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ABSTRACT
In this paper, we present new randomized algorithms that improve

the complexity of the classic (∆ + 1)-coloring problem, and its

generalization (∆ + 1)-list-coloring, in three well-studied models of

distributed, parallel, and centralized computation:

Distributed Congested Clique: We present an O(1)-round ran-

domized algorithm for (∆ + 1)-list-coloring in the congested

clique model of distributed computing. This settles the as-

ymptotic complexity of this problem. It moreover improves

upon the O(log∗ ∆)-round randomized algorithms of Parter

and Su [DISC’18] and O((log log∆) · log∗ ∆)-round random-

ized algorithm of Parter [ICALP’18].

Massively Parallel Computation: We present a randomized

(∆ + 1)-list-coloring algorithm with round complexity

O(
√
log logn) in the Massively Parallel Computation (MPC)

model with strongly sublinear memory per machine. This

algorithm uses a memory of O(nα ) per machine, for any de-

sirable constant α > 0, and a total memory of Õ(m), wherem
is the number of edges in the graph. Notably, this is the first

coloring algorithm with sublogarithmic round complexity,

in the sublinear memory regime ofMPC. For the quasilinear
memory regime ofMPC, anO(1)-round algorithmwas given

very recently by Assadi et al. [SODA’19].

Centralized Local Computation: We show that (∆ + 1)-list-

coloring can be solved by a randomized algorithm with

query complexity ∆O (1) · O(logn), in the centralized lo-

cal computation model. The previous state of the art for

(∆ + 1)-list-coloring in the centralized local computation
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model are based on simulation of known LOCAL algo-

rithms. The deterministic O(
√
∆poly log∆ + log

∗ n)-round
LOCAL algorithm of Fraigniaud et al. [FOCS’16] can be

implemented in the centralized local computation model

with query complexity ∆O (
√
∆poly log∆) ·O(log∗ n); the ran-

domized O(log∗ ∆) + 2O (
√
log logn)

-round LOCAL algorithm

of Chang et al. [STOC’18] can be implemented in the cen-

tralized local computation model with query complexity

∆O (log∗ ∆) ·O(logn).
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1 INTRODUCTION
In this paper, we present improved randomized algorithms for ver-

tex coloring in three models of distributed, parallel, and centralized

computation: the congested clique model of distributed computing,

the massively parallel computation model, and the centralized local
computation model. We next overview these results in three dif-

ferent subsections, while putting them in the context of the state

of the art. The next section provides a technical overview of the

known algorithmic tools as well as the novel ingredients that lead

to our results.

(∆ + 1)-coloring and (∆ + 1)-list Coloring. Our focus is on the

standard (∆ + 1) vertex coloring problem, where ∆ denotes the

maximum degree in the graph. All our results work for the gener-

alization of the problem to (∆ + 1)-list coloring problem, defined as

follows: each vertex v in the graph G = (V ,E) is initially equipped

with a set of colors Ψ(v) such that |Ψ(v)| = ∆ + 1. The goal is to
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find a proper vertex coloring where each vertex v ∈ V is assigned

a color in Ψ(v) such that no two adjacent vertices are colored the

same.

1.1 Congested Clique Model of Distributed
Computing

Models of Distributed Computation. There are three major mod-

els for distributed graph algorithms, namely LOCAL, CONGEST,
and CONGESTED-CLIQUE. In the LOCAL model [48, 56], the in-

put graph G = (V ,E) is identical to the communication network

and each v ∈ V hosts a processor that initially knows deg(v), a
unique Θ(logn)-bit ID(v), and global graph parameters n = |V |

and ∆ = maxv ∈V deg(v). Each processor is allowed unbounded

computation and has access to a stream of private random bits.

Time is partitioned into synchronized rounds of communication,

in which each processor sends one unbounded message to each

neighbor. At the end of the algorithm, each v declares its output

label, e.g., its own color. The CONGEST model [56] is a variant of

LOCAL where there is anO(logn)-bit message size constraint. The

CONGESTED-CLIQUE model, introduced in [49], is a variant of

CONGEST that allows all-to-all communication: Each vertex ini-

tially knows its adjacent edges of the input graphG = (V ,E). In each
round, each vertex is allowed to transmit n − 1 many O(logn)-bit
messages, one addressed to each other vertex.

In this paper, our new distributed result is an improvement

for coloring in CONGESTED-CLIQUE. It is worth noting that the

CONGESTED-CLIQUE model has been receiving extensive atten-

tion recently, see e.g., [11, 14, 15, 18, 19, 24, 25, 28–31, 36, 37, 39, 45,

50, 53–55].

State of the Art for Coloring in LOCAL and CONGEST. Most

prior works on distributed coloring focus on the LOCAL model.

