
Codes for Endurance-Limited Memories
Yeow Meng Chee∗, Michal Horovitz†, Alexander Vardy‡∗, Van Khu Vu∗, and Eitan Yaakobi§

∗ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
† Computer Science Department, Tel-Hai College, and The Galilee Research Institute - Migal, Upper Galilee, Israel
‡ Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

§ Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel
Emails:{ymchee,vankhu001}@ntu.edu.sg, horovitzmic@telhai.ac.il, avardy@ucsd.edu,

yaakobi@cs.technion.ac.il

Abstract—Resistive memories, such as phase change memories
and resistive random access memories have attracted significant
attention in recent years due to their better scalability, speed,
rewritability, and yet non-volatility. However, their limited en-
durance is still a major drawback that has to be improved before
they can be widely adapted in large-scale systems.

In this work, in order to reduce the wearout of the cells, we
propose a new coding scheme, called Endurance-Limited Memo-
ries (ELM) code, that increases the endurance of these memories
by limiting the number of cell programming operations. Namely,
an `-change t-write ELM code is a coding scheme that allows
to write t messages into some n binary cells while guarantee-
ing that each cell is programmed at most ` times. In case ` = 1
then these codes coincide with the well-studied write-once memory
(WOM) codes. We study four models of these codes which depend
upon whether the encoder knows, on each write, the number of
times each cell was programmed or only knows its state. For the
decoder, we consider two cases which depend upon whether the
decoder knows the previous state of the memory or not. For two
of these models we fully characterize the capacity regions and
present partial results for another model. Although only one of
the four models is suitable for resistive memories, we consider all
four in order to carry out a complete information-theory study
of endurance-limited codes.

I. INTRODUCTION

Emerging resistive memory technologies, such as resistive
random access memories (ReRAM) and phase-change mem-
ories (PCM), have the potential to be the future’s universal
memories. They combine several important attributes start-
ing from the speed of SRAM, the density of DRAM, and the
non-volatility of flash memories. However, they fall short in
their write endurance, which significantly increases their Bit
Error Rate (BER). Hence, solving the limited endurance of
these memories is crucial before they can be widely adapted
in large-scale systems.

Resistive memories are nonvolatile memories which are com-
posed of cells. The information is stored in the cells by chang-
ing their resistance. They combine both properties of DRAM
and flash memories. Similarly to flash memories and unlike
DRAM they are nonvolatile memories and thus they do not re-
quire refresh operations. Furthermore, like DRAM and unlike
flash memories they are rewritable without an erase operation.
The main challenge that has remained to be solved in order
to make these memories a legitimate candidate as a universal
memory is their limited write endurance, which is the goal on
this paper.

In order to combat the limited write endurance in resistive
memories, this paper proposes to study a new family of codes,
called Endurance-Limited Memory (ELM) codes. Assume there
are n binary cells and t messages that are required to be stored
in these cells sequentially. Assume also that each cell can be
programmed at most ` > 1 times. Then, we seek to find the set
of achievable rates, i.e., the capacity region, and design code
constructions for this model. Note that for ` = 1, we get the

classical problem of write-once memory (WOM) codes [2], [5],
[6], [9], [12], [13].

Consider for example the setup in which ` = 2 and three
writes, i.e., t = 3. A naive solution is to use a two-write WOM
code for the first two writes and then write n more bits on
the third write. The maximum sum-rate using this solution will
be log(3) + 1 = log(6), while, as will be shown in the paper,
the maximum sum-rate in this case is log(7). The intuition be-
hind this is as follows. Let p1 be the probability to program
a cell on the first write, so we assume that p1n cells are pro-
grammed. Then, on the second and third writes we have a two-
write WOM code problem for the p1n programmed cells, and
for the (1 − p1)n non-programmed cells, we can write twice
on them so no coding is needed. The maximum sum-rate is
achieved for p1 = 3/7 and p2 = 1/3. However, it is still a
challenging task to design codes that can approach sum-rate of
log(7).

There are several models of ELM codes which can be stud-
ied. These models are distinguishable by the information that is
available to the encoder and the decoder. In particular, for the
encoder we consider three cases which depend upon whether
the encoder knows the number of times each cell was pro-
grammed, Encoder Informed All (EIA), only the current state
of the cell, Encoder Informed Partially (EIP), or no information
about the cells state, Encoder Uninformed (EU). The decoder
will also have three cases, corresponding to the same infor-
mation that is available to the encoder. However, in this work
we consider only four models, where the encoder can be In-
formed All (EIA) or Informed Partially (EIP) and decoder is
Informed Partially (and in short Informed (DI)) or Uninformed
(DU). We note that from the practical point of view, only the
EIA:DU model suits the memories architecture, however we
comprehensively study all models in order to provide a rigor-
ous information-theoretic study of these codes.

