
The Distributed Complexity of Locally Checkable Problems on
Paths is Decidable

Alkida Balliu

alkida.balliu@aalto.fi

Aalto University

Sebastian Brandt

brandts@ethz.ch

ETH Zurich

Yi-Jun Chang

cyijun@umich.edu

University of Michigan

Dennis Olivetti

dennis.olivetti@aalto.fi

Aalto University

Mikaël Rabie

mikael.rabie@irif.fr

Aalto University and

IRIF, University of Paris

Jukka Suomela

jukka.suomela@aalto.fi

Aalto University

ABSTRACT
Consider a computer network that consists of a path with n nodes.

The nodes are labeled with inputs from a constant-sized set, and

the task is to find output labels from a constant-sized set subject

to some local constraints—more formally, we have an LCL (locally

checkable labeling) problem. How many communication rounds

are needed (in the standard LOCAL model of computing) to solve

this problem?

It is well known that the answer is always either O(1) rounds,
or Θ(log∗ n) rounds, or Θ(n) rounds. In this work we show that

this question is decidable (albeit PSPACE-hard): we present an al-

gorithm that, given any LCL problem defined on a path, outputs

the distributed computational complexity of this problem and the

corresponding asymptotically optimal algorithm.

CCS CONCEPTS
• Theory of computation → Distributed computing models;
Complexity classes; Distributed algorithms.

KEYWORDS
distributed computing, complexity, decidability

ACM Reference Format:
Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie,

and Jukka Suomela. 2019. The Distributed Complexity of Locally Checkable

Problems on Paths is Decidable. In 2019 ACM Symposium on Principles of Dis-
tributed Computing (PODC ’19), July 29-August 2, 2019, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3293611.3331606

1 INTRODUCTION
To what extent is it possible to automate the design of algorithms

and the study of computational complexity? While algorithm syn-

thesis problems are typically undecidable, there are areas of theoret-

ical computer science in which we can make use of computational

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331606

techniques in algorithm design—at least in principle, and some-

times also in practice. One such area is the theory of distributed
computing; see [4, 6, 8, 10, 11, 17, 19, 26] for examples of recent

success stories. In this work we bring yet another piece of good

news:

Consider this setting: there is a computer network that consists

of a path with n nodes, the nodes are labeled with inputs from

a constant-sized set, and the task is to find output labels from a

constant-sized set subject to some local constraints. We show

that for any given set of local constraints, it is decidable to tell

what is the asymptotically optimal number of communication

rounds needed to solve this problem (as a function of n, for
the worst-case input).

Background: LCLs and the LOCAL Model. We focus on what

are known as LCL (locally checkable labeling) problems [22] in

the LOCAL model of distributed computing [20, 24]. We define the

setting formally in Section 2, but in essence we look at the following

question:

• We are given an unknown input graph of maximum degree

∆ = O(1); the nodes are labeled with input labels from a

constant-size set Σin, and the nodes also have unique identi-

fiers from a polynomially-sized set.

• The task is to label the nodes with output labels from a

constant-size set Σout, subject to some local constraints P;

a labeling is globally feasible if it is locally feasible in all

radius-r neighborhoods for some r = O(1).
• Each node has to produce its own output label based on the

information that it sees in its own radius-T (n) neighborhoods
for some function T .

Here the local constraints P define an LCL problem. The rule that

the nodes apply to determine their output labels is called a dis-
tributed algorithm in the LOCAL model, and function T (n) is the
running time of the algorithm—here T (n) determines how far a
node has to see in order to choose its own part of the solution, or

equivalently, how many communication rounds are needed for each

node to gather the relevant information if we view the input graph

as a communication network.

In this setting, the case of T (n) = Θ(n) is trivial, as all nodes can
see the entire input. The key question is to determine which prob-

lems P can be solved in sublinear time—here are some examples:

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

262

https://doi.org/10.1145/3293611.3331606
https://doi.org/10.1145/3293611.3331606

• Vertex coloring with ∆ + 1 colors: can be solved in time

O(log∗ n) [9, 16] and this is tight [20, 21].

• Vertex coloring with ∆ colors, for ∆ > 2: can be solved in

polylogarithmic time [23] and requires at least logarithmic

time [7] for deterministic algorithms.

While the study of this setting was initiated already in the semi-

nal work by Naor and Stockmeyer in 1995 [22], our understanding

of these questions has rapidly advanced in the past three years

[2, 3, 5, 7, 8, 12–15, 25]. The big surprises have been these:

• There are LCL problems with infinitely many different time

complexities—for example, we can construct LCL problems

with a time complexity exactly Θ(nα) for any rational num-

ber 0 < α ≤ 1.

• Nevertheless, there are also wide gaps in the complexity

landscape: for example, no LCL problem has a (determinis-

tic) computational complexity that is between ω(log∗ n) and
o(logn).

However, what is perhaps most relevant for us is the following

observation: if we look at the case of ∆ = 2 (paths and cycles), then

the time complexity of any LCL problem is either O(1), Θ(log∗ n),
or Θ(n), and the same holds for both deterministic and randomized

algorithms [6, 8, 22].

Decidability of LCL Time Complexities. For a fixed ∆, any LCL
problem has a trivial finite representation: simply enumerate all

feasible radius-r local neighborhoods. Hence it makes sense to ask

whether, given an LCL problem, it is possible to determine its time

complexity. The following results are known by prior work:

• If the input graph is an unlabeled path or cycle, the time

complexity is decidable [6, 22].

• If the input graph is a grid or toroidal grid, the time complexity

is undecidable [22]. However, there are also some good news:

in unlabeled toroidal grids, the time complexity falls in one

of the classes O(1), Θ(log∗ n), or Θ(n), it is trivial to tell if

the time complexity isO(1), and it is semi-decidable to tell if

it is Θ(log∗ n) [6].
• In the case of trees, there are infinitely many different time

complexities, but there is a gap between ω(logn) and no(1),
and it is decidable to tell on which side of the gap a given

problem lies [8].

Somewhat surprisingly, the seemingly simple case of labeled paths
or cycles has remained open all the way since the 1995 paper by Naor

and Stockmeyer [22], which defined LCLs with inputs but analyzed

decidability questions only in the case of unlabeled graphs.

We initially expected that the question of paths with input labels

is a mere technicality and the interesting open questions are related

to much broader graph families, such as rooted trees, trees, and

bounded-treewidth graphs. However, it turned out that the main
obstacle for understanding decidability in any such graph family
seems to lie in the fact that the structure of the graph can be used to
encode arbitrary input labels, hence it is necessary to first understand
how the input labels influence decidability—and it turns out that

this makes all the difference in the case of paths.

In this work we show that the time complexity of a given LCL
problem on labeled paths or cycles is decidable. However, we also

show that decidability is far from trivial: the problem is PSPACE-

hard, as LCL problems on labeled paths are expressive enough to

capture linear bounded automata (Turing machines with bounded

tapes).

Full Version. Due to space constraints, this version is missing

some proofs and other details. The full version can be found here [1].

2 MODEL
The LOCAL Model. The model of computation we consider in

this work is the LOCALmodel of distributed computing [20, 24]. In

the LOCAL model, each node of the input graph is considered as a

computational entity that can communicate with the neighboring

nodes in order to solve some given graph problem. Computation is

divided into synchronous rounds, where in each round each node

first sends messages of arbitrary size to its neighbors, then receives

the messages sent by its neighbors, and finally performs some local

computation of arbitrary complexity. Each node is equipped with

a globally unique identifier (ID) which is simply a bit string of

length O(logn), where n denotes the number of nodes of the input

graph. In the beginning of the computation, each node is aware

of its own ID, the number of nodes and the maximum degree ∆ of

the input graph, and potentially some additional problem-specific

input. Each node has to decide at some point that it terminates,

upon which it returns a local output and does not take part in any

further computation; the problem is solved correctly if the local

outputs of all nodes together constitute a global output that satisfies

the output constraints of the given problem.