The current state-of-the-art randomized upper bound for the

(∆ + 1)-list coloring problem is O(log∗ ∆) +O(Detd (poly logn)) =
O(Detd (poly logn)) of [21] (which builds upon the techniques

of [34]), where Detd (n′) = 2
O (
√
log logn′)

is the deterministic com-

plexity of (deg+1)-list coloring on n′-vertex graphs [51]. In the

(deg+1)-list coloring problem, eachv has a palette of size deg(v)+1.
This algorithm follows the graph shattering framework [10, 29].

The pre-shattering phase takes O(log∗ ∆) rounds. After that, the
remaining uncolored vertices form connected components of size

O(poly logn). The post-shattering phase then applies a (deg+1)-list
coloring deterministic algorithm to color all these vertices.

State of the Art for Coloring in CONGESTED-CLIQUE. Hege-
man and Pemmaraju [37] gave algorithms for O(∆)-coloring in

the CONGESTED-CLIQUE model, which run in O(1) rounds if

∆ ≥ Θ(log4 n) and inO(log logn) rounds otherwise. It is worth not-

ing that O(∆)-coloring is a significantly more relaxed problem in

comparison to (∆ + 1)-coloring. For instance, we have long known

a very simpleO(∆)-coloring algorithm in LOCAL-model algorithm

with round complexity 2
O (
√
log logn)

[10], but only recently such a

round complexity was achieved for (∆ + 1) coloring [21, 34].

Our focus is on the much more stringent-(∆ + 1) coloring prob-

lem. For this problem, the LOCALmodel algorithms of [21, 34] need

messages of O(∆2
logn) bits, and thus do not extend to CONGEST

or CONGESTED-CLIQUE. For CONGESTED-CLIQUE model, the

main challenge is when ∆ >
√
n, as otherwise, one can simulate

the algorithm of [21] by leveraging the all-to-all communication in

CONGESTED-CLIQUE which means each vertex in each round is

capable of communicatingO(n logn) bits of information. Parter [53]

designed the first sublogarithmic-time (∆+1) coloring algorithm for

CONGESTED-CLIQUE, which runs in O(log log∆ log
∗ ∆) rounds.

The algorithm of [53] is able to reduce the maximum degree to

O(
√
n) in O(log log∆) iterations, and each iteration invokes the

algorithm of [21] on instances of maximum degree O(
√
n). Once

the maximum degree is O(
√
n), the algorithm of [21] can be imple-

mented inO(log∗ ∆) rounds in CONGESTED-CLIQUE. Subsequent
to [53], the upper bound was improved to O(log∗ ∆) in [54]. Parter

and Su [54] observed that the algorithm of [53] only takes O(1)

iterations if we only need to reduce the degree to n1/2+ϵ , for some

constant ϵ > 0, and they achieved this by modifying the internal

details of [21] to reduce the required message size to O(∆8/5
logn).

Our Result. For the CONGESTED-CLIQUE model, we present a

new algorithm for (∆+1)-list coloring in the randomized congested

clique model running inO(1) rounds. This improves on the previous

best known O(log∗ ∆)-round algorithm of Parter and Su [54] and

settles the asymptotic complexity of the problem.

Theorem 1.1. There is an O(1)-round algorithm that solves the
(∆+ 1)-list coloring problem in CONGESTED-CLIQUE, with success
probability 1 − 1/poly(n).

The proof is presented in two parts: If ∆ ≥ log
4.1 n, the algorithm

of Theorem 3.2 solves the (∆ + 1)-list coloring problem in O(1)
rounds; the algorithm for the small degree case is omitted (see the

full version of the paper [20]).

1.2 Massively Parallel Computation
Model. The Massively Parallel Computation (MPC) model was

introduced by Karloff, Suri, and Vassilvitskii [43], as a theoretical

abstraction for practical large-scale parallel processing settings

such as MapReduce [23], Hadoop [60], Spark [61], and Dryad [41],

and it has been receiving increasing attention over the past few

years [1, 3–6, 8, 12, 13, 16, 17, 22, 31, 33, 35, 37, 40, 43, 44, 57]. In

the MPC model, the system consists of a number of machines,

each with S bits of memory, which can communicate with each

other in synchronous rounds through a complete communication

network. Per round, each machine can send or receive at most S
bits in total. Moreover, it can perform some poly(S) computation,

given the information that it has. In the case of graph problems, we

assume that the graph G is partitioned among the machines using

a simple and globally known hash function such that each machine

holds at most S bits, and moreover, for each vertex or potential edge

of the graph, the hash function determines which machines hold

that vertex or edge.
1
Thus, the number of machines is Ω(m/S) and

ideally not too much higher, wherem denotes the number of edges.

