
Improved Distributed Expander Decomposition and Nearly
Optimal Triangle Enumeration∗

Yi-Jun Chang
†

University of Michigan

cyijun@umich.edu

Thatchaphol Saranurak

Toyota Technological Institute at Chicago

saranurak@ttic.edu

ABSTRACT
An (ϵ,ϕ)-expander decomposition of a graph G = (V ,E) is a clus-
tering of the vertices V = V1 ∪ · · · ∪Vx such that (1) each cluster

Vi induces subgraph with conductance at least ϕ, and (2) the num-

ber of inter-cluster edges is at most ϵ |E |. In this paper, we give

an improved distributed expander decomposition, and obtain a

nearly optimal distributed triangle enumeration algorithm in the

CONGEST model.

Specifically, we construct an (ϵ,ϕ)-expander decomposition with

ϕ = (ϵ/logn)2
O (k)

in O(n2/k · poly(1/ϕ, logn)) rounds for any

ϵ ∈ (0, 1) and positive integer k . For example, a (1/no(1), 1/no(1))-

expander decomposition only requires O(no(1)) rounds to com-

pute, which is optimal up to subpolynomial factors, and a

(0.01, 1/poly logn)-expander decomposition can be computed in

O(nγ) rounds, for any arbitrarily small constant γ > 0. Previ-

ously, the algorithm by Chang, Pettie, and Zhang can construct a

(1/6, 1/poly logn)-expander decomposition using Õ(n1−δ) rounds

for any δ > 0, with a caveat that the algorithm is allowed to throw

away a set of edges into an extra part which form a subgraph with

arboricity at most nδ . Our algorithm does not have this caveat.

By slightly modifying the distributed algorithm for routing on

expanders byGhaffari, Kuhn and Su [PODC’17], we obtain a triangle

enumeration algorithm using Õ(n1/3) rounds. This matches the

lower bound by Izumi and Le Gall [PODC’17] and Pandurangan,

Robinson and Scquizzato [SPAA’18] of Ω̃(n1/3) which holds even

in the CONGESTED-CLIQUEmodel. To the best of our knowledge,

this provides the first non-trivial example for a distributed problem

that has essentially the same complexity (up to a polylogarithmic

factor) in both CONGEST and CONGESTED-CLIQUE.
The key technique in our proof is the first distributed approxima-

tion algorithm for finding a low conductance cut that is as balanced

as possible. Previous distributed sparse cut algorithms do not have

this nearly most balanced guarantee.
1

∗
The full version of the paper is available at arXiv [7].

†
Supported by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

1
Kuhn and Molla [25] previously claimed that their approximate sparse cut algorithm

also has the nearly most balanced guarantee, but this claim turns out to be incorrect [8,

Footnote 3].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331618

CCS CONCEPTS
• Theory of computation → Distributed algorithms.

KEYWORDS
expander decomposition, low diameter decomposition, triangle

enumeration

ACM Reference Format:
Yi-Jun Chang and Thatchaphol Saranurak. 2019. Improved Distributed Ex-

pander Decomposition and Nearly Optimal Triangle Enumeration. In 2019
ACM Symposium on Principles of Distributed Computing (PODC ’19), July
29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3293611.3331618

1 INTRODUCTION
In this paper, we consider the task of finding an expander decomposi-
tion of a distributed network in the CONGESTmodel of distributed

computing. Roughly speaking, an expander decomposition of a

graph G = (V ,E) is a clustering of the vertices V = V1 ∪ · · · ∪Vx
such that (1) each component Vi induces a high conductance sub-

graph, and (2) the number of inter-component edges is small.

This natural bicriteria optimization problem of finding a good ex-

pander decomposition was introduced by Kannan Vempala and

Vetta [22], and was further studied in many other subsequent

works [3, 31, 32, 34, 37, 41, 43].
2
The expander decomposition has

a wide range of applications, and it has been applied to solving

linear systems [42], unique games [2, 36, 43], minimum cut [23],

and dynamic algorithms [30].

Recently, Chang, Pettie, and Zhang [8] applied this technique to

the field of distributed computing, and they showed that a variant of

expander decomposition can be computed efficiently in CONGEST.
Using this decomposition, they showed that triangle detection and

enumeration can be solved in Õ(n1/2) rounds.3 The previous state-

of-the-art bounds for triangle detection and enumeration were

Õ(n2/3) and Õ(n3/4), respectively, due to Izumi and Le Gall [19].

Later, Daga et al. [11] exploit this decomposition and obtain the

first algorithm for computing edge connectivity of a graph exactly
using sub-linear number of rounds.

Specifically, the variant of the decomposition in [8] is as follows.

If we allow one extra part that induces an nδ -arboricity subgraph
4

in the decomposition, then in O(n1−δ) rounds we can construct

2
The existence of the expander decomposition is (implicitly) exploited first in the

context of property testing [18].

3
The Õ (·) notation hides any polylogarithmic factor.

4
The arboricity of a graph is the minimum number α such that its edge set can be

partitioned into α forests.

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

66

https://doi.org/10.1145/3293611.3331618
https://doi.org/10.1145/3293611.3331618

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Yi-Jun Chang and Thatchaphol Saranurak

an expander decomposition in CONGEST such that each compo-

nent has 1/O(poly logn) conductance and the number of inter-

component edges is at most |E |/6.
A major open problem left by the work [8] is to design an effi-

cient distributed algorithm constructing an expander decomposi-

tion without the extra low-arboricity part. In this work, we show

that this is possible. A consequence of our new expander decom-

position algorithm is that triangle enumeration can be solved in

O(n1/3
poly logn) rounds, nearly matching the Ω(n1/3/logn) lower

bound [19, 33] by a polylogarithmic factor.

The CONGEST Model. In the CONGEST model of distributed

computing, the underlying distributed network is represented as an

undirected graph G = (V ,E), where each vertex corresponds to a

computational device, and each edge corresponds to a bi-directional

communication link. Each vertex v has a distinct Θ(logn)-bit iden-
tifier ID(v). The computation proceeds according to synchronized

rounds. In each round, each vertex v can perform unlimited local

computation, and may send a distinct O(logn)-bit message to each

of its neighbors. Throughout the paper we only consider the ran-

domized variant of CONGEST. Each vertex is allowed to generate

unlimited local random bits, but there is no global randomness. We

say that an algorithm succeeds with high probability (w.h.p.) if its

failure probability is at most 1/poly(n).
TheCONGESTED-CLIQUEmodel is a variant ofCONGEST that

allows all-to-all communication, and the LOCAL model is a variant

of CONGEST that allows messages of unbounded length.