Each node executes the same algorithm; the running time of the

distributed algorithm is the number of rounds until the last node

terminates. It is well known that, due to the unbounded message

sizes, an algorithm with runtimeT (n) can be equivalently described

as a function from the set of all possible radius-T (n) neighborhoods
to the set of allowed outputs. In other words, we can assume that

in a T (n)-round algorithm, each node first gathers the topology of

and the input labels contained in its radius-T (n) neighborhood, and
then decides on its output based solely on the collected information.

Locally Checkable Labelings. The class of problems we consider

is locally checkable labeling (LCL) problems [22]. LCL problems

are defined on graphs of bounded degree, i.e., we will assume that

∆ = O(1). Formally, an LCL problem is given by a finite input label

set Σin, a finite output label set Σout, an integer r , and a finite set

C of graphs where every node is labeled with a pair (ℓin, ℓout) ∈

Σin × Σout and one node is marked (as the center). Each node of

the input graph is assigned an input label from Σin before the

computation begins, and the global output of a distributed algorithm

is correct if the radius-r neighborhood of each node v , including
the input labels given to the contained nodes and the output labels

returned by the contained nodes, is isomorphic to an element of C

where v corresponds to the node marked as the center.

In the case of directed paths as our class of input graphs, we are

interested in identifying the simplest possible form of LCL problems.

For this purpose, we define β-normalized LCLs; these are problems

for which the input is just binary, and the size of the set of output

labels is β . Moreover, the solution can be checked at each nodev by

just inspecting the input and output ofv , and, separately, the output

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

263

L

0

0

0

0

0

0

R

q0

L

0

0

0

0

0

0

R

q1

L

1

0

0

0

0

0

R

L

R

L

R

L

R

L

R

q1

L

R

q1q1 q1 q1 q1

1 1 1

1 1 1

0

0

0

0

0

0

0

0

0 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

L

R

qf

1

1

1

1

1

1

a L L LR R R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
T T TF F F F F F F F F F F F F F F F F F F F
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1

F

· · ·

Figure 1: Illustration of a correct encoding of the execution of an LBA on a path; black nodes act as separators between the
encoding of two consecutive steps of the LBA; in the example, the LBA executes a unary counter.

a L L LR R R0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 01
T T TF F F F F F F F F F F F F F F F F F F F
q0 q0 q0 q0 q0 q0 q0 q0 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1

F

· · ·
a a a E2 E E E E E E E E E E E Ea a a a

0
0

E2 E2 E2 E2 E2 E2 E2 E2 E2

0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9

Input

Output

Figure 2: Illustration of an incorrect encoding of the execution of an LBA on a path; in the example, the tape of the LBA is
wrongly copied (the inputs in red are different, while they should be the same). The error output E2 encodes the distance of
B + 1 between the two nodes, and the input wrongly copied.

ofv and the output of its predecessor. More formally, a β-normalized
LCL problem is given by finite input and output label sets Σin,
Σout satisfying |Σin | = 2, |Σout | = β , a finite set Cin− out of pairs

(ℓin, ℓout) ∈ Σin×Σout and a finite set Cout− out of pairs (ℓout, ℓ
′
out

) ∈

Σout × Σout. The global output of a distributed algorithm for the

β-normalized LCL problem is correct if the following hold:

• For each node v , we have (Input(v),Output(v)) ∈ Cin− out,

where Input(v) denotes the input label of v , and Output(v)
the output label of v .

• For each node v that has a predecessor, we have

(Output(v),Output(u)) ∈ Cout− out, where u is the prede-

cessor of v , and Output(v),Output(u) are the output labels
of v and u, respectively.

It is straightforward to check that a β-normalized LCL problem is

indeed a special case of an LCL problem where r = 1.

3 HARDNESS
In this section we study the hardness of determining the distributed

complexity of LCLs on paths and cycles with input labels. More

precisely, we start by proving the existence of a family Π of LCL

problems for consistently globally oriented paths, such that, given

an LCL problem in Π, it is PSPACE-hard to decide if its distributed

complexity is O(1) or Θ(n). The main result is summarised in the

following theorem.

Theorem 1. It is PSPACE-hard to distinguish whether a given LCL
problem P with input labels can be solved inO(1) time or needs Ω(n)
time on globally oriented path graphs.

The high level idea of the proof of Theorem 1 is as follows. We

would like to encode the execution of Turing machines as LCLs on
consistently oriented paths, and then define some LCL for which

the complexity depends on the running time of the machine. This

is fairly easy on oriented grids, for example, where we can use one

dimension of the grid as a tape, and the other dimension as time.

One may try to do the same on paths, by projecting everything

on a single dimension, concatenating the tape state of each step.

Unfortunately, the obtained encoding is not locally checkable, since

the length of the tape may be non-constant. Hence, in order to guar-

antee the local checkability, we should consider Turing machines

having a tape of size at most B, where B is a constant with respect

to the number of nodes in the path where we want to encode its

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

264

3 5Input size: 8

1 1 1 1 0 0 1 1 0 1 1 1 1 1 10 000

(dlog 8e+ 1) 1s (dlog 8e+ 1) 1s3 5

· · · · · ·

· · · · · ·

Separator

00

Separator

Figure 3: Illustration of the normalization of an LCL.

execution. For this purpose, we consider Linear Bounded Automata

(LBA) [18, p. 225]. An LBA is a Turing machine that has a tape of

size upper bounded by some B. We show that, if B is constant with

respect to the number of nodes in the path, we can then encode the

execution of an LBA MB as an LCL for directed paths. Moreover,

we show that by seeing this encoding as a two party game between

a prover and a disprover, we can encode the execution ofMB using

labels of constant size that do not depend on B, even in the case in

which the LCL checkability radius is 1. If the execution ofMB is not

correctly encoded in the input of the LCL, then we can disprove its

correctness using output labels of size O(B). Moreover, we ensure

that, if the execution ofMB is correctly encoded in the input of the

LCL, it is not possible to produce a correct proof of non-correctness.
Then, in order to obtain an LCL with a distributed complexity that

depends on the execution time ofMB , we encode some secret input

at the first node of the path. We require then that all nodes involved

in a correct encoding must produce the same secret as output. Fig-

ure 1 shows an example of an LBA that executes a unary counter,

and its encoding as input to nodes on a path. In this instance, all

nodes must produce the symbol a as output. Figure 2 shows an

example of the wrong input (the tape has been copied incorrectly

between two consecutive steps of the LBA). In this case, nodes are

allowed to produce a chain of errors. Different types of errors will

be handled using different types of error labels. In the example, all

nodes that produce the error chain, output E2, indicating an error

of type 2. We will show that we need O(B) symbols to handle all

possible errors (including the case in which the input tape is too

long, way more than B). Also, it is necessary that all error chains

that we allow as outputs must be locally checkable.

Another interesting problem is to identify, for an LCL that can

be distributedly solved in constant time, how big this constant can

be. In particular, we first focus on identifying the simplest possible

description of an LCL, and then, we provide a lower bound on the

complexity of a constant time LCL, as a function of the size of the

LCL description. For this purpose, we consider β-normalized LCLs,
i.e., problems for which the input labeling is just binary and there

are β possible output labels. Also, the verifier for these LCLs is the
simplest possible: it can only check if the output of a node is correct

w.r.t. its input, and separately, if the output of a node is correct w.r.t.

the output of its predecessor. Therefore, we show how to convert an

LCL to a β-normalized one by encoding the input in binary (Figure

3 shows an example), and obtain the following result.

Theorem 2. There are β-normalized LCLs that can be solved in
constant time but the distributed time complexity is 2Ω(β).

All results we described so far apply to globally oriented paths.

