Session 11

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

The Complexity of (A + 1) Coloring in Congested Clique,
Massively Parallel Computation, and Centralized Local
Computation”

Yi-Jun Chang
University of Michigan
cyijun@umich.edu

Jara Uitto
ETH Zurich & University of Freiburg
jara.uitto@inf.ethz.ch

ABSTRACT

In this paper, we present new randomized algorithms that improve
the complexity of the classic (A + 1)-coloring problem, and its
generalization (A + 1)-list-coloring, in three well-studied models of
distributed, parallel, and centralized computation:

Distributed Congested Clique: We present an O(1)-round ran-
domized algorithm for (A + 1)-list-coloring in the congested
clique model of distributed computing. This settles the as-
ymptotic complexity of this problem. It moreover improves
upon the O(log" A)-round randomized algorithms of Parter
and Su [DISC’18] and O((log log A) - log™ A)-round random-
ized algorithm of Parter [I[CALP’18].

Massively Parallel Computation: We present a randomized
(A + 1)-list-coloring algorithm with round complexity
O(+/loglog n) in the Massively Parallel Computation (MPC)
model with strongly sublinear memory per machine. This
algorithm uses a memory of O(n%) per machine, for any de-
sirable constant a > 0, and a total memory of O(m), where m
is the number of edges in the graph. Notably, this is the first
coloring algorithm with sublogarithmic round complexity,
in the sublinear memory regime of MPC. For the quasilinear
memory regime of MPC, an O(1)-round algorithm was given
very recently by Assadi et al. [SODA’19].

Centralized Local Computation: We show that (A + 1)-list-
coloring can be solved by a randomized algorithm with
query complexity A%() . O(logn), in the centralized lo-
cal computation model. The previous state of the art for
(A + 1)-list-coloring in the centralized local computation

*The full version of the paper is available at arXiv [20].
1LSuppmrted by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07...$15.00
https://doi.org/10.1145/3293611.3331607

Manuela Fischer
ETH Zurich
manuela.fischer@inf.ethz.ch

471

Mohsen Ghaffari
ETH Zurich
ghaffari@inf.ethz.ch

Yufan Zheng
University of Michigan
lwins.lights@gmail.com

model are based on simulation of known LOCAL algo-
rithms. The deterministic O(VApoly log A + log* n)-round
LOCAL algorithm of Fraigniaud et al. [FOCS’16] can be
implemented in the centralized local computation model
with query complexity AO(VApolylogA) . O(log™ n); the ran-
domized O(log* A) + 20(V1eglogn)_round LOCAL algorithm
of Chang et al. [STOC’18] can be implemented in the cen-
tralized local computation model with query complexity
AOUog™A) . O(log n).

CCS CONCEPTS

« Theory of computation — Distributed algorithms.

KEYWORDS

coloring, congested clique, centralized local computation, massively
parallel computation

ACM Reference Format:

Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan
Zheng. 2019. The Complexity of (A + 1) Coloring in Congested Clique,
Massively Parallel Computation, and Centralized Local Computation. In
2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),
FJuly 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3293611.3331607

1 INTRODUCTION

In this paper, we present improved randomized algorithms for ver-
tex coloring in three models of distributed, parallel, and centralized
computation: the congested clique model of distributed computing,
the massively parallel computation model, and the centralized local
computation model. We next overview these results in three dif-
ferent subsections, while putting them in the context of the state
of the art. The next section provides a technical overview of the
known algorithmic tools as well as the novel ingredients that lead
to our results.

(A + 1)-coloring and (A + 1)-list Coloring. Our focus is on the
standard (A + 1) vertex coloring problem, where A denotes the
maximum degree in the graph. All our results work for the gener-
alization of the problem to (A + 1)-list coloring problem, defined as
follows: each vertex v in the graph G = (V, E) is initially equipped
with a set of colors ¥(v) such that |¥(v)| = A + 1. The goal is to

https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3293611.3331607

Session 11

find a proper vertex coloring where each vertex v € V is assigned
a color in ¥(v) such that no two adjacent vertices are colored the
same.

1.1 Congested Clique Model of Distributed
Computing

Models of Distributed Computation. There are three major mod-
els for distributed graph algorithms, namely LOCAL, CONGEST,
and CONGESTED-CLIQUE. In the LOCAL model [48, 56], the in-
put graph G = (V, E) is identical to the communication network
and each v € V hosts a processor that initially knows deg(v), a
unique ©(log n)-bit ID(v), and global graph parameters n = |V|
and A = maxyey deg(v). Each processor is allowed unbounded
computation and has access to a stream of private random bits.
Time is partitioned into synchronized rounds of communication,
in which each processor sends one unbounded message to each
neighbor. At the end of the algorithm, each v declares its output
label, e.g., its own color. The CONGEST model [56] is a variant of
LOCAL where there is an O(log n)-bit message size constraint. The
CONGESTED-CLIQUE model, introduced in [49], is a variant of
CONGEST that allows all-to-all communication: Each vertex ini-
tially knows its adjacent edges of the input graph G = (V, E).In each
round, each vertex is allowed to transmit n — 1 many O(log n)-bit
messages, one addressed to each other vertex.

In this paper, our new distributed result is an improvement
for coloring in CONGESTED-CLIQUE. It is worth noting that the
CONGESTED-CLIQUE model has been receiving extensive atten-
tion recently, see e.g., [11, 14, 15, 18, 19, 24, 25, 28-31, 36, 37, 39, 45,
50, 53-55].

State of the Art for Coloring in LOCAL and CONGEST. Most
prior works on distributed coloring focus on the LOCAL model.
The current state-of-the-art randomized upper bound for the
(A + 1)-list coloring problem is O(log™ A) + O(Det 4(poly log n)) =
O(Det4(polylogn)) of [21] (which builds upon the techniques
of [34]), where Dety(n’) = 20(Vloglog ') i5 the deterministic com-
plexity of (deg+1)-list coloring on n’-vertex graphs [51]. In the
(deg +1)-list coloring problem, each v has a palette of size deg(v)+1.
This algorithm follows the graph shattering framework [10, 29].
The pre-shattering phase takes O(log* A) rounds. After that, the
remaining uncolored vertices form connected components of size
O(poly log n). The post-shattering phase then applies a (deg +1)-list
coloring deterministic algorithm to color all these vertices.

State of the Art for Coloring in CONGESTED-CLIQUE. Hege-
man and Pemmaraju [37] gave algorithms for O(A)-coloring in
the CONGESTED-CLIQUE model, which run in O(1) rounds if
A > O(log* n) and in O(log log n) rounds otherwise. It is worth not-
ing that O(A)-coloring is a significantly more relaxed problem in
comparison to (A + 1)-coloring. For instance, we have long known
a very simple O(A)-coloring algorithm in LOCAL-model algorithm

with round complexity 20(VI°81087) [10], but only recently such a
round complexity was achieved for (A + 1) coloring [21, 34].

Our focus is on the much more stringent-(A + 1) coloring prob-
lem. For this problem, the LOCAL model algorithms of [21, 34] need
messages of O(A? log n) bits, and thus do not extend to CONGEST
or CONGESTED-CLIQUE. For CONGESTED-CLIQUE model, the

472

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

main challenge is when A > +/n, as otherwise, one can simulate
the algorithm of [21] by leveraging the all-to-all communication in
CONGESTED-CLIQUE which means each vertex in each round is
capable of communicating O(n log n) bits of information. Parter [53]
designed the first sublogarithmic-time (A+1) coloring algorithm for
CONGESTED-CLIQUE, which runs in O(loglog A log* A) rounds.
The algorithm of [53] is able to reduce the maximum degree to
O(+/n) in O(loglog A) iterations, and each iteration invokes the
algorithm of [21] on instances of maximum degree O(+/n). Once
the maximum degree is O(v/n), the algorithm of [21] can be imple-
mented in O(log™ A) rounds in CONGESTED-CLIQUE. Subsequent
to [53], the upper bound was improved to O(log* A) in [54]. Parter
and Su [54] observed that the algorithm of [53] only takes O(1)
iterations if we only need to reduce the degree to nl/2*€ _for some
constant € > 0, and they achieved this by modifying the internal
details of [21] to reduce the required message size to o(A8/3 log n).