At the end, each machine should know the output of the vertices

that it holds, e.g., their color.

1
If S = o(∆ logn), then we cannot afford to store all edges incident to a vertex v in a

single machine. However, in this case we still need to have a machine holding v that

is responsible for storing the output of v (e.g., the color of v for the (∆ + 1)-coloring
problem).
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State of the Art for Coloring. The CONGESTED-CLIQUE algo-

rithms discussed above can be used to obtainMPC algorithms with

the same asymptotic round complexity if machines have memory

of S = Ω(n logn) bits. In particular, the work of Parter and Su [54]

leads to an O(log∗ ∆)-round MPC algorithm for machines with

S = Ω(n logn) bits. However, this MPC algorithm would have two

drawbacks: (A) it uses Ω(n2 logn) global memory, and thus would

require (n2 logn)/S machines, which may be significantly larger

than Õ(m)/S . This is basically because the algorithm makes each

vertex of the graph learn some Θ̃(n) bits of information. (B) It is

limited to machines with S = Ω(n logn) memory, and it does not

extend to the machines with strongly sublinear memory, which

is gaining more attention recently due to the increase in the size

of graphs. We note that for the regime of machines with super-

linear memory, very recently, Assadi, Chen, and Khanna [7] gave

an O(1)-round algorithm which uses only O(n log3 n) global mem-

ory.
2
However, this algorithm also relies heavily on S = Ω(n log3 n)

memory per machine and cannot be run with weaker machines

that have strongly sublinear memory.

Our Result. We provide the first sublogarithmic-time algorithm

for (∆ + 1)-coloring and (∆ + 1)-list coloring in the MPC model

with strongly sublinear memory per machine:

Theorem 1.2. For any constant α > 0, there is anMPC algorithm
that, in O(log∗ ∆ +

√
log logn) = O(

√
log logn) rounds, w.h.p. com-

putes a (∆ + 1)-list coloring of an n-vertex graph withm edges and
maximum degree ∆ and that uses O(nα ) memory per machine, as
well as a total memory of Õ(m).

The proof is presented in Section 3.3.

1.3 Centralized LOCAL Computation
Model. The Local Computation Algorithms (LCA) model is a

centralized model of computation that was introduced in [58]; an

algorithm in this model is usually called an LCA. In this model,

there is a graph G = (V ,E), and the algorithm is allowed to make

the following queries:

Degree Query: Given ID(v), the oracle returns deg(v).
Neighbor Query: Given ID(v) and an index i ∈ [1,∆], if deg(v) ≤

i , the oracle returns ID(u), where u is the ith neighbor of v ;
otherwise, the oracle returns ⊥.

It is sometimes convenient to assume that there is a query that

returns the list of all neighbors ofv . This query can be implemented

using (i) ∆ neighbor queries or (ii) one degree query and deg(v)
neighbor queries. For randomized algorithms, we assume that there

is an oracle that given ID(v) returns an infinite-length random

sequence associated with the vertex v . Similarly, for problems with

input labels (e.g., the color lists in the list coloring problem), the

input label of a vertexv can be accessed given ID(v). Given a graph

problem P, an LCAA accomplishes the following. Given ID(v), the
algorithm A returns A(v) = the output of v , after making a small

number of queries. It is required that the output of A at different

vertices are consistent with one legal solution of P.

2
Here “global memory” refers to the memory used for communication. Of course we

still need Õ (m) memory to store the graph.

We emphasize that the outcome A(v) cannot depend on the

results of previous invocations of A. For example, if we invoke A

on v1,v2, . . . ,vk sequentially, the outcome A(vi ) cannot depend
on the previous answers A(vj ), 1 ≤ j < i .

The complexity measure for an LCA is the number of queries.

A well-known technique for obtaining efficient LCA is simulation

of known LOCAL algorithms [52]. That is, any τ -round LOCAL
algorithm A can be transformed into an LCA A ′

with query com-

plexity ∆τ . The LCAA ′
simply simulates the LOCAL algorithmA

by querying all radius-τ neighborhood of the given vertex v . This
is also known as the Parnas-Ron reduction. See [47] for a recent

survey of the state of the art in the centralized local model.

State of the Art LCA for Coloring. The previous state-of-the-art
for (∆ + 1)-list coloring in the centralized local computation model

are based on simulation of known LOCAL algorithms. The determin-

istic O(
√
∆poly log∆ + log∗ n)-round LOCAL algorithm of [9, 27]

3

can be implemented in the centralized local computation model

with query complexity ∆O (
√
∆poly log∆) ·O(log∗ n); the randomized

O(log∗ ∆) + 2O (
√
log logn)

-round LOCAL algorithm of [21] can be

implemented in the centralized local computation model with query

complexity ∆O (log∗ ∆) ·O(logn).