Terminology. Before we proceed, we review the graph termi-

nologies related to the expander decomposition. Consider a graph

G = (V ,E). For a vertex subset S , we write Vol(S) to denote∑
v ∈S deg(v). Note that by default the degree is with respect to the

original graph G. We write S̄ = V \ S , and let ∂(S) = E(S, S̄) be the
set of edges e = {u,v} withu ∈ S andv ∈ S̄ . The sparsity or conduc-
tance of a cut (S, S̄) is defined as Φ(S) = |∂(S)|/min{Vol(S),Vol(S̄)}.
The conductance ΦG of a graph G is the minimum value of Φ(S)
over all vertex subsets S . Define the balance bal(S) of a cut S
by bal(S) = min{Vol(S),Vol(S̄)}/Vol(V). We say that S is a most-
balanced cut of G of conductance at most ϕ if bal(S) is maximized

among all cuts ofG with conductance at mostϕ. We have the follow-

ing relation [20] between the mixing time τmix(G) and conductance
ΦG :

Θ

(
1

ΦG

)
≤ τmix(G) ≤ Θ

(
logn

Φ2

G

)
.

Let S be a vertex set. Denote E(S) by the set of all edges whose

two endpoints are both within S . We write G[S] to denote the

subgraph induced by S , and we write G{S} to denote the graph

resulting from adding degV (v) − degS (v) self loops to each vertex

v in G[S]. Note that the degree of each vertex v ∈ S in both G and

G{S} is identical. As in [39], each self loop of v contributes 1 in the

calculation of deg(v). Observe that we always have

Φ(G{S}) ≤ Φ(G[S]).

Let v be a vertex. Denote N (v) as the set of neighbors of v . We

also write N k (v) = {u ∈ V | dist(u,v) ≤ k}. Note that N 1(v) =
N (v) ∪ {v}. These notations dist(u,v), N (v), and N k (v) depend
on the underlying graph G. When the choice of underlying graph

is not clear from the context, we use a subscript to indicate the

underlying graph we refer to.

Expander Decomposition. An (ϵ,ϕ)-expander decomposition of

a graph G = (V ,E) is defined as a partition of the vertex set V =
V1 ∪ · · · ∪Vx satisfying the following conditions.

• For each component Vi , we have Φ(G{Vi }) ≥ ϕ.
• The number of inter-component edges

(|∂(V1)| + · · · + |∂(Vx)|) /2 is at most ϵ |E |.

The main contribution of this paper is the following result.

Theorem 1. Let ϵ ∈ (0, 1), and let k be a positive integer. An (ϵ,ϕ)-
expander decomposition with ϕ = (ϵ/logn)2

O (k)
can be constructed in

O
(
n2/k · poly(1/ϕ, logn)

)
= O

(
n2/k ·

(
logn
ϵ

)
2
O (k))

rounds, w.h.p.

The proof of Theorem 1 is in Section 2. We emphasize that the

number of rounds does not depend on the diameter ofG . There is a
trade-off between the two parameters ϵ andϕ. For example, an (ϵ,ϕ)-

expander decomposition with ϵ = 2
− log

1/3 n
and ϕ = 2

− log
2/3 n

can

be constructed in nO (1/log logn)
rounds by setting k = O(log logn)

in Theorem 1. If we are allowed to have ϵ = 0.01 and spendO(n0.01)

rounds, then we can achieve ϕ = 1/O(poly logn).

Distributed Triangle Finding. Variants of the triangle finding

problem have been studied in the literature [1, 5, 8, 12–14, 19, 33]. In

the triangle detection problem, it is required that at least one vertex

must report a triangle if the graph has at least one triangle. In the

triangle enumeration problem, it is required that each triangle of

the graph is reported by at least one vertex. Both of these problems

can be solved in O(1) rounds in LOCAL. It is the bandwidth con-

straint of CONGEST and CONGESTED-CLIQUE that makes these

problems non-trivial.

It is important that a triangle T = {u,v,w} is allowed to be re-

ported by a vertex x < T . If it is required that a triangleT = {u,v,w}
has to be reported by a vertex x ∈ T , then there is an Ω(n/logn)
lower bound [19] for triangle enumeration, in both CONGEST
and CONGESTED-CLIQUE. To achieve a round complexity of

o(n/logn), it is necessary that some triangles T are reported by

vertices not in T .
Dolev, Lenzen, and Peled [12] showed that triangle enumer-

ation can be solved deterministically in O(n1/3/logn) rounds
in CONGESTED-CLIQUE. This algorithm is optimal, as it

matches the Ω(n1/3/logn)-round lower bound [19, 33] in

CONGESTED-CLIQUE. Interestingly, if we only want to detect

one triangle or count the number of triangles, then Censor-Hillel et

al. [5] showed that the round complexity in CONGESTED-CLIQUE
can be improved to Õ(n1−(2/ω)+o(1)) = o(n0.158) time [5], where

ω < 2.373 is the exponent of the complexity of matrix multiplica-

tion [26].

For the CONGEST model, Izumi and Le Gall [19] showed that

the triangle detection and enumeration problems can be solved in

Õ(n2/3) and Õ(n3/4) time, respectively. These upper bounds were

later improved to Õ(n1/2) by Chang, Pettie, and Zhang using a

variant of expander decomposition [8].

A consequence of Theorem 1 is that triangle enumeration (and

hence detection) can be solved in Õ(n1/3) rounds, almost match-

ing the Ω(n1/3/logn) lower bound [19, 33] which holds even in

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

67

Improved Distributed Expander Decomposition and Nearly Optimal Triangle Enumeration PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

CONGESTED-CLIQUE. To the best of our knowledge, this pro-

vides the first non-trivial example for a distributed problem that

has essentially the same complexity (up to a polylogarithmic fac-

tor) in both CONGEST and CONGESTED-CLIQUE, i.e., allowing
non-local communication links does not help. In contrast, many

other graph problems can be solved much more efficiently in

CONGESTED-CLIQUE than in CONGEST; see e.g., [17, 21].

Theorem 2. Triangle enumeration can be solved in Õ(n1/3) rounds
in CONGEST, w.h.p.

The proof of Theorem 2 is in Section 3. Note that Theorem 2

immediately implies an algorithm for triangle detection with the

same number of rounds. However, while the best known lower

bounds [1, 14] for triangle detection can currently exclude only

1-round algorithms. Whether the large gap between upper and

lower bounds for this problem can be closed remains an intriguing

question.

