures (ADA) Research Center, and equipment

donations from IBM-ILLINOIS Center for Cognitive

Computing Systems Research (C3SR) and Intel.

185

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in NIPS, 2012.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed
ML via a stale synchronous parallel parameter server,” in NIPS,
2013.

[3] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project Adam: Building an efficient and scalable deep learning
training system,” in OSDI, 2014.

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,” in
OSDI, 2014.

[5] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “SparkNet:
Training deep networks in spark,” in ICLR, 2016.

[6] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer,
“Firecaffe: near-linear acceleration of deep neural network
training on compute clusters,” in CVPR, 2016.

[7] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate,
large minibatch SGD: training ImageNet in 1 hour,” in
arXiv:1706.02677 [cs.CV], 2017.

[8] S. L. Smith, P. Kindermans, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” in ICLR, 2018.

[9] Y. You, Z. Zhang, C. Hsieh, and J. Demmel, “100-epoch
ImageNet Training with AlexNet in 24 Minutes,” in
arXiv:1709.05011v10 [cs.CV], 2018.

[10] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,”
Nature, 2015.

[11] F. Iandola, “Exploring the Design Space of Deep Convolutional
Neural Networks at Large Scale,” in arXiv:1612.06519, 2016.

[12] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth
for distributed training,” in ICLR, 2018.

[13] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and
H. Esmaeilzadeh, “Scale-out acceleration for machine learning,”
in MICRO, 2017.

[14] D. S. Banerjee, K. Hamidouche, and D. K. Panda, “Re-designing
CNTK Deep Learning Framework on Modern GPU Enabled
Clusters,” in CloudCom, 2016.

[15] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda,
“S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable
Deep Learning on Modern GPU Clusters,” in PPoPP, 2017.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[17] A. Krizhevsky, I. Sutskever, , and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Proc.
NIPS, 2012.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” in IJCV, 2015.

[20] I. Kokkinos, “Ubernet: Training a universal convolutional neural
network for low-, mid-, and high-level vision using diverse
datasets and limited memory,” in CVPR, 2017.

[21] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks,
“Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in ISCA, 2016.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,

J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Kille-
brew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Mag-
giore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in ISCA, 2017.

[23] S. Sardashti, A. Arelakis, and P. Stenstrm, A Primer on
Compression in the Memory Hierarchy. Morgan & Claypool
Publishers, 2015.

[24] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization
of collective communication operations in mpich.” IJHPCA,
vol. 19, 2005.

[25] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic
gradient descent and its application to data-parallel distributed
training of speech dnns.” in INTERSPEECH, 2014.

[26] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li,
“Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” CoRR, vol. abs/1705.07878, 2017.

[27] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” in NIPS, 2017.

[28] N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen, “Commu-
nication quantization for data-parallel training of deep neural
networks.” in MLHPC@SC. IEEE Computer Society, 2016.

[29] N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing.” in INTERSPEECH, 2015.

[30] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A.
Ross, “Massively-parallel lossless data decompression,” in
Parallel Processing (ICPP), 2016 45th International Conference
on. IEEE, 2016.

[31] Google, “Snappy compression: https://github.com/google/snappy,”
2011.

[32] S. Di and F. Cappello, “Fast error-bounded lossy hpc data
compression with sz,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016.

[33] Xilinx INC, “Xilinx virtex-7 fpga vc709 connectivity kit,
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-
g.html,” 2014.

[34] Xilinx INC, “Virtex-7 fpga xt connectivity targeted reference
design for the vc709 board, https://www.xilinx.com/support/
documentation/boards\ and\ kits/vc709/2014\ 3/ug962-v7-
vc709-xt-connectivity-trd-ug.pdf,” 2014.

[35] Network Working Group, “Requirement for comments: 3168,
https://tools.ietf.org/html/rfc3168,” 2001.

[36] M. Alian, A. H. Abulila, L. Jindal, D. Kim, and N. S. Kim,
“Ncap: Network-driven, packet context-aware power management
for client-server architecture,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on.
IEEE, 2017.

[37] Apache Incubator, “Handwritten digit recognition, https:
//mxnet.incubator.apache.org/tutorials/python/mnist.html,” 2017.

[38] Aymeric Damien, “Tensorflow-examples, https://github.com/
aymericdamien/TensorFlow-Examples/blob/master/examples/
3 NeuralNetworks/multilayer perceptron.py,” 2017.

[39] Google INC, “Keras examples, https://github.com/keras-
team/keras/blob/master/examples/mnist mlp.py,” 2017.

[40] Krzysztof Sopya, “Tensorflow mnist convolutional network
tutorial, https://github.com/ksopyla/tensorflow-mnist-convnets,”
2017.

[41] Google INC, “Tensorflow model zoo, https://github.com/
tensorflow/models,” 2017.

186

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” IEEE, 1998.

[43] NVIDIA Corporation, “NVIDIA CUDA C programming guide,”
2010.

[44] INTEL Corporation, “Intel math kernel library,
https://software.intel.com/en-us/mkl,” 2018.