Our Result. We show that (∆ + 1)-list coloring can be solved

with ∆O (1) ·O(logn) query complexity. Note that ∆O (1) ·O(logn)
matches a “natural barrier” for randomized algorithms based on

the graph shattering framework, as each connected component in

the post-shattering phase has this size ∆O (1) ·O(logn).

Theorem 1.3. There is a centralized local computation algorithm
that solves the (∆ + 1)-list coloring problem with query complexity
∆O (1) ·O(logn), with success probability 1 − 1/poly(n).

The proof is omitted (see the full version of the paper [20]).

2 TECHNICAL OVERVIEW: TOOLS AND NEW
INGREDIENTS

In this section, we first review some of the known technical tools

that we will use in our algorithms, and then we overview the two

new technical ingredients that lead to our improved results (in

combination with the known tools).

Notes and Notations. When talking about randomized algorithms,

we require the algorithm to succeed with high probability (w.h.p.),
i.e., to have success probability at least 1 − 1/poly(n). For each ver-

tex v , we write N (v) to denote the set of neighbors of v . If there is
an edge orientation, N out(v) refers to the set of out-neighbors of

v . We write N k (v) = {u ∈ V | dist(u,v) ≤ k}. We use subscript to

indicate the graphG under consideration, e.g., NG (v) or N
out

G (v). In
the course of our algorithms, we slightly abuse the notation to also

use Ψ(v) to denote the set of available colors of v . i.e., the subset
of Ψ(v) that excludes the colors already taken by its neighbors in

N (v). The number of excess colors at a vertex is the number of avail-

able colors minus the number of uncolored neighbors. Moreover,

we make an assumption that each color can be represented using

O(logn) bits. This is without loss of generality (in all of the models

3
Precisely, the complexity isO (

√
∆ log

2.5 ∆ + log∗ n) in [27], and this has been later

improved toO (
√
∆ log∆ log

∗ ∆ + log∗ n) in [9].
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under consideration in our paper), since otherwise we can hash the

colors down to this magnitude, as we allow a failure probability of

1/poly(n) for randomized algorithms.

2.1 Tools
Lenzen’s Routing. The routing algorithm of Lenzen [45] for

CONGESTED-CLIQUE allows us to deliver all messages in O(1)
rounds, as long as each vertexv is the source and the destination of

at most O(n) messages. This is a very useful (and frequently used)

communication primitive for designing CONGESTED-CLIQUE al-

gorithms.

Lemma 2.1 (Lenzen’s Routing). Consider a graph G = (V ,E)
and a set of point-to-point routing requests, each given by the IDs of
the corresponding source-destination pair. As long as each vertex v
is the source and the destination of at most O(n) messages, namely
O(n logn) bits of information, we can deliver all messages in O(1)
rounds in the CONGESTED-CLIQUE model.

The Shattering Framework. Our algorithm follows the graph shat-
tering framework [10], which first performs some randomized pro-

cess (known as pre-shattering) to solve “most” of the problem, and

then performs some clean-up steps (known as post-shattering) to
solve the remaining part of the problem. Typically, the remain-

ing graph is simpler in the sense of having small components and

having a small number of edges. Roughly speaking, at each step

of the algorithm, we specify an invariant that all vertices must

satisfy in order to continue to participate. Those bad vertices that
violate the invariant are removed from consideration, and post-

poned to the post-shattering phase. We argue that the bad vertices

form connected components of size ∆O (1) · O(logn) with proba-

bility 1 − 1/poly(n); we use this in designing LCA. Also, the total
number of edges induced by the bad vertices is O(n). Therefore,
using Lenzen’s routing, in CONGESTED-CLIQUE we can gather

all information about the bad vertices to one distinguished vertex

v⋆, and then v⋆ can color them locally. More precisely, we have

the following lemma [10, 26].

Lemma 2.2 (The Shattering Lemma). Let c ≥ 1. Consider a ran-
domized procedure that generates a subset of vertices B ⊆ V . Suppose
that for each v ∈ V , we have Pr[v ∈ B] ≤ ∆−3c , and this holds even
if the random bits not in N c (v) are determined adversarially. Then,
the following is true.

(1) With probability 1−n−Ω(c
′), each connected component in the

graph induced by B has size at most (c ′/c)∆2c
log∆ n.

(2) With probability 1 −O(∆c ) · exp(−Ω(n∆−c )), the number of
edges induced by B is O(n).

