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ABSTRACT

Consider a computer network that consists of a path with n nodes.
The nodes are labeled with inputs from a constant-sized set, and
the task is to find output labels from a constant-sized set subject
to some local constraints—more formally, we have an LCL (locally
checkable labeling) problem. How many communication rounds
are needed (in the standard LOCAL model of computing) to solve
this problem?

It is well known that the answer is always either O(1) rounds,
or O(log" n) rounds, or O(n) rounds. In this work we show that
this question is decidable (albeit PSPACE-hard): we present an al-
gorithm that, given any LCL problem defined on a path, outputs
the distributed computational complexity of this problem and the
corresponding asymptotically optimal algorithm.
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1 INTRODUCTION

To what extent is it possible to automate the design of algorithms
and the study of computational complexity? While algorithm syn-
thesis problems are typically undecidable, there are areas of theoret-
ical computer science in which we can make use of computational
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techniques in algorithm design—at least in principle, and some-
times also in practice. One such area is the theory of distributed
computing; see [4, 6, 8, 10, 11, 17, 19, 26] for examples of recent
success stories. In this work we bring yet another piece of good
news:

Consider this setting: there is a computer network that consists
of a path with n nodes, the nodes are labeled with inputs from
a constant-sized set, and the task is to find output labels from a
constant-sized set subject to some local constraints. We show
that for any given set of local constraints, it is decidable to tell
what is the asymptotically optimal number of communication
rounds needed to solve this problem (as a function of n, for
the worst-case input).

Background: LCLs and the LOCAL Model. We focus on what
are known as LCL (locally checkable labeling) problems [22] in
the LOCAL model of distributed computing [20, 24]. We define the
setting formally in Section 2, but in essence we look at the following
question:

e We are given an unknown input graph of maximum degree
A = O(1); the nodes are labeled with input labels from a
constant-size set Zj,, and the nodes also have unique identi-
fiers from a polynomially-sized set.

e The task is to label the nodes with output labels from a
constant-size set Xoyt, subject to some local constraints P;
a labeling is globally feasible if it is locally feasible in all
radius-r neighborhoods for some r = O(1).

e Each node has to produce its own output label based on the
information that it sees in its own radius-T(n) neighborhoods
for some function T.

Here the local constraints # define an LCL problem. The rule that
the nodes apply to determine their output labels is called a dis-
tributed algorithm in the LOCAL model, and function T(n) is the
running time of the algorithm—here T(n) determines how far a
node has to see in order to choose its own part of the solution, or
equivalently, how many communication rounds are needed for each
node to gather the relevant information if we view the input graph
as a communication network.

In this setting, the case of T(n) = O(n) is trivial, as all nodes can
see the entire input. The key question is to determine which prob-
lems P can be solved in sublinear time—here are some examples:
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e Vertex coloring with A + 1 colors: can be solved in time
O(log* n) [9, 16] and this is tight [20, 21].

e Vertex coloring with A colors, for A > 2: can be solved in
polylogarithmic time [23] and requires at least logarithmic
time [7] for deterministic algorithms.

While the study of this setting was initiated already in the semi-
nal work by Naor and Stockmeyer in 1995 [22], our understanding
of these questions has rapidly advanced in the past three years
[2,3,5,7, 8,12-15, 25]. The big surprises have been these:

o There are LCL problems with infinitely many different time
complexities—for example, we can construct LCL problems
with a time complexity exactly ©(n%) for any rational num-
ber0 < a < 1.

o Nevertheless, there are also wide gaps in the complexity
landscape: for example, no LCL problem has a (determinis-
tic) computational complexity that is between w(log* n) and

o(log n).

However, what is perhaps most relevant for us is the following
observation: if we look at the case of A = 2 (paths and cycles), then
the time complexity of any LCL problem is either O(1), ©(log™ n),
or ©(n), and the same holds for both deterministic and randomized
algorithms [6, 8, 22].

Decidability of LCL Time Complexities. For a fixed A, any LCL
problem has a trivial finite representation: simply enumerate all
feasible radius-r local neighborhoods. Hence it makes sense to ask
whether, given an LCL problem, it is possible to determine its time
complexity. The following results are known by prior work:

o If the input graph is an unlabeled path or cycle, the time
complexity is decidable [6, 22].

o Ifthe input graphis a grid or toroidal grid, the time complexity
is undecidable [22]. However, there are also some good news:
in unlabeled toroidal grids, the time complexity falls in one
of the classes O(1), ©(log* n), or ©(n), it is trivial to tell if
the time complexity is O(1), and it is semi-decidable to tell if
it is ©(log™ n) [6].

o In the case of trees, there are infinitely many different time
complexities, but there is a gap between w(log n) and no),
and it is decidable to tell on which side of the gap a given
problem lies [8].

Somewhat surprisingly, the seemingly simple case of labeled paths
or cycles has remained open all the way since the 1995 paper by Naor
and Stockmeyer [22], which defined LCLs with inputs but analyzed
decidability questions only in the case of unlabeled graphs.

We initially expected that the question of paths with input labels
is a mere technicality and the interesting open questions are related
to much broader graph families, such as rooted trees, trees, and
bounded-treewidth graphs. However, it turned out that the main
obstacle for understanding decidability in any such graph family
seems to lie in the fact that the structure of the graph can be used to
encode arbitrary input labels, hence it is necessary to first understand
how the input labels influence decidability—and it turns out that
this makes all the difference in the case of paths.

In this work we show that the time complexity of a given LCL
problem on labeled paths or cycles is decidable. However, we also
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show that decidability is far from trivial: the problem is PSPACE-
hard, as LCL problems on labeled paths are expressive enough to
capture linear bounded automata (Turing machines with bounded
tapes).

Full Version. Due to space constraints, this version is missing
some proofs and other details. The full version can be found here [1].