Nevertheless, we show that the ideas and techniques can be gen-

eralized to work on undirected paths and cycles as well, obtaining

essentially the same results. Finally, we will show how to lift these

results to trees without input labels, proving the following theorem.

Theorem 3. It is PSPACE-hard to distinguish whether a given LCL
problem P without input labels can be solved in O(1) time or needs
Ω(n) time on trees with degree ∆ = 3.

4 DECIDABILITY
In this section, we show that the two gaps ω(1)—o(log∗ n) and
ω(log∗ n)—o(n) for LCL problems with input labels on paths and

cycles are decidable. More specifically, given a specification of an

LCL problem P, there is an algorithm that outputs a description of

an asymptotically optimal deterministic LOCAL algorithm for P,

as well as its time complexity.

We will prove the statements for the case of cycles, but the anal-

ogous results for cycles and paths follows as a simple corollary, as

we can encode constraints related to degree-1 nodes as constraints

related to nodes adjacent to a special input label. Furthermore, hav-

ing a promise that the input is a path does not change the time

complexity of an LCL problem: if a problem can be solved in time

T = o(n) in labeled paths, the same algorithm will solve it also in

time T = o(n) in labeled cycles.

The proof of Theorem 4 is in Section 4.2; the proof of Theorem 5

is in Section 4.5.

Theorem 4. For any LCL problem P on cycle graphs, its deter-
ministic LOCAL complexity is either Ω(n) or O(log∗ n). Moreover,
there is an algorithm that decides whether P has complexity Ω(n) or
O(log∗ n) on cycle graphs; for the case the complexity isO(log∗ n), the
algorithm outputs a description of an O(log∗ n)-round deterministic
LOCAL algorithm that solves P.

Theorem 5. For any LCL problem P on cycle graphs, its determin-
istic LOCAL complexity is either Ω(log∗ n) or O(1). Moreover, there
is an algorithm that decides whether P has complexity Ω(log∗ n) or
O(1) on cycle graphs; for the case the complexity is O(1), the algo-
rithm outputs a description of an O(1)-round deterministic LOCAL
algorithm that solves P.

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

265

For convenience, in this section, a directed path P with input

labels is alternatively described as a string in Σk
in
, where k > 0 is

the number of nodes in P . Similarly, an output labeling L of P is

alternatively described as a string in Σk
out

. In subsequent discussion,

we freely switch between the graph-theoretic notation and the

string notation. Given an output labeling L of P , we say that L

is locally consistent at v if the input and output labeling assigned

to N r (v) is acceptable for v . Note that N r (v) refers to the radius-r
neighborhood of v . Given two integers a ≤ b, the notation [a,b]
represents the set of all integers {a,a + 1, . . . ,b}. Given a stringw ,

denotewR
as the reverse ofw .

4.1 Pumping Lemmas for Paths
Let P = (s, . . . , t) be a directed path, where each node has an input

label from Σin. The tripartition of the nodes ξ (P) = (D1,D2,D3) is

defined as follows:

D1 = N r−1(s) ∪ N r−1(t),

D2 =
(
N 2r−1(s) ∪ N 2r−1(t)

)
\ D1,

D3 = P \ (D1 ∪ D2).

See Figure 4 for an illustration. More specifically, suppose P =
(u1, . . . ,uk), and let i ∈ [1,k]. Then we have:

• ui ∈ D1 if and only if i ∈ [1, r] ∪ [k − r + 1,k].
• ui ∈ D2 if and only if i ∈ [r + 1, 2r] ∪ [k − 2r + 1,k − r].
• ui ∈ D3 if and only if i < [1, 2r] ∪ [k − 2r + 1,k].

Let L : D1 ∪ D2 → Σout assign output labels to D1 ∪ D2. We

say that L is extendible w.r.t. P if there exists a complete labeling

L� of P such that L� agrees with L on D1 ∪ D2, and L� is locally

consistent at all nodes in D2 ∪ D3.

An Equivalence Class. We define an equivalence class
⋆
∼ for the

directed paths (i.e., the set of all non-empty strings in Σ∗
in
), as fol-

lows.

Consider two directed paths P = (u1, . . . ,ux) and P ′ =
(v1, . . . ,vy), and let ξ (P) = (D1,D2,D3) and ξ (P ′) =
(D ′

1
,D ′

2
,D ′

3
). Consider the following natural 1-to-1 correspon-

dence ϕ : (D1 ∪ D2) → (D ′
1
∪ D ′

2
) defined as ϕ(ui) = vi and

ϕ(ux−i+1) = vy−i+1 for each i ∈ [1, 2r]. The 1-to-1 correspon-
dence is well-defined so long as (i) x = y or (ii) x ≥ 4r and

y ≥ 4r . We have P
⋆
∼ P ′ if and only if the following two

statements are met:

• Isomorphism: The 1-to-1 correspondence ϕ is well-

defined, and for each ui ∈ D1 ∪ D2, the input label of

ui is identical to the input label of ϕ(ui).
• Extendibility: Let L be any assignment of output la-

bels to nodes inD1∪D2, and letL
′
be the corresponding

output labeling ofD ′
1
∪D ′

2
underϕ. ThenL is extendible

w.r.t. P if and only if L′
is extendible w.r.t. P ′.

Note that for the special case of x ≤ 4r , we have P
⋆
∼ P ′ if and

only if P is identical to P ′.

Define Type(P) as the equivalence class of P w.r.t.
⋆
∼. The follow-

ing lemma is analogous to [8, Theorem 3] in a specialized setting.

One useful consequence of this lemma is that if we start with a path

or a cycleG with a legal labeling, after replacing its subpath P with

another one P ′ having the same type as P , then it is always possi-

ble to assign output labeling to P ′ to get a legal labeling without

changing the already-assigned output labels of nodes outside of P ′.

Lemma 6. Let G be a path graph or a cycle graph where all nodes
have input labels from Σin. Let P be a directed subpath of G, and let
P ′ be another directed path such that Type(P ′) = Type(P). Let L�

any complete labeling of G such that L� is locally consistent at all
nodes in P . Let G ′ = Replace(G, P, P ′) be the graph resulting from
replacing P with P ′ in G . Then there exists a complete labeling L′

� of
G ′ such that the following two conditions are met.

(1) For each v ∈ V (G) \V (P) and its corresponding v ′ ∈ V (G ′) \

V (P ′), we have L�(v) = L′
�(v

′). Moreover, if L� is locally
consistent at v ∈ V (G) \V (P), then L′

� is locally consistent at
v ′.

(2) L′
� is locally consistent at all nodes in P ′.

The following lemma is analogous to [8, Theorem 4] in a spe-

cialized setting. We only use this lemma in Section 4.1.

Lemma 7. Let P = (v1, . . . ,vk), and let P ′ = (v1, . . . ,vk−1). Let the
input label of vk be α . Then Type(P) is a function of α and Type(P ′).

The number of types can be upper bounded as follows.

Lemma 8. The number of equivalence classes of ⋆∼ (i.e., types) is at
most |Σin |4r 2 |Σout |

4r
.

Proof. Let P be a directed path, and let ξ (P) = (D1,D2,D3).

Then Type(P) is determined by the following information.

• The input labels in D1 ∪ D2. Note that there are at most

|Σin |
4r

possible input labeling of D1 ∪ D2.

• A length-x binary string indicating the extendibility of each

possible output labeling of D1 ∪ D2, where x = |Σout |
4r
.

Therefore, there are at most |Σin |
4r
2
|Σout |

4r
equivalence classes

of
⋆
∼. �

Define ℓpump as the total number of types. Observe that Lemma 7

implies that Type(P) can be computed by a finite automaton whose

number of states is the total number of types, which is a constant

independent of P . Thus, we have the following two pumping lemmas
which allow us to extend the length of a given directed path P while

preserving the type of P . The following two lemmas follow from

the standard pumping lemma for regular language.