Round Compression in CONGESTED-CLIQUE and MPC by In-
formation Gathering. Suppose we are given a τ -round LOCAL al-

gorithm A on a graph of maximum degree ∆. A direct simulation

of A on CONGESTED-CLIQUE costs also τ rounds. However, if

each vertex v already knows all information in its radius-τ neigh-

borhood, then v can locally compute its output in zero rounds. In

general, this amount of information can be as high as Θ(n2), since
there could be Θ(n2) edges in the radius-τ neighborhood of v . For
the case of ∆τ = O(n), it is possible to achieve an exponential

speed-up in the round complexity in the CONGESTED-CLIQUE,

compared to that of LOCAL. In particular, in this case, each ver-

tex v can learn its radius-τ neighborhood in just O(logτ ) rounds
in CONGESTED-CLIQUE. Roughly speaking, after k rounds, we

are able to simulate the product graph G2
k
, which is the graph

where any two vertices with distance at most 2
k
in graph G

are adjacent. This method is known as graph exponentiation [46],

and it has been applied before in the design of algorithms in

CONGESTED-CLIQUE andMPCmodels, see e.g., [4, 30, 32, 53, 54].

Round Compression via Opportunistic Information Gather-
ing. Our goal is to achieve the O(1) round complexity in

CONGESTED-CLIQUE, so an exponential speed-up compared to

the LOCAL model will not be enough. Consider the following

“opportunisitc” way of simulating a LOCAL algorithm A in the

CONGESTED-CLIQUE model. Each vertex u sends its local infor-

mation (which has O(∆ logn) bits) to each vertex v ∈ V with some

fixed probability p = O(1/∆), independently, and it hopes that there
exists a vertex v ∈ V that gathers all the required information to

calculate the outcome ofA at u. To ensure that for each u, there ex-

ists such a vertexv w.h.p., it suffices that p∆
τ
≫

logn
n . We note that

a somewhat similar idea was key to theO(1)-round MST algorithm

of [42] for CONGESTED-CLIQUE.
Lemma 2.3, presented below, summarizes the criteria for this

method towork; see the full version of the paper [20] for the proof of

the lemma. Denote ℓin as the number of bits needed to represent the

random bits and the input for executing A at a vertex. Denote ℓout
as the number of bits needed to represent the output ofA at a vertex.

We assume that each vertex v initially knows a set N∗(v) ⊆ N (v)
such that throughout the algorithm A, each vertex v only receives

information from vertices in N∗(v). We write ∆∗ = maxv ∈v |N∗(v)|.

Lemma 2.3 (Opportunistic Speed-up). Let A be a τ -round
LOCAL algorithm on G = (V ,E). There is an O(1)-round simu-
lation of A in CONGESTED-CLIQUE, given that (i) ∆τ∗ log(∆∗ +

ℓin/logn) = O(logn), (ii) ℓin = O(n), and (iii) ℓout = O(logn).

2.2 Our New Technical Ingredients, In a
Nutshell

The results in our paper are based on the following two novel techni-

cal ingredients, which are used in combinationwith the known tools

mentioned above: (i) a new graph partitioning algorithm for color-

ing and (ii) a sparsification of the CLP coloring algorithm [21]. We

note that the first ingredient suffices for ourCONGESTED-CLIQUE
result for graphs with maximum degree at least poly(logn), and
also for our MPC result. This ingredient is presented in Section 3.

The second ingredient, which is also more involved technically,

is used for extending our CONGESTED-CLIQUE result to graphs

with smaller maximum degree, as well as for our LCA result. This

ingredient is presented in the full version of the paper [20]. Here,

we provide a brief overview of these ingredients and how they get

used in our results.

Ingredient 1 — Graph Partitioning for Coloring. We provide a sim-

ple random partitioning that significantly simplifies and extends

the one in [53, 54]. The main change will be that, besides partition-

ing the vertices randomly, we also partition the colors randomly.

In particular, this new procedure partitions the vertices and colors

in a way that allows us to easily apply CLP in a black box manner.

Session 11 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

474



(∆ + 1) Coloring in Congested Clique, Massively Parallel Computation, and Centralized Local Computation PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Concretely, our partitioning breaks the graph as well as the

respective palettes randomly into many subgraphs B1, . . . ,Bk of

maximum degree O(
√
n) and size O(

√
n), while ensuring that each

vertex in these subgraphs receives a random part of its palette with

size close to the maximum degree of the subgraph. The palettes

for each part are disjoint, which allows us to color all parts in

parallel. There will be one left-over subgraph L, with maximum

degree Õ(∆3/4), as well as sufficiently large remaining palettes for

each vertex in this left-over subgraph.

Application in CONGESTED-CLIQUE: Since each subgraph has

O(n) edges, all of B1, . . . ,Bk can be colored, in parallel, in

O(1) rounds, using Lenzen’s routing (Lemma 2.1). The left-

over part L is handled by recursion. We show that when

∆ > log
4.1 n, we are done after O(1) levels of recursion.