2 MODEL

The LOCAL Model. The model of computation we consider in
this work is the LOCAL model of distributed computing [20, 24]. In
the LOCAL model, each node of the input graph is considered as a
computational entity that can communicate with the neighboring
nodes in order to solve some given graph problem. Computation is
divided into synchronous rounds, where in each round each node
first sends messages of arbitrary size to its neighbors, then receives
the messages sent by its neighbors, and finally performs some local
computation of arbitrary complexity. Each node is equipped with
a globally unique identifier (ID) which is simply a bit string of
length O(log n), where n denotes the number of nodes of the input
graph. In the beginning of the computation, each node is aware
of its own ID, the number of nodes and the maximum degree A of
the input graph, and potentially some additional problem-specific
input. Each node has to decide at some point that it terminates,
upon which it returns a local output and does not take part in any
further computation; the problem is solved correctly if the local
outputs of all nodes together constitute a global output that satisfies
the output constraints of the given problem.

Each node executes the same algorithm; the running time of the
distributed algorithm is the number of rounds until the last node
terminates. It is well known that, due to the unbounded message
sizes, an algorithm with runtime T(n) can be equivalently described
as a function from the set of all possible radius-T(n) neighborhoods
to the set of allowed outputs. In other words, we can assume that
in a T(n)-round algorithm, each node first gathers the topology of
and the input labels contained in its radius-T(n) neighborhood, and
then decides on its output based solely on the collected information.

Locally Checkable Labelings. The class of problems we consider
is locally checkable labeling (LCL) problems [22]. LCL problems
are defined on graphs of bounded degree, i.e., we will assume that
A = O(1). Formally, an LCL problem is given by a finite input label
set Zjy, a finite output label set Zqyt, an integer r, and a finite set
C of graphs where every node is labeled with a pair ({in, fout) €
Yin X Zout and one node is marked (as the center). Each node of
the input graph is assigned an input label from X;, before the
computation begins, and the global output of a distributed algorithm
is correct if the radius-r neighborhood of each node v, including
the input labels given to the contained nodes and the output labels
returned by the contained nodes, is isomorphic to an element of C
where v corresponds to the node marked as the center.

In the case of directed paths as our class of input graphs, we are
interested in identifying the simplest possible form of LCL problems.
For this purpose, we define f-normalized LCLs; these are problems
for which the input is just binary, and the size of the set of output
labels is 8. Moreover, the solution can be checked at each node v by
just inspecting the input and output of v, and, separately, the output



Session 6
do a1 Q1 a1

—{L ]| L L L
0 — 0 1 1
0 0 — 0 1
0 0 0 — 0
0 0 0 0 —>
0 0 0 0
0 0 0 0
R R R R
\

’:Uooo»—xHHr("S

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

q1 q1 q1 ar
L L L L]
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
— 0 1 1 1
0 — 0 1 1
R R — R — R

a L 0 0 0 0O O 0 R L 0 0 0 0O O 0 R 1 0 0 0 O 0 R
T F F F F F F F F T F F F F F F F F T F F F F F
g0 490 90 40 40 490 9o 4o 91 91 91 91 91 41 q1 q1 91 91 91 91 91 41 g1 q1

Figure 1: Illustration of a correct encoding of the execution of an LBA on a path; black nodes act as separators between the
encoding of two consecutive steps of the LBA; in the example, the LBA executes a unary counter.

q0 90 490 90 9o 9o 9o Qgo 91 491 91 91 41 g1 g1 Qg1 91 91 491 91 91 491 g1 q1
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Output & a a a a a a E> E2 E>2 E2 E2 E2 E2 E2E2E2 E E E E E E E E E E E E
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01 2 3 4 5 6 7 8 9

Figure 2: Illustration of an incorrect encoding of the execution of an LBA on a path; in the example, the tape of the LBA is
wrongly copied (the inputs in red are different, while they should be the same). The error output E? encodes the distance of

B + 1 between the two nodes, and the input wrongly copied.

of v and the output of its predecessor. More formally, a f-normalized
LCL problem is given by finite input and output label sets X,
Sout satisfying |Zin| = 2, |Zout| = B, a finite set Cj — oyt of pairs
(in» Cout) € ZinXZout and a finite set Cout — out of pairs (Cout, £ ;) €
Sout X Zout- The global output of a distributed algorithm for the
pB-normalized LCL problem is correct if the following hold:

e For each node v, we have (Input(v), Output(v)) € Ciy — outs
where Input(v) denotes the input label of v, and Output(v)
the output label of v.

e For each node v that has a predecessor, we have
(Output(v), Output(u)) € Cout—out, Where u is the prede-
cessor of v, and Output(v), Output(u) are the output labels
of v and u, respectively.

It is straightforward to check that a f-normalized LCL problem is
indeed a special case of an LCL problem where r = 1.

3 HARDNESS

In this section we study the hardness of determining the distributed
complexity of LCLs on paths and cycles with input labels. More
precisely, we start by proving the existence of a family IT of LCL
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problems for consistently globally oriented paths, such that, given
an LCL problem in II, it is PSPACE-hard to decide if its distributed
complexity is O(1) or ©(n). The main result is summarised in the
following theorem.

THEOREM 1. It is PSPACE-hard to distinguish whether a given LCL
problem P with input labels can be solved in O(1) time or needs Q(n)
time on globally oriented path graphs.

The high level idea of the proof of Theorem 1 is as follows. We
would like to encode the execution of Turing machines as LCLs on
consistently oriented paths, and then define some LCL for which
the complexity depends on the running time of the machine. This
is fairly easy on oriented grids, for example, where we can use one
dimension of the grid as a tape, and the other dimension as time.
One may try to do the same on paths, by projecting everything
on a single dimension, concatenating the tape state of each step.
Unfortunately, the obtained encoding is not locally checkable, since
the length of the tape may be non-constant. Hence, in order to guar-
antee the local checkability, we should consider Turing machines
having a tape of size at most B, where B is a constant with respect
to the number of nodes in the path where we want to encode its
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Figure 3: Illustration of the normalization of an LCL.