Previous works have offered different solutions to combat
the write endurance of resistive memories. In [7], the authors
proposed to use Locally Repairable Codes (LRC) in order to
construct codes with small rewriting locality in order to mitigate
both the problems endurance and power consumption. In [15],
the authors proposed mellow writes, a technique which is tar-
geted to reduce the wearout of the writes rather than reduc-
ing the number of writes. Lastly, several other works proposed
coding schemes which correct stuck-at cells; see e.g. [8], [10],
[14].

The rest of this paper is organized as follows. In Section II,
we formally define the models studied in this paper and discuss
some basic observations. In Section III, we study the capacity
region of the EIA:DI model. In section IV, we carry the same
task for the EIA:DU model to show that its capacity region is
the same as the EIA:DI model. Then, in Section V, we present
several results on the EIP:DU model. Due to the lack of space,
some proofs and details in the paper are omitted. The EIP:DI
model will be studied in the full version of the paper.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 501

II. DEFINITIONS AND PRELIMINARIES

For a positive integer a, the set {0, . . . , a− 1} is defined by
[a]. A vector c ∈ [2]n will be called a cell-state vector. The
vector c = max{c1, c2} is defined by ci = max{c1,i, c2,i} for
all 1 6 i 6 n. The complement of a vector c is denoted by c.
The all ones vector will be denoted by 1. In the models studied
in this paper we assume that each cell can be programmed at
most ` times, so if the encoder attempts to program a cell more
than ` times then its value will not be changed. We see this as
an extension of the WOM model for ` = 1. Furthermore, since
we study in this paper only the zero-error case, the codes we
present will indeed satisfy this constraint.

Definition 1. An [n, t, `;M1, . . . ,Mt]
EX:DY `-change t-write

ELM code, where EX ∈ {EIA,EIP}, DY ∈ {DI,DU},
is a coding scheme comprising of n binary cells and is defined
by t encoding and decoding maps (Ej ,Dj) for 1 6 j 6 t.
For the map Ej , Im(Ej) is its image, where by definition
Im(E0) = {(0, . . . , 0)}. For a cell-state vector c, we let
N(c) ∈ [` + 1]n be the vector indicating the number of times
each cell was programmed. Furthermore, the set N(Im(Ej)) is
defined by N(Im(Ej)) = {N(c) : c ∈ Im(Ej)}. The encoding
and decoding maps are defined as follows.
(1) If (EX,DY) = (EIA,DI) then for all 1 6 j 6 t,
Ej : [Mj]×N(Im(Ej−1)) 7→ [2]n,

Dj : {(Ej(m,N(c)), c) : m ∈ [Mj], c ∈ Im(Ej−1)}7→[Mj],
such that for all (m, c) ∈ [Mj] × Im(Ej−1) it holds that
N(Ej(m,N(c))) ∈ [`+ 1]n and Dj(Ej(m,N(c)), c) = m.

(2) If (EX,DY) = (EIP,DI) then for all 1 6 j 6 t,
Ej : [Mj]× Im(Ej−1) 7→ [2]n,

Dj : {(Ej(m, c), c) : m ∈ [Mj], c ∈ Im(Ej−1)} 7→ [Mj],
such that for all (m, c) ∈ [Mj] × Im(Ej−1) it holds that
N(Ej(m, c)) ∈ [`+ 1]n and Dj(Ej(m, c), c) = m.

(3) If (EX,DY) = (EIA,DU) then for all 1 6 j 6 t,
Ej : [Mj]×N(Im(Ej−1)) 7→ [2]n,

Dj : Im(Ej) 7→ [Mj],
such that for all (m, c) ∈ [Mj] × Im(Ej−1) it holds that
N(Ej(m,N(c))) ∈ [`+ 1]n and Dj(Ej(m, c)) = m.

(4) If (EX,DY) = (EIP,DU) then for all 1 6 j 6 t,
Ej : [Mj]× Im(Ej−1) 7→ [2]n,

Dj : Im(Ej) 7→ [Mj],
such that for all (m, c) ∈ [Mj] × Im(Ej−1) it holds that
N(Ej(m, c)) ∈ [`+ 1]n and Dj(Ej(m, c)) = m.

For all EX ∈ {EIA,EIP}, DY ∈ {DI,DU}, the rate of
an [n, t, `;M1, . . . ,Mt]

EX:DY ELM code on the j-th write is
defined as Rj =

logMj

n , and the sum-rate is the sum of the in-
dividual rates on all writes, Rsum =

∑t
j=1Rj . A rates tuple

(R1, . . . , Rt) is called achievable in model EX:DY if for any
ε > 0 there exists an [n, t, `;M1, . . . ,Mt]

EX:DY
` ELM code

such that Rj > logMj

n − ε for all 1 6 j 6 t. The capacity
region of the EX:DY model is the set of all achievable rates
tuples, CEX:DY

t,` = {(R1, . . . , Rt)|(R1, . . . , Rt) is achievable},
and the maximum sum-rate will be denoted by REX:DY

t,` . Note
that the cell state is the parity of the number of times it was
programmed. Thus, if the encoder (or the decoder) knows the
vector N(c), in particular it knows the cell-state vector c. Ac-
cording to these definitions it is easy to verify the following
relations

CEIP :DU
t,` ⊆ CEIA:DU

t,` ⊆ CEIA:DI
t,` ,

CEIP :DU
t,` ⊆ CEIP :DI

t,` ⊆ CEIA:DI
t,` ,

and similar connections hold for the maximum sum-rate.

