Session 2

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Improved Distributed Expander Decomposition and Nearly
Optimal Triangle Enumeration®

Yi-Jun Chang
University of Michigan
cyijun@umich.edu

ABSTRACT

An (e, ¢)-expander decomposition of a graph G = (V, E) is a clus-
tering of the vertices V.= V; U - - - U Vi such that (1) each cluster
Vi induces subgraph with conductance at least ¢, and (2) the num-
ber of inter-cluster edges is at most €|E|. In this paper, we give
an improved distributed expander decomposition, and obtain a
nearly optimal distributed triangle enumeration algorithm in the
CONGEST model.

Specifically, we construct an (e, §)-expander decomposition with
¢ = (¢/log n)zo(k> in O(nz/k - poly(1/¢,logn)) rounds for any
€ € (0,1) and positive integer k. For example, a (1/n°W, l/n"(l))—
expander decomposition only requires 0(n°D) rounds to com-
pute, which is optimal up to subpolynomial factors, and a
(0.01, 1/poly log n)-expander decomposition can be computed in
O(n") rounds, for any arbitrarily small constant y > 0. Previ-
ously, the algorithm by Chang, Pettie, and Zhang can construct a
(1/6,1/poly log n)-expander decomposition using O(n'~%) rounds
for any 6 > 0, with a caveat that the algorithm is allowed to throw
away a set of edges into an extra part which form a subgraph with
arboricity at most n®. Our algorithm does not have this caveat.

By slightly modifying the distributed algorithm for routing on
expanders by Ghaffari, Kuhn and Su [PODC’17], we obtain a triangle
enumeration algorithm using O(n!/3) rounds. This matches the
lower bound by Izumi and Le Gall [PODC’17] and Pandurangan,
Robinson and Scquizzato [SPAA’18] of Q(n'/3) which holds even
in the CONGESTED-CLIQUE model. To the best of our knowledge,
this provides the first non-trivial example for a distributed problem
that has essentially the same complexity (up to a polylogarithmic
factor) in both CONGEST and CONGESTED-CLIQUE.

The key technique in our proof is the first distributed approxima-
tion algorithm for finding a low conductance cut that is as balanced
as possible. Previous distributed sparse cut algorithms do not have
this nearly most balanced guarantee.!

“The full version of the paper is available at arXiv [7].

1LSupported by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

!Kuhn and Molla [25] previously claimed that their approximate sparse cut algorithm
also has the nearly most balanced guarantee, but this claim turns out to be incorrect [8,
Footnote 3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07...$15.00
https://doi.org/10.1145/3293611.3331618

66

Thatchaphol Saranurak
Toyota Technological Institute at Chicago
saranurak@ttic.edu

CCS CONCEPTS

» Theory of computation — Distributed algorithms.

KEYWORDS

expander decomposition, low diameter decomposition, triangle
enumeration

ACM Reference Format:

Yi-Jun Chang and Thatchaphol Saranurak. 2019. Improved Distributed Ex-
pander Decomposition and Nearly Optimal Triangle Enumeration. In 2019
ACM Symposium on Principles of Distributed Computing (PODC °19), July
29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3293611.3331618

1 INTRODUCTION

In this paper, we consider the task of finding an expander decomposi-
tion of a distributed network in the CONGEST model of distributed
computing. Roughly speaking, an expander decomposition of a
graph G = (V,E) is a clustering of the verticesV =V; U --- U Vx
such that (1) each component V; induces a high conductance sub-
graph, and (2) the number of inter-component edges is small.
This natural bicriteria optimization problem of finding a good ex-
pander decomposition was introduced by Kannan Vempala and
Vetta [22], and was further studied in many other subsequent
works [3, 31, 32, 34, 37, 41, 43].2 The expander decomposition has
a wide range of applications, and it has been applied to solving
linear systems [42], unique games [2, 36, 43], minimum cut [23],
and dynamic algorithms [30].

Recently, Chang, Pettie, and Zhang [8] applied this technique to
the field of distributed computing, and they showed that a variant of
expander decomposition can be computed efficiently in CONGEST.
Using this decomposition, they showed that triangle detection and
enumeration can be solved in é(nl/ 2) rounds.? The previous state-
of-the-art bounds for triangle detection and enumeration were
O(n?/?) and O(n3/%), respectively, due to Izumi and Le Gall [19].
Later, Daga et al. [11] exploit this decomposition and obtain the
first algorithm for computing edge connectivity of a graph exactly
using sub-linear number of rounds.

Specifically, the variant of the decomposition in [8] is as follows.
If we allow one extra part that induces an n®-arboricity subgraph*
in the decomposition, then in O(nl_‘s) rounds we can construct

2 The existence of the expander decomposition is (implicitly) exploited first in the
context of property testing [18].

3The O(-) notation hides any polylogarithmic factor.

4The arboricity of a graph is the minimum number a such that its edge set can be
partitioned into « forests.

https://doi.org/10.1145/3293611.3331618
https://doi.org/10.1145/3293611.3331618

Session 2

an expander decomposition in CONGEST such that each compo-
nent has 1/0(polylogn) conductance and the number of inter-
component edges is at most |E|/6.

A major open problem left by the work [8] is to design an effi-
cient distributed algorithm constructing an expander decomposi-
tion without the extra low-arboricity part. In this work, we show
that this is possible. A consequence of our new expander decom-
position algorithm is that triangle enumeration can be solved in
O(n'/3poly log n) rounds, nearly matching the Q(n'/?/log n) lower
bound [19, 33] by a polylogarithmic factor.

The CONGEST Model. In the CONGEST model of distributed
computing, the underlying distributed network is represented as an
undirected graph G = (V, E), where each vertex corresponds to a
computational device, and each edge corresponds to a bi-directional
communication link. Each vertex v has a distinct ©(log n)-bit iden-
tifier ID(v). The computation proceeds according to synchronized
rounds. In each round, each vertex v can perform unlimited local
computation, and may send a distinct O(log n)-bit message to each
of its neighbors. Throughout the paper we only consider the ran-
domized variant of CONGEST. Each vertex is allowed to generate
unlimited local random bits, but there is no global randomness. We
say that an algorithm succeeds with high probability (w.h.p.) if its
failure probability is at most 1/poly(n).