Our Result. For the CONGESTED-CLIQUE model, we present a
new algorithm for (A + 1)-list coloring in the randomized congested
clique model running in O(1) rounds. This improves on the previous
best known O(log* A)-round algorithm of Parter and Su [54] and
settles the asymptotic complexity of the problem.

THEOREM 1.1. There is an O(1)-round algorithm that solves the
(A + 1)-list coloring problem in CONGESTED-CLIQUE, with success
probability 1 — 1/poly(n).

The proof is presented in two parts: If A > log*! n, the algorithm
of Theorem 3.2 solves the (A + 1)-list coloring problem in O(1)
rounds; the algorithm for the small degree case is omitted (see the
full version of the paper [20]).

1.2 Massively Parallel Computation

Model. The Massively Parallel Computation (MPC) model was
introduced by Karloff, Suri, and Vassilvitskii [43], as a theoretical
abstraction for practical large-scale parallel processing settings
such as MapReduce [23], Hadoop [60], Spark [61], and Dryad [41],
and it has been receiving increasing attention over the past few
years [1, 3-6, 8, 12, 13, 16, 17, 22, 31, 33, 35, 37, 40, 43, 44, 57]. In
the MPC model, the system consists of a number of machines,
each with S bits of memory, which can communicate with each
other in synchronous rounds through a complete communication
network. Per round, each machine can send or receive at most S
bits in total. Moreover, it can perform some poly(S) computation,
given the information that it has. In the case of graph problems, we
assume that the graph G is partitioned among the machines using
a simple and globally known hash function such that each machine
holds at most S bits, and moreover, for each vertex or potential edge
of the graph, the hash function determines which machines hold
that vertex or edge.! Thus, the number of machines is Q(m/S) and
ideally not too much higher, where m denotes the number of edges.
At the end, each machine should know the output of the vertices
that it holds, e.g., their color.

If S = o(Alog n), then we cannot afford to store all edges incident to a vertex v in a
single machine. However, in this case we still need to have a machine holding v that
is responsible for storing the output of v (e.g., the color of v for the (A + 1)-coloring
problem).

Session 11

State of the Art for Coloring. The CONGESTED-CLIQUE algo-
rithms discussed above can be used to obtain MPC algorithms with
the same asymptotic round complexity if machines have memory
of S = Q(nlogn) bits. In particular, the work of Parter and Su [54]
leads to an O(log"* A)-round MPC algorithm for machines with
S = Q(nlog n) bits. However, this MPC algorithm would have two
drawbacks: (A) it uses Q(n? log n) global memory, and thus would
require (n? log n)/S machines, which may be significantly larger
than O(m)/S. This is basically because the algorithm makes each
vertex of the graph learn some ©(n) bits of information. (B) It is
limited to machines with S = Q(nlogn) memory, and it does not
extend to the machines with strongly sublinear memory, which
is gaining more attention recently due to the increase in the size
of graphs. We note that for the regime of machines with super-
linear memory, very recently, Assadi, Chen, and Khanna [7] gave
an O(1)-round algorithm which uses only O(n log® n) global mem-
ory.2 However, this algorithm also relies heavily on S = Q(nlog® n)
memory per machine and cannot be run with weaker machines
that have strongly sublinear memory.

Our Result. We provide the first sublogarithmic-time algorithm
for (A + 1)-coloring and (A + 1)-list coloring in the MPC model
with strongly sublinear memory per machine:

THEOREM 1.2. For any constant a > 0, there is an MPC algorithm
that, in O(log" A + y/loglog n) = O(y/loglog n) rounds, w.h.p. com-
putes a (A + 1)-list coloring of an n-vertex graph with m edges and
maximum degree A and that uses O(n®) memory per machine, as
well as a total memory of O(m).

The proof is presented in Section 3.3.

1.3 Centralized LOCAL Computation

Model. The Local Computation Algorithms (LCA) model is a
centralized model of computation that was introduced in [58]; an
algorithm in this model is usually called an LCA. In this model,
there is a graph G = (V, E), and the algorithm is allowed to make
the following queries:

Degree Query: Given ID(v), the oracle returns deg(v).

Neighbor Query: GivenID(v) and an index i € [1, A], if deg(v) <
i, the oracle returns ID(u), where u is the ith neighbor of v;
otherwise, the oracle returns L.

It is sometimes convenient to assume that there is a query that
returns the list of all neighbors of v. This query can be implemented
using (i) A neighbor queries or (ii) one degree query and deg(v)
neighbor queries. For randomized algorithms, we assume that there
is an oracle that given ID(v) returns an infinite-length random
sequence associated with the vertex v. Similarly, for problems with
input labels (e.g., the color lists in the list coloring problem), the
input label of a vertex v can be accessed given ID(v). Given a graph
problem #, an LCA A accomplishes the following. Given ID(v), the
algorithm A returns A(v) = the output of v, after making a small
number of queries. It is required that the output of A at different
vertices are consistent with one legal solution of .

?Here “global memory” refers to the memory used for communication. Of course we
still need O(m) memory to store the graph.

473

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

We emphasize that the outcome A(v) cannot depend on the
results of previous invocations of A. For example, if we invoke A
on vy, vy, . .., v sequentially, the outcome A(v;) cannot depend
on the previous answers A(vj), 1 < j < i.

The complexity measure for an LCA is the number of queries.
A well-known technique for obtaining efficient LCA is simulation
of known LOCAL algorithms [52]. That is, any 7-round LOCAL
algorithm A can be transformed into an LCA A’ with query com-
plexity A”. The LCA A’ simply simulates the LOCAL algorithm A
by querying all radius-7 neighborhood of the given vertex v. This
is also known as the Parnas-Ron reduction. See [47] for a recent
survey of the state of the art in the centralized local model.

State of the Art LCA for Coloring. The previous state-of-the-art
for (A + 1)-list coloring in the centralized local computation model
are based on simulation of known LOCAL algorithms. The determin-
istic O(VApoly log A + log* n)-round LOCAL algorithm of [9, 27]3
can be implemented in the centralized local computation model
with query complexity AO(VBpolylogA) . O(log™ n); the randomized
O(log* A) + 20Wloglogn)_rqund LOCAL algorithm of [21] can be
implemented in the centralized local computation model with query
complexity AOUog™) O(logn).

Our Result. We show that (A + 1)-list coloring can be solved
with AOW) . O(log n) query complexity. Note that ACWM) . O(logn)
matches a “natural barrier” for randomized algorithms based on
the graph shattering framework, as each connected component in
the post-shattering phase has this size A°() - O(log n).

THEOREM 1.3. There is a centralized local computation algorithm
that solves the (A + 1)-list coloring problem with query complexity
AO() . O(log n), with success probability 1 — 1/poly(n).

The proof is omitted (see the full version of the paper [20]).

2 TECHNICAL OVERVIEW: TOOLS AND NEW
INGREDIENTS

In this section, we first review some of the known technical tools
that we will use in our algorithms, and then we overview the two
new technical ingredients that lead to our improved results (in
combination with the known tools).