For ` > t all problems are trivial since it is possible to pro-
gram all cells on each write, so the capacity region in all models
is [0, 1]t and the maximum sum-rate is t. For ` = 1 we get the
classical and well-studied WOM codes [2], [5], [6], [9], [12],
[13]. In this case we notice that the EIA and EIP models are
the same. The capacity regions and maximum sum-rate are also
known; see e.g. [5], [9], [13]. In the rest of this paper, and un-
less stated otherwise, we assume that 1 6 ` 6 t. We conclude
this section with the following remark.

Remark 1. The codes studied in this paper can be viewed
as a generalization of WOM codes. Similarly to the re-
search on WOM codes, we also consider all four models in
Definition 1 even though only the fourth model, in which
(EX,DY)=(EIP,DU), is suitable for Resistive memories. This
extensive study not only provides a complete information-
theoretic investigation of these codes, but we also use the
results of the EIA:DI and EIA:DU models in order to derive
an upper bound on the capacity of the EIP:DU model. Fur-
thermore, we note that there is a strong connection between
ELM codes and non-binary WOM codes. In fact, we can treat
every cell as an (` + 1)-ary cell where it is only possible to
increase its level by one on each write and its maximum level
is `. While we will take advantage of existing WOM codes
in order to construct ELM codes, unfortunately it is not pos-
sible to use existing capacity results on WOM codes such as
the ones from [4]. The model in [4] assumes that the transi-
tions between the cell levels are transitive, in the sense that if
the transitions i → j and j → k are legal so is the transition
i→ k. However, this condition does not hold in the model of
this work. Further connections between these models will be
analyzed in the full version of this paper.

III. CAPACITY OF THE EIA:DI MODEL

In this section we study the capacity region and maximum
sum-rate of the EIA:DI model. Denote by ci, i ∈ [t+1], the bi-
nary length-n vector which represents the cell-state vector after
the i-th write, where c0 = 0. Recall that in the EIA:DI model
on the i-th write the encoder knows the number of times each
cell was programmed before the i-th write. That is, the encoder
receives as an input a length-n vector N(ci−1) ∈ [`+ 1]n that
represents the number of cell programs so far. Since the de-
coder is informed, on the i-th write it knows the state of the
memory before and after the i-th write, that is, ci−1 and ci.

Next we define for all t and ` the region Ct,` and in Theo-
rem 2, we prove that this is the capacity region of the EIA:DI
model. That is, we prove CEIA:DI

t,` = Ct,`. For 1 6 j 6 t and
i ∈ [` + 1], let pj,i ∈ [0, 1] be the probability to program a
cell on the j-th write, given that this cell has been already pro-
grammed i times. We define pj,` = 0 for 1 6 j 6 t. We let Qj,i
be the probability that a cell has been programmed exactly i
times on the first j writes. Formally, Qj,i is defined recursively
by using pj,i and pj,i−1 as follows.

Qj,i =

{
Qj−1,i(1− pj,i) +Qj−1,i−1pj,i−1, if i > 0,

Qj−1,i(1− pj,i), if i = 0,
(1)

where for j = 0 we set Q0,0 = 1 otherwise Q0,i = 1. The
rates region Ct,` is defined as follows.

Ct,` =
{
(R1, . . . , Rt)|∀1 6 j 6 t : Rj 6

∑`−1
i=0 Qj−1,ih(pj,i),

∀i ∈ [`] : pj,i ∈ [0, 12], and Qj,i is defined in (1)
}
.

(2)
Note that for ` = 1 it is possible to verify that we get the ca-

pacity region of WOM [5], [9], [13]. The next theorem proves
that this holds also for 2 6 ` 6 t− 1.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 502

Theorem 2. Ct,` is the capacity region of the `-change t-write
ELM in the EIA:DI model. That is, CEIA:DI

t,` = Ct,`.

Proof: On the j-th write, both the encoder and the decoder
know the cell-state of the memory before writing the new data,
cj−1, and therefore programming the current memory state, cj ,
is equivalent to writing a length-n binary vector which repre-
sents the difference between these two states, cj + cj−1.

Let Xj be a length-n binary vector, where Xj,k = 1 if and
only if the k-th cell is tried to be programmed on the j-th write.
Similarly, Yj , is a length-n binary vector, where Yj,k = 1 if
and only if the k-th cell was actually programmed on the j-th
write, that is, Yj = cj + cj−1. Additionally, on the j-th write,
the encoder knows an additional vector Nj−1 = (x1, . . . , xn) ∈
[`+1]n, where xk represents the number of times that the k-th
cell was programmed after the first j − 1 writes. Note that N0

is the all-zero vector.
The rest of the proof consists of two parts. The first part,

called the direct part, proves Ct,` ⊆ CEIA:DI
t,` , and in the

second, called the converse part, we prove CEIA:DI
t,` ⊆ Ct,`.