1.1 Prior Work on Expander Decomposition
In the centralized setting, the first polynomial time algorithm for

construction an (ϵ,ϕ)-expander decomposition is by Kannan, Vem-

pala and Vetta [22] where ϵ = Õ(ϕ). Afterward, Spielman and

Teng [40, 41] significantly improved the running time to be near-

linear inm, wherem is the number of edges. In time Õ(m/poly(ϕ)),
they can construct a “weak” (poly(ϕ, logn),ϕ)-expander decompo-

sition. Their weak expander only has the following weaker guar-

antee that each part Vi in the partition of V might not induce an

expander, and we only know that Vi is contained in some unknown
expander. That is, there exists someWi ⊇ Vi whereΦG {Wi } ≥ ϕ. Al-
though this guarantee suffices for many applications (e.g. [10, 24]),

some other applications [9, 30], including the triangle enumera-

tion algorithm of [8], crucially needs the fact that each part in the

decomposition induces an expander.

Nanongkai and Saranurak [29] and, independently, Wulff-

Nilsen [44] gave a fast algorithm without weakening the guarantee

as the one in [40, 41]. In [29], their algorithm finds a (ϕ log
O (k) n,ϕ)-

expander decomposition in time Õ(m1+1/k). Although the trade-off

is worse in [44], their high-level approaches are in fact the same.

They gave the same black-box reduction from constructing an ex-

pander decomposition to finding a nearly most balanced sparse cut.

The difference only comes from the quality of their nearly most

balanced sparse cuts algorithms. Our distributed algorithm will also

follow this high-level approach.

Most recently, Saranurak and Wang [37] gave a (Õ(ϕ),ϕ)-
expander decomposition algorithmwith running time Õ(m/ϕ). This
is optimal up to a polylogarithmic factor when ϕ ≥ 1/poly log(n).
We do not use their approach, as their trimming step seems to be

inherently sequential and very challenging to parallelize or make

distributed.

The only previous expander decomposition in the distributed

setting is by Chang, Pettie, and Zhang [8]. Their distributed algo-

rithm gave an (1/6, 1/poly log(n))-expander decomposition with an

extra part which is an nδ -arboricity subgraph inO(n1−δ) rounds in

CONGEST. Our distributed algorithm significantly improved upon

this work.

1.2 Technical Overview
For convenience, we call a cut with conductance at mostϕ aϕ-sparse
cut in this section. To give a high-level idea, the most straightfor-

ward algorithm for constructing an expander decomposition of a

graph G = (V ,E) is as follows. Find a ϕ-sparse cut S . If such a cut

S does not exist, then return V as a part in the partition. Other-

wise, recurse on both sidesG{S} andG{V − S}, and so the edges in
E(S,V −S) become inter-cluster edges. To see the correctness, once

the recursion stops atG{U } for someU , we know that ΦG {U } ≥ ϕ.
Also, the total number of inter-cluster edges is at most O(mϕ logn)
because (1) each inter-cluster edge can be charged to edges in the

smaller side of some ϕ-sparse cut, and (2) each edge can be in the

smaller side of the cut for at most O(logn) times.

This straightforward approach has two efficiency issues: (1)

checking whether a ϕ-sparse cut exists does not admit fast dis-

tributed algorithms (and is in fact NP-hard), and (2) a ϕ-sparse cut
S can be very unbalanced and hence the recursion depth can be

as large as Ω(n). Thus, even if we ignore time spent on finding

cuts, the round complexity due to the recursion depth is too high.

At a high-level, all previous algorithms (both centralized and dis-

tributed) handle the two issues in the same way up to some extent.

First, they instead use approximate sparse cut algorithms which
either find some ϕ ′-sparse cut or certify that there is no ϕ-sparse
cut where ϕ ′ ≫ ϕ. Second, they find a cut with some guarantee

about the balance of the cut, i.e., the smaller side of the cut should

be sufficiently large.

Let us contrast our approach with the only previous distributed

expander decomposition algorithm by Chang, Pettie, and Zhang [8].

They gave an approximate sparse cut algorithm such that the

smaller side of the cut has Ω(nδ) vertices for some constant δ > 0,

so the recursion depth is O(n1−δ). They guarantee this property

by “forcing” the graph to have minimum degree at least nδ , so any

ϕ-sparse cut must contain Ω(nδ) vertices (this uses the fact that
the graph is simple) To force the graph to have high degree, they

keep removing vertices with degree at most nδ at any step of the

algorithms. Throughout the whole algorithm, the removed part

form a graph with arboricity at most nδ . This explains why their

decomposition outputs the extra part which induces a low arboric-

ity subgraph. With some other ideas on distributed implementation,

they obtained the round complexity of Õ(n1−δ), roughly matching

the recursion depth.

In this paper, we avoid this extra low-arboricity part. The key

component is the following. Instead of just guaranteeing that the

smaller side of the cut has Ω(nδ) vertices, we give the first efficient

distributed algorithm for computing a nearly most balanced sparse

cut. Suppose there is a ϕ-sparse cut with balance b, then our sparse

cut algorithm returns a ϕ ′-sparse cut with balance at least Ω(b),
where ϕ ′ is not much larger than ϕ. Intuitively, given that we can

find a nearly most balanced sparse cut efficiently, the recursion

depth should be made very small. This intuition can be made for-

mal using the ideas in the centralized setting from Nanongkai and

Saranurak [29] and Wullf-Nilsen [44]. Our main technical contri-

bution is two-fold. First, we show the first distributed algorithm

for computing a nearly most balanced sparse cut, which is our key

algorithmic tool. Second, in order to obtain a fast distributed algo-

rithm, we must modify the centralized approach of [29, 44] on how

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

68

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Yi-Jun Chang and Thatchaphol Saranurak

to construct an expander decomposition. In particular, we need to

run a low diameter decomposition whenever we encounter a graph

with high diameter, as our distributed algorithm for finding a nearly

most balanced sparse cut is fast only on graphs with low diameter.