Application in Low-memory MPC: We perform recursive calls

not only on L but also on B1, . . . ,Bk . After O(1) levels of

recursion, the maximum degree can be made O(nβ ), for any
given constant β > 0, which enables us to run the CLP

algorithm on a low memory MPC.

We note that the previous partitioning approach [53, 54] is unable

to reduce the maximum degree to below

√
n; this is a significant

limitation that our partitioning overcomes. We also note that the

CONGESTED-CLIQUE orMPC coloring algorithms of [35, 38] also

use the approach of randomly partitioning the palette. However,

their algorithms needs a palette of size that is much higher than

∆+ 1 to ensure that the set of colors associated with each vertex set

Bi is higher than its maximum degree. We avoid the use of extra

colors by having a sufficiently large left-over part L and recursively

applying the partitioning algorithm on L.

Ingredient 2 — Sparsification of the CLP Algorithm. In general, to

calculate the output of a vertexv in a τ -round LOCAL algorithmA,

the output may depend on all of the τ -hop neighborhood ofv . In par-
ticular, if we transformA into an LCA, the query complexity can be

as high as ∆τ . To efficiently simulate A in CONGESTED-CLIQUE
or to transform A to an LCA, a strategy is to “sparsify” the algo-

rithm A so that the number of vertices a vertex has to explore to

decide its output is sufficiently small. This notion of sparsification

is a key idea behind some recent algorithms [30, 32]. In the present

paper, a key technical ingredient is providing such a sparsification

for the (∆ + 1) coloring algorithm of CLP [21].

The pre-shattering phase of the CLP algorithm [21] consists of

three parts: (i) initial coloring, (ii) dense coloring, and (iii) color

bidding. Parts (i) and (ii) take O(1) rounds;4 part (iii) takes τ =
O(log∗ ∆) rounds. In this paper, we sparsify the color bidding part

of the CLP algorithm. We let each vertex v sample O(poly log∆)
colors from its palette at the beginning of this procedure, and we

show that with probability 1 − 1/poly(∆), these colors are enough
for v to correctly execute the algorithm. Based on the sampled

colors, we can do an O(1)-round pre-processing step to let each

vertex v identify a subset of neighbors N∗(v) ⊆ N (v) of size ∆∗ =

O(poly log∆) neighbors N∗(v) ⊆ N (v), andv only needs to receive

messages from neighbors in N∗(v) in the subsequent steps of the

algorithm.

4
In the preliminary versions (arXiv:1711.01361v1 and STOC’18) of [21], dense coloring

takes O (log∗ ∆) time. This time complexity has been later improved to O (1) in a

revised full version of [21].

Application in CONGESTED-CLIQUE: For the case

∆ = O(poly logn), the parameters τ = O(log∗ ∆) and

∆∗ = O(poly log∆) = O(poly(log logn)) satisfy the con-

dition for applying the opportunistic speedup lemma

(Lemma 2.3), and so the pre-shattering phase of the

CLP algorithm can be simulated in O(1) rounds in

CONGESTED-CLIQUE.
Application in Centralized Local Computation: With sparsi-

fication, the pre-shattering phase of the CLP algorithm can

be transformed into an LCAwith ∆O (1) ·∆τ∗ = ∆O (1)
queries.

The recent work [7] on (∆+ 1)-coloring inMPC is also based on

some form of palette sparsification, as follows. They showed that

if each vertex samples O(logn) colors uniformly at random, then

w.h.p., the graph still admits a proper coloring using the sampled

colors. Since we only need to consider the edges {u,v} where u
and v share a sampled color, this effectively reduces the degree to

O(log2 n). For anMPC algorithm with Õ(n) memory per processor,

the entire sparsified graph can be sent to one processor, and a

coloring can be computed there, using any coloring algorithm,

local or not. This sparsification is not applicable for our setting. In

particular, in our sparsified CLP algorithm, we need to ensure that

the coloring can be computed by a LOCAL algorithm with a small

locality volume; this is because the final coloring is constructed

distributedly via the opportunistic speedup lemma (Lemma 2.3).

3 COLORING OF HIGH-DEGREE GRAPHS
VIA GRAPH PARTITIONING

In this section, we describe our graph partitioning algorithm,

which is the first new technical ingredient in our results. As men-

tioned in Section 2.2, this ingredient on its own leads to our

CONGESTED-CLIQUE result for graphs with ∆ = Ω(poly(logn))
and also our MPC result, as we will explain in Section 3.2 and Sec-

tion 3.3, respectively. The algorithm will be applied recursively, but

it is required that the failure probability is at most 1 − 1/poly(n) in
all recursive calls, where n is the number of vertices in the original

graph.