The CONGESTED-CLIQUE model is a variant of CONGEST that
allows all-to-all communication, and the LOCAL model is a variant
of CONGEST that allows messages of unbounded length.

Terminology. Before we proceed, we review the graph termi-
nologies related to the expander decomposition. Consider a graph
G = (V,E). For a vertex subset S, we write Vol(S) to denote
Y ves deg(v). Note that by default the degree is with respect to the
original graph G. We write S = V'\ S, and let §(S) = E(S, S) be the
set of edges e = {u, v} withu € Sand v € S. The sparsity or conduc-
tance of a cut (S, S) is defined as ®(S) = |9(S)|/min{Vol(S), Vol(S)}.
The conductance g of a graph G is the minimum value of ®(S)
over all vertex subsets S. Define the balance bal(S) of a cut S
by bal(S) = min{Vol(S), Vol(S)}/Vol(V). We say that S is a most-
balanced cut of G of conductance at most ¢ if bal(S) is maximized
among all cuts of G with conductance at most ¢. We have the follow-
ing relation [20] between the mixing time 7,,ix(G) and conductance
Pg:

® (%) < 13ix(G) < © (1;2"

Let S be a vertex set. Denote E(S) by the set of all edges whose
two endpoints are both within S. We write G[S] to denote the
subgraph induced by S, and we write G{S} to denote the graph
resulting from adding degy, (v) — degg(v) self loops to each vertex
v in G[S]. Note that the degree of each vertex v € S in both G and
G{S} is identical. As in [39], each self loop of v contributes 1 in the
calculation of deg(v). Observe that we always have

D(G{S}) < (G[SD.

Let v be a vertex. Denote N(v) as the set of neighbors of v. We
also write NK(v) = {u € V| dist(u,v) < k}. Note that N!(v) =
N(v) U {v}. These notations dist(u, v), N(v), and N*(v) depend
on the underlying graph G. When the choice of underlying graph

67

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

is not clear from the context, we use a subscript to indicate the
underlying graph we refer to.

Expander Decomposition. An (e, ¢)-expander decomposition of
a graph G = (V, E) is defined as a partition of the vertex set V =
V1 U - -+ U Vx satisfying the following conditions.
e For each component V;, we have ®(G{V;}) > ¢.
e The number of inter-component
(|o(V1)| + - - - + |0(Vy)]) /2 is at most €|E|.

The main contribution of this paper is the following result.

edges

Theorem 1. Lete € (0,1), and let k be a positive integer. An (e, ¢)-

i . O(k) .
expander decomposition with ¢ = (e /log n)? “) can be constructed in

Zo(k)
0 (nz/k - poly(1/¢, log n)) =0 (nz/k , (1"%)) rounds, w.h.p.

The proof of Theorem 1 is in Section 2. We emphasize that the
number of rounds does not depend on the diameter of G. There is a
trade-off between the two parameters € and ¢. For example, an (¢, ¢)-

2/3
™ can

expander decomposition with € = 2-log""n and ¢ =27l
be constructed in n@(1/198198 1) rounds by setting k = O(loglog n)
in Theorem 1. If we are allowed to have € = 0.01 and spend O(n?-%1)

rounds, then we can achieve ¢ = 1/O(poly log n).

Distributed Triangle Finding. Variants of the triangle finding
problem have been studied in the literature [1, 5, 8, 12-14, 19, 33]. In
the triangle detection problem, it is required that at least one vertex
must report a triangle if the graph has at least one triangle. In the
triangle enumeration problem, it is required that each triangle of
the graph is reported by at least one vertex. Both of these problems
can be solved in O(1) rounds in LOCAL. It is the bandwidth con-
straint of CONGEST and CONGESTED-CLIQUE that makes these
problems non-trivial.

It is important that a triangle T = {u, v, w} is allowed to be re-
ported by a vertex x ¢ T.Ifitis required that a triangle T = {u, v, w}
has to be reported by a vertex x € T, then there is an Q(n/logn)
lower bound [19] for triangle enumeration, in both CONGEST
and CONGESTED-CLIQUE. To achieve a round complexity of
o(n/logn), it is necessary that some triangles T are reported by
vertices not in T.

Dolev, Lenzen, and Peled [12] showed that triangle enumer-
ation can be solved deterministically in omn'/3/ logn) rounds
in CONGESTED-CLIQUE. This algorithm is optimal, as it
matches the Q(n1/3/log n)-round lower bound [19, 33] in
CONGESTED-CLIQUE. Interestingly, if we only want to detect
one triangle or count the number of triangles, then Censor-Hillel et
al. [5] showed that the round complexity in CONGESTED-CLIQUE
can be improved to O(n!~@/@)+o(D)y = o(n0-158) time [5], where
w < 2.373 is the exponent of the complexity of matrix multiplica-
tion [26].

For the CONGEST model, Izumi and Le Gall [19] showed that
the triangle detection and enumeration problems can be solved in
O(n?/) and O(n®/*) time, respectively. These upper bounds were
later improved to O(n'/2) by Chang, Pettie, and Zhang using a
variant of expander decomposition [8].

A consequence of Theorem 1 is that triangle enumeration (and
hence detection) can be solved in O(n'/3) rounds, almost match-
ing the Q(n1/3/10g n) lower bound [19, 33] which holds even in

Session 2

CONGESTED-CLIQUE. To the best of our knowledge, this pro-
vides the first non-trivial example for a distributed problem that
has essentially the same complexity (up to a polylogarithmic fac-
tor) in both CONGEST and CONGESTED-CLIQUE, i.e., allowing
non-local communication links does not help. In contrast, many
other graph problems can be solved much more efficiently in
CONGESTED-CLIQUE than in CONGEST; see e.g., [17, 21].

Theorem 2. Triangle enumeration can be solved in O(n1/3) rounds
in CONGEST, w.h.p.

The proof of Theorem 2 is in Section 3. Note that Theorem 2
immediately implies an algorithm for triangle detection with the
same number of rounds. However, while the best known lower
bounds [1, 14] for triangle detection can currently exclude only
1-round algorithms. Whether the large gap between upper and
lower bounds for this problem can be closed remains an intriguing
question.