Sparse Cut Computation. At a high level, our distributed nearly

most balanced sparse cut algorithm is a distributed implementation

of the sequential algorithm of Spielman and Teng [41]. The algo-

rithm of [41] involves Õ(m) sequential iterations of Nibble with a

random starting vertex on the remaining subgraph. Roughly speak-

ing, the procedure Nibble aims at finding a sparse cut by simulating

a random walk. The idea is that if the starting vertex v belongs

to some sparse cut S , then it is likely that most of the probability

mass will be trapped inside S . Chang, Pettie, and Zhang [8] showed
that Õ(m) simultaneous iterations of an approximate version of

Nibble with a random starting vertex can be implemented effi-

ciently in CONGEST in O(poly(1/ϕ, logn)) rounds, where ϕ is the

target conductance. A major difference between this work and [8]

is that the expander decomposition algorithm of [8] does not need

any requirement about the balance of the cut in their sparse cut

computation.

Note that the Õ(m) sequential iterations of Nibble in the nearly

most balanced sparse cut algorithm of [41] cannot be completely

parallelized. For example, it is possible that the union of all Õ(m)
output of Nibble equals the entire graph. Nonetheless, we show

that this process can be partially parallelized at the cost of worsen-

ing the conductance guarantee by a polylogarithmic factor.

Theorem 3 (Nearly most balanced sparse cut). Given a parameter
ϕ = O(1/log

5 n), there is anO(D · poly(logn, 1/ϕ))-round algorithm
A that achieves the following w.h.p.

• In case Φ(G) ≤ ϕ, the algorithm A is guaranteed to return a
cutC with balance bal(C) ≥ min{b/2, 1/48} and conductance
Φ(C) = O(ϕ1/3

log
5/3 n), where b is defined as b = bal(S),

where S is a most-balanced sparse cut of G of conductance at
most ϕ.
• In case Φ(G) > ϕ, the algorithm A either returns C = ∅ or
returns a cut C with conductance Φ(C) = O(ϕ1/3

log
5/3 n).

The proof of Theorem 3 is in the full version of the paper [7]. We

note again that this is the first distributed sparse cut algorithm with

a nearly most balanced guarantee. The problem of finding a sparse

cut the distributed setting has been studied prior to the work of [8].

Given that there is a ϕ-sparse cut and balance b, the algorithm of

Das Sarma, Molla, and Pandurangan [38] finds a cut of conductance

at most Õ(
√
ϕ) in Õ((n+ (1/ϕ))/b) rounds in CONGEST. The round

complexity was later improved to Õ(D + 1/(bϕ)) by Kuhn and

Molla [25]. These prior works have the following drawbacks: (1)

their running time depends on b which can be as small as O(1/n),
and (2) their output cuts are not guaranteed to be nearly most

balanced (see footnote 1).

Low Diameter Decomposition. The runtime of our distributed

sparse cut algorithm (Theorem 3) is proportional to the diameter.

To avoid running this algorithm on a high diameter graph, we

employ a low diameter decomposition to decompose the current

graph into components of small diameter.

The low diameter decomposition algorithm of Miller, Peng,

and Xu [28] can already be implemented in CONGEST efficiently.

Roughly, their algorithm is to let each vertex v sample δv ∼
Exponential(β), β ∈ (0, 1), and then v is assigned to the cluster

of u that minimizes dist(u,v) − δu . A similar approach has been

applied to construct a network decomposition [4, 27].

However, there is one subtle issue that the guarantee that the

number of inter-cluster edges is at most O(β |E |) only holds in
expectation. In sequential or parallel computation model, we can

simply repeat the procedure for several times and take the best

result. In CONGEST, this however takes at least diameter time,

which is inefficient when the diameter is large.

We provide a technique that allows us to achieve this guarantee

with high probability without spending diameter time, so we can

ensure that the number of inter-cluster edges is small with high

probability in our expander decomposition algorithm.
5

Intuitively, the main barrier needed to be overcome is the high

dependence among the |E | events that an edge {u,v} has its end-
points in different clusters. Our strategy is to compute a partition

V = VD ∪VS in such a way thatVD already induces a low diameter

clustering, and the edges incident to VS satisfy the property that

if we run the the low diameter decomposition algorithm of [28],

the events that they are inter-cluster have sufficiently small depen-

dence. Then we can use a variant of Chernoff bound with bounded

dependence [35] to bound the number of inter-cluster edges with

high probability.

Theorem 4 (Low diameter decomposition). Let β ∈ (0, 1). There is
an O (poly(logn, 1/β))-round algorithm A that finds a partition of
the vertex set V = V1 ∪ · · · ∪Vx satisfying the following conditions
w.h.p.

• Each component Vi has diameter O
(

log
2 n
β 2

)
.

• The number of inter-component edges
(|∂(V1)| + · · · + |∂(Vx)|) /2 is at most β |E |.

Adapting the algorithm of [28] toCONGEST, inO
(

logn
β

)
rounds

we can decompose the graph into components of diameterO
(

logn
β

)
such that the number of inter-component edges isO(β |E |) in expec-
tation. In the full version of the paper [7] we extend this result to

obtain a high probability bound and prove Theorem 4.

Triangle Enumeration. Incorporating our expander decomposi-

tion algorithm (Theorem 1)with the triangle enumeration algorithm

of [8, 15], we immediately obtain an Õ(n1/3) · 2O (
√

logn)
-round al-

gorithm for triangle enumeration. This round complexity can be

further improved to Õ(n1/3) by adjusting the routing algorithm of

Ghaffari, Kuhn, and Su [15] on graphs of small mixing time. The

main observation is their algorithm can be viewed as a distributed

data structure with a trade-off between the query time and the

pre-processing time. In particular, for any given constant ϵ > 0, it

is possible to achieve O(poly logn) query time by spending O(nϵ)
time on pre-processing.

5
We remark that the triangle enumeration algorithm of [8] still works even if the

guarantee on the number of inter-cluster edges in the expander decomposition only

holds in expectation.

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

69

Improved Distributed Expander Decomposition and Nearly Optimal Triangle Enumeration PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

2 EXPANDER DECOMPOSITION
The goal of this section is to prove Theorem 1.

Theorem 1. Let ϵ ∈ (0, 1), and let k be a positive integer. An (ϵ,ϕ)-
expander decomposition with ϕ = (ϵ/logn)2

O (k)
can be constructed in

O
(
n2/k · poly(1/ϕ, logn)

)
= O

(
n2/k ·

(
logn
ϵ

)
2
O (k))

rounds, w.h.p.

For the sake of convenience, we denote

h(θ) = Θ
(
θ1/3

log
5/3 n

)
as an increasing function associated with Theorem 3 such that

when we run the nearly most balanced sparse cut algorithm of

Theorem 3 with conductance parameter θ , if the output subset C is

non-empty, then it has Φ(C) ≤ h(θ). We note that

h−1(θ) = Θ
(
θ3/log

5 n
)
.