In this section, the parameter n refers to the number of vertices

in the original graph, not the number of vertices in the current

subgraph G = (V ,E) under consideration.

3.1 Graph Partitioning
We consider a graph partitioning algorithm parameterized by two

constants γ and λ satisfying γ ≥ 2 and λ = 1

2
+ 2

3γ+2 . Consider

a graph G = (V ,E) with maximum degree ∆. Recall that in this

section G is assumed to be a subgraph of the n-vertex original

graph, and so n ≥ |V |. Each vertex v ∈ V has a palette Ψ(v) of size

|Ψ(v)| ≥ max{degG (v),∆
′} + 1, where ∆′ = ∆ − ∆λ . Denote G[S]

as the subgraph induced by the vertices S ⊆ V . For each vertex

v ∈ V , denote degS (v) as |N (v) ∩ S |. The algorithm is as follows,

where we set k =
√
∆.

Vertex Set: The partition V = B1 ∪ · · · ∪ Bk ∪ L is defined by the

following procedure. Including each v ∈ V to the set L with

probability q = Θ

(√
logn
∆1/4

)
. Each remaining vertex joins one
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of B1, . . . ,Bk uniformly at random. Note that Pr[v ∈ Bi ] =

p(1 − q), where p = 1/k = 1/
√
∆.

Palette: Denote C =
⋃
v ∈V Ψ(v) as the set of all colors. The par-

tition C = C1 ∪ · · · ∪ Ck is defined by having each color

c ∈ C join one ofC1, . . . ,Ck uniformly at random. Note that

Pr[c ∈ Ci ] = p = 1/k .

We require that with probability 1− 1/poly(n), the output of the
partitioning algorithm satisfies the following properties, assuming

that ∆ = ω(logγ n).

i) Size of Each Part: It is required that |E(G[Bi ])| = O(|V |), for

each i ∈ [k]. Also, it is required that |L| = O(q |V |) =

O(

√
logn
∆1/4 ) · |V |.

ii) Available Colors in Bi : For each i ∈ {1, . . . ,k} and v ∈

Bi , the number of available colors in v in the subgraph

Bi is дi (v) := |Ψ(v) ∩ Ci |. It is required that дi (v) ≥

max{degBi (v),∆i −∆
λ
i }+1, where ∆i := maxv ∈Bi degBi (v).

iii) Available Colors in L: For each v ∈ L, define дL(v) :=

|Ψ(v)| − (degG (v) − degL(v)). It is required that дL(v) ≥

max{degL(v),∆L − ∆λL} + 1 for each v ∈ L, where ∆L :=

maxv ∈L degL(v). Note that дL(v) represents a lower bound
on the number of available colors in v after all of B1, . . . ,Bk
have been colored.

iv) Remaining Degrees: The maximum degrees of Bi and L are

maxv ∈Bi degBi (v) ≤ ∆i = O(
√
∆) and maxv ∈L degL(v) ≤

∆L = O(q∆) = O(

√
logn
∆1/4 ) · ∆. For each vertex v , we have

degBi (v) ≤ max{O(logn),O(1/
√
∆) · deg(v)} if v ∈ Bi , and

degL(v) ≤ max{O(logn),O(q) · deg(v)} if v ∈ L.

Intuitively, we will use this graph partitioning in the following

way. First compute the decomposition of the vertex set and the

palette, and then color each Bi using colors inCi . Since |E(G[Bi ])| =
O(|V |) = O(n), in the CONGESTED-CLIQUE model we are able to

send the entire graph G[Bi ] to a single distinguished vertex v⋆i
using Lenzen’s routing (Lemma 2.1), and then v⋆i can compute a

proper coloring of G[Bi ] locally. This procedure can be done in

parallel for all i . If |E(G[L])| = O(n), then similarly we can let a

vertex compute a proper coloring of G[L]; otherwise we apply the

graph partitioning recursively on G[L], with the same parameter n.
Later we will see that it suffices to set the recursion depth constant.
This graph partitioning will be used as well in our MPC algorithm

in the similar way.

Lemma 3.1. Suppose |Ψ(v)| ≥ max{degG (v),∆
′} + 1 with ∆′ =

∆ − ∆λ , and |V | > ∆ = ω(logγ n), where γ and λ are two constants
satisfying γ ≥ 2 and λ = 1

2
+ 2

3γ+2 . The two partitionsV = B1∪ · · ·∪

Bk ∪ L and C =
⋃
v ∈V Ψ(v) = C1 ∪ · · · ∪ Ck satisfy the required

properties, with probability 1 − 1/poly(n).