1.1 Prior Work on Expander Decomposition

In the centralized setting, the first polynomial time algorithm for
construction an (€, ¢)-expander decomposition is by Kannan, Vem-
pala and Vetta [22] where € = é(¢). Afterward, Spielman and
Teng [40, 41] significantly improved the running time to be near-
linear in m, where m is the number of edges. In time O(m/poly(9)),
they can construct a “weak” (poly(¢, log n), #)-expander decompo-
sition. Their weak expander only has the following weaker guar-
antee that each part V; in the partition of V' might not induce an
expander, and we only know that V; is contained in some unknown
expander. That is, there exists some W; 2 V; where @y} > ¢. Al-
though this guarantee suffices for many applications (e.g. [10, 24]),
some other applications [9, 30], including the triangle enumera-
tion algorithm of [8], crucially needs the fact that each part in the
decomposition induces an expander.

Nanongkai and Saranurak [29] and, independently, Wulff-
Nilsen [44] gave a fast algorithm without weakening the guarantee
as the one in [40, 41]. In [29], their algorithm finds a (¢ logo(k) n, ¢)-
expander decomposition in time O(m1*1/k), Although the trade-off
is worse in [44], their high-level approaches are in fact the same.
They gave the same black-box reduction from constructing an ex-
pander decomposition to finding a nearly most balanced sparse cut.
The difference only comes from the quality of their nearly most
balanced sparse cuts algorithms. Our distributed algorithm will also
follow this high-level approach.

Most recently, Saranurak and Wang [37] gave a (O(¢), ¢)-
expander decomposition algorithm with running time O(m/). This
is optimal up to a polylogarithmic factor when ¢ > 1/poly log(n).
We do not use their approach, as their trimming step seems to be
inherently sequential and very challenging to parallelize or make
distributed.

The only previous expander decomposition in the distributed
setting is by Chang, Pettie, and Zhang [8]. Their distributed algo-
rithm gave an (1/6, 1/poly log(n))-expander decomposition with an
extra part which is an nd -arboricity subgraph in O(n'~9) rounds in
CONGEST. Our distributed algorithm significantly improved upon
this work.

68

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

1.2 Technical Overview

For convenience, we call a cut with conductance at most ¢ a ¢-sparse
cut in this section. To give a high-level idea, the most straightfor-
ward algorithm for constructing an expander decomposition of a
graph G = (V, E) is as follows. Find a ¢-sparse cut S. If such a cut
S does not exist, then return V as a part in the partition. Other-
wise, recurse on both sides G{S} and G{V — S}, and so the edges in
E(S,V —S) become inter-cluster edges. To see the correctness, once
the recursion stops at G{U} for some U, we know that &gy} > ¢.
Also, the total number of inter-cluster edges is at most O(m¢ log n)
because (1) each inter-cluster edge can be charged to edges in the
smaller side of some ¢-sparse cut, and (2) each edge can be in the
smaller side of the cut for at most O(log n) times.

This straightforward approach has two efficiency issues: (1)
checking whether a ¢-sparse cut exists does not admit fast dis-
tributed algorithms (and is in fact NP-hard), and (2) a ¢-sparse cut
S can be very unbalanced and hence the recursion depth can be
as large as Q(n). Thus, even if we ignore time spent on finding
cuts, the round complexity due to the recursion depth is too high.
At a high-level, all previous algorithms (both centralized and dis-
tributed) handle the two issues in the same way up to some extent.
First, they instead use approximate sparse cut algorithms which
either find some ¢’-sparse cut or certify that there is no ¢-sparse
cut where ¢’ > ¢. Second, they find a cut with some guarantee
about the balance of the cut, i.e., the smaller side of the cut should
be sufficiently large.

Let us contrast our approach with the only previous distributed
expander decomposition algorithm by Chang, Pettie, and Zhang [8].
They gave an approximate sparse cut algorithm such that the
smaller side of the cut has Q(n‘s) vertices for some constant § > 0,
so the recursion depth is O(n!~9). They guarantee this property
by “forcing” the graph to have minimum degree at least n®, so any
¢-sparse cut must contain Q(n?) vertices (this uses the fact that
the graph is simple) To force the graph to have high degree, they
keep removing vertices with degree at most n% at any step of the
algorithms. Throughout the whole algorithm, the removed part
form a graph with arboricity at most n®. This explains why their
decomposition outputs the extra part which induces a low arboric-
ity subgraph. With some other ideas on distributed implementation,
they obtained the round complexity of O(n'~=%), roughly matching
the recursion depth.

In this paper, we avoid this extra low-arboricity part. The key
component is the following. Instead of just guaranteeing that the
smaller side of the cut has Q(n?) vertices, we give the first efficient
distributed algorithm for computing a nearly most balanced sparse
cut. Suppose there is a ¢-sparse cut with balance b, then our sparse
cut algorithm returns a ¢’-sparse cut with balance at least Q(b),
where ¢’ is not much larger than ¢. Intuitively, given that we can
find a nearly most balanced sparse cut efficiently, the recursion
depth should be made very small. This intuition can be made for-
mal using the ideas in the centralized setting from Nanongkai and
Saranurak [29] and Wullf-Nilsen [44]. Our main technical contri-
bution is two-fold. First, we show the first distributed algorithm
for computing a nearly most balanced sparse cut, which is our key
algorithmic tool. Second, in order to obtain a fast distributed algo-
rithm, we must modify the centralized approach of [29, 44] on how

Session 2

to construct an expander decomposition. In particular, we need to
run a low diameter decomposition whenever we encounter a graph
with high diameter, as our distributed algorithm for finding a nearly
most balanced sparse cut is fast only on graphs with low diameter.