execution. For this purpose, we consider Linear Bounded Automata
(LBA) [18, p. 225]. An LBA is a Turing machine that has a tape of
size upper bounded by some B. We show that, if B is constant with
respect to the number of nodes in the path, we can then encode the
execution of an LBA Mp as an LCL for directed paths. Moreover,
we show that by seeing this encoding as a two party game between
a prover and a disprover, we can encode the execution of Mp using
labels of constant size that do not depend on B, even in the case in
which the LCL checkability radius is 1. If the execution of Mp is not
correctly encoded in the input of the LCL, then we can disprove its
correctness using output labels of size O(B). Moreover, we ensure
that, if the execution of Mp is correctly encoded in the input of the
LCL, it is not possible to produce a correct proof of non-correctness.
Then, in order to obtain an LCL with a distributed complexity that
depends on the execution time of Mp, we encode some secret input
at the first node of the path. We require then that all nodes involved
in a correct encoding must produce the same secret as output. Fig-
ure 1 shows an example of an LBA that executes a unary counter,
and its encoding as input to nodes on a path. In this instance, all
nodes must produce the symbol a as output. Figure 2 shows an
example of the wrong input (the tape has been copied incorrectly
between two consecutive steps of the LBA). In this case, nodes are
allowed to produce a chain of errors. Different types of errors will
be handled using different types of error labels. In the example, all
nodes that produce the error chain, output E2?, indicating an error
of type 2. We will show that we need O(B) symbols to handle all
possible errors (including the case in which the input tape is too
long, way more than B). Also, it is necessary that all error chains
that we allow as outputs must be locally checkable.

Another interesting problem is to identify, for an LCL that can
be distributedly solved in constant time, how big this constant can
be. In particular, we first focus on identifying the simplest possible
description of an LCL, and then, we provide a lower bound on the
complexity of a constant time LCL, as a function of the size of the
LCL description. For this purpose, we consider f-normalized LCLs,
i.e., problems for which the input labeling is just binary and there
are f§ possible output labels. Also, the verifier for these LCLs is the
simplest possible: it can only check if the output of a node is correct
w.r.t. its input, and separately, if the output of a node is correct w.r.t.
the output of its predecessor. Therefore, we show how to convert an
LCL to a f-normalized one by encoding the input in binary (Figure
3 shows an example), and obtain the following result.
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THEOREM 2. There are -normalized LCLs that can be solved in
constant time but the distributed time complexity is 290B),

All results we described so far apply to globally oriented paths.
Nevertheless, we show that the ideas and techniques can be gen-
eralized to work on undirected paths and cycles as well, obtaining
essentially the same results. Finally, we will show how to lift these
results to trees without input labels, proving the following theorem.

THEOREM 3. It is PSPACE-hard to distinguish whether a given LCL
problem P without input labels can be solved in O(1) time or needs
Q(n) time on trees with degree A = 3.

4 DECIDABILITY

In this section, we show that the two gaps w(1)—o(log™ n) and
@(log* n)—o(n) for LCL problems with input labels on paths and
cycles are decidable. More specifically, given a specification of an
LCL problem P, there is an algorithm that outputs a description of
an asymptotically optimal deterministic LOCAL algorithm for P,
as well as its time complexity.

We will prove the statements for the case of cycles, but the anal-
ogous results for cycles and paths follows as a simple corollary, as
we can encode constraints related to degree-1 nodes as constraints
related to nodes adjacent to a special input label. Furthermore, hav-
ing a promise that the input is a path does not change the time
complexity of an LCL problem: if a problem can be solved in time
T = o(n) in labeled paths, the same algorithm will solve it also in
time T = o(n) in labeled cycles.

The proof of Theorem 4 is in Section 4.2; the proof of Theorem 5
is in Section 4.5.

THEOREM 4. For any LCL problem P on cycle graphs, its deter-
ministic LOCAL complexity is either Q(n) or O(log* n). Moreover,
there is an algorithm that decides whether P has complexity Q(n) or
O(log™ n) on cycle graphs; for the case the complexity is O(log™ n), the
algorithm outputs a description of an O(log™ n)-round deterministic
LOCAL algorithm that solves P.

THEOREM 5. For any LCL problem P on cycle graphs, its determin-
istic LOCAL complexity is either Q(log™ n) or O(1). Moreover, there
is an algorithm that decides whether P has complexity Q(log™ n) or
O(1) on cycle graphs; for the case the complexity is O(1), the algo-
rithm outputs a description of an O(1)-round deterministic LOCAL
algorithm that solves P.
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For convenience, in this section, a directed path P with input
labels is alternatively described as a string in Zikn’ where k > 0 is
the number of nodes in P. Similarly, an output labeling £ of P is
alternatively described as a string in 2](;“. In subsequent discussion,
we freely switch between the graph-theoretic notation and the
string notation. Given an output labeling £ of P, we say that £
is locally consistent at v if the input and output labeling assigned
to N”(v) is acceptable for v. Note that N” (v) refers to the radius-r
neighborhood of v. Given two integers a < b, the notation [a, b]
represents the set of all integers {a,a + 1,. .., b}. Given a string w,
denote wR as the reverse of w.

4.1 Pumping Lemmas for Paths

Let P =(s,...,t) be a directed path, where each node has an input
label from X, The tripartition of the nodes é(P) = (D1, D2, D3) is
defined as follows:

Dy =N""Y(s)UN""1(),
D, = (N#1(s) UN? 1 (1)) \ Dy,
D3 =P\ (D UDg).
See Figure 4 for an illustration. More specifically, suppose P =
(u1,...,uy), and let i € [1, k]. Then we have:
e y; € Dyifandonlyifi e [1,r]U[k -7+ 1,k].
e u; e Dyifandonlyifi e [r+1,2r]U[k—2r+ 1,k —r].
e u; € D3ifandonlyifi ¢ [1,2r] U [k —2r + 1,k].
Let L: D1 U Dy — Xoyt assign output labels to D; U Dy. We
say that L is extendible w.r.t. P if there exists a complete labeling

L, of P such that £, agrees with £ on D; U Dy, and L, is locally
consistent at all nodes in Dy U Ds.

An Equivalence Class. We define an equivalence class X for the
directed paths (i.e., the set of all non-empty strings in % ), as fol-
lows.