The direct part can be proved by the results from Sec-
tion IV for the EIA:DU model, since by the definition of the
models CEIA:DU

t,` ⊆ CEIA:DI
t,` , and by Theorem 10 we get

Ct,` ⊆ CEIA:DU
t,` . However, we can prove the direct part ex-

plicitly for the EIA:DI model by random coding technique.
Due to lack of space, we omit this part.

For the converse part we need to prove that if there exists
an [n, t, `;M1, . . . ,Mt]

EIA:DI ELM code, then(
logM1

n
,
logM2

n
, . . . ,

logMt

n

)
∈ Ct,`.

Let S1, . . . , St be independent random variables, where Sj is
uniformly distributed over the messages set [Mj], and Ŝj is the
decoding result on the j-th write. The data processing inequal-
ity yields the following Markov chain:

Sj |Nj−1 — Xj |Nj−1 — Yj |Nj−1 — Ŝj |Nj−1
and therefore, I(Xj ;Yj |Nj−1) > I(Sj ; Ŝj |Nj−1). Addi-
tionally, since we discuss the zero-error case we have that
Sj = Ŝj and Sj is independent on Nj−1, then we have
I(Sj ; Ŝj |Nj−1) = H(Sj). Let L be an index random variable,
which is uniformly distributed over the index set [n]. Since L
is independent of all other random variables we get
1

n
I(Xj ;Yj |Nj−1) 6

1

n
H(Yj |Nj−1)

(a)

6
1

n

∑n−1
k=0 H(Yj,k|Nj−1,k)

(b)
= H(Yj,L|Nj−1,L, L)

(c)

6 H(Yj,L|Nj−1,L)
=
∑`
i=0 Pr(Nj−1,L= i)H(Yj,L|Nj−1,L = i)

(d)
=
∑`−1
i=0 Pr(Nj−1,L= i)H(Yj,L|Nj−1,L = i),

where steps (a) and (c) follow from the fact that entropy of a
vector is not greater than the sum of the entropies of its com-
ponents, and conditioning does not increase the entropy. Step
(b) follows from the fact that

H(Yj,L|Nj−1,L, L) =
∑n−1
k=0 Pr(L = k)H(Yj,k|Nj−1,L, L = k)

=
1

n

∑n−1
k=0 H(Yj,k|Nj−1,k),

and step (d) follows from H(Yj,L|Nj−1,L = `) = 0.
Now, we set pj,i = Pr(Yj,L = 1|Nj−1,L = i), and thus we

can conclude that Qj,i = Pr(Nj,L = i) where Qj,i is calcu-
lated in Equation (1), and then
log(Mj)

n
6

1

n
I(Xj ;Yj |Nj−1)

6
∑`−1
i=0 Pr(Nj−1,L = i)H(Yj,L|Nj−1,L = i)

=
∑`−1
i=0 Qj−1,ih (pj,i) ,

and the converse part is implied.
We note that the capacity region of the ε-error case in this

model is the same as for the zero-error case, where the con-
verse part for the ε-error case can be proved by using Fano’s
inequality [3, pp. 38]. This result will be presented in details
in the longer version of this paper.

Next, we seek to present the capacity region of the EIA:DI
model in a recursive form. While we see this representation of
the capacity region more intuitive, it will also help us in finding
the maximum sum-rate in this model. For all t > 1 and ` > 1,
let Ĉt,` be the following region which is defined recursively.

Ĉt,`=
{
(R1, . . . , Rt)|R1 6 h(p), p ∈ [0, 1],

for 2 6 j 6 t, Rj 6 p ·R′j + (1− p) ·R′′j ,

(R′2, . . . , R
′
t) ∈ Ĉt−1,`−1 and (R′′2 , . . . , R

′′
t)∈Ĉt−1,`

}
,

(3)
where Ĉt,0 = ∅, and for all ` > t we set Ĉt,` = Ĉt,t = [0, 1]t.

Theorem 3. For all t and `, Ĉt,` = Ct,`.

Proof: For the first direction, we prove by induction on t
that for all ` 6 t − 1, if R = (R1, . . . , Rt) = Ĉt,` then R ∈
CEIA:DI
t,` . Since CEIA:DI

t,` = Ct,`, we conclude that Ĉt,` ⊆ Ct,`.
The base of the induction, t = 1, is readily verified. For the

step, let R = (R1, R2, . . . , Rt) ∈ Ĉt,` such that R1 = h(p) for
p ∈ [0, 1] and for 2 6 j 6 t Rj = p1 ·R′j+(1−p1) ·R′′j where
(R′2, R

′
3, . . . , R

′
t) ∈ Ĉt−1,`−1 and (R′′2 , R

′′
3 , . . . , R

′′
t) ∈ Ĉt−1,`.