Sparse Cut Computation. At a high level, our distributed nearly
most balanced sparse cut algorithm is a distributed implementation
of the sequential algorithm of Spielman and Teng [41]. The algo-
rithm of [41] involves O(m) sequential iterations of Nibble with a
random starting vertex on the remaining subgraph. Roughly speak-
ing, the procedure Nibble aims at finding a sparse cut by simulating
a random walk. The idea is that if the starting vertex v belongs
to some sparse cut S, then it is likely that most of the probability
mass will be trapped inside S. Chang, Pettie, and Zhang [8] showed
that O(m) simultaneous iterations of an approximate version of
Nibble with a random starting vertex can be implemented effi-
ciently in CONGEST in O(poly(1/¢,log n)) rounds, where ¢ is the
target conductance. A major difference between this work and [8]
is that the expander decomposition algorithm of [8] does not need
any requirement about the balance of the cut in their sparse cut
computation.

Note that the O(m) sequential iterations of Nibble in the nearly
most balanced sparse cut algorithm of [41] cannot be completely
parallelized. For example, it is possible that the union of all O(m)
output of Nibble equals the entire graph. Nonetheless, we show
that this process can be partially parallelized at the cost of worsen-
ing the conductance guarantee by a polylogarithmic factor.

Theorem 3 (Nearly most balanced sparse cut). Given a parameter
¢ = O(1/log® n), there is an O(D - poly(log n, 1/$))-round algorithm
A that achieves the following w.h.p.

o In case ®(G) < ¢, the algorithm A is guaranteed to return a
cut C with balance bal(C) > min{b/2,1/48} and conductance
d(C) = O(qﬁl/3 logs/3 n), where b is defined as b = bal(S),
where S is a most-balanced sparse cut of G of conductance at
most ¢.

o In case ®(G) > ¢, the algorithm A either returns C = 0 or
returns a cut C with conductance ®(C) = O(¢1/3 logs’/3 n).

The proof of Theorem 3 is in the full version of the paper [7]. We
note again that this is the first distributed sparse cut algorithm with
a nearly most balanced guarantee. The problem of finding a sparse
cut the distributed setting has been studied prior to the work of [8].
Given that there is a ¢-sparse cut and balance b, the algorithm of
Das Sarma, Molla, and Pandurangan [38] finds a cut of conductance
at most é(\/a) in O((n+ (1/¢))/b) rounds in CONGEST. The round
complexity was later improved to O(D + 1/(b¢)) by Kuhn and
Molla [25]. These prior works have the following drawbacks: (1)
their running time depends on b which can be as small as O(1/n),
and (2) their output cuts are not guaranteed to be nearly most
balanced (see footnote 1).

Low Diameter Decomposition. The runtime of our distributed
sparse cut algorithm (Theorem 3) is proportional to the diameter.
To avoid running this algorithm on a high diameter graph, we
employ a low diameter decomposition to decompose the current
graph into components of small diameter.

69

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

The low diameter decomposition algorithm of Miller, Peng,
and Xu [28] can already be implemented in CONGEST efficiently.
Roughly, their algorithm is to let each vertex v sample &, ~
Exponential(f), # € (0,1), and then v is assigned to the cluster
of u that minimizes dist(u, v) — d,. A similar approach has been
applied to construct a network decomposition [4, 27].

However, there is one subtle issue that the guarantee that the
number of inter-cluster edges is at most O(S|E|) only holds in
expectation. In sequential or parallel computation model, we can
simply repeat the procedure for several times and take the best
result. In CONGEST, this however takes at least diameter time,
which is inefficient when the diameter is large.

We provide a technique that allows us to achieve this guarantee
with high probability without spending diameter time, so we can
ensure that the number of inter-cluster edges is small with high
probability in our expander decomposition algorithm.’

Intuitively, the main barrier needed to be overcome is the high
dependence among the |E| events that an edge {u, v} has its end-
points in different clusters. Our strategy is to compute a partition
V = Vp U Vs in such a way that Vp already induces a low diameter
clustering, and the edges incident to Vs satisfy the property that
if we run the the low diameter decomposition algorithm of [28],
the events that they are inter-cluster have sufficiently small depen-
dence. Then we can use a variant of Chernoff bound with bounded
dependence [35] to bound the number of inter-cluster edges with
high probability.

Theorem 4 (Low diameter decomposition). Let € (0,1). There is
an O (poly(log n, 1/ §))-round algorithm A that finds a partition of
the vertex set V. =Vi U -- - U Vy satisfying the following conditions
w.h.p.

log? n)

o Each component V; has diameter O (7

o The number of inter-component edges
(10(V)| + - - - + [8(Vy)|) /2 is at most B|E|.
Adapting the algorithm of [28] to CONGEST, in O (101% 1) rounds

logn

we can decompose the graph into components of diameter O (

such that the number of inter-component edges is O(J|E|) in expec-
tation. In the full version of the paper [7] we extend this result to
obtain a high probability bound and prove Theorem 4.

Triangle Enumeration. Incorporating our expander decomposi-
tion algorithm (Theorem 1) with the triangle enumeration algorithm
of [8, 15], we immediately obtain an O(n'/?). 20(Vlogn)_tound al-
gorithm for triangle enumeration. This round complexity can be
further improved to O(n'/?) by adjusting the routing algorithm of
Ghaffari, Kuhn, and Su [15] on graphs of small mixing time. The
main observation is their algorithm can be viewed as a distributed
data structure with a trade-off between the query time and the
pre-processing time. In particular, for any given constant € > 0, it
is possible to achieve O(poly log n) query time by spending O(n€)
time on pre-processing.

SWe remark that the triangle enumeration algorithm of [8] still works even if the
guarantee on the number of inter-cluster edges in the expander decomposition only
holds in expectation.

Session 2

2 EXPANDER DECOMPOSITION
The goal of this section is to prove Theorem 1.

Theorem 1. Lete € (0,1), and let k be a positive integer. An (e, §)-

expander decomposition with ¢ = (e/log n)zo(k) can be constructed in
20(k)
(@] (nz/k - poly(1/¢,log n)) =0 (nz/k . (k’%)) rounds, w.h.p.
For the sake of convenience, we denote
h(6) = © (91/3 log5/3 n)

as an increasing function associated with Theorem 3 such that
when we run the nearly most balanced sparse cut algorithm of
Theorem 3 with conductance parameter 6, if the output subset C is
non-empty, then it has ®(C) < h(#). We note that

hl6) = © (93 /log n) .