Consider two directed paths P = (uy,...,uy) and P/ =
(v1,...,vy), and let &(P) = (D1,D2,D3) and &(P’)
(D1, D}, D3). Consider the following natural 1-to-1 correspon-
dence ¢: (D; U Dp) — (Di U Dé) defined as ¢(u;) = v; and
P(ux—i+1) = vy—i+1 for each i € [1, 2r]. The 1-to-1 correspon-
dence is well-defined so long as (i) x = y or (ii) x > 4r and
y > 4r. We have P X P’ if and only if the following two
statements are met:

o Isomorphism: The 1-to-1 correspondence ¢ is well-
defined, and for each u; € D1 U D3, the input label of
u; is identical to the input label of ¢(u;).

o Extendibility: Let £ be any assignment of output la-
bels to nodes in D;UD3, and let £’ be the corresponding
output labeling of D] UD, under ¢. Then L is extendible
w.r.t. P if and only if £’ is extendible w.r.t. P’.

Note that for the special case of x < 4r, we have P X P’ ifand
only if P is identical to P’.

Define Type(P) as the equivalence class of P w.r.t. X The follow-
ing lemma is analogous to [8, Theorem 3] in a specialized setting.
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One useful consequence of this lemma is that if we start with a path
or a cycle G with a legal labeling, after replacing its subpath P with
another one P’ having the same type as P, then it is always possi-
ble to assign output labeling to P’ to get a legal labeling without
changing the already-assigned output labels of nodes outside of P’.

Lemma 6. Let G be a path graph or a cycle graph where all nodes
have input labels from Ziy,. Let P be a directed subpath of G, and let
P’ be another directed path such that Type(P’) = Type(P). Let L,
any complete labeling of G such that L, is locally consistent at all
nodes in P. Let G’ = Replace(G, P, P’) be the graph resulting from
replacing P with P’ in G. Then there exists a complete labeling L of
G’ such that the following two conditions are met.

(1) For eachv € V(G) \ V(P) and its corresponding v’ € V(G') \
V(P"), we have Lo(v) = LL(v"). Moreover, if L, is locally
consistent at v € V(G) \ V(P), then L, is locally consistent at

’

v’
(2) L is locally consistent at all nodes in P’.

The following lemma is analogous to [8, Theorem 4] in a spe-
cialized setting. We only use this lemma in Section 4.1.

Lemma7. LetP = (v1,...,v;), andletP’ = (v, ...,vp_q). Let the
input label of vy be a. Then Type(P) is a function of @ and Type(P’).

The number of types can be upper bounded as follows.

Lemma 8. The number of equivalence classes of: (i.e., types) is at
4r
most | i |47 2/Zout ™",

PRroOF. Let P be a directed path, and let £(P) = (D, D2, D3).
Then Type(P) is determined by the following information.
e The input labels in D; U Dj. Note that there are at most
[Zin|*" possible input labeling of D; U Ds.
o A length-x binary string indicating the extendibility of each
possible output labeling of D; U D, where x = |Zout|*".

4r .
Therefore, there are at most |Zi,|4" 2[Zout| equivalence classes
*
of ~. ]

Define £pump as the total number of types. Observe that Lemma 7
implies that Type(P) can be computed by a finite automaton whose
number of states is the total number of types, which is a constant
independent of P. Thus, we have the following two pumping lemmas
which allow us to extend the length of a given directed path P while
preserving the type of P. The following two lemmas follow from
the standard pumping lemma for regular language.

Lemma 9. LetP € Zikn with k > Cpump. Then P can be decomposed
into three substrings P = x o y o z such that (i) |xy| < €pump, (ii)
ly| = 1, and (iii) for each non-negative integer i, Type(x o y’ o z) =
Type(P).

Lemma 10. For eachw € Z;O, there exist two positive integers a

and b such that a + b < {pump, and Type(w®+b) is invariant for
each non-negative integer i.

4.2 The w(log* n)—o(n) Gap
In this section we show that the w(log" n)—o(n) gap is decidable.
More specifically, we show that an LCL problem % can be solved
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Figure 4: Illustration of the tripartition £(P) = (D1, D2, D3) with r = 3.

in O(log™ n) rounds if and only if there exists a feasible function,

which is defined as follows.

Input: Adirected path P = wjoSows, where |wi| € [{pump, Cpump+
1], [wz| € [€pump> Cpump + 1], and |S| = 2r. The decomposi-
tion P = wy o S o wy is considered part of the input.

Output: A string L € Zgﬁt that represents the output labeling of
S.

Requirement: Any such function f is said to be feasible if the
following requirement is met for any paths Sq, S2 and wg, wp,
we, wg such that {{wal, [wp |, [wel, [wal} € [€pump, Cpump+1]
and |S1] = |S2| = 2r.Let P = wq 0 S1 0 Wp, 0 we 0 Sp 0 wy,
and consider the following assignment of output labels to
S1USs.

o Either label S; by f(wq o S1 0 wy,) or label Sf by
FE o SR o)
o Either label Sy by f(w¢ 0 Sz o wy) or label 5§ by
fwhoSRowd).
It is required that given such a partial labeling of P, the
middle part wy, o w, can be assigned output labels in such
a way that the labeling of (i) the last r nodes of Sy, (ii) all
nodes in wy, o we, and (iii) the first r nodes of Sy are locally
consistent.

The following lemma is a straightforward consequence of the
well-known O(log* n)-round MIS algorithm on cycles.

Lemma 11. Let G be a cycle graph of n nodes, and let s < k be two
constant integers such that n > (s + k). Then in O(log* n) rounds we
can compute a decomposition V.= AU B such that each connected
component of A has size s, and each connected component of B has
size within [k, k + 1].

Lemma 12. Ifa feasible function f exists, then there is an O(log™ n)-
round deterministic LOCAL algorithm for P on cycles.

Proor. Given that the number of nodes n is at least some large
enough constant, in O(log" n) rounds we can compute a decom-
position V. = A U B such that each connected component of A
has size 2r, and each connected component of B has size within
[2€pumps 2Cpump + 1]. This can be done using Lemma 11 with s = 2r
and k = 2{pump. We further decompose each connected component
P of B into two paths P = P; o P, in such a way that the size of
both P; and P; are within the range [{pump, {pump + 1]. We write
& to denote the set of all these paths.

Let S be a connected component of A, and let w; and wy be its
two neighboring paths in & so that (wj oS o wy) is a subpath of the
underlying graph G. The output labels of S are assigned either by
labeling S with f(w;0Sow,) or by labeling SR with f(w§ oSR owf).
At this moment, all components of A have been assigned output
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labels using f. By the feasibility of f, each connected component of
B is able to label itself output labels in such a way that the labeling
of all nodes are locally consistent. O

Lemma 13. Ifthere is an o(n)-round deterministic LOCAL algorithm
for P on cycles, then a feasible function f exists.