By the induction hypothesis, (R′2, R
′
3, . . . , R

′
t) ∈ CEIA:DI

t−1,`−1 and
(R′′2 , R

′′
3 , . . . , R

′′
t) ∈ CEIA:DI

t−1,` . Thus, we have two codes: C1 -
an (`− 1)-change (t− 1)-write ELM code which achieves the
rates tuple (R′2, R

′
3, . . . , R

′
t) and C2 - an `-change (t−1)-write

ELM code which achieves the rates tuple (R′′2 , R
′′
3 , . . . , R

′′
t).

Then, we can design an `-change t-write ELM code, such that
on the first write the encoder program a cell with probability
p for p ∈ [0, 1], and then on the next writes it applies C1 for
the cells that were programmed on the first write, and C2 for
the other cells. Thus, the rate tuple R is achieved.

The second direction, Ct,` ⊆ Ĉt,`, is proved by induction
on t, that is, for each t > 1 we prove that Ct,` ⊆ Ĉt,` for all
1 6 ` 6 t. The base of the induction, t = 1 and ` = 1, is triv-
ial. The induction assumption is that for each 1 6 `′ 6 t − 1,
Ct−1,`′ ⊆ Ĉt−1,`′ . For the step, let R = (R1, R2, . . . , Rt) ∈ Ct,`
which is achieved by the probabilities pj,i. Denote by
R′ = (R′2, R

′
3, . . . , R

′
t) ∈ Ct−1,`−1 the rates tuple which

is attained by the probabilities p′j,i = pj+1,i+1, and by
R′′ = (R′′2 , R

′′
3 , . . . , R

′′
t) ∈ Ct−1,` the rates tuple which is at-

tained by the probabilities p′′j,i = pj+1,i. Recall that we define
Ĉt−1,t = Ĉt−1,t−1, and Ĉt−1,0 = ∅. It can be easily verified
that for all j, 2 6 j 6 t, Rj = p1,1R

′
j + (1− p1,1)R′′j . By the

induction hypothesis, R′ ∈ Ĉt−1,`−1 and R′′ ∈ Ĉt−1,`. Thus,
by defining p = p1,1 we get a recursive form for R, and we
can conclude Ct,` ⊆ Ĉt,`.

Using the result from Theorem 3, it is possible to find the
maximum sum-rate of this model, REIA:DI

t,` . Note that since
every cell can be programmed at most ` times, it is possible to
show that REIA:DI

t,` 6 log
∑`
i=0

(
t
i

)
. The next theorem assures

that this upperbound is indeed tight.

Theorem 4. For all t and `, REIA:DI
t,` = log

∑`
i=0

(
t
i

)
, and this

value is achieved for p = p1,1 =
∑`−1

i=0 (
t−1
i)∑`

i=0 (
t
i)

, where p and p1,1

are defined in Ĉt,` and Ct,`, respectively. For example, if ` = 2
the maximum sum-rate is achieved for p = p1,1 = 2t

t2+t+2 .

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 503

IV. THE EIA:DU MODEL

In this section, we study the EIA:DU model, that is, en-
coder informed all and decoder uninformed. Our main con-
tribution is a construction of a capacity-achieving `-change t-
write EIA:DU-ELM code, which assures that the capacity re-
gions of the EIA:DI and EIA:DU models are the same, that is,
CEIA:DIA
t,` = CEIA:DI

t,` .
Let us start with the first non-trivial case when t = 3 and

` = 2. From Section III, we know that the capacity region of
the two-change three-write EIA:DI model is given by

CEIA:DI
3,2 =C3,2=

{
(R1, R2, R3)|R1 6 h(p1,0),

R26(1−p1,0) · h(p2,0) + p1,0 · h(p2,1),

R36(1−p1,0 · p2,1), p1,0, p2,0, p2,1∈[0, 1]
}
.

Since CEIA:DI
3,2 is an upper bound on the achievable rate region

of CEIA:DU
3,2 , we have that CEIA:DU

3,2 ⊆ CEIA:DI
3,2 . The following

theorem states that any point in the above capacity region is
also achievable, thereby we get that CEIA:DU

3,2 = CEIA:DI
3,2 .

Theorem 5. For any ε > 0 and p1,0, p2,0, p2,1 ∈ [0, 1],
there exists an explicit construction of a two-change three-
write EIA:DU-ELM code satisfying R1 > h(p1,0) − ε, R2 >
(1−p1,0)·h(p2,0)+p1,0 ·h(p2,1)−ε andR3 > (1−p1,0 ·p2,1)−ε.

Before presenting our construction for two-change three-
write EIA:DU-ELM codes, we introduce the following family
of WOM codes. We then use these WOM codes as component
codes in our construction of EIA:DU-ELM codes.