Let € € (0,1) and k > 1 be the parameters specified in Theorem 1.
We define the following parameters that are used in our algorithm.
Nearly Most Balanced Sparse Cut: We define ¢y =
O(e? /log7 n) in such a way that when we run the
nearly most balanced sparse cut algorithm with this
conductance parameter, any non-empty output C must

satisfy ®(C) < h(¢p) = —€16_ For each 1 < i < k, we define
¢i = h (pi-1).

log (3)
Low Diameter Decomposition: The parameter f = O(e?/log n)
for the low diameter decomposition is chosen as follows.
Set d = O((1/€)log n) as the smallest integer such that (1 —
€/12)% - 2(7) < 1. Then we define f = (¢/3)/d.
We show that an (e, ¢)-expander decomposition can be con-

structed in O (nz/ k. poly(1/¢,log n)) rounds, with conductance

parameter ¢ = ¢y = (e/log n)zo(k). We will later see that ¢ = ¢y is
the smallest conductance parameter we ever use for applying the
nearly most balanced sparse cut algorithm.

Algorithm. Our algorithm has two phases. In the algorithm there
are three places where we remove edges from the graph, and they
are tagged with Remove-j, for 1 < j < 3 for convenience. Whenever
we remove an edge e = {u,v}, we add a self loop at both u and
v, and so the degree of a vertex never changes throughout the
algorithm. We never remove self loops.

At the end of the algorithm, V is partitioned into connected
components Vi, ..., Vy induced by the remaining edges. To prove
the correctness of the algorithm, we will show that the number of
removed edges is at most €|E|, and @ (y,} > ¢ for each component
Vi.

Phase 1.

The input graph is G = (V, E).

(1) Do the low diameter decomposition algorithm (Theo-
rem 4) with parameter on G. Remove all inter-cluster
edges (Remove-1).

(2) For each connected component U of the graph, do the
nearly most balanced sparse cut algorithm (Theorem 3)
with parameter ¢ on G{U }. Let C be the output subset.

70

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

(a) IfC = 0, then the subgraph G* = G{U} quits Phase 1.

(b) If C # 0 and Vol(C) < (€/12) Vol(U), then the sub-
graph G* = G{U} quits Phase 1 and enters Phase 2.

(c) Otherwise, remove the cut edges E(C,U \ C)
(Remove-2), and then we recurse on both sides G{C}
and G{U \ C} of the cut.

We emphasize that we do not remove the cut edges in Step 2b of
Phase 1.

Lemma 1. The depth of the recursion of Phase 1 is at most d.

PRroOF. Suppose there is still a component U entering the depth
d + 1 of the recursion of Phase 1. Then according to the thresh-
old for Vol(C) specified in Step 2b, we infer that Vol(U) < (1 —
€/12)4 Vol(V) < 1 by our choice of d, which is impossible. O

Phase 2.
The input graph is G* = G{U}. Define ¢ def
((e/6) - Vol(U))I/k. Define the sequence: m; def (e/6)-Vol(U),

and m; def mi_1/t, foreach 1 < i < k + 1. Initialize L « 1
and U’ « U. Repeatedly do the following procedure.

o Do the nearly most balanced sparse cut algorithm (The-
orem 3) with parameter ¢, on G{U’}. Let C be the
output subset. Note that @ y/1(C) < $r-1.

— If C = 0, then the subgraph G{U’} quits Phase 2.

- If C # 0 and Vol(C) < mp/(27), then update L «
L+1.

- Otherwise, update U’ « U’ \ C, and remove all
edges incident to C (Remove-3).

Intuitively, in Phase 2 we keep calling the nearly most balanced
sparse cut algorithm to find a cut C and remove it. If we find a
cut C that has volume greater than mp /(27), then we make a good
progress. If Vol(C) < myp /(27), then we learn that the volume of
the most balanced sparse cut of conductance at most ¢y, is at most
2-mp/(2t) = mp/t = mp4q by Theorem 3, and so we move on to
the next level by setting L «— L + 1.

The maximum possible level L is k. Since by definition my /(27) =
1/2 < 1, there is no possibility to increase L to k + 1. Once we reach
L = k, we will repeatedly run the nearly most balanced sparse cut
algorithm until we get C = 0 and quit.

When we remove a cut C # (in Phase 2, each u € C becomes an
isolated vertex with deg(u) self loops, as all edges incident to u have
been removed, and so in the final decomposition V =V U--- UV
we have V; = {u} for some i. We emphasize that we only do the edge
removal when Vol(C) > mp /(27). Lemma 2 bounds the volume of
the cuts found during Phase 2.

Lemma 2. Foreach1 < i <k, define C; as the union of all subsets
C found in Phase 2 when L > i. Then either C; = 0 or Vol(C;) < m;.

Proor. We first consider the case of i = 1. Observe that the graph
G* = G{U} satisfies the property that the most balanced sparse cut

Session 2

of conductance at most ¢ has balance at most 2(¢/12) = €/6, since
otherwise it does not meet the condition for entering Phase 2. Note
that all cuts we find during Phase 2 have conductance at most ¢y,
and so the union of them Cj is also a cut of G* with conductance
at most ¢. This implies that Vol(Cy) < (e/6) Vol(U) = mj.

The proof for the case of 2 < i < k is exactly the same, as
the condition for increasing L is to have Vol(C) < mp/(27). Let
G’ = G{U’} be the graph considered in the iteration when we
increase L = i — 1 to L = i. The existence of such a cut C of G’
implies that the most balanced sparse cut of conductance at most
@i—1 of G’ has volume at most 2 Vol(C) < m;_1/7 = m;. Similarly,
note that all cuts we find when L > i have conductance at most ¢;_1,
and so the union of them C; is also a cut of G’ with conductance at
most ¢;—1. This implies that Vol(C;) < m;. O

Conductance of Remaining Components. For each u € V, there
are two possible ways for u to end the algorithm:

e During Phase 1 or Phase 2, the output of the nearly most
balanced sparse cut algorithm on the component that u be-
longs to is C = 0. In this case, the component that u be-
longs to becomes a component V; in the final decomposi-
tionV =V, U---U V. If ¢’ is the conductance parameter
used in the nearly most balanced sparse cut algorithm, then
®(G{V;}) > ¢’. Note that ¢’ > ¢ = ¢.

e During Phase 2, u € C for the output C of the nearly most
balanced sparse cut algorithm. In this case, u itself becomes
a component V; = {u} in the final decomposition V = V; U
-+ U Vy. Trivially, we have ®(G{V;}) > ¢.