Proor. Fix s to be some sufficiently large number, and fix n =
8(s + pump) + 2(2r). We select s to be large enough so that the
runtime of A is smaller than 0.1s. For any given directed path w
with |w| € [€pump, Cpump + 1], we fix wt as the result of applying
the pumping lemma (Lemma 9) on w so that the following two
conditions are met: (i) |[w*| € [s,s + fpump] and (ii) Type(w) =
Type(w™).

Constructing a Feasible Function f by Simulating A. The function
f(w1 o S o wy) is constructed by simulating a given o(n)-round
deterministic LOCAL algorithm for #. The output labeling given
by f(w1 o S o wy) is exactly the result of simulating A on the
path P = w] o § o wy while assuming the number of nodes of
the underlying graph is n. Remember that the round complexity of
A is o(n) on n-node graphs. By setting s to be large enough, the
runtime of A can be made smaller than 0.1s. Thus, the calculation
of f(wi1 oS o wy) only depends on the IDs and the input labels of
(i) the last 0.1s nodes in wf, (ii) all nodes in S, and (iii) the first 0.1s
nodes in w;. In the calculation of f(w; o S o wy), the IDs of the
nodes that participate in the simulation of A are chosen arbitrarily
so long as they are distinct.

Feasibility of f. Now we verify that the function f constructed
above is feasible. Consider any choices of paths S1, Sz and wg, wy,
We, Wq such that {|Wa|» Iwb|v IWCL |Wd|} < [gpumpy fpump + 1] and
|S1] = |S2| = 2r. Define P = wg © S; 0 wp, 0 e 0 Sp 0 wy, and let G
be the cycle graph formed by connecting the two ends of the path
P. To show that f is feasible, we need to consider the following
four ways of assigning output labels to S; U Sy.

(1) Label S; by f(wg o S1 o wp); label Sz by f(we o Sz 0 wy).

(2) Label S; by f(wg o S1 0 wp); label SX by f(wX o SK 0 wf).

(3) Label S{ by f(wy o SF o wi); label Sz by f(we 0 Sz 0 wq).

(4) Label Sf by f(wiz ) sz ) waR); label 55 by f(wg o S§ ) w§).

For each of the above four partial labelings of P, we need to show
that the middle part wj, o wc can still be assigned output labels in
such a way that the labeling of (i) the last r nodes of S1, (ii) all nodes
in wp, o we, and (iii) the first r nodes of S are locally consistent.

Proof of the First Case. In what follows, we focus on the first case,
i.e., the partial labeling is given by labeling S; by f(wq 051 0wy, ) and
labeling Sy by f(wc 0S2 0wy); the proof for the other three cases are
analogous. In this case, we define P’ = w/ oS; ow;r ow/ oS, ow:;, and
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let G’ be the cycle graph formed by connecting the two ends of P’.
Note that the number of nodes in G” is at most 8(s + €pump) +2(2r) =
n. All we need to do is to find an output labeling £ of G such that
the following conditions are satisfied.

(a) The output labels of Sy is given by f(wg 0 S © wp).

(b) The output labels of Sy is given by f(w o Sz 0 wy).

(c) The labeling of (i) the last r nodes of Si, (ii) all nodes in
wp, © W, and (iii) the first r nodes of S are locally consistent.

We first generate an output labeling £’ of G’ by executing A
on G’ under the following ID assignment. The IDs of (i) the last
0.1s nodes in w}, (ii) all nodes in Sy, and (iii) the first 0.1s nodes in
w;' are chosen as the ones used in the definition of f(wg 0 S1 0 wp).
Similarly, the IDs of (i) the last 0.1s nodes in w, (ii) all nodes in Sy,
and (iii) the first 0.1s nodes in w:; are chosen as the ones used in the
definition of f(w; o Sz o wy). The IDs of the rest of the nodes are
chosen arbitrarily so long as when we run A on G’, no node sees
two nodes with the same ID. Due to the way we define f, the output
labeling L’ of the subpath S; is exactly given by f(wg 0 S1 0 wp),
and the output labeling £ of Sz is exactly f(w¢ o Sp o wy). Due to
the correctness of A, L’ is a legal labeling.

We transform the output labeling £’ of G’ to a desired output
labeling £ of G. Remember that G is the result of replacing the
four subpaths w* of G’ by w, and we have Type(w*') = Type(w).
In view of Lemma 6, there is a legal labeling £ of G such that all
nodes in S; and S are labeled the same as in G’. Therefore, the
labeling L satisfies the above three conditions (a), (b), and (c).

The Other Cases. We briefly discuss how we modify the proof to
deal with the other three cases. For example, consider the second
case, where the partial labeling is given by labeling S; by f(wq o
S1 0 wp) and labeling Sf by f(wg o 55 o wR). In this case, the path
P’ is defined as

R R
PP=wloSio w; o ((wf)*’) o 55 o ((w§)+) .

During the ID assignment of G’, the IDs of (i) the last 0.1s nodes in

w}, (ii) all nodes in Sy, and (iii) the first 0.1s nodes in wzl' are now

chosen as the ones used in the definition off(wg o Sf o wf) Using
such an ID assignment, the output labeling £’ of S§ as the result of
executing A on G’ will be exactly the same as the output labeling
given by f(wld2 o S§ o wX). The rest of the proof is the same. O

Theorem 4 follows from the above two lemmas. The decidability
result is due to the simple observation that whether a feasible
function exists is decidable.

4.3 Partitioning a Cycle

In the following sections, we prove the decidability result associ-
ated with the w(1)—o(log™ n) gap. In this proof, we also define a
feasible function, prove its decidability, and show the existence
given an o(log™* n)-time algorithm. The main challenge here is that
an MIS cannot be computed in O(1) time. To solve this issue, we
decompose a cycle into paths with unrepetitive patterns and paths
with repetitive patterns. For paths with unrepetitive patterns, we
are able to compute a sufficiently well-spaced MIS in O(1) time by
making use of the irregularity of the input patterns.
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Section 4.3 considers an O(1)-round algorithm that partitions a
cycle into some short paths and some paths that have a repeated
input pattern. Section 4.4 defines a feasible function whose existence
characterizes the O(1)-round solvable LCL problems. In Section 4.5,
we prove Theorem 5.