Notes and Notations. When talking about randomized algorithms,
we require the algorithm to succeed with high probability (w.h.p.),
i.e., to have success probability at least 1 — 1/poly(n). For each ver-
tex v, we write N(v) to denote the set of neighbors of v. If there is
an edge orientation, N°%(v) refers to the set of out-neighbors of
0. We write N¥(v) = {u € V| dist(u, v) < k}. We use subscript to
indicate the graph G under consideration, e.g., Ng(v) or N g“t(v). In
the course of our algorithms, we slightly abuse the notation to also
use ¥(v) to denote the set of available colors of v. i.e., the subset
of ¥(v) that excludes the colors already taken by its neighbors in
N(v). The number of excess colors at a vertex is the number of avail-
able colors minus the number of uncolored neighbors. Moreover,
we make an assumption that each color can be represented using
O(log n) bits. This is without loss of generality (in all of the models

3Precisely, the complexity is O(VAlog?*> A + log* n) in [27], and this has been later
improved to O(y/Alog Alog™ A +log™ n) in [9].

Session 11

under consideration in our paper), since otherwise we can hash the
colors down to this magnitude, as we allow a failure probability of
1/poly(n) for randomized algorithms.

2.1 Tools

Lenzen’s Routing. The routing algorithm of Lenzen [45] for
CONGESTED-CLIQUE allows us to deliver all messages in O(1)
rounds, as long as each vertex v is the source and the destination of
at most O(n) messages. This is a very useful (and frequently used)
communication primitive for designing CONGESTED-CLIQUE al-
gorithms.

LEmMA 2.1 (LENZEN’S RoUTING). Consider a graph G = (V,E)
and a set of point-to-point routing requests, each given by the IDs of
the corresponding source-destination pair. As long as each vertex v
is the source and the destination of at most O(n) messages, namely
O(nlogn) bits of information, we can deliver all messages in O(1)
rounds in the CONGESTED-CLIQUE model.

The Shattering Framework. Our algorithm follows the graph shat-
tering framework [10], which first performs some randomized pro-
cess (known as pre-shattering) to solve “most” of the problem, and
then performs some clean-up steps (known as post-shattering) to
solve the remaining part of the problem. Typically, the remain-
ing graph is simpler in the sense of having small components and
having a small number of edges. Roughly speaking, at each step
of the algorithm, we specify an invariant that all vertices must
satisfy in order to continue to participate. Those bad vertices that
violate the invariant are removed from consideration, and post-
poned to the post-shattering phase. We argue that the bad vertices
form connected components of size ACQ) . O(log n) with proba-
bility 1 — 1/poly(n); we use this in designing LCA. Also, the total
number of edges induced by the bad vertices is O(n). Therefore,
using Lenzen’s routing, in CONGESTED-CLIQUE we can gather
all information about the bad vertices to one distinguished vertex
v*, and then v* can color them locally. More precisely, we have
the following lemma [10, 26].

LEMMA 2.2 (THE SHATTERING LEMMA). Let ¢ > 1. Consider a ran-
domized procedure that generates a subset of vertices B C V. Suppose
that for eachv € V, we have Pr[v € B] < A73¢, and this holds even
if the random bits not in N€(v) are determined adversarially. Then,
the following is true.

(1) With probability 1 — n~) eqch connected component in the
graph induced by B has size at most (¢’ [¢c)A%¢ log n.

(2) With probability 1 — O(A°) - exp(—Q(nA™¢)), the number of
edges induced by B is O(n).

Round Compression in CONGESTED-CLIQUE and MPC by In-
formation Gathering. Suppose we are given a r-round LOCAL al-
gorithm A on a graph of maximum degree A. A direct simulation
of A on CONGESTED-CLIQUE costs also 7 rounds. However, if
each vertex v already knows all information in its radius-z neigh-
borhood, then v can locally compute its output in zero rounds. In
general, this amount of information can be as high as ©(n?), since
there could be ©(n?) edges in the radius-7 neighborhood of v. For
the case of AT = O(n), it is possible to achieve an exponential
speed-up in the round complexity in the CONGESTED-CLIQUIE,

474

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

compared to that of LOCAL. In particular, in this case, each ver-
tex v can learn its radius-r neighborhood in just O(log 7) rounds
in CONGESTED-CLIQUE. Roughly speaking, after k rounds, we

are able to simulate the product graph sz, which is the graph
where any two vertices with distance at most 2k in graph G
are adjacent. This method is known as graph exponentiation [46],
and it has been applied before in the design of algorithms in
CONGESTED-CLIQUE and MPC models, see e.g., [4, 30, 32, 53, 54].

Round Compression via Opportunistic Information Gather-
ing. Our goal is to achieve the O(1) round complexity in
CONGESTED-CLIQUE, so an exponential speed-up compared to
the LOCAL model will not be enough. Consider the following
“opportunisitc” way of simulating a LOCAL algorithm A in the
CONGESTED-CLIQUE model. Each vertex u sends its local infor-
mation (which has O(A log n) bits) to each vertex v € V with some
fixed probability p = O(1/A), independently, and it hopes that there
exists a vertex v € V that gathers all the required information to
calculate the outcome of A at u. To ensure that for each u, there ex-
ists such a vertex v wh.p., it suffices that p2” > IOE " We note that
a somewhat similar idea was key to the O(1)-round MST algorithm
of [42] for CONGESTED-CLIQUE.

Lemma 2.3, presented below, summarizes the criteria for this
method to work; see the full version of the paper [20] for the proof of
the lemma. Denote ¢j;, as the number of bits needed to represent the
random bits and the input for executing A at a vertex. Denote {out
as the number of bits needed to represent the output of A at a vertex.
We assume that each vertex v initially knows a set Ni.(v) € N(v)
such that throughout the algorithm A, each vertex v only receives
information from vertices in N, (v). We write A, = maxy ey |N«(0)].

LEMMA 2.3 (OPPORTUNISTIC SPEED-UP). Let A be a t-round
LOCAL algorithm on G = (V,E). There is an O(1)-round simu-
lation of A in CONGESTED-CLIQUE, given that (i) AL log(As +
lin/log n) = O(log n), (ii) £y, = O(n), and (iii) Cout = O(log n).

2.2 Our New Technical Ingredients, In a
Nutshell

The results in our paper are based on the following two novel techni-
cal ingredients, which are used in combination with the known tools
mentioned above: (i) a new graph partitioning algorithm for color-
ing and (ii) a sparsification of the CLP coloring algorithm [21]. We
note that the first ingredient suffices for our CONGESTED-CLIQUE
result for graphs with maximum degree at least poly(log n), and
also for our MPC result. This ingredient is presented in Section 3.
The second ingredient, which is also more involved technically,
is used for extending our CONGESTED-CLIQUE result to graphs
with smaller maximum degree, as well as for our LCA result. This
ingredient is presented in the full version of the paper [20]. Here,
we provide a brief overview of these ingredients and how they get
used in our results.

Ingredient 1 — Graph Partitioning for Coloring. We provide a sim-
ple random partitioning that significantly simplifies and extends
the one in [53, 54]. The main change will be that, besides partition-
ing the vertices randomly, we also partition the colors randomly.
In particular, this new procedure partitions the vertices and colors
in a way that allows us to easily apply CLP in a black box manner.

Session 11

Concretely, our partitioning breaks the graph as well as the
respective palettes randomly into many subgraphs By, ..., B of
maximum degree O(+/n) and size O(+/n), while ensuring that each
vertex in these subgraphs receives a random part of its palette with
size close to the maximum degree of the subgraph. The palettes
for each part are disjoint, which allows us to color all parts in
parallel. There will be one left-over subgraph L, with maximum
degree O(A%/*), as well as sufficiently large remaining palettes for
each vertex in this left-over subgraph.

Application in CONGESTED-CLIQUE: Since each subgraph has
O(n) edges, all of By, ..., B can be colored, in parallel, in
O(1) rounds, using Lenzen’s routing (Lemma 2.1). The left-
over part L is handled by recursion. We show that when
A > log*1 n, we are done after O(1) levels of recursion.