Lemma 9. Let P ∈ Σk
in
with k ≥ ℓpump. Then P can be decomposed

into three substrings P = x ◦ y ◦ z such that (i) |xy | ≤ ℓpump, (ii)
|y | ≥ 1, and (iii) for each non-negative integer i , Type(x ◦ yi ◦ z) =
Type(P).

Lemma 10. For each w ∈ Σ>0
in

, there exist two positive integers a
and b such that a + b ≤ ℓpump, and Type(wai+b) is invariant for
each non-negative integer i .

4.2 Theω(log∗n)—o(n) Gap
In this section we show that the ω(log∗ n)—o(n) gap is decidable.

More specifically, we show that an LCL problem P can be solved

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

266

𝑠 𝑡

𝐷1𝐷1 𝐷2 𝐷2𝐷3

𝑠 𝑡

𝐷1𝐷1 𝐷2

Figure 4: Illustration of the tripartition ξ (P) = (D1,D2,D3) with r = 3.

in O(log∗ n) rounds if and only if there exists a feasible function,
which is defined as follows.

Input: Adirected path P = w1◦S◦w2, where |w1 | ∈ [ℓpump, ℓpump+

1], |w2 | ∈ [ℓpump, ℓpump + 1], and |S | = 2r . The decomposi-

tion P = w1 ◦ S ◦w2 is considered part of the input.

Output: A string L ∈ Σ2r
out

that represents the output labeling of

S .
Requirement: Any such function f is said to be feasible if the

following requirement is met for any paths S1, S2 andwa,wb ,

wc ,wd such that {|wa |, |wb |, |wc |, |wd |} ⊆ [ℓpump, ℓpump+1]

and |S1 | = |S2 | = 2r . Let P = wa ◦ S1 ◦wb ◦wc ◦ S2 ◦wd ,

and consider the following assignment of output labels to

S1 ∪ S2.
• Either label S1 by f (wa ◦ S1 ◦wb) or label S

R
1
by

f (wR
b ◦ SR

1
◦wR

a).

• Either label S2 by f (wc ◦ S2 ◦wd) or label S
R
2
by

f (wR
d ◦ SR

2
◦wR

c).

It is required that given such a partial labeling of P , the
middle part wb ◦wc can be assigned output labels in such

a way that the labeling of (i) the last r nodes of S1, (ii) all
nodes inwb ◦wc , and (iii) the first r nodes of S2 are locally
consistent.

The following lemma is a straightforward consequence of the

well-known O(log∗ n)-round MIS algorithm on cycles.

Lemma 11. Let G be a cycle graph of n nodes, and let s ≤ k be two
constant integers such that n ≥ (s +k)2. Then inO(log∗ n) rounds we
can compute a decomposition V = A ∪ B such that each connected
component of A has size s , and each connected component of B has
size within [k,k + 1].

Lemma 12. If a feasible function f exists, then there is anO(log∗ n)-
round deterministic LOCAL algorithm for P on cycles.

Proof. Given that the number of nodes n is at least some large

enough constant, in O(log∗ n) rounds we can compute a decom-

position V = A ∪ B such that each connected component of A
has size 2r , and each connected component of B has size within

[2ℓpump, 2ℓpump + 1]. This can be done using Lemma 11 with s = 2r
and k = 2ℓpump. We further decompose each connected component

P of B into two paths P = P1 ◦ P2 in such a way that the size of

both P1 and P2 are within the range [ℓpump, ℓpump + 1]. We write

P to denote the set of all these paths.

Let S be a connected component of A, and letw1 andw2 be its

two neighboring paths in P so that (w1 ◦S ◦w2) is a subpath of the

underlying graph G. The output labels of S are assigned either by

labeling S with f (w1◦S◦w2) or by labeling S
R
with f (wR

2
◦SR ◦wR

1
).

At this moment, all components of A have been assigned output

labels using f . By the feasibility of f , each connected component of

B is able to label itself output labels in such a way that the labeling

of all nodes are locally consistent. �

Lemma13. If there is ano(n)-round deterministic LOCAL algorithm
for P on cycles, then a feasible function f exists.

Proof. Fix s to be some sufficiently large number, and fix n =
8(s + ℓpump) + 2(2r). We select s to be large enough so that the

runtime of A is smaller than 0.1s . For any given directed path w
with |w | ∈ [ℓpump, ℓpump + 1], we fixw

+
as the result of applying

the pumping lemma (Lemma 9) on w so that the following two

conditions are met: (i) |w+ | ∈ [s, s + ℓpump] and (ii) Type(w) =

Type(w+).

Constructing a Feasible Function f by SimulatingA. The function
f (w1 ◦ S ◦ w2) is constructed by simulating a given o(n)-round
deterministic LOCAL algorithm for P. The output labeling given

by f (w1 ◦ S ◦ w2) is exactly the result of simulating A on the

path P = w+
1
◦ S ◦ w+

2
while assuming the number of nodes of

the underlying graph is n. Remember that the round complexity of

A is o(n) on n-node graphs. By setting s to be large enough, the

runtime of A can be made smaller than 0.1s . Thus, the calculation
of f (w1 ◦ S ◦w2) only depends on the IDs and the input labels of

(i) the last 0.1s nodes inw+
1
, (ii) all nodes in S , and (iii) the first 0.1s

nodes in w+
2
. In the calculation of f (w1 ◦ S ◦ w2), the IDs of the

nodes that participate in the simulation of A are chosen arbitrarily

so long as they are distinct.

Feasibility of f . Now we verify that the function f constructed

above is feasible. Consider any choices of paths S1, S2 andwa,wb ,

wc ,wd such that {|wa |, |wb |, |wc |, |wd |} ⊆ [ℓpump, ℓpump + 1] and

|S1 | = |S2 | = 2r . Define P = wa ◦ S1 ◦wb ◦wc ◦ S2 ◦wd , and let G
be the cycle graph formed by connecting the two ends of the path

P . To show that f is feasible, we need to consider the following

four ways of assigning output labels to S1 ∪ S2.

(1) Label S1 by f (wa ◦ S1 ◦wb); label S2 by f (wc ◦ S2 ◦wd).

(2) Label S1 by f (wa ◦ S1 ◦wb); label S
R
2
by f (wR

d ◦ SR
2
◦wR

c).

(3) Label SR
1
by f (wR

b ◦ SR
1
◦wR

a); label S2 by f (wc ◦ S2 ◦wd).

(4) Label SR
1
by f (wR

b ◦ SR
1
◦wR

a); label S
R
2
by f (wR

d ◦ SR
2
◦wR

c).

For each of the above four partial labelings of P , we need to show
that the middle partwb ◦wc can still be assigned output labels in

such a way that the labeling of (i) the last r nodes of S1, (ii) all nodes
inwb ◦wc , and (iii) the first r nodes of S2 are locally consistent.

Proof of the First Case. In what follows, we focus on the first case,

i.e., the partial labeling is given by labeling S1 by f (wa ◦S1◦wb) and

labeling S2 by f (wc ◦S2◦wd); the proof for the other three cases are

analogous. In this case, we define P ′ = w+a ◦S1◦w
+
b ◦w

+
c ◦S2◦w

+
d , and

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

267

let G ′
be the cycle graph formed by connecting the two ends of P ′.

Note that the number of nodes inG ′
is at most 8(s+ℓpump)+2(2r) =

n. All we need to do is to find an output labeling L of G such that

the following conditions are satisfied.

(a) The output labels of S1 is given by f (wa ◦ S1 ◦wb).

(b) The output labels of S2 is given by f (wc ◦ S2 ◦wd).

(c) The labeling of (i) the last r nodes of S1, (ii) all nodes in
wb ◦wc , and (iii) the first r nodes of S2 are locally consistent.