[45] OpenMPI Community, “Openmpi: A high performance message
passing library, https://www.open-mpi.org/,” 2017.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zhang, “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” 2015.

[47] NVIDIA Corporation, “Nvidia titan xp, https://www.nvidia.com/
en-us/design-visualization/products/titan-xp/,” 2017.

[48] INTEL Corporation, “Xeon cpu e5, https://www.intel.
com/content/www/us/en/products/processors/xeon/e5-
processors.html,” 2017.

[49] Samsung Corporation, “Samsung ddr4, http://www.samsung.
com/semiconductor/global/file/product/DDR4-Product-guide-
May15.pdf,” 2017.

[50] NETGEAR Corporation, “Prosafe xs712t switch,
https://www.netgear.com/support/product/xs712t.aspx,” 2017.

[51] Alexey Andreyev, “Introducing data center fabric, the next-
generation facebook data center network, https://code.facebook.
com/posts/360346274145943/introducing-data-center-fabric-
the-next-generation-facebook-data-center-network/,” 2014.

[52] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hlzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade
of clos topologies and centralized control in googles datacenter
network,” in Sigcomm ’15, 2015.

[53] INTEL Corporation, “Intel x540, https://www.intel.com/
content/www/us/en/ethernet-products/converged-network-
adapters/ethernet-x540-t2-brief.html,” 2017.

[54] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn:
An accelerator for compressed-sparse convolutional neural
networks,” in ISCA, 2017.

[55] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accel-
erator efficiency through resource partitioning,” in ISCA, 2017.

[56] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep
neural network computing,” in ISCA, 2016.

[57] P. Judd, A. Delmas, S. Sharify, and A. Moshovos, “Cnvlutin2:
Ineffectual-activation-and-weight-free deep neural network
computing,” in ISCA, 2016.

[58] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on compressed
deep neural network,” in ISCA, 2016.

[59] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
in ISCA, 2016.

[60] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[61] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “ShiDianNao: shifting vision
processing closer to the sensor,” in ISCA, 2015.

[62] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao: A
machine-learning supercomputer.” in MICRO, 2014.

[63] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Misra, and H. Esmaeilzadeh, “From high-level deep neural
models to fpgas,” in MICRO, Oct. 2016.

[64] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow:
A flexible dataflow accelerator architecture for convolutional
neural networks,” in HPCA, 2017.

[65] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerator,” in MICRO, 2016.

[66] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang,
X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu,
X. Lin, and B. Yuan, “Circnn: Accelerating and compressing
deep neural networks using block-circulant weight matrices,”
in MICRO, 2017.

[67] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac:
A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in ISCA, 2016.

[68] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,
M. Haselman, C. Boehn, O. Firestein, A. Forin, K. S. Gatlin,
M. Ghandi, S. Heil, K. Holohan, T. Juhasz, R. K. Kovvuri,
S. Lanka, F. van Megen, D. Mukhortov, P. Patel, S. Reinhardt,
A. Sapek, R. Seera, B. Sridharan, L. Woods, P. Yi-Xiao, R. Zhao,
and D. Burger, “Accelerating persistent neural networks at
datacenter scale,” in HotChips, 2017.

[69] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo,
Z. Cheng, K. Rupnow, and D. Chen, “Machine learning on
FPGAs to face the IoT revolution,” in Proceedings of the
36th International Conference on Computer-Aided Design, ser.
ICCAD ’17. IEEE Press, 2017.

[70] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang,
P. Ouyang, Z. Cheng, K. Rupnow, and D. Chen, “High-
performance video content recognition with long-term recurrent
convolutional network for FPGA,” in Field Programmable Logic
and Applications (FPL), 2017 27th International Conference
on, 2017.

[71] J. Dean and U. Hölzle, “Google Cloud TPUs,”
https://www.blog.google/topics/google-cloud/google-cloud-
offer-tpus-machine-learning/, 2017.

[72] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” in ISCA, 2017.

[73] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh, “TABLA: A unified template-
based framework for accelerating statistical machine learning,”
in HPCA, 2016.

[74] Q. Wang, Y. Li, and P. Li, “Liquid state machine based pattern
recognition on fpga with firing-activity dependent power gating
and approximate computing,” in ISCAS, 2016.

[75] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient
parallel neuromorphic architectures with approximate arithmetic
on fpga.” Neurocomputing, vol. 221, 2017.

[76] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv:1603.04467 [cs],
2016.

[77] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W.
Keckler, “vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design,” in MICRO, 2016.

[78] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,” in
OSDI, 2014.

187

[79] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,”
in NIPS, 2014.

[80] B. Recht, C. R, S. J. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent.” in NIPS,
2011.

[81] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing, “More effective
distributed ml via a stale synchronous parallel parameter server.”
in NIPS, 2013.

[82] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” arXiv:1610.02132 [cs], 2017.

[83] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks
with Low Bitwidth Gradients,” arXiv:1606.06160 [cs], 2016.

188