Application in Low-memory MPC: We perform recursive calls
not only on L but also on By, ..., B. After O(1) levels of
recursion, the maximum degree can be made O(nﬁ), for any
given constant f > 0, which enables us to run the CLP
algorithm on a low memory MPC.

We note that the previous partitioning approach [53, 54] is unable
to reduce the maximum degree to below +/n; this is a significant
limitation that our partitioning overcomes. We also note that the
CONGESTED-CLIQUE or MPC coloring algorithms of [35, 38] also
use the approach of randomly partitioning the palette. However,
their algorithms needs a palette of size that is much higher than
A +1 to ensure that the set of colors associated with each vertex set
B; is higher than its maximum degree. We avoid the use of extra
colors by having a sufficiently large left-over part L and recursively
applying the partitioning algorithm on L.

Ingredient 2 — Sparsification of the CLP Algorithm. In general, to
calculate the output of a vertex v in a 7-round LOCAL algorithm A,
the output may depend on all of the 7-hop neighborhood of v. In par-
ticular, if we transform A into an LCA, the query complexity can be
as high as A”. To efficiently simulate A in CONGESTED-CLIQUE
or to transform A to an LCA, a strategy is to “sparsify” the algo-
rithm A so that the number of vertices a vertex has to explore to
decide its output is sufficiently small. This notion of sparsification
is a key idea behind some recent algorithms [30, 32]. In the present
paper, a key technical ingredient is providing such a sparsification
for the (A + 1) coloring algorithm of CLP [21].

The pre-shattering phase of the CLP algorithm [21] consists of
three parts: (i) initial coloring, (ii) dense coloring, and (iii) color
bidding. Parts (i) and (ii) take O(1) rounds;* part (iii) takes r =
O(log™ A) rounds. In this paper, we sparsify the color bidding part
of the CLP algorithm. We let each vertex v sample O(poly log A)
colors from its palette at the beginning of this procedure, and we
show that with probability 1 — 1/poly(A), these colors are enough
for v to correctly execute the algorithm. Based on the sampled
colors, we can do an O(1)-round pre-processing step to let each
vertex v identify a subset of neighbors Ni(v) € N(v) of size A, =
O(poly log A) neighbors N.(v) € N(v), and v only needs to receive
messages from neighbors in Ny(v) in the subsequent steps of the
algorithm.

“In the preliminary versions (arXiv:1711.01361v1 and STOC’18) of [21], dense coloring
takes O(log" A) time. This time complexity has been later improved to O(1) in a
revised full version of [21].

475

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Application in CONGESTED-CLIQUE: For the case
A = O(polylogn), the parameters = = O(log" A) and
A = O(polylogA) = O(poly(loglogn)) satisfy the con-
dition for applying the opportunistic speedup lemma
(Lemma 2.3), and so the pre-shattering phase of the
CLP algorithm can be simulated in O(1) rounds in
CONGESTED-CLIQUE.

Application in Centralized Local Computation: With sparsi-
fication, the pre-shattering phase of the CLP algorithm can
be transformed into an LCA with A . A7 = AO() queries.

The recent work [7] on (A + 1)-coloring in MPC is also based on
some form of palette sparsification, as follows. They showed that
if each vertex samples O(log n) colors uniformly at random, then
w.h.p., the graph still admits a proper coloring using the sampled
colors. Since we only need to consider the edges {u, v} where u
and v share a sampled color, this effectively reduces the degree to
O(log? n). For an MPC algorithm with O(n) memory per processor,
the entire sparsified graph can be sent to one processor, and a
coloring can be computed there, using any coloring algorithm,
local or not. This sparsification is not applicable for our setting. In
particular, in our sparsified CLP algorithm, we need to ensure that
the coloring can be computed by a LOCAL algorithm with a small
locality volume; this is because the final coloring is constructed
distributedly via the opportunistic speedup lemma (Lemma 2.3).

3 COLORING OF HIGH-DEGREE GRAPHS
VIA GRAPH PARTITIONING

In this section, we describe our graph partitioning algorithm,
which is the first new technical ingredient in our results. As men-
tioned in Section 2.2, this ingredient on its own leads to our
CONGESTED-CLIQUE result for graphs with A = Q(poly(log n))
and also our MPC result, as we will explain in Section 3.2 and Sec-
tion 3.3, respectively. The algorithm will be applied recursively, but
it is required that the failure probability is at most 1 — 1/poly(n) in
all recursive calls, where n is the number of vertices in the original
graph.

In this section, the parameter n refers to the number of vertices
in the original graph, not the number of vertices in the current
subgraph G = (V, E) under consideration.

3.1 Graph Partitioning

We consider a graph partitioning algorithm parameterized by two
constants y and A satisfying y > 2and A = % + 3),% Consider
a graph G = (V, E) with maximum degree A. Recall that in this
section G is assumed to be a subgraph of the n-vertex original
graph, and so n > |V|. Each vertex v € V has a palette ¥(v) of size
|¥(v)| > max{deg;(v), A’} + 1, where A" = A — A*. Denote G[S]
as the subgraph induced by the vertices S C V. For each vertex
v € V, denote degg(v) as [N(v) N S|. The algorithm is as follows,
where we set k = VA.

Vertex Set: The partition V = By U --- U Bg U L is defined by the
following procedure. Including each v € V to the set L with

probability g = © (! Al?in) Each remaining vertex joins one

Session 11

of By, ..., Bg uniformly at random. Note that Pr[v € B;] =
p(1 = q), where p = 1/k = 1/VA.

Palette: Denote C = |J, ¢y ¥(v) as the set of all colors. The par-
tition C = C; U - -+ U Cy is defined by having each color
¢ € Cjoin one of Cy, . .., Cy uniformly at random. Note that
Prlce Ci] =p =1/k.

We require that with probability 1 — 1/poly(n), the output of the
partitioning algorithm satisfies the following properties, assuming
that A = w(log? n).

i) Size of Each Part: It is required that |E(G[B;])| = O(|V|), for
each i € [k]. Also, it is required that |[L| = O(q|V]) =
oegm))

ii) Available Colors in B;: For each i € {1,...,k} and v €
B;, the number of available colors in v in the subgraph
B; is gi(v) = [¥(v) N Cj|. It is required that g;(v) >
max{degp (v), A; —A?} +1, where A; := maxyep; degg, (v).

iii) Available Colors in L: For each v € L, define gr(v) :=
|¥(v)| — (degg(v) — degy (v)). It is required that gr(v) >
max{deg; (v), AL — A’Ll} + 1 for each v € L, where A :=
maxy ey, degy (v). Note that g1 (v) represents a lower bound
on the number of available colors in v afterall of By, . .., By
have been colored.

iv) Remaining Degrees: The maximum degrees of B; and L are
maxyep; degp, (v) < A; = O(VA) and max,eg, deg; (v) <
Ar = O(gn) = o(Yeer
degp, (v) < max{O(logn), O0(1/¥A) - deg(v)} if v € B;, and
deg; (v) < max{O(logn), O(q) - deg(v)} if v € L.

Intuitively, we will use this graph partitioning in the following
way. First compute the decomposition of the vertex set and the
palette, and then color each B; using colors in C;. Since |E(G[B;])| =
O(|V]) = O(n), in the CONGESTED-CLIQUE model we are able to
send the entire graph G[B;] to a single distinguished vertex v*
using Lenzen’s routing (Lemma 2.1), and then v;‘ can compute a
proper coloring of G[B;] locally. This procedure can be done in
parallel for all i. If |E(G[L])| = O(n), then similarly we can let a
vertex compute a proper coloring of G[L]; otherwise we apply the
graph partitioning recursively on G[L], with the same parameter n.
Later we will see that it suffices to set the recursion depth constant.
This graph partitioning will be used as well in our MPC algorithm
in the similar way.