We first generate an output labeling L′
of G ′

by executing A

on G ′
under the following ID assignment. The IDs of (i) the last

0.1s nodes inw+a , (ii) all nodes in S1, and (iii) the first 0.1s nodes in
w+b are chosen as the ones used in the definition of f (wa ◦ S1 ◦wb).

Similarly, the IDs of (i) the last 0.1s nodes inw+c , (ii) all nodes in S2,
and (iii) the first 0.1s nodes inw+d are chosen as the ones used in the

definition of f (wc ◦ S2 ◦wd). The IDs of the rest of the nodes are

chosen arbitrarily so long as when we run A on G ′
, no node sees

two nodes with the same ID. Due to the way we define f , the output
labeling L′

of the subpath S1 is exactly given by f (wa ◦ S1 ◦wb),

and the output labeling L′
of S2 is exactly f (wc ◦ S2 ◦wd). Due to

the correctness of A, L′
is a legal labeling.

We transform the output labeling L′
of G ′

to a desired output

labeling L of G. Remember that G is the result of replacing the

four subpaths w+ of G ′
by w , and we have Type(w+) = Type(w).

In view of Lemma 6, there is a legal labeling L of G such that all

nodes in S1 and S2 are labeled the same as in G ′
. Therefore, the

labeling L satisfies the above three conditions (a), (b), and (c).

The Other Cases. We briefly discuss how we modify the proof to

deal with the other three cases. For example, consider the second

case, where the partial labeling is given by labeling S1 by f (wa ◦

S1 ◦wb) and labeling SR
2
by f (wR

d ◦ SR
2
◦wR

c). In this case, the path

P ′ is defined as

P ′ = w+a ◦ S1 ◦w
+
b ◦

(
(wR

c)
+
)R

◦ SR
2
◦

(
(wR

d)
+
)R
.

During the ID assignment ofG ′
, the IDs of (i) the last 0.1s nodes in

w+c , (ii) all nodes in S2, and (iii) the first 0.1s nodes inw+d are now

chosen as the ones used in the definition of f (wR
d ◦SR

2
◦wR

c). Using

such an ID assignment, the output labeling L′
of SR

2
as the result of

executing A on G ′
will be exactly the same as the output labeling

given by f (wR
d ◦ SR

2
◦wR

c). The rest of the proof is the same. �

Theorem 4 follows from the above two lemmas. The decidability

result is due to the simple observation that whether a feasible

function exists is decidable.

4.3 Partitioning a Cycle
In the following sections, we prove the decidability result associ-

ated with the ω(1)—o(log∗ n) gap. In this proof, we also define a

feasible function, prove its decidability, and show the existence

given an o(log∗ n)-time algorithm. The main challenge here is that

an MIS cannot be computed in O(1) time. To solve this issue, we

decompose a cycle into paths with unrepetitive patterns and paths

with repetitive patterns. For paths with unrepetitive patterns, we

are able to compute a sufficiently well-spaced MIS in O(1) time by

making use of the irregularity of the input patterns.

Section 4.3 considers an O(1)-round algorithm that partitions a

cycle into some short paths and some paths that have a repeated

input pattern. Section 4.4 defines a feasible functionwhose existence
characterizes theO(1)-round solvable LCL problems. In Section 4.5,

we prove Theorem 5.

Partitioning an Undirected Cycle into Directed Paths. Let G be a

cycle graph. An orientation of a node v is an assignment to one

of its neighbor, this can be specified using port-numbering. An

orientation of the nodes in G is called ℓ-orientation if the following

condition is met. If |V (G)| ≤ ℓ, then all nodes in G are oriented to

the same direction. If |V (G)| > ℓ, then each node v ∈ V (G) belongs
to a path P such that (i) all nodes in P are oriented to the same

direction, and (ii) the number of nodes in P is at least ℓ. In O(1)
rounds we can compute an ℓ-orientation of G for any constant ℓ.

Lemma 14 ([8]). Let G be a cycle graph. Let ℓ be a constant. There
is a deterministic LOCAL algorithm that computes an ℓ-orientation
of G in O(1) rounds.

In this section, we will use a generalization of an ℓ-orientation

that satisfies an additional requirement that the input labels of each

directed path P in the decomposition with |V (P)| > 2ℓ
width

(where

2ℓ
width

is a threshold) must form a periodic string (whose period

length is at most ℓpattern).

A stringw ∈ Σ∗
in
is called primitive ifw cannot be written as x i

for some x ∈ Σ∗
in
and i ≥ 2. Let G be a cycle graph or a path graph

where each node v ∈ V (G) has an input label from Σin. We define

an (ℓ
width
, ℓcount, ℓpattern)-partition as a partition of G into a set of

connected subgraphs P meeting the following criteria. We assume

|V (G)| > 2ℓ
width

and ℓpattern ≥ ℓ
width

.

Direction and Minimum Length: For each P ∈ P , the nodes in

P are oriented to the same direction, and |V (P)| ≥ ℓ
width

.

Short Paths: DefineP
short

as the subset ofP that contains paths

having at most 2ℓ
width

nodes. For each P = (v1, . . . ,vk) ∈ P
short

,

each node vi in P knows its rank i .
Long Paths: Define P

long
=P \P

short
. Then the input labeling

of the nodes in P is of the formwk
for some primitive stringw ∈ Σ∗

in

such that |w | ≤ ℓpattern and k ≥ ℓcount. Moreover, each node v in P
knows the stringw .

Note that P may contain a cycle. This is possible only when

G is a cycle where the input labeling is a repetition (at least ℓcount
times) of a primitive string w ∈ Σ∗

in
of length at most ℓpattern. In

this case, we must have P =P
long
= {G}. Otherwise, P contains

only paths.

The goal of this section is to show that an (ℓ
width
, ℓcount, ℓpattern)-

partition can be found in O(1) rounds.
We first show that an (ℓ

width
, ℓcount, ℓpattern)-partition can be

found in O(1) rounds for the caseG is directed. That is, all nodes in
G are initially oriented to the same direction, and we are allowed

to re-orient the nodes.

Lemma 15. Let G be a directed cycle or a directed path where each
node v ∈ V (G) has an input label from Σin, and |V (G)| > 2ℓ

width
.

Let ℓ
width
, ℓcount, ℓpattern be three constants such that ℓpattern ≥

ℓ
width

. There is a deterministic LOCAL algorithm that computes an
(ℓ
width
, ℓcount, ℓpattern)-partition in O(1) rounds

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

268

Combining Lemma 15 and Lemma 14, we are able to construct

an (ℓ
width
, ℓcount, ℓpattern)-partition in O(1) rounds for undirected

graphs.

Lemma 16. LetG be a cycle or a path where each nodev ∈ V (G) has
an input label from Σin, and |V (G)| > 2ℓ

width
. Let ℓ

width
, ℓcount, and

ℓpattern be three constants such that ℓpattern ≥ ℓ
width

. There is a deter-
ministic LOCAL algorithm that computes an (ℓ

width
, ℓcount, ℓpattern)-

partition in O(1) rounds

Proof. The algorithm is as follows. Compute an ℓ-orientation

of G by Lemma 14 in O(1) rounds with ℓ = 2ℓ
width

+ 1. For each

maximal-length connected subgraph P where each constituent node

is oriented to the same direction, find an (ℓ
width
, ℓcount, ℓpattern)-

partition of P in O(1) rounds by Lemma 15. �

4.4 Feasible Function
The goal of this section is to define a feasible function whose exis-

tence characterizes the O(1)-round solvable LCL problems. With

respect to an LCL problem P and a function f which takes a

string w ∈ Σk
in
with 1 ≤ k ≤ ℓpump as input, and returns a string

f (w) ∈ Σk
out

, we define some partially or completely labeled path

graphs which are used in the definition of a feasible function.