Partitioning an Undirected Cycle into Directed Paths. Let G be a
cycle graph. An orientation of a node v is an assignment to one
of its neighbor, this can be specified using port-numbering. An
orientation of the nodes in G is called {-orientation if the following
condition is met. If |V(G)| < ¢, then all nodes in G are oriented to
the same direction. If |V(G)| > ¢, then each node v € V(G) belongs
to a path P such that (i) all nodes in P are oriented to the same
direction, and (ii) the number of nodes in P is at least £. In O(1)
rounds we can compute an £-orientation of G for any constant £.

Lemma 14 ([8]). Let G be a cycle graph. Let { be a constant. There
is a deterministic LOCAL algorithm that computes an {-orientation
of G in O(1) rounds.

In this section, we will use a generalization of an {-orientation
that satisfies an additional requirement that the input labels of each
directed path P in the decomposition with |V(P)| > 2€;4in, (Where
20width 1s a threshold) must form a periodic string (whose period
length is at most {pattern)-

A string w € X7 is called primitive if w cannot be written as x!
for some x € X! and i > 2. Let G be a cycle graph or a path graph
where each node v € V(G) has an input label from X;,,. We define
an (Lyidths Ccount» Cpattern)-partition as a partition of G into a set of
connected subgraphs & meeting the following criteria. We assume
[V(G)| > 2¢yiatn and {pattern = Cywidth-

Direction and Minimum Length: For each P € &, the nodes in
P are oriented to the same direction, and |V(P)| > lwidih-

Short Paths: Define P, as the subset of & that contains paths
having at most 2{y;q, nodes. For each P = (vy, ..., ;) € Phorts
each node v; in P knows its rank i.

Long Paths: Define P oy = 9\ Pghort- Then the input labeling

of the nodes in P is of the form w¥ for some primitive string w € =
such that |w| < fpattern and k 2 €count. Moreover, each node v in P
knows the string w.

Note that & may contain a cycle. This is possible only when
G is a cycle where the input labeling is a repetition (at least {count
times) of a primitive string w € an of length at most {pattern. In
this case, we must have & = #,,, = {G}. Otherwise, & contains
only paths.

The goal of this section is to show that an ({yigth» Lcount. {pattern)-
partition can be found in O(1) rounds.

We first show that an ({yiqh, Ccount €pattern)-partition can be
found in O(1) rounds for the case G is directed. That is, all nodes in
G are initially oriented to the same direction, and we are allowed
to re-orient the nodes.

Lemma 15. Let G be a directed cycle or a directed path where each
node v € V(G) has an input label from 3y, and |V(G)| > 2lyidih-
Let Cyidth> Ceount, Cpattern be three constants such that pattern >
Cwidth- There is a deterministic LOCAL algorithm that computes an
(Cwidths Ccounts fpmem)—partition in O(1) rounds
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Combining Lemma 15 and Lemma 14, we are able to construct
an (Cyidth» Leounts Cpattern)-partition in O(1) rounds for undirected
graphs.

Lemma 16. Let G be a cycle or a path where each nodev € V(G) has
an input label from Xy, and |V(G)| > 2Cyigth- Let Cwidihs Ccount, and
Cpattern be three constants such that {pattern > Cywideh- There is a deter-
ministic LOCAL algorithm that computes an (£yidth» Lcount> {pattern)-
partition in O(1) rounds

Proor. The algorithm is as follows. Compute an {-orientation
of G by Lemma 14 in O(1) rounds with ¢ = 2{y;qy, + 1. For each
maximal-length connected subgraph P where each constituent node
is oriented to the same direction, find an ({yigth, £count €pattern)-
partition of P in O(1) rounds by Lemma 15. O

4.4 Feasible Function

The goal of this section is to define a feasible function whose exis-
tence characterizes the O(1)-round solvable LCL problems. With
respect to an LCL problem # and a function f which takes a
string w € Zikn with 1 < k < fpump as input, and returns a string
f(w) e Zlgut, we define some partially or completely labeled path
graphs which are used in the definition of a feasible function.

Completely Labeled Graph Gy,,;: Let w € &} be any string of
length at least 1 and at most {,ump. Let z be any non-negative
integer. Define G,z = (Gw,z, £) as follows. The graph
Gy, is a path of the form w” o w? o w”. The labeling L is a
complete labeling of the form f(w)**2". Define Mid(Gyy, ;)
as the middle subpath w® of G,, ;.

Partially Labeled Graph G,,, ,,,s: Let w1, wy € 27 be any two
strings of length at least 1 and at most pump. Let S € Z} be
any string (can be empty). Define Gy, w,,5 = (G, w,,5> L)
as follows. The path graph G,,,  w,, s is of the form wfp"mp”ro

pump +27

So wg . The labeling L is a partial labeling of Gy, w,,s
which fixes the output labels of the first 2r|w;| and the last
2r|wz| nodes by f(w1)?" and f(w2)?", respectively. Define

Mid(Giy,,rs,,s) as the middle subpath wfp“mpH oSo ngump"'r
of GW1,W2> S.

Feasible Function: We call f a feasible function if the follow-
ing conditions are met: (i) For each G,z = (G, z, £), the
complete labeling £ is locally consistent at all nodes in
Mid(Gyy,z). (ii) Each partially labeled graph G,,, w,,s ad-
mits a complete labeling £, that is locally consistent at all
nodes in Mid(Gy, ,w,,5)-

Lemma 17. Given an LCL problem P on cycle graphs. It is decidable
whether there is a feasible function.

ProorF. Note that it is not immediate from its definition as to
whether a feasible function exists is decidable, since there appears
to be infinitely many graphs G,y » and G,,, w,,s needed to be ex-
amined. However, the following simple observations show that it
suffices to check only a constant number of these graphs.

o If the complete labeling L of Gw,1 = (Gw,1, L) is locally
consistent at all nodes in Mid(Gy,1), then for all z > 1, the
complete labeling L of Gw,; = (Gy,z, L) is also locally
consistent at all nodes in Mid(Gyy, 7).
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o If G\, ,w,,s admits a complete labeling L, that is locally
consistent at all nodes in Mid(Gy,,w,.s), then for each S’
such that Type(S) = Type(S’), the partially labeled graph
Gw,,w,,s also admits a complete labeling L, that is locally
consistent at all nodes in Mid(G,,,,w,,s’)- This is due to
Lemma 6.