) - A. For each vertex v, we have

LEMMA 3.1. Suppose |¥(v)| > max{deg;(v), A’} + 1 with A’ =
A - A*, and V] > A = w(log? n), where y and A are two constants
satisfyingy > 2 and A = % + 3y2W The two partitionsV = B{U---U
BrULandC = Uyey ¥(v) = C1 U --- U Cy. satisfy the required
properties, with probability 1 — 1/poly(n).

ProoF. We prove that the properties i), ii), iii), and iv) hold with
high probability.
i) Size of Each Part: We first show that |E(G[B;])| = O(|V]), for
each i € [k], with probability 1 — 1/poly(n). To have |E(G[B;])| =
O(|V]), it suffices to have degp_ (v) = O(pA) for each v, and |B;| =
O(p|V|), since p = 1/VA. Note that we already have E[degp_ (v)] <
(1-q)pA < pA and E[|B;|] = (1 — @)p|V| < p|V|, so we only need
to show that these parameters concentrate at their expected values

476

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

with high probability. This can be established by a Chernoff bound,
as follows. Note that we have €; < 1 and €3 < 1 in the following
calculation. In particular, the inequality €; < 1 holds because of the
assumption A = w(log? n) > w(log? n).

Prldegp, (v) < (1 +€1)(1 - q)pA]
=1 - exp(=Q(e{(1 — q)pA)) = 1~ O(1/poly(n)),

logn _ logn
\J(l—q)pA) _Q(\J P)

Pr[[B;| < (1+e2)(1 - @)plVI]
=1 - exp(-Q(e (1 - @)p|V)) = 1 - O(1/poly(n)),

logn _ logn
\j(l—q>p|V|) ‘G(me)‘

Next, we show the analogous results for L, i.e., with probability

1-1/poly(n), both |L|/|V| and Af /A are O(q) = O | YL-2&"

Al/4

where € = ©

where €, = ©

), where
AL = maxyer degy (v). Similarly, we already have E[deg; (v)] < gA

and E[|L|] = ¢q|V|, and remember that g = O(’Al?in), so we only

need to show that these parameters concentrate at their expected
values with high probability, by a Chernoff bound.

Pr[deg; (v) < (1 + €3)qA]
= 1 - exp(-Q(e3qA)) = 1 - O(1/poly(n)),

fl
where €3 = @(ﬂ) .
q

Pr{|L] < (1 +e4)q|V1]
= 1-exp(-Q(eq|V) = 1 - O(1/poly(n)),

logn)

qlV|

Similarly, we have e3 < 1 and €4 < 1. In particular, e3 < 1
because A = w(log? n) > w(log? n).

where ¢4 = © (

ii) Available Colors in B;: Now we analyze the number of avail-
able color for each set B;. Recall that for each v € B;, the number of
available colors in v in the subgraph B; is g;(v) := |¥(v) N C;|. We
need to prove the following holds with probability 1 — 1/poly(n):
(@) [¥(v) N Ci| = degp,(v) + 1, and (ii) [¥(v) N Ci| 2 A; - A;l +1,
where A; := maxyep; degp, (v). We will show that with probability
1 — 1/poly(n), we have |¥(v) N C;| > A; + 1 for each B; and each
v € Bj, and this implies the above (i) and (ii).

Recall that A’ = A (1 - A_(l_A)), q=0 (—'bgn) > A_(l_’l),s

Al/4
ande; = © (‘Al?in). By selecting g > 3¢; = © (—'Akljin) we have

(1—eph’ = (1-e) (1 - A—(I—M)pA > (1+e)(1-qph+1.

2and A = 1 + 2

>The assumptions y > it e imply that A € (1/2, 3/4], and so

A0 < AV« g,

Session 11

We already know that A; < (1 + €1)(1 — g)pA with probability
1—1/poly(n). In order to have |¥(v)NC;| = A; + 1, we only need to
show that |¥(v) N C;| = (1 — e1)pA’ with probability 1 — 1/poly(n).
For the expected value, we know that E[|¥(v) N C;|] = p|¥(v)| =
pA’. By a Chernoff bound, we have

Pr[|¥(v) N Ci| = (1 - €1)pA’] = 1 — exp(—Q(e7pA”))

= 1-0(1/poly(n)).

iii) Available Colors in L: Next, we consider the number of avail-
able colors in L. We show that with probability 1 — 1/poly(n),
for each v € L, we have gr(v) > max{deg;(v), AL — A%} + 1,
where gr(v) = |¥(v)| — (degg(v) — degr(v)). It is straightfor-
ward to see that gr(v) > deg;(v) + 1, since gr(v) = (|¥(v)| -
deg;(v)) + degy (v) > 1 + deg(v). Thus, we only need to show
that gy (v) > A — A% + 1.

We first calculate the expected value of gy . In the last inequality
we use the assumption that deg;(v) < [¥(v)|-1and A’ < |¥(v)| -
1.

E[gr] = (1¥(0)] - deg(v)) + E[deg (v)]
= ([¥(0)] - deg(v)) + g degg(v)
= [¥(v)] - (1 - q) deg(v)
>qA’.
We prove that gr(v) > (1 — e3)gA’ with probability 1 — 1/poly(n).
Here we use the following variant of a Chernoff bound. If it is
known that E[X] < S, then the probability that X deviates from

E[X] by an additive term of more than €f is exp(—Q(e?f)). We set
X =deg(v), € = e3(A’/A) = O(e3), and f = gA > E[deg; (v)].

Prlgr(v) = (1 - €3)gA’] = Pr[deg; (v) > qdegg(v) — e3gA”]
=1-exp(-Q(efqA"))

=1-0(1/poly(n))
1c;gAn) = @(W)’ and we already

know that e3 < 1. Using the above concentration bound, we infer
that gr(v) > gA — qA’1 -0 (\/qA log n) holds with probability
1 - 1/poly(n).

gr(v) = (1 -e3)gA’

>qN -0 (\/qA'log n)
qu—qM—o(\/M).

Combining this with A; < (1 + e3)gA = gA + O(y/gAlogn),
we obtain gr(v) > Ap — gA* — O(\/m). Note that gA* +
O(m) =o0 ((qA)A) =0 (A%),G and so we finally obtain
gr(v) > Ap — A% + 1.

Remember that e3 = © log n

iv) Remaining Degrees: The degree upper bounds of A;
and Ay follow immediately from the concentration bounds on

%The bound 4/gAlogn < (gA)* can be derived from the assumptions A = % +
, 3.1 3,,1
ﬁ and A = w(log” n), as follows: gA = ©(A1 logZ n) = w(logi?*2 n) =

1(3,,1\7!
Jablogn = (qA)? log? n < (qA)%(qA)?(?”*?) = (gh).

477

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

degp (v) and deg; (v) calculated in the proof of i). The bounds
degp,(v) < max{O(logn),0(1/VA) - deg(v)} and deg;(v) <
max{O(log n), O(q) - deg(v)} can be derived by a straightforward
application of Chernoff bound. O

3.2 Congested Clique Algorithm for
High-Degree Graphs

In this section, we show that the (A + 1)-list coloring problem
can be solved in O(1) rounds in the CONGESTED-CLIQUE model
when the degrees are assumed to be sufficiently high. The for-
mal statement is captured in Theorem 3.2. First, we show that
the partitioning algorithm can indeed be implemented in the
CONGESTED-CLIQUE model. Then, we show how to color the
parts resulting from the graph partitioning efficiently. The proof
of Theorem 3.2 is completed by showing that only O(1) recursive
applications of the partitioning are required.