Completely Labeled Graph Gw ,z : Letw ∈ Σ∗
in
be any string of

length at least 1 and at most ℓpump. Let z be any non-negative
integer. Define Gw ,z = (Gw ,z ,L) as follows. The graph

Gw ,z is a path of the formwr ◦wz ◦wr
. The labeling L is a

complete labeling of the form f (w)z+2r . Define Mid(Gw ,z)

as the middle subpathwz
of Gw ,z .

Partially Labeled Graph Gw1,w2,S : Letw1,w2 ∈ Σ∗
in
be any two

strings of length at least 1 and at most ℓpump. Let S ∈ Σ∗
in
be

any string (can be empty). Define Gw1,w2,S = (Gw1,w2,S ,L)

as follows. The path graphGw1,w2,S is of the formw
ℓpump+2r
1

◦

S ◦w
ℓpump+2r
2

. The labelingL is a partial labeling ofGw1,w2,S
which fixes the output labels of the first 2r |w1 | and the last

2r |w2 | nodes by f (w1)
2r

and f (w2)
2r
, respectively. Define

Mid(Gw1,w2,S) as the middle subpathw
ℓpump+r
1

◦S ◦w
ℓpump+r
2

of Gw1,w2,S .

Feasible Function: We call f a feasible function if the follow-

ing conditions are met: (i) For each Gw ,z = (Gw ,z ,L), the

complete labeling L is locally consistent at all nodes in

Mid(Gw ,z). (ii) Each partially labeled graph Gw1,w2,S ad-

mits a complete labeling L� that is locally consistent at all

nodes in Mid(Gw1,w2,S).

Lemma 17. Given an LCL problem P on cycle graphs. It is decidable
whether there is a feasible function.

Proof. Note that it is not immediate from its definition as to

whether a feasible function exists is decidable, since there appears

to be infinitely many graphs Gw ,z and Gw1,w2,S needed to be ex-

amined. However, the following simple observations show that it

suffices to check only a constant number of these graphs.

• If the complete labeling L of Gw ,1 = (Gw ,1,L) is locally

consistent at all nodes inMid(Gw ,1), then for all z ≥ 1, the

complete labeling L of Gw ,z = (Gw ,z ,L) is also locally

consistent at all nodes in Mid(Gw ,z).

• If Gw1,w2,S admits a complete labeling L� that is locally

consistent at all nodes in Mid(Gw1,w2,S), then for each S ′

such that Type(S) = Type(S ′), the partially labeled graph

Gw1,w2,S ′ also admits a complete labeling L� that is locally

consistent at all nodes in Mid(Gw1,w2,S ′). This is due to

Lemma 6.

Therefore, to decide whether a function f is feasible, we only

need to check all possible Gw ,z and Gw1,w2,S . For eachw we only

need to consider the graph Gw ,z with z = 1. For each w1 and w2,

we do not need to go over all S ; we only need to consider (i) the

empty string S = ∅, and (ii) for each type τ , a string S ∈ Σ∗
in
such

that Type(S) = τ . By Lemma 9, for each type τ , there exists P ∈ Σx
in

with x ≤ ℓpump such that Type(P) = τ . Therefore, a string S with

Type(S) = τ can be found in bounded amount of time; also note

that the number of types is bounded; see Lemma 8. �

For the rest of this section, we show that as long as the deter-

ministic LOCAL complexity of P is o(log∗ n) on cycle graphs, there

exists a feasible function f . In Lemma 18 we show how to extract

a function f from a given o(log∗ n)-round deterministic LOCAL
algorithm A, and then in Lemma 19 we prove that such a function

f is feasible. Intuitively, Lemma 18 shows that there exists an ID-

assignment such that when we run A on a subpath whose input

labeling is a repetition of a length-k patternw , the output labeling

is also a repetition of a length-k patternw ′
. The function f will be

defined as f (w) = w ′
.

Lemma 18. Let A be any deterministic LOCAL algorithm that
solves P in t(n) = o(log∗ n) rounds. Then there is a number n′ and
function f which takes a stringw ∈ Σk

in
with 1 ≤ k ≤ ℓpump as input,

and returns a string f (w) ∈ Σk
out

meeting the following condition. For
any P = wi ◦w2r+1 ◦wi such that |wi | ≥ t(n′) and 1 ≤ |w | ≤ ℓpump,
there is an assignment of distinct Θ(logn′)-bit IDs to the nodes in P
such that the following is true. Simulating A on P while assuming
that the total number of nodes in the underlying graph is n′ yields
the output labeling f (w)2r+1 for the middle subpathw2r+1.

Proof. In this proof we assume that there is no such a numbern′.
Then we claim that using A it is possible to obtain a deterministic

LOCAL algorithm for MIS on an n-node directed cycle G without
input labeling, inO(t(n))+O(1) = o(log∗ n) rounds. This contradicts
the well-known Ω(log∗ n) lower bound for MIS [20].

Let G be an n-node directed cycle without input labeling. The

MIS algorithm on G is described as follows. Let w ∈ Σk
in

with

1 ≤ k ≤ ℓpump be chosen such that for any function f , the string

f (w) ∈ Σk
out

does not satisfy the conditions stated in the lemma

for the number n′ = nk . Define G ′
as the graph resulting from

replacing each node v ∈ V (G) with a pathw . We can simulate the

imaginary graph G ′
in the communication network G by letting

each node v ∈ V (G) simulate a pathw .

We execute the algorithmA onG ′
while assuming that the total

number of nodes is n′. The execution takes t(n′) = O(t(n)) rounds.
For each node v ∈ V (G), define the color of v as the sequence of

the output labels of the pathw2r
simulated by the node v and the

2r − 1 nodes following v in the directed cycle G. This gives us a
proper O(1)-coloring, since otherwise there must exist a subpath

P = w2r+1
of G ′

such that the output labeling of P is of the form

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

269

y2r+1 for some y, contradicting our choice ofw . Using the standard

procedure of computing an MIS from a coloring, with extra O(1)
rounds, an MIS of G can be obtained.

Note that there is a subtle issue about how we set the IDs of

nodes in V (G ′). The following method is guaranteed to output

distinct IDs. Let v ∈ V (G), and let u1, . . . ,uk be the nodes in V (G ′)

simulated by v . Then we may use ID(ui) = k · ID(v) + i . �

Lemma 19. Suppose that the deterministic LOCAL complexity of
P is o(log∗ n) on cycle graphs. Then there exists a feasible function f .

Proof. LetA be any deterministic LOCAL algorithm that solves

P in t(n) = o(log∗ n) rounds. Let n′ and f be chosen to meet the

conditions in Lemma 18 for A. The goal of the proof is to show

that f is a feasible function. According to the conditions specified

in Lemma 18 for the function f , we already know that the complete

labeling L of each Gw ,z = (Gw ,z ,L) is locally consistent at all

nodes inMid(Gw ,z). Therefore, all we need to do is the following.

For each partially labeled graph Gw1,w2,S , find a complete labeling

L� that is locally consistent at all nodes in Mid(Gw1,w2,S).

Given the three parametersw1,w2, and S , define G as the cycle

resulting from linking the two ends of the path w
ℓpump

1
◦w2r+1

1
◦

w
ℓpump

1
◦S ◦w

ℓpump

2
◦w2r+1

2
◦w

ℓpump

2
. Define L as the partial labeling

ofG which fixes the output labeling of the two subpathsw2r+1
1

and

w2r+1
2

by f (w1)
2r+1

and f (w2)
2r+1

, respectively.Wewrite Pmid

1
and

Pmid

2
to denote the two subpathsw2r+1

1
andw2r+1

2
, respectively.

In what follows, we show that the partially labeled graph G =

(G,L) admits a legal labeling L�. Since Gw1,w2,S is a subgraph of

G = (G,L), such a legal labeling L� is also a complete labeling of

Gw1,w2,S that is locally consistent at all nodes in Mid(Gw1,w2,S).