Let ϵ ∈ (0, 1) and k ≥ 1 be the parameters specified in Theorem 1.

We define the following parameters that are used in our algorithm.

Nearly Most Balanced Sparse Cut: We define ϕ0 =

O(ϵ2/log
7 n) in such a way that when we run the

nearly most balanced sparse cut algorithm with this

conductance parameter, any non-empty output C must

satisfy Φ(C) ≤ h(ϕ0) =
ϵ/6

log (n
2
)
. For each 1 ≤ i ≤ k , we define

ϕi = h
−1(ϕi−1).

Low Diameter Decomposition: The parameter β = O(ϵ2/logn)
for the low diameter decomposition is chosen as follows.

Set d = O((1/ϵ) logn) as the smallest integer such that (1 −

ϵ/12)d · 2
(n
2

)
< 1. Then we define β = (ϵ/3)/d .

We show that an (ϵ,ϕ)-expander decomposition can be con-

structed in O
(
n2/k · poly(1/ϕ, logn)

)
rounds, with conductance

parameter ϕ = ϕk = (ϵ/logn)2
O (k)

. We will later see that ϕ = ϕk is

the smallest conductance parameter we ever use for applying the

nearly most balanced sparse cut algorithm.

Algorithm. Our algorithm has two phases. In the algorithm there

are three places where we remove edges from the graph, and they

are tagged with Remove-j , for 1 ≤ j ≤ 3 for convenience. Whenever

we remove an edge e = {u,v}, we add a self loop at both u and

v , and so the degree of a vertex never changes throughout the

algorithm. We never remove self loops.

At the end of the algorithm, V is partitioned into connected

components V1, . . . ,Vx induced by the remaining edges. To prove

the correctness of the algorithm, we will show that the number of

removed edges is at most ϵ |E |, and ΦG {Vi } ≥ ϕ for each component

Vi .

Phase 1.

The input graph is G = (V ,E).

(1) Do the low diameter decomposition algorithm (Theo-

rem 4) with parameter β onG . Remove all inter-cluster

edges (Remove-1).
(2) For each connected component U of the graph, do the

nearly most balanced sparse cut algorithm (Theorem 3)

with parameterϕ0 onG{U }. LetC be the output subset.

(a) IfC = ∅, then the subgraphG∗ = G{U } quits Phase 1.

(b) If C , ∅ and Vol(C) ≤ (ϵ/12)Vol(U), then the sub-

graph G∗ = G{U } quits Phase 1 and enters Phase 2.

(c) Otherwise, remove the cut edges E(C,U \ C)
(Remove-2), and then we recurse on both sidesG{C}
and G{U \C} of the cut.

We emphasize that we do not remove the cut edges in Step 2b of

Phase 1.

Lemma 1. The depth of the recursion of Phase 1 is at most d .

Proof. Suppose there is still a component U entering the depth

d + 1 of the recursion of Phase 1. Then according to the thresh-

old for Vol(C) specified in Step 2b, we infer that Vol(U) ≤ (1 −

ϵ/12)d Vol(V) < 1 by our choice of d , which is impossible. □

Phase 2.

The input graph is G∗ = G{U }. Define τ
def

=

((ϵ/6) · Vol(U))1/k . Define the sequence:m1

def

= (ϵ/6) ·Vol(U),

andmi
def

= mi−1/τ , for each 1 < i ≤ k + 1. Initialize L ← 1

andU ′ ← U . Repeatedly do the following procedure.

• Do the nearly most balanced sparse cut algorithm (The-

orem 3) with parameter ϕL on G{U ′}. Let C be the

output subset. Note that ΦG {U ′ }(C) ≤ ϕL−1.

– If C = ∅, then the subgraph G{U ′} quits Phase 2.
– If C , ∅ and Vol(C) ≤ mL/(2τ), then update L ←
L + 1.

– Otherwise, update U ′ ← U ′ \ C , and remove all

edges incident to C (Remove-3).

Intuitively, in Phase 2 we keep calling the nearly most balanced

sparse cut algorithm to find a cut C and remove it. If we find a

cut C that has volume greater thanmL/(2τ), then we make a good

progress. If Vol(C) ≤ mL/(2τ), then we learn that the volume of

the most balanced sparse cut of conductance at most ϕL is at most

2 ·mL/(2τ) =mL/τ =mL+1 by Theorem 3, and so we move on to

the next level by setting L← L + 1.

Themaximum possible level L isk . Since by definitionmk/(2τ) =
1/2 < 1, there is no possibility to increase L to k + 1. Once we reach

L = k , we will repeatedly run the nearly most balanced sparse cut

algorithm until we get C = ∅ and quit.

When we remove a cutC , ∅ in Phase 2, each u ∈ C becomes an

isolated vertex with deg(u) self loops, as all edges incident tou have

been removed, and so in the final decomposition V = V1 ∪ · · · ∪Vx
we haveVi = {u} for some i . We emphasize that we only do the edge

removal when Vol(C) > mL/(2τ). Lemma 2 bounds the volume of

the cuts found during Phase 2.

Lemma 2. For each 1 ≤ i ≤ k , define Ci as the union of all subsets
C found in Phase 2 when L ≥ i . Then either Ci = ∅ or Vol(Ci) ≤ mi .

Proof. We first consider the case of i = 1. Observe that the graph

G∗ = G{U } satisfies the property that the most balanced sparse cut

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

70

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Yi-Jun Chang and Thatchaphol Saranurak

of conductance at most ϕ0 has balance at most 2(ϵ/12) = ϵ/6, since
otherwise it does not meet the condition for entering Phase 2. Note

that all cuts we find during Phase 2 have conductance at most ϕ0,

and so the union of them C1 is also a cut of G∗ with conductance

at most ϕ0. This implies that Vol(C1) ≤ (ϵ/6)Vol(U) =m1.