Therefore, to decide whether a function f is feasible, we only
need to check all possible G, , and Gy, w,,s. For each w we only
need to consider the graph G,, , with z = 1. For each w; and wo,
we do not need to go over all S; we only need to consider (i) the
empty string S = 0, and (ii) for each type 7, a string S € 3} such
that Type(S) = 7. By Lemma 9, for each type 7, there exists P € 2
with x < €pump such that Type(P) = 7. Therefore, a string S with
Type(S) = 7 can be found in bounded amount of time; also note
that the number of types is bounded; see Lemma 8. O

For the rest of this section, we show that as long as the deter-
ministic LOCAL complexity of  is o(log” n) on cycle graphs, there
exists a feasible function f.In Lemma 18 we show how to extract
a function f from a given o(log” n)-round deterministic LOCAL
algorithm A, and then in Lemma 19 we prove that such a function
f is feasible. Intuitively, Lemma 18 shows that there exists an ID-
assignment such that when we run A on a subpath whose input
labeling is a repetition of a length-k pattern w, the output labeling
is also a repetition of a length-k pattern w’. The function f will be
defined as f(w) = w’.

Lemma 18. Let A be any deterministic LOCAL algorithm that
solves P in t(n) = o(log” n) rounds. Then there is a number n’ and
function f which takes a string w € Zikn with1 < k < €pump as input,
and returns a string f(w) € Zlgut meeting the following condition. For
anyP = wow? *Low! such that |w!| > t(n’) and1 < |w| < Loump.
there is an assignment of distinct ©(log n’)-bit IDs to the nodes in P
such that the following is true. Simulating ‘A on P while assuming
that the total number of nodes in the underlying graph is n’ yields
the output labeling f(w)?"*! for the middle subpath w?™*1.

Proor. In this proof we assume that there is no such a number n’.
Then we claim that using A it is possible to obtain a deterministic
LOCAL algorithm for MIS on an n-node directed cycle G without
input labeling, in O(t(n))+O(1) = o(log" n) rounds. This contradicts
the well-known Q(log" n) lower bound for MIS [20].

Let G be an n-node directed cycle without input labeling. The
MIS algorithm on G is described as follows. Let w € Zikn with
1 < k < €pump be chosen such that for any function f, the string
f(w) e Zlgut does not satisfy the conditions stated in the lemma
for the number n’ = nk. Define G’ as the graph resulting from
replacing each node v € V(G) with a path w. We can simulate the
imaginary graph G’ in the communication network G by letting
each node v € V(G) simulate a path w.

We execute the algorithm A on G’ while assuming that the total
number of nodes is n’. The execution takes t(n’) = O(t(n)) rounds.
For each node v € V(G), define the color of v as the sequence of
the output labels of the path w?” simulated by the node v and the
2r — 1 nodes following v in the directed cycle G. This gives us a
proper O(1)-coloring, since otherwise there must exist a subpath
P = w?™*1 of G’ such that the output labeling of P is of the form
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y?*1 for some y, contradicting our choice of w. Using the standard
procedure of computing an MIS from a coloring, with extra O(1)
rounds, an MIS of G can be obtained.

Note that there is a subtle issue about how we set the IDs of
nodes in V(G’). The following method is guaranteed to output
distinct IDs. Let v € V(G), and let uy, . . ., uy be the nodes in V(G’)
simulated by v. Then we may use ID(u;) = k - ID(v) + i. O

Lemma 19. Suppose that the deterministic LOCAL complexity of
P iso(log™ n) on cycle graphs. Then there exists a feasible function f.

PrOOF. Let A be any deterministic LOCAL algorithm that solves
P in t(n) = o(log® n) rounds. Let n” and f be chosen to meet the
conditions in Lemma 18 for A. The goal of the proof is to show
that f is a feasible function. According to the conditions specified
in Lemma 18 for the function f, we already know that the complete
labeling £ of each G, ; = (Gw,z, L) is locally consistent at all
nodes in Mid(G,,, 7). Therefore, all we need to do is the following.
For each partially labeled graph Gy, w,,s, find a complete labeling
L, that is locally consistent at all nodes in Mid(Gyy,,w,,5)-

Given the three parameters wq, wz, and S, define G as the cycle

pump 2r+l o
1

resulting from linking the two ends of the path wf ow

[P“mp

pump 2r+1
wy oWy

oSo wg o wgp "™ Define £ as the partial labeling

of G which fixes the output labeling of the two subpaths wfr +1and
wgr“ by f(w1)? 1 and f(wo)?"*1, respectively. We write P{nid and
P;“id to denote the two subpaths w%r *+1 and wg”l, respectively.

In what follows, we show that the partially labeled graph G =
(G, L) admits a legal labeling L. Since Gy, w,,s is a subgraph of
G = (G, L), such a legal labeling L, is also a complete labeling of
Gw,,wy,s that is locally consistent at all nodes in Mid(Gyy,,w,,s)-

For the rest of the proof, we show the existence of L. This will
be established by applying a pumping lemma. Define the graph G’
as the result of the following operations on G.

Cpumy
e Replace the two subpaths w, "™ by w7, where the number

. f umj
x is chosen such that x|wy| > 2t(n”) +r, and Type(w,""™") =

Type(wy).
[ umyj
e Replace the two subpaths w,”"™ by wzy , where the number

y is chosen such that y|wy| > 2¢(n’) +r, and Type(wgp“mp) _

Type(wy).
The existence of the numbers x and y above is guaranteed by
Lemma 10. The IDs of nodes in G’ are assigned as follows. For
i = 1,2, select the IDs of the nodes in | « N' ™) (2) in such a

vepPM™
way that the output labeling of P;nid resulting from executing A on
G’ while assuming that the total number of nodes is n” is f(w;)2"*1.
The existence of such an ID assignment is guaranteed by Lemma 18.
For all remaining nodes in G, select their IDs in such a way that all
nodes in N"**(")(v) receive distinct IDs, for each v € V(G’). This
ensures that the outcome of executing A on G’ while assuming
that the total number of nodes is n’ is a legal labeling.