Definition 6. An [n, 2;M1,M2]
EI:DU
q two-write q-ary EI:DU-

WOM code is a coding scheme comprising of n q-ary bits. It
consists of two pairs of encoding and decoding maps (Eq,1,Dq,1)
and (Eq,2,Dq,2) which are defined as follows:
(1) Eq,1 : [M1] 7→ [q]n and Dq,1 : Im(Eq,1) 7→ [M1] such that

for all m1 ∈ [M1], Dq,1(Eq,1(m1)) = m1.
(2) Eq,2 : [M2]×Im(Eq,1) 7→ [q]n andDq,2 : Im(Eq,2) 7→ [M2]

such that for all (m2, c) ∈ [M2]× Im(Eq,1), Eq,2(m2, c) >
c and Dq,2(Eq,2(m2, c)) = m2.

We say that p = (p0, p1, . . . , pm−1) is a probability vector if∑m−1
i=0 pi = 1 and pi > 0 for all i ∈ [m]. For two positive

integers n, q and a probability vector p = (p0, p1, . . . , pq−1),
we denote by B(n,p) the set of all length-n q-ary vectors of
constant composition w = (w0, . . . , wq−1), where wi = pi · n
for i ∈ [q] 1. Let pj,i→k be the probability that on the j-th
write, a cell in state i is programmed to state k > i.

A family of two-write q-ary capacity-achieving EI:DU-WOM
codes was constructed recently by Shpilka [12]. Particularly,
given ε > 0 and probability vectors p1,0,p2,0, . . . ,p2,q−2, Sh-
pilka [12] constructed a family of capacity achieving two-write
q-ary EI:DU-WOM codes that match these probability vectors
on the first and second writes. We state this result formally.

Lemma 7. [12] For all (j, i) ∈ {(1, 0), (2, 0), (2, 1), . . . , (2, q −
2)}, let pj,i = (pj,i→i, pj,i→i+1, . . . , pj,i→q−1) be a probability
vector. Then, there exists an [n, 2;M1,M2]

EI:DU
q two-write q-

ary EI:DU-WOM code satisfying:
• Im(Eq,1) ⊆ B(n,p1,0) and the rate R1 = logM1

n > h(p1,0)−
ε.
• For all c1 ∈ Im(Eq,1), m2 ∈ [M2], and c2 = Eq,2(m2, c1),

the following condition holds. For i ∈ [q], let ci2 be a length-
w1,i, w1,i = n · p1,0→i, substring of c2 at all locations k such

1We assume here that pi is a rational number and n is large enough such
that pi · n is an integer for i ∈ [q]

that c1[k] = i. Then, ci2 ∈ B(w1,i,p2,i). Furthermore, the rate
R2 >

∑q−2
i=0 p1,0→i · h(p2,i)− ε.

We refer to the family of WOM codes from Lemma 7 as
[n, 2;M1,M2]

EI:DU
q (p1,0,p2,0, . . . ,p2,q−2). For the case q =

2, for shorthand, given p1,0→1 = p we denote these codes by
[n, 2;M1,M2]

EI:DU (p) (where p2,0→1 = 1/2). Furthermore,
using cooling codes, Chee et al. [2] provided the following
family of binary WOM codes.

Lemma 8. [2] For all p ∈ [0, 1/2], there exists a two-write
binary WOM code [n, 2;M1,M2]

EI:DU (p) such that M1 =∑τ
i=0

(
n
i

)
and M2 = 2n−τ−1, where τ + 1 = p · n. Therefore,

for any ε > 0, there exists n such that R1 = logM1

n > h(p) − ε
and R2 = logM2

n > 1− p− ε.

We are now ready to present a construction of two-change
three-write EIA:DU-ELM codes which establishes the result in
Theorem 5.

Construction 9. Given p1,0, p2,0, p2,1 ∈ [0, 1]. We use the fol-
lowing two WOM codes:

1) Let p1,0 = (p1,0→0, p1,0→1, p1,0→2) = (1 − p1,0, p1,0, 0),
p2,0 = (p2,0→0, p2,0→1, p2,0→2) = (0, p2,0, 1 − p2,0),
and p2,1 = (p2,1→1, p2,1→2) = (1 − p2,1, p2,1). Let C1

be an [n, 2;M1,M2]
EI:DU
3 (p1,0,p2,0,p2,1) two-write

ternary EI:DU-WOM code from Lemma 7 with two pairs
of encoder/decoder (E3,1,D3,1) and (E3,2,D3,2).

2) Let ρ1 = p1,0 ·p2,1, and C2 be an [n, 2;M ′1,M3]
EI:DU (ρ1)

two-write binary EI:DU-WOM code from Lemma 8 with
two pairs of encoder/decoder (E2,1,D2,1) and (E2,2,D2,2).