The proof for the case of 2 ≤ i ≤ k is exactly the same, as

the condition for increasing L is to have Vol(C) ≤ mL/(2τ). Let
G ′ = G{U ′} be the graph considered in the iteration when we

increase L = i − 1 to L = i . The existence of such a cut C of G ′

implies that the most balanced sparse cut of conductance at most

ϕi−1 of G
′
has volume at most 2 Vol(C) ≤ mi−1/τ =mi . Similarly,

note that all cuts we findwhen L ≥ i have conductance at mostϕi−1,

and so the union of themCi is also a cut ofG ′ with conductance at

most ϕi−1. This implies that Vol(Ci) ≤ mi . □

Conductance of Remaining Components. For each u ∈ V , there
are two possible ways for u to end the algorithm:

• During Phase 1 or Phase 2, the output of the nearly most

balanced sparse cut algorithm on the component that u be-

longs to is C = ∅. In this case, the component that u be-

longs to becomes a component Vi in the final decomposi-

tion V = V1 ∪ · · · ∪Vx . If ϕ
′
is the conductance parameter

used in the nearly most balanced sparse cut algorithm, then

Φ(G{Vi }) ≥ ϕ ′. Note that ϕ ′ ≥ ϕk = ϕ.
• During Phase 2, u ∈ C for the output C of the nearly most

balanced sparse cut algorithm. In this case, u itself becomes

a component Vi = {u} in the final decomposition V = V1 ∪

· · · ∪Vx . Trivially, we have Φ(G{Vi }) ≥ ϕ.

Therefore, we conclude that each component Vi in the final decom-

position V = V1 ∪ · · · ∪Vx satisfies that Φ(G{Vi }) ≥ ϕ.

Number of Removed Edges. There are three places in the algo-

rithm where we remove edges. We show that, for each 1 ≤ j ≤ 3,

the number of edges removed due to Remove-j is at most (ϵ/3)|E |,
and so the total number of inter-component edges in the final de-

composition V = V1 ∪ · · · ∪Vx is at most ϵ |E |.

(1) By Lemma 1, the depth of recursion of Phase 1 is at most d .
For each i = 1 to d , the number of edges removed due to the

low diameter decomposition algorithm during depth i of the
recursion is at most β |E |. By our choice of β , the number of

edges removed due to Remove-1 is at most d ·β |E | ≤ (ϵ/3)|E |.
(2) For each edge e ∈ E(C,U \C) removed due to the nearly most

balanced sparse cut algorithm in Phase 1, we charge the cost

of the edge removal to some pairs (v, e) in the following way.

If Vol(C) < Vol(U \ C), for each v ∈ C , and for each edge

e incident to v , we charge the amount |E(C,U \C)|/Vol(C)
to (v, e); otherwise, for each v ∈ U \C , and for each edge e
incident tov , we charge the amount |E(C,U \C)|/Vol(U \C)
to (v, e). Note that each pair (v, e) is being charged for at

most log |E | times throughout the algorithm, and the amount

per charging is at mosth(ϕ0). Therefore, the number of edges

removed due to Remove-2 is at most (log |E |) · h(ϕ0) · 2|E | ≤
(ϵ/3)|E | by our choice of ϕ0.

(3) By Lemma 2, the summation of Vol(C) over all cuts C in

G∗ = G{U } that are found and removed during Phase 2 due

to Remove-3 is at mostm1 = (ϵ/6)Vol(U) ≤ (ϵ/3)|E |.

Round Complexity. During Phase 1, each vertex participates in

at most d = O((1/ϵ) logn) times the nearly most balanced sparse

cut algorithm and the low diameter decomposition algorithm. By

our choice of parameters β = O(ϵ2/logn) and ϕ0 = O(ϵ2/log
7 n),

the round complexity of both algorithms areO(poly(1/ϵ, logn)), as
we note that whenever we run the nearly most balanced sparse cut

algorithm, the diameter of each connected component is at most

O
(

log
2 n
β 2

)
= O

(
log

4 n
ϵ 4

)
.

For Phase 2, Lemma 2 guarantees that for each 1 ≤ i ≤ k the algo-

rithm can stay L = i for at most 2τ iterations. If we neither increase

L nor quit Phase 2 for 2τ iterations, then we have Vol(CL) > mL ,

which is impossible. Therefore, the round complexity for Phase 2

can be upper bounded by

2τ
k∑
i=1

O(poly(1/ϕi , logn)) ≤ O
(
n2/k · poly(1/ϕ, logn)

)
.

During Phase 2, it is possible that the graph G{U ′} be discon-
nected or has a large diameter, but we are fine since we can use all

edges in G∗ for communication during a sparse cut computation,

and the diameter of G∗ is at most O
(

log
2 n
β 2

)
= O

(
log

4 n
ϵ 4

)
.

3 TRIANGLE ENUMERATION
We show how to derive Theorem 2 by combining Theorem 1 with

other known results in [8, 15].

Theorem 2. Triangle enumeration can be solved in Õ(n1/3) rounds
in CONGEST, w.h.p.

Chang, Pettie, and Zhang [8] showed that given an (ϵ,ϕ)-
expander decomposition V = V1 ∪ . . . ∪Vx with ϵ ≤ 1/6, there is

an algorithm A that finds an edge subset E∗ ⊆ E with |E∗ | ≤ |E |/2
such that each triangle in G is detected by some vertex during

the execution of A, except the triangles whose three edges are

all within |E∗ |. The algorithm A has to solve Õ(n1/3) times the

following routing problem in each G[Vi]. Given a set of routing

requests where each vertexv is a source or a destination for at most

O(deg(v)) messages of O(logn) bits, the goal is to deliver all mes-

sages to their destinations. Ghaffari, Khun, and Su [15] showed that

this routing problem can be solved in 2
O (
√

logn log logn) · O(τmix)

rounds. This was later improved to 2
O (
√

logn) ·O(τmix) by Ghaffari

and Li [16].

Applying our distributed expander decomposition algorithm

(Theorem 1), we can find an (ϵ,ϕ)-expander decomposition with

ϵ ≤ 1/6 and ϕ = 1/O(poly logn) in o(n1/3) rounds by selecting k to

be a sufficiently large constant. Themixing time τmix of each compo-

nent G[Vi] is at most O
(

logn
ϕ2

)
= O(poly logn). Then we apply the

above algorithm A, and it takes 2
O (
√

logn) ·O(τmix) = 2
O (
√

logn)

rounds with the routing algorithm of Ghaffari and Li [16]. After that,

we recurse on the edge set E∗, andwe are done enumerating all trian-

gles afterO(logn) iterations. This concludes theO(n1/3)·2O (
√

logn)
-

round algorithm for triangle enumeration.

To improve the complexity to Õ(n1/3), we make the observation

that the routing algorithm of [15] can be seen as a distributed data

structure with the following properties.

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

71

Improved Distributed Expander Decomposition and Nearly Optimal Triangle Enumeration PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Parameters: The parameter k is a positive integer that specifies

the depth of the hierarchical structure in the routing algo-

rithm. Given k , define β as the number such that k = logβ m,

wherem is the total number of edges.