Implementation of the Graph Partitioning. The partitions can be
computed in O(1) rounds on CONGESTED-CLIQUE. Partitioning
the vertex set V is straightforward, as every vertex can make the
decision independently and locally, whereas it is not obvious how
to partition C to make all vertices agree on the same partition. Note
that we can assume |[C| < (A+1)|V];if |C| is greater than (A +1)|V|
initially, then we can let each vertex decrease its palette size to
A + 1 by removing some colors in its palette, and we will have
|C] < (A + 1)|V] after removing these colors.

A straightforward way of partitioning C is to generate
O(|C|log n) random bits at a vertex v locally, and then v broad-
casts this information to all other vertices. Note that it takes
O(logk) = O(log|V]) = O(logn) bits to encode which part of
C1 U ---UCy each ¢ € Cis in. A direct implementation of the
approach cannot be done in O(1) rounds, due to the message size
constraint of CONGESTED-CLIQUE, as each vertex can send at
most O(n log n) bits in each round.

To solve this issue, observe that it is not necessary to use total
independent random bits for each ¢ € C, and O(log n)-wise inde-
pendence suffices. More precisely, suppose X is the summation of
n K-wise independent 0-1 random variables with mean p, and so
u = E[X] = np. A Chernoff bound with K-wise Independence [59]
guarantees that

Pr[X > (14 q)pu] < exp (— min{K, qzy}) .

In order to guarantee a failure probability of 1/poly(n) in all applica-
tions of Chernoff bound in Lemma 3.1, it suffices that K = ©(log n).
Therefore, to compute the decomposition C = C; U - - - U Cy with K-
wise independent random bits, we only need O(K - log(|C|log k)) =
O(log? n) total independent random bits.” Broadcasting O(log? n)
bits of information to all vertices can be done in O(1) rounds via
Lenzen’s routing (Lemma 2.1).

The Algorithm of (A + 1)-list coloring on High-degree Graphs. We
next present our CONGESTED-CLIQUE-model coloring algorithm
for high-degree graphs, using the partitioning explained above.

"It is well-known that n Bernoulli random variables with p = 1/2 with d-wise
independence can be constructed from O(d log n) Bernoulli random variables with
p = 1/2 with total independence [2, Section 16.2].

Session 11

THEOREM 3.2. Suppose A = Q(log**€ n) for some constant
€ > 0. There is an algorithm that solves (A + 1)-list coloring in
CONGESTED-CLIQUE in O(1) rounds.

Proor. We show that a constant-depth recursive applications of
Lemma 3.1 suffices to give an O(1)-round CONGESTED-CLIQUE
(A + 1)-list coloring algorithm for graphs with A = Q(log**€ n),
for any constant € > 0. Consider the graph G = (V, E). First, we
apply the graph partitioning algorithm of Lemma 3.1 to partition
vertices V into subsets By, . .., By, L with parameter n = |V|, and
k = VA. After that, let arbitrary k = VA vertices to be responsible
for coloring each G[B;]. Each of these k vertices, in parallel, gathers
all information of G[B;] from vertices B;, and then computes a
proper coloring of G[B;], where each vertex v € B; uses only
the palette ¥(v) N C;. The existence of such a proper coloring is
guaranteed by Property (ii). Using this approach, we can color all
vertices in V' \ L in O(1) rounds using Lenzen’s routing. Note that
Property (i) guarantees that |[E(G[B;])| = O(n). Finally, each vertex
v € L removes the colors that have been taken by its neighbors
in V\L from its palette ¥(v). In view of Property (iii), after this
operation, the number of available colors for each v € L is at
least gy (v) > max{deg; (v), A — A%} + 1. Now the subgraph G[L]
satisfies all conditions required to apply Lemma 3.1, so long as
Ar = w(log? n). We will see that this condition is always met in
our application.

We then recursively apply the algorithm of the lemma on the
subgraph induced by vertices L with the same parameter n. The
recursion stops once we reach a point that |E(G[L])| = O(n), and
so we can apply Lenzen’s routing to let one vertex v gather all
information of G[L] and compute its proper coloring.

Now we analyze the number of iterations needed to reach a point
that |[E(G[L])| = O(n). Here we use y = 2 and A = 3/4.2 Define
Vi = V and A; = A as the vertex set and the maximum degree for
the first iteration. Let V.= B; U --- U Bg U L be the outcome of
the first iteration, and define V2 = L and Ay = Ap. Similarly, for
i > 2, we define V; and A; based on the set L in the outcome of the
graph partitioning algorithm for the (i — 1)th iteration. We have
the following formulas.

Ap=A
ylogn]
Aj=Ai-1-0 by Property iv)
AL/
i-1
Vil =n
ylogn .
[Vil = Vi-a| - O by Property i)
A
i

Let @ > 0 be chosen such that A = A; = (logn)**%, and assume
a = Q(1)and i = O(1). We can calculate the value of A; and |V;] as
follows.

Ai=0 ((log n)2+a'(3/4)i71)

[Vil = O(n/A) - A; = n - O ((log ™/ -1)

8We choose y = 2 (the smallest possible) to minimize the degree requirement in
Theorem 3.2.

478

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Thus, given that @ = Q(1) and i = O(1), the condition of A; =
w(log? n) = w(log? n) for applying Lemma 3.1 must be met.

Next, we analyze the number of iterations it takes to make A;|V;|
sufficiently small. In the CONGESTED-CLIQUE model, if A;|V;| =
O(n), then we are able to compute a proper coloring of V; in O(1)
rounds by information gathering. Let us write A = log?*® n, where
a = 2+ f. The lemma statement implies that § = Q(1). Note that
the condition for A;|V;| = O(n) can be re-written as

(2-a)+2a(3/49) <o.

Combining this with @ = 2 + f, we obtain the formula —f + 2(2 +
B)(3/4)'~1 < 0, and this can be re-written as (4/3)"! > 2(2T2rﬁ)
Now we can calculate the minimum i needed so that the condition
for A;|V;i| = O(n) is met:

i>1+logy32(2+p)/p.

Since f = Q(1), we have 1 + log4/3 2(2 + p)/Bp = 0(1), and so
our algorithm takes only O(1) iterations. In particular, when § >
10.8, ie., A = Q(log!?® n), we have i > 1+ 10g4/3 2(2 + p)/p for
i > 4. Therefore, A4|V4| = O(n), and so 3 iterations suffice. Since
each iteration can be implemented in CONGESTED-CLIQUE in
O(1) rounds, overall we get an algorithm with round complexity
O(1). O

Similar to the proof of Theorem 3.2, the graph partitioning al-
gorithm also leads to an O(1)-round MPC coloring algorithm with
S = O(n) memory per processor and O(m) total memory. This gives
a simple alternate proof of a result of [7] that (A +1)-coloring can be
solved with S = O(n) memory per processor. However, the coloring
algorithm of [7] takes only one round of communication, and it
uses only O(n) bits in total.

3.3 Massively Parallel Computation with
Strongly Sublinear Memory
We now show how to apply Lemma 3.1 as well as the CLP algo-

rithm of [21], as summarized in the following lemma, to prove
Theorem 1.2.

LEmMA 3.3 ([21, 53]). Let G be an n-vertex graph with m edges
and maximum degree A. Suppose any vertex v has a palette ¥ (v)|

that satisfies |¥(v)| > max {degG(U) +1,A - A3/5}. Then the list-

coloring problem can be solved w.h.p. in O(4/log log n) rounds of low-
memory MPC with local memory O(n%) for an arbitrary constant
a € (0,1) and total memory O (X, degG(v)Z) if A* = O (n%).

The proof of Lemma 3.3 almost immediately follows from [21,
53]; there are only few changes that have to be made in order to
turn their CONGESTED-CLIQUE algorithm into a low-memory
MPC algorithm. The details are deferred to the full version of the

paper [20].