For the rest of the proof, we show the existence of L�. This will

be established by applying a pumping lemma. Define the graph G ′

as the result of the following operations on G.

• Replace the two subpathsw
ℓpump

1
bywx

1
, where the number

x is chosen such that x |w1 | ≥ 2t(n′)+ r , and Type(w
ℓpump

1
) =

Type(wx
1
).

• Replace the two subpathsw
ℓpump

2
byw

y
2
, where the number

y is chosen such that y |w2 | ≥ 2t(n′)+ r , and Type(w
ℓpump

2
) =

Type(wy
2
).

The existence of the numbers x and y above is guaranteed by

Lemma 10. The IDs of nodes in G ′
are assigned as follows. For

i = 1, 2, select the IDs of the nodes in
⋃
v ∈Pmid

i
N t (n′)(v) in such a

way that the output labeling of Pmid

i resulting from executingA on

G ′
while assuming that the total number of nodes is n′ is f (wi)

2r+1
.

The existence of such an ID assignment is guaranteed by Lemma 18.

For all remaining nodes inG ′
, select their IDs in such a way that all

nodes in N r+t (n′)(v) receive distinct IDs, for each v ∈ V (G ′). This

ensures that the outcome of executing A on G ′
while assuming

that the total number of nodes is n′ is a legal labeling.
Let L′

� be the legal labeling of G ′
resulting from executing A

with the above IDs while pretending that the total number of nodes

is n′. Note that L′
� must label Pmid

1
and Pmid

2
by f (w1)

2r+1
and

f (w2)
2r+1

, respectively. A desired legal labeling L� of G can be

obtained from the legal labeling L′
� of G

′
by applying Lemma 6, as

we have Type(w
ℓpump

1
) = Type(wx

1
) and Type(w

ℓpump

2
) = Type(wy

2
).

�

4.5 Theω(1)—o(log∗n) Gap
In this section we prove that it is decidable whether a given LCL
problem P has complexity Ω(log∗ n) or O(1) on cycle graphs.

Lemma 20. Let f be any feasible function. LetG be any cycle graph.
Let P be any set of disjoint subgraphs in G such that the input
labeling of each P ∈ P is of the formwx such that x ≥ 2ℓpump + 2r ,
andw ∈ Σk

in
is a string with 1 ≤ k ≤ ℓpump. For each P ∈ P , define

the subgraph P ′ as follows. If P is a cycle, define P ′ = P . If P is a
path, write P = wℓpump ◦ wi ◦ wℓpump , and define P ′ as the middle
subpathwi . Let L be a partial labeling of G defined as follows. For
each P = wx ∈ P , fix the output labels of each subpathw of P ′ by
f (w). Then G = (G,L) admits a legal labeling L�.

Proof. Define V1 as the set of all nodes such that v ∈ V1 if v
belongs to the middle subpathw j

of some path P = wℓpump ◦wr ◦

w j ◦wr ◦wℓpump ∈ P . By the definition of feasible function, L is

already locally consistent at all nodes in V1. Thus, all we need to

do is to construct a complete labeling L� of G = (G,L), and argue

that L� is locally consistent at all nodes in V2 = V (G) \V1.
There are two easy special cases. If P = ∅, then no output label

of any node in G is fixed, and so G trivially admits a legal labeling.

If P contains a cycle, then P = {G}, and hence L is already a

legal labeling as V1 = V (G).
In subsequent discussion, we restrict ourselves to the case P

is non-empty and contains only paths. The output labeling L� is

constructed as follows. Define P
unlabeled

as the maximal-length

subpaths ofG that are not assigned any output labels by L. A path

P ∈ P
unlabeled

must be of the form w
ℓpump

1
◦ S ◦ w

ℓpump

2
, where

w1,w2 ∈ Σ∗
in
are two strings of length at least 1 and at most ℓpump,

and S ∈ Σ∗
in
can be any string (including the empty string). Given

P ∈ P
unlabeled

, we make the following definitions.

• Define P+ as the subpath of G that includes P and the r |w1 |

nodes preceding P , and the r |w2 | nodes following P in the

graph G. Note that the set V2 is exactly the union of nodes

in P+ for all P ∈ P
unlabeled

.

• Define P++ as the subpath ofG that includes P and the 2r |w1 |

nodes preceding P , and the 2r |w2 | nodes following P in the

graph G. The path P++ must be of the form w
ℓpump+2r
1

◦

S ◦w
ℓpump+2r
2

, and the labeling L already fixes the output

labels of the first 2r |w1 | and the last 2r |w2 | nodes of P
++

by

f (w1)
2r

and f (w2)
2r
, respectively.

Observe that the path P++ = w
ℓpump+2r
1

◦ S ◦ w
ℓpump+2r
2

together

with the labeling L is exactly the partially labeled graph Gw1,w2,S .

We assign the output labels to the nodes in P by the labeling L�

guaranteed in the definition of feasible function. It is ensured that

the labeling of all nodes within P+ are locally consistent. By doing

so for each P ∈ P
unlabeled

, we obtain a desired complete labeling

that is locally consistent at all nodes in V2. �

Lemma 21. Suppose that there is a feasible function f for the LCL
problem P. Then there is an O(1)-round deterministic LOCAL algo-
rithm A on cycle graphs.

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

270

Proof. The first step of the algorithm A is to compute an

(ℓ
width
, ℓcount, ℓpattern)-partition in O(1) rounds by Lemma 16. We

set ℓcount = 2ℓpump + 2r and ℓwidth = ℓpattern = ℓpump. We assume

|V (G)| > 2ℓ
width

. Recall that an (ℓ
width
, ℓcount, ℓpattern)-partition

decomposes the cycle G into two sets of disjoint subgraphs P
short

and P
long

.

Define G ′
as the graph resulting from applying the following

operations on G. For each P ∈ P
short

, replace the path P by the

path P∗ = x ◦ yi ◦ z such that i = ℓcount, 1 ≤ |y | ≤ ℓpattern,

and the type of P∗ is the same as the type of P . The path P∗ is

obtained via Lemma 9. Note that each path P ∈ P
short

has at least

ℓ
width

= ℓpump nodes and at most 2ℓ
width

= 2ℓpump nodes. Define

P∗
as the set of all P∗ such that P ∈ P

short
. The graph G ′

is

simulated in the communication graph G by electing a leader for

each path P ∈ P
short

to simulate P∗.
Calculate a partial labeling L′

of G ′
using the feasible function

f as follows. Recall ℓcount = 2ℓpump + 2r . For each P
∗ = x ◦yℓpump ◦

y2r ◦yℓpump ◦ z ∈ P∗
, label the middle subpath y2r by the function

f . For each P = wℓpump ◦ wi ◦ wℓpump ∈ P
long

, label the middle

subpath wi
by f (w)i . Even though a path P ∈ P

long
can have

ω(1) nodes, this step can be done locally in O(1) rounds due to the

following property of (ℓ
width
, ℓcount, ℓpattern)-partition. All nodes

in a path P ∈ P
long

agree with the same direction and know the

primitive stringw .

By Lemma 20, the remaining unlabeled nodes inG ′
can be labeled

to yield a legal labeling ofG ′
. This can be done inO(1) rounds since

the connected components formed by unlabeled nodes have at most

O(1) nodes. Given any valid labeling of G ′
, a legal labeling of G

can be obtained by applying Lemma 6 in O(1) rounds. Remember

that Type(P) = Type(P∗) for each P ∈ P
short

, andG ′
is exactly the

result of replacing each P ∈ P
short

by P∗. �

Combining Lemma 17, Lemma 19, and Lemma 21, we have proved

Theorem 5. That is, for any LCL problem P on cycle graphs, its

deterministic LOCAL complexity is either Ω(log∗ n) or O(1). More-

over, there is an algorithm that decides whether P has complexity

Ω(log∗ n) or O(1) on cycle graphs; for the case the complexity is

O(1), the algorithm outputs a description of an O(1)-round deter-

ministic LOCAL algorithm that solves P.