Therefore, we conclude that each component V; in the final decom-
position V.=V, U - - - U Vy satisfies that ®(G{V;}) > ¢.

Number of Removed Edges. There are three places in the algo-
rithm where we remove edges. We show that, for each 1 < j < 3,
the number of edges removed due to Remove-j is at most (¢/3)|E|,
and so the total number of inter-component edges in the final de-
composition V = V3 U - - - U Vx is at most €|E|.

(1) By Lemma 1, the depth of recursion of Phase 1 is at most d.
For each i = 1 to d, the number of edges removed due to the
low diameter decomposition algorithm during depth i of the
recursion is at most S|E|. By our choice of f, the number of
edges removed due to Remove-1is at most d- B|E| < (¢/3)|E|.

(2) For each edge e € E(C,U\C) removed due to the nearly most
balanced sparse cut algorithm in Phase 1, we charge the cost
of the edge removal to some pairs (v, e) in the following way.
If Vol(C) < Vol(U \ C), for each v € C, and for each edge
e incident to v, we charge the amount |E(C, U \ C)|/Vol(C)
to (v, e); otherwise, for each v € U \ C, and for each edge e
incident to v, we charge the amount |E(C, U \ C)|/Vol(U \ C)
to (v, e). Note that each pair (v,) is being charged for at
most log |E| times throughout the algorithm, and the amount
per charging is at most h(¢). Therefore, the number of edges
removed due to Remove-2 is at most (log |E|) - h(¢p) - 2|E| <
(e/3)|E| by our choice of ¢g.

(3) By Lemma 2, the summation of Vol(C) over all cuts C in
G* = G{U} that are found and removed during Phase 2 due
to Remove-3 is at most m; = (e/6) Vol(U) < (¢/3)|E|.

71

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Round Complexity. During Phase 1, each vertex participates in
at most d = O((1/¢) log n) times the nearly most balanced sparse
cut algorithm and the low diameter decomposition algorithm. By
our choice of parameters § = O(e?/logn) and ¢y = O(e?/log” n),
the round complexity of both algorithms are O(poly(1/e, log n)), as
we note that whenever we run the nearly most balanced sparse cut
algorithm, the diameter of each connected component is at most
0 (lofzn) -0 (IOE:H)-

For Phase 2, Lemma 2 guarantees that for each 1 < i < k the algo-
rithm can stay L = i for at most 27 iterations. If we neither increase
L nor quit Phase 2 for 27 iterations, then we have Vol(Cy) > mp,
which is impossible. Therefore, the round complexity for Phase 2
can be upper bounded by

k
27 Z O(poly(1/¢i,logn)) < O (nz/k - poly(1/¢,log n)) .
i=1

During Phase 2, it is possible that the graph G{U’} be discon-
nected or has a large diameter, but we are fine since we can use all
edges in G* for communication during a sparse cut computation,

2 4
and the diameter of G* is at most O (lolggzn) =0 (1054 n)

3 TRIANGLE ENUMERATION

We show how to derive Theorem 2 by combining Theorem 1 with
other known results in [8, 15].

Theorem 2. Triangle enumeration can be solved in é(nl/S) rounds
in CONGEST, w.h.p.

Chang, Pettie, and Zhang [8] showed that given an (e, ¢)-
expander decomposition V = V; U ... U Vy with € < 1/6, there is
an algorithm A that finds an edge subset E* C E with |E*| < |E|/2
such that each triangle in G is detected by some vertex during
the execution of A, except the triangles whose three edges are
all within |E*|. The algorithm A has to solve O(n'/?) times the
following routing problem in each G[V;]. Given a set of routing
requests where each vertex v is a source or a destination for at most
O(deg(v)) messages of O(log n) bits, the goal is to deliver all mes-
sages to their destinations. Ghaffari, Khun, and Su [15] showed that
this routing problem can be solved in 20Wlognloglogn) . (7, .
rounds. This was later improved to 20(\/@) - O(tpmix) by Ghaffari
and Li [16].

Applying our distributed expander decomposition algorithm
(Theorem 1), we can find an (e, ¢)-expander decomposition with
€ < 1/6 and ¢ = 1/O(poly log n) in o(n'/?) rounds by selecting k to
be a sufficiently large constant. The mixing time ;¢ of each compo-

nent G[V;] is at most O (Iofzn
above algorithm A, and it takes 20(Wlogn) . O(Tmix) = 20(logn)
rounds with the routing algorithm of Ghaffari and Li [16]. After that,
we recurse on the edge set E*, and we are done enumerating all trian-
gles after O(log n) iterations. This concludes the 0(n1/3).20Wlogn)_
round algorithm for triangle enumeration.

) = O(poly log n). Then we apply the

To improve the complexity to O(n'/3), we make the observation
that the routing algorithm of [15] can be seen as a distributed data
structure with the following properties.

Session 2

Parameters: The parameter k is a positive integer that specifies
the depth of the hierarchical structure in the routing algo-
rithm. Given k, define f§ as the number such that k = log 5 M.
where m is the total number of edges.

Pre-processing Time: The algorithm for building the data struc-
ture consists of two parts. The round complexity for building
the hierarchical structure is O(kf)(log n)O(k) - O(Tmix) [15,
Lemma 3.2]. The round complexity for adding the portals is
O(kf?logn) - O(tyix) [15, Lemma 3.3]

Query Time: After building the data structure, each routing task
can be solved in (log n)o<k) - O(Tpix) rounds [15, Lemma 3.4].