We construct an [n, 3, 2;M1,M2,M3]
EIA:DU two-change

three-write ELM code where its three pairs of encoder/decoder
mappings (EEIA:DU

j ,DEIA:DU
j) for j = 1, 2, 3 are defined as

follows.
First write: EEIA:DU

1 (m1) = E3,1(m1) for allm1 ∈ [M1]. Sim-
ilarly, DEIA:DU

1 (EEIA:DU
1 (m1)) = D3,1(E3,1(m1) = m1. Note

that since we chose the probability to program level 2 in the first
write of C1 to be zero, the output of the encoder E3,1 is indeed a
binary vector, so EEIA:DU

1 is well defined.
Second write: The idea is to use the second write encoder
E3,2 of C1 with the probability vectors p2,0 and p2,1, and
notice that here we write all cells to levels 1 or 2. Then,
we can view this “ternary word” as a binary word. Let
c1 = (c1,1, . . . , c1,n) ∈ Im(EEIA:DU

1) be the cell-state vec-
tor after the first write, and note that this is a binary vector. The
encoder/decoder (EEIA:DU

2 ,DEIA:DU
2) are defined formally as

follows. For all (m2, c1) ∈ [M2]× Im(EEIA:DU
1),

c2 = EEIA:DU
2 (m2, c1) = c′2(mod2),

where c′2 = E3,2(m2, c1) ∈ [3]n. Furthermore, for all
c2 ∈ Im(EEIA:DU

2),

DEIA:DU
2 (c2) = D3,2(c

′
2) = m2,

where c′2 = 2 · 1 − c2, that is, c′2,i = 1 if c2,i = 1 and c′2,i = 2
if c2,i = 0.
Third write: Let c2 be the cell-state vector after the second
write. We note that the encoder on the third write knows the
vector N(c2) ∈ [3]n but the decoder does not have this informa-
tion. Among the n cells, there are ρ1 · n cells which have been
programmed twice, where ρ1 = p1,0 · p2,1, and therefore (only)
these cells cannot be programmed on this write. Hence, the en-
coder can interpret the vector N(c2) as a length-n binary vector
indicating for each cell whehter it can be programmed on this
write. We denote this vector by c′2, so c′2[i] = 1 if and only if
N(c2)[i] = 2. We will use the code C2 to encode and decode

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 504

on this write. Specifically, the encoder/decoder mappings are
defined as follows: for all m3 ∈ [M3] and c2 ∈ Im(EEIA:DU

2),
EEIA:DU
3 (m3, N(c2)) = E2,2(m3, c′2).

Furthermore, for all c3 ∈ Im(EEIA:DU
3),

DEIA:DU
3 (c3) = D2,2(c3).

We are now ready to present the proof of Theorem 5.
Proof of Theorem 5: For any ε > 0 and p1,0, p2,0, p2,1 ∈

[0, 1], we choose the codes C1 and C2 in Construction 9 to
satisfy

R1(C1) > h(p1,0)− ε = h(p1,0)− ε,
since p1,0 = (1− p1,0, p1,0, 0),

R2(C1) > p1,0→0 · h(p2,0) + p1,0→1 · h(p2,1)− ε
> (1− p1,0) · h(p2,0) + p1,0 · h(p2,1)− ε,

and
R2(C2) > 1− ρ1 − ε = 1− p1,0 · p2,1 − ε.

The result follows from the fact that the rates-tuple of the
two-change three-write ELM code is (R1(C1), R2(C1), R2(C2)).

The solution for the case t = 3, ` = 2 can be generalized for
any t and `, so we get the following result. We skip the details
due to the lack of space.

Theorem 10. For all t and `, Ct,` ⊆ CEIA:DU
t,` , that is, for any

ε > 0 and a rates t-tuple (R1, . . . , Rt) ∈ CEIA:DI
t,` , there exists

an `-change t-write ELM code C such that its rate on the j-th
write satisfies Rj(C) > Rj − ε for all 1 6 j 6 t.

By Theorems 2 and 10, and by the definition of the models
we can conclude the EIA models.

Corollary 11. For all t and `, CEIA:DU
t,` = CEIA:DI

t,` = Ct,` and
REIA:DU
t,` = REIA:DI

t,` = log
∑`
i=0

(
t
i

)
.

We note that the capacity region for the ε-error in these models
is equal to the zero-error capacity. The details about the ε-error
case will be presented in a full version of this paper.

V. THE EIP:DU MODEL

In this section we study the EIP:DU model and in par-
ticular focus on its sum-rate. First, we note that since
CEIP :DU
t,` ⊆ CEIA:DU

t,` we also have that REIP :DU
t,` 6

REIA:DU
t,` = log

∑`
i=0

(
t
i

)
. Since we conjecture that at this

case there is no equality between these two cases, our goal
in this section is to provide constructions with the highest
sum-rate we can get. We first present a general construction
which is based upon WOM codes that already achieves high
sum-rates and we then show how to improve it for the case
t = 3, ` = 2.

The next construction provides a family of `-change t-write
EIP:DU-ELM codes.

Construction 12. Let (k1, . . . , k`) be such that 1 6 ki 6 t
for 1 6 i 6 ` and

∑`
i=1 ki = t. Let Ci be a binary ki-write

EI:DU-WOM code for 1 6 i 6 ` with sum-rate Ri. An
[n, t, `;M1, . . . ,Mt]

EIP :DU `-change t-write ELM code with
sum-rateR =

∑`
i=1Ri is constructed as follows.

• On the first k1 writes, we use the k1-write WOM code C1.
• On the following k2 writes, we use the k2-write WOM code
C2, by writing the complement of the cell-state vectors on each
write.