Proor oF THEOREM 1.2. We present a recursive algorithm based
on the randomized partitioning algorithm of Lemma 3.1. If A =
poly(log n) then the conditions of Lemma 3.3 are satisfied trivially;
we can solve the problem in O(log* A + \/log logn) = O(\/log log n)

rounds of low-memory MPC with total memory O(n - A%) = O(m).
Otherwise, we execute the following algorithm.

Session 11

Randomized Partitioning: Let G be the graph that we want to
color. We apply the randomized partitioning algorithm of Lemma 3.1
to G, which gives us sets By, ..., B and L, as well as color sets
C1,...,Cg. The goal is now to first color By, ..., By with colors
from Cy, ..., Cg, respectively. Since the colors in the sets C; are
disjoint, this gives a proper coloring of B := Ule B;. Then, for
every vertex in L, we remove all colors already used by neighbors
in B from the palettes, leaving us with a list-coloring problem of
the graph induced by L with maximum degree Ay.

In the following, we first describe how to color each set B; with
colors in C;, and then how to solve the remaining list-coloring
problem in L. For the parameters in Lemma 3.1, we use y = 6 and
A=3/5°

List-Coloring Problem in B;: If the maximum degree A; in B; sat-
isfies Af = O(n%), then, by Lemma 3.1 ii), B; satisfies the conditions
of Lemma 3.3 We thus can apply the algorithm of Lemma 3.3 to B;.
Otherwise, we recurse on B;. Note that this is possible since, by
Lemma 3.1 ii) applied to G, B; satisfies the conditions of Lemma 3.1.

List-Coloring Problem in L: If the maximum degree Ay, in L sat-
isfies Ai = O(n%), then, by Lemma 3.1 iii) applied to G, L satisfies
the conditions of Lemma 3.3. We thus can apply the algorithm of
Lemma 3.3 to L. Otherwise, we recurse on L. Note that this is possi-
ble since by Lemma 3.1 iii), L satisfies the conditions of Lemma 3.1.

Number of Iterations: Since the maximum degree in L reduces
by a polynomial factor in every step, after at most O(1/a) steps,
the resulting graph has maximum degree at most O(n®/2), where
we satisfy the conditions of Lemma 3.3, and hence do not recurse
further. Note that when recursing on sets Bj, the degree drop is
even larger, and hence the same reasoning applies to bound the
number of iterations.

Memory Requirements: It is obvious that the recursive partition-
ing of the input graph G does not incur any asymptotic overhead
in the memory, neither local nor global. Now, let H be the set
of all graphs H on which we apply the algorithm of Lemma 3.3.
As we only apply this algorithm when the maximum degree Ag
of H is O(n%/?) or poly(log n), we clearly have Alzq = 0(n%), so
the algorithm Lemma 3.3 is guaranteed to run with local memory
o(n%).

It remains to show how to guarantee the total memory require-
ment of O(m), where m is the number of edges in the input graph G,
as promised in Theorem 1.2. First, observe that due to the specifica-
tions of Lemma 3.3, we can write the total memory requirement as
SHeH Sver(degy(v))?. First, assume that the graph G has been
partitioned at least three times to get to H. By Lemma 3.1 iv), the
degree of any vertex v in H is either O(1) or at most

degg(v) - 0 (A’i) .0 (A‘%%) .0 (A_i.(%)z)

= degg(v) 0 (A7/%) < 6 (,/degG(v)) .

Note that in the above calculation we assume v always goes to
the left-over part L in all three iterations. If v goes to B;, then the

9The choice A = 3/5 is to ensure that the number of available colors for each vertex
in each subgraph meets the palette size constraint specified in Lemma 3.3.

479

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

degree shrinks faster. Remember that we set ¢ = O(A~1/*). Hence,
we require a total memory of

0| >, D, (egy@)’| =0 >, > degg)

HeHveH HeHveH

=0 Z deg;(v) | = O(m).

veG

Note that the algorithm can be easily adapted to always per-
form at least three partitioning steps if A is bounded from below
by a sufficiently large poly(log n), because then the conditions of
Lemma 3.1 are satisfied. On the other hand, if Ay = poly(log n), it is
follows immediately that 0 (Zv(degH(v))Z) = poly(logn) = o(1).
Put together, we have ¥ freqy Yo cp(degy (v))? = o(m). o

REFERENCES

[1] Kook Jin Ahn and Sudipto Guha. 2015. Access to Data and Number of Iterations:
Dual Primal Algorithms for Maximum Matching Under Resource Constraints. In
Proc. SPAA. 202-211.

Noga Alon and Joel H. Spencer. 2016. The Probabilistic Method (4th ed.). Wiley
Publishing.

Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
2014. Parallel Algorithms for Geometric Graph Problems. In Proc. Symposium on
Theory of Computation (STOC). 574-583.

Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong.
2018. Parallel Graph Connectivity in Log Diameter Rounds. In Proceedings 59th
IEEE Symposium on Foundations of Computer Science (FOCS). 674-685.

Sepehr Assadi. 2017. Simple round compression for parallel vertex cover. arXiv
preprint arXiv:1709.04599 (2017).

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni,
and CIiff Stein. 2019. Coresets meet EDCS: algorithms for matching and vertex
cover on massive graphs. In Proceedings 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA).

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for
(A + 1) Vertex Coloring. In Proceedings 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA).

Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2018. Massively Parallel Algo-
rithms for Finding Well-Connected Components in Sparse Graphs. arXiv preprint
arXiv:1805.02974 (2018).

Leonid Barenboim, Michael Elkin, and Uri Goldenberg. 2018. Locally-Iterative
Distributed (A + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Applica-
tions to Self-Stabilization and to Restricted-Bandwidth Models. In Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing (PODC). ACM,
437-446.

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016.
The Locality of Distributed Symmetry Breaking. J. ACM 63, 3, Article 20 (2016),
20:1-20:45 pages.

Leonid Barenboim and Victor Khazanov. 2018. Distributed Symmetry-Breaking
Algorithms for Congested Cliques. In Computer Science - Theory and Applications
- 13th International Computer Science Symposium in Russia, CSR 2018, Moscow,
Russia, June 6-10, 2018, Proceedings. 41-52.

Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication Steps for
Parallel Query Processing. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS). 273-284.

Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in Parallel Query
Processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS). 212-223.

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-
tributed and Streaming Models. In 31st International Symposium on Distributed
Computing (DISC 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),
Andréa W. Richa (Ed.), Vol. 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 7:1-7:16.

Andrew Berns, James Hegeman, and Sriram V Pemmaraju. 2012. Super-fast
distributed algorithms for metric facility location. In Automata, Languages, and
Programming. Springer, 428-439.

Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Haji-
Aghayi, and Saeed Seddighin. 2018. Approximating edit distance in truly sub-
quadratic time: quantum and MapReduce. In Proc. Symposium on Discrete Algo-
rithms (SODA). 1170-1189.

—_
—_

[12

(13]

[14

[16]

Session 11

[17]

[18]

[19]

[20

[21

[22]

[23]

[24

[25

[26]

[27]

[28

[29]

[30

[31]

(32

[33

[34]

[35

[36]

[37]

Sebastian Brandt, Manuela Fischer, and Jara Uitto. 2018. Breaking the Linear-
Memory Barrier in MPC: Fast MIS on Trees with n€ Memory per Machine. arXiv
preprint arXiv:1802.06748 (2018).

Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami
Paz, and Jukka Suomela. 2016. Algebraic methods in the congested clique. Dis-
tributed Computing (2016). https://doi.org/10.1007/s00446-016-0270-2

Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. 2018. Sparse Matrix
Multiplication with Bandwidth Restricted All-to-All Communication. CoRR
abs/1802.04789 (2018).

Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.
2018. The Complexity of (A +1) Coloring in Congested Clique, Massively Parallel
Computation, and Centralized Local Computation. CoRR abs/1808.08419 (2018).
arXiv:1808.08419 http://arxiv.org/abs/1808.08419

Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2018. An Optimal Distributed
(A + 1)-coloring Algorithm?. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2018). ACM, New York, NY, USA,
445-456. https://doi.org/10.1145/3188745.3188964

Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof
Onak, and Piotr Sankowski. 2018. Round Compression for Parallel Matching
Algorithms. In Proc. Symposium on Theory of Computation (STOC). 471-484.
Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation (OSDI). USENIX Association, Berkeley, CA,
USA, 10-10. http://dl.acm.org/citation.cfm?id=1251254.1251264

Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. “Tri, Tri Again”: Finding
Triangles and Small Subgraphs in a Distributed Setting. In Distributed Computing.
Springer, 195-209.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the
Congested Clique Model. In Proc. Principles of Distributed Computing (PODC).
ACM, 367-376.

Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic Distributed Algo-
rithms for Lovasz Local Lemma with Implications on Complexity Hierarchies.
In Proceedings 31st International Symposium on Distributed Computing (DISC).
18:1-18:16.

Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. 2016. Local conflict
coloring. In Proceedings 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 625-634.

Francois Le Gall. 2016. Further Algebraic Algorithms in the Congested Clique
Model and Applications to Graph-Theoretic Problems. In DISC.

Mohsen Ghaffari. 2016. An improved distributed algorithm for maximal in-
dependent set. In Proceedings 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 270-277.

Mohsen Ghaffari. 2017. Distributed MIS via All-to-All Communication. In
Proc. Principles of Distributed Computing (PODC). 141-149.

Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovié¢, and
Ronitt Rubinfeld. 2018. Improved massively parallel computation algorithms
for mis, matching, and vertex cover. In Proc. Principles of Distributed Computing
(PODC). arXiv:1802.08237.

Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying Distributed Algorithms with
Ramifications in Massively Parallel Computation and Centralized Local Compu-
tation. In Proceedings 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA).

Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, searching,
and simulation in the MapReduce framework. In Proc. ISAAC. Springer, 374-383.
David G Harris, Johannes Schneider, and Hsin-Hao Su. 2018. Distributed (A + 1)-
Coloring in Sublogarithmic Rounds. J. ACM 65, 4 (2018), 19:1-19:21. https:
//doi.org/10.1145/3178120

Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. 2018. Greedy and Local
Ratio Algorithms in the MapReduce Model. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA). ACM, New York, NY,
USA, 43-52. https://doi.org/10.1145/3210377.3210386

James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-
mukh, and Michele Scquizzato. 2015. Toward Optimal Bounds in the Congested
Clique: Graph Connectivity and MST. In Proc. Principles of Distributed Computing
(PODC). ACM, 91-100.

James W Hegeman and Sriram V Pemmaraju. 2015. Lessons from the congested
clique applied to MapReduce. Theoretical Computer Science 608 (2015), 268-281.

480

(38]

[39]

[40]

[41

[42

[43

[44

[45

[46

N
)

(48

[49

[50

[51

[52

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

James W. Hegeman and Sriram V. Pemmaraju. 2015. Lessons from the Congested
Clique Applied to MapReduce. Theor. Comput. Sci. 608, P3 (Dec. 2015), 268-281.
https://doi.org/10.1016/j.tcs.2015.09.029

James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. 2014.
Near-constant-time distributed algorithms on a congested clique. In Distributed
Computing. Springer, 514-530.

Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient Massively Parallel
Methods for Dynamic Programming. In Proc. Symposium on Theory of Computa-
tion (STOC). 798-811.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-parallel Programs from Sequential Building Blocks.
SIgOPS Operating Systems Review 41, 3 (2007), 59-72." https://doi.org/10.1145/
1272998.1273005

Tomasz Jurdzinski and Krzysztof Nowicki. 2018. MST in O(1) Rounds of Con-
gested Clique. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
2620-2632.

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of
Computation for MapReduce. In Proc. Symposium on Discrete Algorithms (SODA).
938-948.

Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.
Filtering: a method for solving graph problems in MapReduce. In Proc. SPAA.
85-94.

Christoph Lenzen. 2013. Optimal Deterministic Routing and Sorting on the
Congested Clique. In Proceedings 33rd ACM Symposium on Principles of Distributed
Computing (PODC). 42-50. https://doi.org/10.1145/2484239.2501983

Christoph Lenzen and Roger Wattenhofer. 2010. Brief Announcement: Expo-
nential Speed-up of Local Algorithms Using Non-local Communication. In Pro-
ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). ACM, 295-296. https://doi.org/10.1145/1835698.1835772
Reut Levi and Moti Medina. 2017. A (centralized) local guide. Bulletin of EATCS
2, 122 (2017).

Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21,1 (1992), 193-201.

Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-
weight spanning tree construction in O(log log n) communication rounds. SIAM
. Comput. 35, 1 (2005), 120-131.

Danupon Nanongkai. 2014. Distributed Approximation Algorithms for Weighted
Shortest Paths. In Proc. Symposium on Theory of Computation (STOC).
Alessandro Panconesi and Aravind Srinivasan. 1996. On the Complexity of
Distributed Network Decomposition. . Algor. 20, 2 (1996), 356-374.

Michal Parnas and Dana Ron. 2007. Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theoretical Computer
Science 381, 1 (2007), 183 — 196. https://doi.org/10.1016/j.tcs.2007.04.040

Merav Parter. 2018. (A + 1) coloring in the congested clique model.. In Proceed-
ings of the International Colloquium on Automata, Languages and Programming
(ICALP). 160:1-160:14.

Merav Parter and Hsin-Hao Su. 2018. Randomized (A + 1) coloring in O(log* A)
congested clique rounds. In Proceedings of the International Symposium on Dis-
tributed Computing (DISC). 39:1-39:18.

Boaz Patt-Shamir and Marat Teplitsky. 2011. The round complexity of distributed
sorting. In Proc. Principles of Distributed Computing (PODC). 249-256.

David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM.
Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2016. Shuffles and
Circuits: (On Lower Bounds for Modern Parallel Computation). In Proc. SPAA.
1-12.

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. 2011. Fast Local Computa-
tion Algorithms. In Proceedings of the First Symposium on Innovations in Computer
Science (ICS). 223-238. See also CoRR abs/1104.1377.

Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff-
Hoeffding Bounds for Applications with Limited Independence. SIAM Journal on
Discrete Mathematics 8, 2 (1995), 223-250.

Tom White. 2012. Hadoop: The Definitive Guide. O’Reilly Media, Inc.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud). https://www.usenix.
org/conference/hotcloud- 10/spark-cluster-computing-working-sets

https://doi.org/10.1007/s00446-016-0270-2
http://arxiv.org/abs/1808.08419
http://arxiv.org/abs/1808.08419
https://doi.org/10.1145/3188745.3188964
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1145/3178120
https://doi.org/10.1145/3178120
https://doi.org/10.1145/3210377.3210386
https://doi.org/10.1016/j.tcs.2015.09.029
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1016/j.tcs.2007.04.040
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

	Abstract
	1 Introduction
	1.1 Congested Clique Model of Distributed Computing
	1.2 Massively Parallel Computation
	1.3 Centralized LOCAL Computation

	2 Technical Overview: Tools and New Ingredients
	2.1 Tools
	2.2 Our New Technical Ingredients, In a Nutshell

	3 Coloring of High-degree Graphs via Graph Partitioning
	3.1 Graph Partitioning
	3.2 Congested Clique Algorithm for High-Degree Graphs
	3.3 Massively Parallel Computation with Strongly Sublinear Memory

	References