The parameter k can be chosen as any positive integer. In [15]

they used k = ©(+/log n/loglog n) to balance the pre-processing
time and the query time to show that the routing task can be solved

in 20(WVlognloglogn) . oz . Y rounds. This round complexity was

later improved to 20(‘/@) - O(Tmix) in [16]. We however note
that the algorithm of [16] does not admit a trade-off as above. The
main reason is their special treatment of the base layer Gy of the
hierarchical structure. In [16], Gy is a random graph with degree

20(\/@), and simulating one round in Gy already costs 20(logn).
Tmix rounds in the original graph G.

In the triangle enumeration algorithm A, we need to query this
distributed data structure for O(n!/3) times. It is possible to set k
to be a large enough constant so that the pre-processing time costs
only o(n!/3) rounds, while the query time is still O(poly log n). This
implies that the triangle enumeration problem can be solved in
é(n1/3) rounds.

4 OPEN PROBLEMS

In this paper, we designed a new expander decomposition algorithm
that get rids of the low-arboricity part needed in [8], and this implies
that triangle enumeration can be solved in é(nl/ 3) rounds, which
is optimal up to a polylogarithmic factor.

Many interesting problems are left open. In particular, the current
exponent of the polylogarithmic gap between the lower and the
upper bounds is enormous. The huge exponent is caused by the
inefficient trade-off between the parameters in the (i) hierarchical
routing structure and the (ii) expander decomposition algorithm.
Improving the current state of the art of (i) and (ii) will lead to an
improved upper bound for triangle enumeration, as well as several
other problems [11, 15, 16].

We note that the lower bound graph underlying the
Q(nl/ 3/logn) lower bound [19, 33] for triangle enumeration
is the Erd8s-Rényi random graph G(n,p) with p = 1/2.
Hence it does not rule out the possibility of an n(1/3)-Q(1)._
round CONGEST algorithm for the enumeration problem on
sparse graphs (ie. m = o(n?)) or the detection problem. It
remains an open problem to find the asymptotically optimal
round complexity of these problems in CONGEST. For the case
of CONGESTED-CLIQUE, efficient algorithms for these prob-
lems are already known: triangle detection can be solved in
O(n1=@/@)+o(1)y = o(n0-158) time [5], triangle enumeration on m-
edge graphs can be solved in max{O(m/n5/?),0(1)} time [6, 33].

We would also like to further investigate the power of the dis-
tributed expander decomposition. Can this tool be applied to other

72

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

distributed problems than triangle detection and enumeration?
It has been known that this technique can be applied to give a
sublinear-time distributed algorithm for exact minimum cut [11].
We expect to see more applications of distributed expander decom-
position in the future.

ACKNOWLEDGMENTS

We thank Seth Pettie for very useful discussion.

REFERENCES

[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. 2017.
Fooling views: A new lower bound technique for distributed computations under
congestion. arXiv preprint arXiv:1711.01623 (2017).

Sanjeev Arora, Boaz Barak, and David Steurer. 2015. Subexponential Algorithms

for Unique Games and Related Problems. 7. ACM 62, 5, Article 42 (Nov. 2015),

25 pages.

[3] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander Flows, Geometric
Embeddings and Graph Partitioning. . ACM 56, 2, Article 5 (April 2009), 37 pages.
https://doi.org/10.1145/1502793.1502794

[4] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1994. Low-
diameter graph decomposition is in NC. Random Structures & Algorithms 5, 3
(1994), 441-452.

[5] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami
Paz, and Jukka Suomela. 2016. Algebraic methods in the congested clique. Dis-
tributed Computing (2016).

[6] Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. 2018. Sparse Matrix

Multiplication and Triangle Listing in the Congested Clique Model. In 22nd Inter-

national Conference on Principles of Distributed Systems (OPODIS 2018) (Leibniz

International Proceedings in Informatics (LIPIcs)), Jiannong Cao, Faith Ellen, Luis

Rodrigues, and Bernardo Ferreira (Eds.), Vol. 125. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 4:1-4:17. https://doi.org/10.4230/

LIPIcs.OPODIS.2018.4

Yi-Jun Chang and Thatchaphol Saranurak. 2019. Improved Distributed Expander

Decomposition and Nearly Optimal Triangle Enumeration. CoRR abs/1904.08037

(2019). arXiv:1904.08037 http://arxiv.org/abs/1904.08037

[8] Yi-Jun. Chang, Seth Pettie, and Hengjie Zhang. 2019. Distributed Triangle Detec-

tion via Expander Decomposition. In Proceedings of the 30th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). 821-840.

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and

Junxing Wang. 2018. Graph Sparsification, Spectral Sketches, and Faster Re-

sistance Computation, via Short Cycle Decompositions. In 59th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October

7-9, 2018. 361-372. https://doi.org/10.1109/FOCS.2018.00042

Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao,

Aaron Sidford, and Adrian Vladu. 2017. Almost-linear-time algorithms for Markov

chains and new spectral primitives for directed graphs. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,

QC, Canada, June 19-23, 2017. 410-419. https://doi.org/10.1145/3055399.3055463

Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Sara-

nurak. 2019. Distributed Edge Connectivity in Sublinear Time. arXiv preprint

arXiv:1904.04341 (2019). To appear at STOC’19.

Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. “Tri, Tri Again”: Finding

Triangles and Small Subgraphs in a Distributed Setting. In Proceedings 26th

International Symposium on Distributed Computing (DISC). 195-209.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the power of the

congested clique model. In Proceedings 33rd ACM Symposium on Principles of

Distributed Computing (PODC). 367-376.

Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. 2018. Possibilities

and Impossibilities for Distributed Subgraph Detection. In Proceedings of the 30th

on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, New

York, NY, USA, 153-162.

Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and

Routing in Almost Mixing Time. In Proceedings 37th ACM Symposium on Principles

of Distributed Computing (PODC). 131-140.

Mohsen Ghaffari and Jason Li. 2018. New Distributed Algorithms in Almost

Mixing Time via Transformations from Parallel Algorithms. In Proceedings 32nd

International Symposium on Distributed Computing (DISC) (Leibniz International

Proceedings in Informatics (LIPIcs)), Ulrich Schmid and Josef Widder (Eds.), Vol. 121.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1-

31:16.