Pre-processing Time: The algorithm for building the data struc-

ture consists of two parts. The round complexity for building

the hierarchical structure is O(kβ)(logn)O (k) · O(τmix) [15,

Lemma 3.2]. The round complexity for adding the portals is

O(kβ2
logn) ·O(τmix) [15, Lemma 3.3]

Query Time: After building the data structure, each routing task

can be solved in (logn)O (k) ·O(τmix) rounds [15, Lemma 3.4].

The parameter k can be chosen as any positive integer. In [15]

they used k = Θ(
√

logn/log logn) to balance the pre-processing

time and the query time to show that the routing task can be solved

in 2
O (
√

logn log logn) ·O(τmix) rounds. This round complexity was

later improved to 2
O (
√

logn) · O(τmix) in [16]. We however note

that the algorithm of [16] does not admit a trade-off as above. The

main reason is their special treatment of the base layer G0 of the

hierarchical structure. In [16], G0 is a random graph with degree

2
O (
√

logn)
, and simulating one round inG0 already costs 2

O (
√

logn) ·

τmix rounds in the original graph G.
In the triangle enumeration algorithm A, we need to query this

distributed data structure for Õ(n1/3) times. It is possible to set k
to be a large enough constant so that the pre-processing time costs

only o(n1/3) rounds, while the query time is stillO(poly logn). This
implies that the triangle enumeration problem can be solved in

Õ(n1/3) rounds.

4 OPEN PROBLEMS
In this paper, we designed a new expander decomposition algorithm

that get rids of the low-arboricity part needed in [8], and this implies

that triangle enumeration can be solved in Õ(n1/3) rounds, which

is optimal up to a polylogarithmic factor.

Many interesting problems are left open. In particular, the current

exponent of the polylogarithmic gap between the lower and the

upper bounds is enormous. The huge exponent is caused by the

inefficient trade-off between the parameters in the (i) hierarchical

routing structure and the (ii) expander decomposition algorithm.

Improving the current state of the art of (i) and (ii) will lead to an

improved upper bound for triangle enumeration, as well as several

other problems [11, 15, 16].

We note that the lower bound graph underlying the

Ω(n1/3/logn) lower bound [19, 33] for triangle enumeration

is the Erdős-Rényi random graph G(n,p) with p = 1/2.

Hence it does not rule out the possibility of an n(1/3)−Ω(1)-
round CONGEST algorithm for the enumeration problem on

sparse graphs (i.e. m = o(n2)) or the detection problem. It

remains an open problem to find the asymptotically optimal

round complexity of these problems in CONGEST. For the case

of CONGESTED-CLIQUE, efficient algorithms for these prob-

lems are already known: triangle detection can be solved in

Õ(n1−(2/ω)+o(1)) = o(n0.158) time [5], triangle enumeration onm-

edge graphs can be solved in max{O(m/n5/3),O(1)} time [6, 33].

We would also like to further investigate the power of the dis-

tributed expander decomposition. Can this tool be applied to other

distributed problems than triangle detection and enumeration?

It has been known that this technique can be applied to give a

sublinear-time distributed algorithm for exact minimum cut [11].

We expect to see more applications of distributed expander decom-

position in the future.

ACKNOWLEDGMENTS
We thank Seth Pettie for very useful discussion.

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. 2017.

Fooling views: A new lower bound technique for distributed computations under

congestion. arXiv preprint arXiv:1711.01623 (2017).
[2] Sanjeev Arora, Boaz Barak, and David Steurer. 2015. Subexponential Algorithms

for Unique Games and Related Problems. J. ACM 62, 5, Article 42 (Nov. 2015),

25 pages.

[3] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander Flows, Geometric

Embeddings and Graph Partitioning. J. ACM 56, 2, Article 5 (April 2009), 37 pages.

https://doi.org/10.1145/1502793.1502794

[4] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1994. Low-

diameter graph decomposition is in NC. Random Structures & Algorithms 5, 3
(1994), 441–452.

[5] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2016. Algebraic methods in the congested clique. Dis-
tributed Computing (2016).

[6] Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. 2018. Sparse Matrix

Multiplication and Triangle Listing in the Congested Clique Model. In 22nd Inter-
national Conference on Principles of Distributed Systems (OPODIS 2018) (Leibniz
International Proceedings in Informatics (LIPIcs)), Jiannong Cao, Faith Ellen, Luis

Rodrigues, and Bernardo Ferreira (Eds.), Vol. 125. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/

LIPIcs.OPODIS.2018.4

[7] Yi-Jun Chang and Thatchaphol Saranurak. 2019. Improved Distributed Expander

Decomposition and Nearly Optimal Triangle Enumeration. CoRR abs/1904.08037

(2019). arXiv:1904.08037 http://arxiv.org/abs/1904.08037

[8] Yi-Jun. Chang, Seth Pettie, and Hengjie Zhang. 2019. Distributed Triangle Detec-

tion via Expander Decomposition. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 821–840.

[9] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and

Junxing Wang. 2018. Graph Sparsification, Spectral Sketches, and Faster Re-

sistance Computation, via Short Cycle Decompositions. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018. 361–372. https://doi.org/10.1109/FOCS.2018.00042

[10] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao,

Aaron Sidford, andAdrian Vladu. 2017. Almost-linear-time algorithms forMarkov

chains and new spectral primitives for directed graphs. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017. 410–419. https://doi.org/10.1145/3055399.3055463

[11] Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Sara-

nurak. 2019. Distributed Edge Connectivity in Sublinear Time. arXiv preprint
arXiv:1904.04341 (2019). To appear at STOC’19.

[12] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. “Tri, Tri Again”: Finding

Triangles and Small Subgraphs in a Distributed Setting. In Proceedings 26th
International Symposium on Distributed Computing (DISC). 195–209.

[13] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the power of the

congested clique model. In Proceedings 33rd ACM Symposium on Principles of
Distributed Computing (PODC). 367–376.

[14] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. 2018. Possibilities

and Impossibilities for Distributed Subgraph Detection. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, New

York, NY, USA, 153–162.

[15] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and

Routing in AlmostMixing Time. In Proceedings 37th ACM Symposium on Principles
of Distributed Computing (PODC). 131–140.

[16] Mohsen Ghaffari and Jason Li. 2018. New Distributed Algorithms in Almost

Mixing Time via Transformations from Parallel Algorithms. In Proceedings 32nd
International Symposium on Distributed Computing (DISC) (Leibniz International
Proceedings in Informatics (LIPIcs)), Ulrich Schmid and JosefWidder (Eds.), Vol. 121.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–

31:16.