Let £} be the legal labeling of G’ resulting from executing A
with the above IDs while pretending that the total number of nodes
is n’. Note that £/ must label P{“id and P;nid by f(w1)?*! and
F(w2)?™*1, respectively. A desired legal labeling £, of G can be
obtained from the legal labeling £/ of G’ by applying Lemma 6, as
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pump )

we have Type(wf PumPy =

4
Type(wy) and Type(w, Type(wzy),

[m]

4.5 The w(1)—o(log* n) Gap
In this section we prove that it is decidable whether a given LCL
problem P has complexity Q(log* n) or O(1) on cycle graphs.

Lemma 20. Let f be any feasible function. Let G be any cycle graph.
Let & be any set of disjoint subgraphs in G such that the input
labeling of each P € & is of the form w* such that x > 2€pump + 21,
andw € Zikn is a string with 1 < k < €pump. For each P € 2, define
the subgraph P’ as follows. If P is a cycle, define P’ = P. IfP isa
path, write P = whump o i o WZP“"‘P, and define P’ as the middle
subpath w'. Let L be a partial labeling of G defined as follows. For
each P = w* € 2, fix the output labels of each subpath w of P’ by
f(w). Then G = (G, L) admits a legal labeling L.

Proor. Define V; as the set of all nodes such that v € V; if v
belongs to the middle subpath w/ of some path P = wheump 0w o
w o w" o wlhump ¢ 2. By the definition of feasible function, £ is
already locally consistent at all nodes in V;. Thus, all we need to
do is to construct a complete labeling L., of G = (G, £), and argue
that L, is locally consistent at all nodes in V2 = V(G) \ V;.

There are two easy special cases. If & = 0, then no output label
of any node in G is fixed, and so G trivially admits a legal labeling.
If & contains a cycle, then & = {G}, and hence £ is already a
legal labeling as V; = V(G).

In subsequent discussion, we restrict ourselves to the case &
is non-empty and contains only paths. The output labeling L, is
constructed as follows. Define P 1abeled @s the maximal-length
subpaths of G that are not assigned any output labels by L. A path

P € Pinlabeled must be of the form w "™ o § o w,”™, where

w1, Wy € Z;‘n are two strings of length at least 1 and at most {pump,
and S € 27 can be any string (including the empty string). Given
P € P nlabeled> Wwe make the following definitions.

e Define P* as the subpath of G that includes P and the r|w;|
nodes preceding P, and the r|w;| nodes following P in the
graph G. Note that the set V3 is exactly the union of nodes
in P* for all P € 2 plabeled-

e Define P** as the subpath of G that includes P and the 2r|w1 |
nodes preceding P, and the 2r|wy| nodes following P in the
graph G. The path P** must be of the form wfp“mp+2r o

So wgp"mp”r, and the labeling £ already fixes the output

labels of the first 2r|wq| and the last 2r|w;| nodes of P** by

F(w1)?" and f(w2)?", respectively.

Coump +2 Coump+2
Observe that the path P** = w ™™ " 08 0w, " together

with the labeling £ is exactly the partially labeled graph Gy, w,,s-
We assign the output labels to the nodes in P by the labeling £,
guaranteed in the definition of feasible function. It is ensured that
the labeling of all nodes within P* are locally consistent. By doing
so for each P € Zjlabeled, We obtain a desired complete labeling
that is locally consistent at all nodes in V5. O

pump

Lemma 21. Suppose that there is a feasible function f for the LCL
problem P. Then there is an O(1)-round deterministic LOCAL algo-
rithm A on cycle graphs.
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Proor. The first step of the algorithm A is to compute an
(fwidth» Lcount, pattern)-partition in O(1) rounds by Lemma 16. We
set Ccount = 2Cpump + 27 and Cyigh = Cpattern = Cpump. We assume
[V(G)| > 2lyigih- Recall that an (Cyigeh, Lcounts Cpattern)-partition
decomposes the cycle G into two sets of disjoint subgraphs Py ort
and Pong.

Define G’ as the graph resulting from applying the following
operations on G. For each P € P, 4, replace the path P by the
path P* = x o ¢! o z such that i = feount, 1 < |y| < Cpatterns
and the type of P* is the same as the type of P. The path P* is
obtained via Lemma 9. Note that each path P € P, ;1 has at least
Cyidth = Cpump nodes and at most 28yigth = 2€pump nodes. Define
P* as the set of all P* such that P € P, The graph G’ is
simulated in the communication graph G by electing a leader for
each path P € Py, to simulate P*.

Calculate a partial labeling £’ of G’ using the feasible function
f as follows. Recall £count = 2€pump + 27. For each P* = x o ny“mP o
y2" o yleump 0 z € 2*, label the middle subpath y2” by the function
f.Foreach P = wheump o i o wlhhum € Plong> label the middle
subpath w! by f(w)’. Even though a path P € Plong can have
(1) nodes, this step can be done locally in O(1) rounds due to the
following property of ({yidth> £counts Cpattern)-partition. All nodes
in a path P € Py, agree with the same direction and know the
primitive string w.

By Lemma 20, the remaining unlabeled nodes in G’ can be labeled
to yield a legal labeling of G’. This can be done in O(1) rounds since
the connected components formed by unlabeled nodes have at most
O(1) nodes. Given any valid labeling of G’, a legal labeling of G
can be obtained by applying Lemma 6 in O(1) rounds. Remember
that Type(P) = Type(P*) for each P € P11, and G’ is exactly the
result of replacing each P € P14 by P*. O

Combining Lemma 17, Lemma 19, and Lemma 21, we have proved
Theorem 5. That is, for any LCL problem # on cycle graphs, its
deterministic LOCAL complexity is either Q(log* n) or O(1). More-
over, there is an algorithm that decides whether # has complexity
Q(log" n) or O(1) on cycle graphs; for the case the complexity is
O(1), the algorithm outputs a description of an O(1)-round deter-
ministic LOCAL algorithm that solves #.
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