Mohsen Ghaffari and Krzysztof Nowicki. 2018. Congested Clique Algorithms

for the Minimum Cut Problem. In Proceedings of the 2018 ACM Symposium on

Principles of Distributed Computing (PODC ’18). ACM, New York, NY, USA, 357-

366. https://doi.org/10.1145/3212734.3212750

[2

—_
)

[

[10

[11

=
&N

[13

(14]

[15

[16

[17

https://doi.org/10.1145/1502793.1502794
https://doi.org/10.4230/LIPIcs.OPODIS.2018.4
https://doi.org/10.4230/LIPIcs.OPODIS.2018.4
http://arxiv.org/abs/1904.08037
http://arxiv.org/abs/1904.08037
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1145/3055399.3055463
https://doi.org/10.1145/3212734.3212750

Session 2

(18

[19]

[20]

[21

[22]

[23

[24]

[25]

[26

[27

[28]

[29

[30

(31

Oded Goldreich and Dana Ron. 1999. A Sublinear Bipartiteness Tester for Bounded
Degree Graphs. Combinatorica 19, 3 (01 Mar 1999), 335-373.

Taisuke Izumi and Francois Le Gall. 2017. Triangle Finding and Listing in CON-
GEST Networks. In Proceedings 37th ACM Symposium on Principles of Distributed
Computing (PODC). 381-389. https://doi.org/10.1145/3087801.3087811

Mark Jerrum and Alistair Sinclair. 1989. Approximating the Permanent. SIAM .
Comput. 18, 6 (1989), 1149-1178.

Tomasz Jurdzinski and Krzysztof Nowicki. 2018. MST in O(1) Rounds of Con-
gested Clique. In Proceedings 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2620-2632.

Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On Clusterings: Good,
Bad and Spectral. . ACM 51, 3 (May 2004), 497-515. https://doi.org/10.1145/
990308.990313

Ken-Ichi Kawarabayashi and Mikkel Thorup. 2018. Deterministic Edge Connec-
tivity in Near-Linear Time. J. ACM 66, 1, Article 4 (Dec. 2018), 4:1-4:50 pages.
Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014.
An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014. 217-226. https://doi.org/10.1137/1.9781611973402.
16

Fabian Kuhn and Anisur Rahaman Molla. 2015. Distributed Sparse Cut Approxi-
mation. In Proceedings 19th International Conference on Principles of Distributed
Systems (OPODIS). 10:1-10:14.

Francois Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-
putation (ISSAC ’14). ACM, New York, NY, USA, 296-303. https://doi.org/10.
1145/2608628.2608664

Nathan Linial and Michael Saks. 1993. Low diameter graph decompositions.
Combinatorica 13, 4 (01 Dec 1993), 441-454.

Gary L. Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decom-
positions using random shifts. In Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures (SPAA). ACM, 196-203.
Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning
forest with worst-case update time: adaptive, Las Vegas, and O(n'/2~€)-time. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 1122-1129. https://doi.org/
10.1145/3055399.3055447

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.
Dynamic minimum spanning forest with subpolynomial worst-case update time.
In Proceedings of IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 950-961.

Lorenzo Orecchia and Nisheeth K. Vishnoi. 2011. Towards an SDP-based Ap-
proach to Spectral Methods: A Nearly-Linear-Time Algorithm for Graph Partition-
ing and Decomposition. In Proceedings of the Twenty-Second Annual ACM-SIAM

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011. 532-545. https://doi.org/10.1137/1.9781611973082.42
Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-based Algorithms for
Local Graph Clustering. In Proceedings of the Twenty-fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA °14). Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1267-1286. http://dl.acm.org/citation.cfm?
1d=2634074.2634168

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2018. On the
Distributed Complexity of Large-Scale Graph Computations. In Proceedings 30th
ACM Symposium on Parallelism in Algorithms and Architecture (SPAA).

M. Patrascu and M. Thorup. 2007. Planning for Fast Connectivity Updates. In
Proceedings 48th IEEE Symposium on Foundations of Computer Science (FOCS).
263-271.

Sriram V. Pemmaraju. 2001. Equitable Coloring Extends Chernoff-Hoeffding
Bounds. In Approximation, Randomization, and Combinatorial Optimization: Al-
gorithms and Techniques, Michel Goemans, Klaus Jansen, José D. P. Rolim, and
Luca Trevisan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 285-296.
Prasad Raghavendra and David Steurer. 2010. Graph Expansion and the Unique
Games Conjecture. In Proceedings 42nd ACM Symposium on Theory of Computing
(STOC). 755-764.

Thatchaphol Saranurak and Di Wang. 2019. Expander Decomposition and Prun-
ing: Faster, Stronger, and Simpler. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2616-2635.

Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. 2015. Dis-
tributed Computation of Sparse Cuts via Random Walks. In Proceedings 16th
International Conference on Distributed Computing and Networking (ICDCN). 6:1—
6:10.

Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective
resistances. In Proceedings 40th ACM Symposium on Theory of Computing (STOC).
563-568.

Daniel A. Spielman and Shang-Hua Teng. 2011. Spectral Sparsification of Graphs.

SIAM J. Comput. 40, 4 (2011), 981-1025. https://doi.org/10.1137/08074489X
Daniel A. Spielman and Shang-Hua Teng. 2013. A Local Clustering Algorithm for

Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning.
SIAM J. Comput. 42, 1 (2013), 1-26.

Daniel A. Spielman and Shang-Hua Teng. 2014. Nearly Linear Time Algorithms
for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Sys-
tems. SIAM J. Matrix Anal. Appl. 35, 3 (2014), 835-885.

Luca Trevisan. 2008. Approximation Algorithms for Unique Games. Theory of
Computing 4, 5 (2008), 111-128.

Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 1130-1143. https://doi.org/10.1145/3055399.3055415

https://doi.org/10.1145/3087801.3087811
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1137/1.9781611973082.42
http://dl.acm.org/citation.cfm?id=2634074.2634168
http://dl.acm.org/citation.cfm?id=2634074.2634168
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/3055399.3055415

	Abstract
	1 Introduction
	1.1 Prior Work on Expander Decomposition
	1.2 Technical Overview

	2 Expander Decomposition
	3 Triangle Enumeration
	4 Open Problems
	Acknowledgments
	References