• We continue this process iteratively for the following ` − 2
WOM codes.

The maximum sum-rate of the ELM codes from Construc-
tion 12 is Rsum =

∑`
i=1 log(ki + 1) and it will be achieved

when each of the codes Ci, 1 6 i 6 ` will be ε-close to
its maximum sum-rate log(ki + 1). Hence, in order to max-
imize the sum-rate, our goal is to maximize the value of∑`
i=1 log(ki + 1) given that

∑`
i=1 ki = t. Assume that

t = k ·`+r, r ∈ [`], then this maximum value will be achieved
for k1 = · · · = kr = k + 1, kr+1 = · · · = k` = k.
Corollary 13. For all t and `, where t = k · `+ r, r ∈ [`],

REIP :DU
t,` > r · log(k + 2) + (`− r) · log(k + 1)

= ` log

(⌊
t

`

⌋
+1

)
+(t mod `) log

(
1+

1⌊
t
`

⌋
+ 1

)
.

Recall that the upper bound of the maximum sum-rate
REIP :DU 6 REIA:DU

t,` = log
∑`
i=0

(
t
i

)
. The following result

shows for ` = 2 the sum-rate of the ELM code constructed in
Construction 12 is already close to the upper bound.
Proposition 14. For ` = 2 and t > 3,REIP :DU

t,2 >REIA:DU
t,2 −1.

For example, for t = 3 and ` = 2, we get that the maxi-
mum achievable sum-rate of the codes in Construction 12 is
log 6 ≈ 2.585, while the upper bound is log 7 ≈ 2.807. Lastly,
we report here on another construction we have for this case
which provides a family of two-change three-write EIP:DU-
ELM codes which achieve the sum-rate of roughly 2.64. How-
ever, these codes work for the ε-error case and not for the
zero-error case, which we studied in the paper.

VI. ACKNOWLEDGEMENT

The research of Y. M. Chee is partially funded by the Singa-
pore Ministry of Education under grants MOE2017-T3-1-007 and
MOE2015-T2-2-086. The research of Alexander Vardy was sup-
ported in part by the National Science Foundation under Grants
CCF-1405119 and CCF-1719139. The research of E. Yaakobi is
partially supported by the German Science Foundation (GIF) Grant
I-1356-407.6/2016.

REFERENCES
[1] Y. M. Chee, T. Etzion, H. M. Kiah and A. Vardy, “Cooling codes:

Thermal-management coding for high-performance interconnects,” Proc.
IEEE Int. Symp. on Inform. Theory, Aachen, Germany, Jun. 2017.

[2] Y. M. Chee, H. M. Kiah, A. Vardy, and E. Yaakobi, “Explicit construc-
tions of finite-length WOM codes”, Proc. IEEE Int. Symp. on Inform.
Theory, Aachen, Germany, pp. 2870–2874, Jun. 2017.

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st Edi-
tion. New York: Wiley-Interscience, 1991.

[4] F. Fu and A. J. H. Vinck, “On the capacity of generalized write-once mem-
ory with state transitions described by an arbitrary directed acyclic graph,”
IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308–313, Sep. 1999.

[5] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. In-
form. Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[6] M. Horovitz and E. Yaakobi, “On the capacity of write-once memories,”
IEEE Trans. Inform. Theory, vol. 63, no. 8, pp. 5124–5137, Aug. 2017.

[7] Y. Kim et al.,“Locally rewritable codes for resistive memories,” IEEE J.
Selected Areas in Comm., vol. 34, no. 9, pp. 2470–2485, Sep. 2016.

[8] R. Maddah, R. Melhem, and S. Cho, “RDIS: Tolerating many stuck-
at faults in resistive memory”, IEEE Trans. Computers, vol. 64, no. 3,
pp. 847–861, Mar. 2015.

[9] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform.
and Contr., vol. 55, no. 1–3, pp. 1–19, Dec. 1982.

[10] S. Schechter, G.H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories,” Proc. of the 37th Annual Int.
Symp. on Comp. Arch., pp. 141–152, Saint-Malo, France, 2010.

[11] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble”, IEEE Trans. Inform. Theory, Vol. 59, No. 7, Jul. 2013.

[12] A. Shpilka, “Capacity-achieving multiwrite WOM codes”, IEEE Trans.
Inform. Theory, Vol. 60, No. 3, pp.1481–1487, Mar. 2014.

[13] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112, 1984.

[14] C. Xu, D. Niu, Y. Zheng, S. Yu, and Y. Xie, “Impact of cell failure on
reliable cross-point resistive memory design,” ACM Trans. Des. Autom.
Electron. Syst., vol. 20, no. 4, pp. 63:1–63:21, Sep. 2015.

[15] L. Zhang et al., “Mellow writes: Extending lifetime in resistive memories
through selective slow write backs”, 2016 ACM/IEEE 43rd Annual Int.
Symp. on Comp. Arch., pp. 519–531, Jun. 2016.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 505