ACKNOWLEDGMENTS
Many thanks to Laurent Feuilloley, Juho Hirvonen, Janne H. Korho-

nen, Christoph Lenzen, YannicMaus, and Seth Pettie for discussions,

and to anonymous reviewers for their helpful comments on previ-

ous versions of this work. This work was supported in part by the

Academy of Finland, Grant 285721, and NSF grants CCF-1514383,

CCF-1637546, and CCF-1815316.

REFERENCES
[1] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and

Jukka Suomela. 2018. The distributed complexity of locally checkable problems

on paths is decidable. arXiv preprint arXiv:1811.01672 (2018).
[2] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. 2018. Al-

most global problems in the LOCAL model. In Proc. 32nd International Sympo-
sium on Distributed Computing (DISC 2018) (Leibniz International Proceedings
in Informatics (LIPIcs)). Schloss DagstuhlâĂŞLeibniz-Zentrum für Informatik.

https://doi.org/10.4230/LIPIcs.DISC.2018.9
[3] Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis

Olivetti, and Jukka Suomela. 2018. New classes of distributed time complexity.

In Proc. 50th ACM Symposium on Theory of Computing (STOC 2018). ACM Press,

1307–1318. https://doi.org/10.1145/3188745.3188860
[4] Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. 2016. Synthesis of Self-

Stabilising and Byzantine-Resilient Distributed Systems. In Proc. International
Conference on Computer Aided Verification (CAV 2016). Springer, 157–176. https:
//doi.org/10.1007/978-3-319-41528-4_9

[5] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,

Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the dis-

tributed Lovász local lemma. In Proc. 48th ACM Symposium on Theory of Comput-
ing (STOC 2016). ACM Press, 479–488. https://doi.org/10.1145/2897518.2897570

[6] Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric

R J Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław

Uznański. 2017. LCL problems on grids. In Proc. 36th ACMSymposium on Principles
of Distributed Computing (PODC 2017). ACM Press, 101–110. https://doi.org/10.
1145/3087801.3087833

[7] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2016. An Exponential Separation

between Randomized and Deterministic Complexity in the LOCAL Model. In

Proc. 57th IEEE Symposium on Foundations of Computer Science (FOCS 2016). IEEE,
615–624. https://doi.org/10.1109/FOCS.2016.72

[8] Yi-Jun Chang and Seth Pettie. 2017. A Time Hierarchy Theorem for the LOCAL

Model. In Proc. 58th IEEE Symposium on Foundations of Computer Science (FOCS
2017). IEEE, 156–167. https://doi.org/10.1109/FOCS.2017.23

[9] Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing with applications

to optimal parallel list ranking. Information and Control 70, 1 (1986), 32–53.

https://doi.org/10.1016/S0019-9958(86)80023-7
[10] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H Korhonen, Christoph

Lenzen, Joel Rybicki, Jukka Suomela, and Siert Wieringa. 2016. Synchronous

counting and computational algorithm design. J. Comput. System Sci. 82, 2 (2016),
310–332. https://doi.org/10.1016/j.jcss.2015.09.002

[11] Fathiyeh Faghih and Borzoo Bonakdarpour. 2015. SMT-Based Synthesis of Dis-

tributed Self-Stabilizing Systems. ACM Transactions on Autonomous and Adaptive
Systems 10, 3 (2015), 1–26. https://doi.org/10.1145/2767133

[12] Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic Distributed Al-

gorithms for Lovász Local Lemma, and the Complexity Hierarchy. In Proc.
31st International Symposium on Distributed Computing (DISC 2017). 18:1–18:16.
https://doi.org/10.4230/LIPIcs.DISC.2017.18

[13] Mohsen Ghaffari, David G Harris, and Fabian Kuhn. 2018. On Derandomiz-

ing Local Distributed Algorithms. In Proc. 59th IEEE Symposium on Founda-
tions of Computer Science (FOCS 2018). https://doi.org/10.1109/FOCS.2018.00069
arXiv:1711.02194

[14] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. 2018. Improved

Distributed ∆-Coloring. In Proc. 37th ACM Symposium on Principles of Distributed
Computing (PODC 2018). ACM, 427–436. https://doi.org/10.1145/3212734.3212764

[15] Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed Degree Splitting, Edge

Coloring, and Orientations. In Proc. 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017). Society for Industrial and Applied Mathematics, 2505–

2523. https://doi.org/10.1137/1.9781611974782.166
[16] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. 1988. Parallel

Symmetry-Breaking in Sparse Graphs. SIAM Journal on Discrete Mathematics 1,
4 (1988), 434–446. https://doi.org/10.1137/0401044

[17] Juho Hirvonen, Joel Rybicki, Stefan Schmid, and Jukka Suomela. 2017. Large

cuts with local algorithms on triangle-free graphs. Electronic Journal of Combi-
natorics 24, 4 (2017). http://www.combinatorics.org/ojs/index.php/eljc/article/
view/v24i4p21

[18] John E Hopcroft and Jeffrey D Ullman. 1979. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

[19] Alex Klinkhamer. 2016. On the Limits and Practice of Automatically Designing
Self-Stabilization. Doctoral thesis. Michigan Technological University. https:
//digitalcommons.mtu.edu/etdr/90

[20] Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21, 1 (1992), 193–201. https://doi.org/10.1137/0221015

[21] Moni Naor. 1991. A lower bound on probabilistic algorithms for distributive

ring coloring. SIAM Journal on Discrete Mathematics 4, 3 (1991), 409–412. https:
//doi.org/10.1137/0404036

[22] Moni Naor and Larry Stockmeyer. 1995. What Can be Computed Locally? SIAM
J. Comput. 24, 6 (1995), 1259–1277. https://doi.org/10.1137/S0097539793254571

[23] Alessandro Panconesi and Aravind Srinivasan. 1995. The local nature of ∆-
coloring and its algorithmic applications. Combinatorica 15, 2 (1995), 255–280.
https://doi.org/10.1007/BF01200759

[24] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719772

[25] Seth Pettie. 2018. Automatically Speeding Up LOCAL Graph Algorithms. In

7th Workshop on Advances in Distributed Graph Algorithms (ADGA 2018). http:
//adga.hiit.fi/2018/Seth.pdf

[26] Joel Rybicki and Jukka Suomela. 2015. Exact bounds for distributed graph colour-

ing. In Proc. 22nd International Colloquium on Structural Information and Commu-
nication Complexity (SIROCCO 2015) (Lecture Notes in Computer Science), Vol. 9439.
Springer, 46–60. https://doi.org/10.1007/978-3-319-25258-2_4

Session 6 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

271

https://doi.org/10.4230/LIPIcs.DISC.2018.9
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1007/978-3-319-41528-4_9
https://doi.org/10.1007/978-3-319-41528-4_9
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1109/FOCS.2017.23
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/j.jcss.2015.09.002
https://doi.org/10.1145/2767133
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2018.00069
http://arxiv.org/abs/1711.02194
https://doi.org/10.1145/3212734.3212764
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/0401044
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i4p21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i4p21
https://digitalcommons.mtu.edu/etdr/90
https://digitalcommons.mtu.edu/etdr/90
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0404036
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1007/BF01200759
https://doi.org/10.1137/1.9780898719772
http://adga.hiit.fi/2018/Seth.pdf
http://adga.hiit.fi/2018/Seth.pdf
https://doi.org/10.1007/978-3-319-25258-2_4

	Abstract
	1 Introduction
	2 Model
	3 Hardness
	4 Decidability
	4.1 Pumping Lemmas for Paths
	4.2 normalnormalThe omega(log* n)—o(n) Gap
	4.3 Partitioning a Cycle
	4.4 Feasible Function
	4.5 normalnormalThe omega(1)—o(log* n) Gap

	References