[17] Mohsen Ghaffari and Krzysztof Nowicki. 2018. Congested Clique Algorithms

for the Minimum Cut Problem. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing (PODC ’18). ACM, New York, NY, USA, 357–

366. https://doi.org/10.1145/3212734.3212750

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

72

https://doi.org/10.1145/1502793.1502794
https://doi.org/10.4230/LIPIcs.OPODIS.2018.4
https://doi.org/10.4230/LIPIcs.OPODIS.2018.4
http://arxiv.org/abs/1904.08037
http://arxiv.org/abs/1904.08037
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1145/3055399.3055463
https://doi.org/10.1145/3212734.3212750

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Yi-Jun Chang and Thatchaphol Saranurak

[18] OdedGoldreich andDana Ron. 1999. A Sublinear Bipartiteness Tester for Bounded

Degree Graphs. Combinatorica 19, 3 (01 Mar 1999), 335–373.

[19] Taisuke Izumi and François Le Gall. 2017. Triangle Finding and Listing in CON-

GEST Networks. In Proceedings 37th ACM Symposium on Principles of Distributed
Computing (PODC). 381–389. https://doi.org/10.1145/3087801.3087811

[20] Mark Jerrum and Alistair Sinclair. 1989. Approximating the Permanent. SIAM J.
Comput. 18, 6 (1989), 1149–1178.

[21] Tomasz Jurdziński and Krzysztof Nowicki. 2018. MST in O (1) Rounds of Con-
gested Clique. In Proceedings 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2620–2632.

[22] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On Clusterings: Good,

Bad and Spectral. J. ACM 51, 3 (May 2004), 497–515. https://doi.org/10.1145/

990308.990313

[23] Ken-Ichi Kawarabayashi and Mikkel Thorup. 2018. Deterministic Edge Connec-

tivity in Near-Linear Time. J. ACM 66, 1, Article 4 (Dec. 2018), 4:1–4:50 pages.

[24] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014.

An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected

Graphs, and its Multicommodity Generalizations. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014. 217–226. https://doi.org/10.1137/1.9781611973402.
16

[25] Fabian Kuhn and Anisur Rahaman Molla. 2015. Distributed Sparse Cut Approxi-

mation. In Proceedings 19th International Conference on Principles of Distributed
Systems (OPODIS). 10:1–10:14.

[26] François Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In

Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-
putation (ISSAC ’14). ACM, New York, NY, USA, 296–303. https://doi.org/10.

1145/2608628.2608664

[27] Nathan Linial and Michael Saks. 1993. Low diameter graph decompositions.

Combinatorica 13, 4 (01 Dec 1993), 441–454.
[28] Gary L. Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decom-

positions using random shifts. In Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures (SPAA). ACM, 196–203.

[29] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning

forest with worst-case update time: adaptive, Las Vegas, and O (n1/2−ϵ)-time. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 1122–1129. https://doi.org/

10.1145/3055399.3055447

[30] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. 2017.

Dynamic minimum spanning forest with subpolynomial worst-case update time.

In Proceedings of IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 950–961.

[31] Lorenzo Orecchia and Nisheeth K. Vishnoi. 2011. Towards an SDP-based Ap-

proach to Spectral Methods: ANearly-Linear-TimeAlgorithm for Graph Partition-

ing and Decomposition. In Proceedings of the Twenty-Second Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011. 532–545. https://doi.org/10.1137/1.9781611973082.42

[32] Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-based Algorithms for

Local Graph Clustering. In Proceedings of the Twenty-fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’14). Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1267–1286. http://dl.acm.org/citation.cfm?

id=2634074.2634168

[33] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2018. On the

Distributed Complexity of Large-Scale Graph Computations. In Proceedings 30th
ACM Symposium on Parallelism in Algorithms and Architecture (SPAA).

[34] M. Pǎtraşcu and M. Thorup. 2007. Planning for Fast Connectivity Updates. In

Proceedings 48th IEEE Symposium on Foundations of Computer Science (FOCS).
263–271.

[35] Sriram V. Pemmaraju. 2001. Equitable Coloring Extends Chernoff-Hoeffding

Bounds. In Approximation, Randomization, and Combinatorial Optimization: Al-
gorithms and Techniques, Michel Goemans, Klaus Jansen, José D. P. Rolim, and

Luca Trevisan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 285–296.

[36] Prasad Raghavendra and David Steurer. 2010. Graph Expansion and the Unique

Games Conjecture. In Proceedings 42nd ACM Symposium on Theory of Computing
(STOC). 755–764.

[37] Thatchaphol Saranurak and Di Wang. 2019. Expander Decomposition and Prun-

ing: Faster, Stronger, and Simpler. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2616–2635.

[38] Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. 2015. Dis-

tributed Computation of Sparse Cuts via Random Walks. In Proceedings 16th
International Conference on Distributed Computing and Networking (ICDCN). 6:1–
6:10.

[39] Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective

resistances. In Proceedings 40th ACM Symposium on Theory of Computing (STOC).
563–568.

[40] Daniel A. Spielman and Shang-Hua Teng. 2011. Spectral Sparsification of Graphs.

SIAM J. Comput. 40, 4 (2011), 981–1025. https://doi.org/10.1137/08074489X

[41] Daniel A. Spielman and Shang-Hua Teng. 2013. A Local Clustering Algorithm for

Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning.

SIAM J. Comput. 42, 1 (2013), 1–26.
[42] Daniel A. Spielman and Shang-Hua Teng. 2014. Nearly Linear Time Algorithms

for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Sys-

tems. SIAM J. Matrix Anal. Appl. 35, 3 (2014), 835–885.
[43] Luca Trevisan. 2008. Approximation Algorithms for Unique Games. Theory of

Computing 4, 5 (2008), 111–128.

[44] Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with

improved worst-case update time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 1130–1143. https://doi.org/10.1145/3055399.3055415

Session 2 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

73

https://doi.org/10.1145/3087801.3087811
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1137/1.9781611973082.42
http://dl.acm.org/citation.cfm?id=2634074.2634168
http://dl.acm.org/citation.cfm?id=2634074.2634168
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/3055399.3055415

	Abstract
	1 Introduction
	1.1 Prior Work on Expander Decomposition
	1.2 Technical Overview

	2 Expander Decomposition
	3 Triangle Enumeration
	4 Open Problems
	Acknowledgments
	References