Proof. We prove that the properties i), ii), iii), and iv) hold with

high probability.

i) Size of Each Part: We first show that |E(G[Bi ])| = O(|V |), for

each i ∈ [k], with probability 1 − 1/poly(n). To have |E(G[Bi ])| =
O(|V |), it suffices to have degBi (v) = O(p∆) for each v , and |Bi | =

O(p |V |), since p = 1/
√
∆. Note that we already have E[degBi (v)] ≤

(1 − q)p∆ < p∆ and E[|Bi |] = (1 − q)p |V | < p |V |, so we only need

to show that these parameters concentrate at their expected values

with high probability. This can be established by a Chernoff bound,

as follows. Note that we have ϵ1 < 1 and ϵ2 < 1 in the following

calculation. In particular, the inequality ϵ1 < 1 holds because of the

assumption ∆ = ω(logγ n) ≥ ω(log2 n).

Pr[degBi (v) ≤ (1 + ϵ1)(1 − q)p∆]

= 1 − exp(−Ω(ϵ2
1
(1 − q)p∆)) = 1 −O(1/poly(n)),

where ϵ1 = Θ

(√
logn

(1 − q)p∆

)
= Θ

(√
logn

p∆

)
.

Pr[|Bi | ≤ (1 + ϵ2)(1 − q)p |V |]

= 1 − exp(−Ω(ϵ2
2
(1 − q)p |V |)) = 1 −O(1/poly(n)),

where ϵ2 = Θ

(√
logn

(1 − q)p |V |

)
= Θ

(√
logn

p |V |

)
.

Next, we show the analogous results for L, i.e., with probability

1−1/poly(n), both |L|/|V | and ∆L/∆ areO(q) = O

(√
logn
∆1/4

)
, where

∆L = maxv ∈L degL(v). Similarly, we already have E[degL(v)] ≤ q∆

and E[|L|] = q |V |, and remember that q = O(

√
logn
∆1/4 ), so we only

need to show that these parameters concentrate at their expected

values with high probability, by a Chernoff bound.

Pr[degL(v) ≤ (1 + ϵ3)q∆]

= 1 − exp(−Ω(ϵ2
3
q∆)) = 1 −O(1/poly(n)),

where ϵ3 = Θ

(√
logn

q∆

)
.

Pr[|L| ≤ (1 + ϵ4)q |V |]

= 1 − exp(−Ω(ϵ2
4
q |V |)) = 1 −O(1/poly(n)),

where ϵ4 = Θ

(√
logn

q |V |

)
.

Similarly, we have ϵ3 < 1 and ϵ4 < 1. In particular, ϵ3 < 1

because ∆ = ω(logγ n) ≥ ω(log2 n).

ii) Available Colors in Bi : Now we analyze the number of avail-

able color for each set Bi . Recall that for eachv ∈ Bi , the number of

available colors in v in the subgraph Bi is дi (v) := |Ψ(v) ∩Ci |. We

need to prove the following holds with probability 1 − 1/poly(n):

(i) |Ψ(v) ∩Ci | ≥ degBi (v) + 1, and (ii) |Ψ(v) ∩Ci | ≥ ∆i − ∆λi + 1,
where ∆i := maxv ∈Bi degBi (v). We will show that with probability

1 − 1/poly(n), we have |Ψ(v) ∩Ci | ≥ ∆i + 1 for each Bi and each

v ∈ Bi , and this implies the above (i) and (ii).

Recall that ∆′ = ∆
(
1 − ∆−(1−λ)

)
, q = Θ

(√
logn
∆1/4

)
≫ ∆−(1−λ)

,
5

and ϵ1 = Θ

(√
logn
∆1/4

)
. By selecting q ≥ 3ϵ1 = Θ

(√
logn
∆1/4

)
, we have

(1 − ϵ1)p∆
′ = (1 − ϵ1)

(
1 − ∆−(1−λ)

)
p∆ ≥ (1 + ϵ1)(1 − q)p∆ + 1.

5
The assumptions γ ≥ 2 and λ = 1

2
+ 2

3γ +2 imply that λ ∈ (1/2, 3/4], and so

∆−(1−λ) ≤ ∆−1/4 ≪ q .
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We already know that ∆i ≤ (1 + ϵ1)(1 − q)p∆ with probability

1−1/poly(n). In order to have |Ψ(v)∩Ci | ≥ ∆i +1, we only need to
show that |Ψ(v) ∩Ci | ≥ (1 − ϵ1)p∆

′
with probability 1 − 1/poly(n).

For the expected value, we know that E[|Ψ(v) ∩Ci |] = p |Ψ(v)| ≥
p∆′

. By a Chernoff bound, we have

Pr[|Ψ(v) ∩Ci | ≥ (1 − ϵ1)p∆
′] = 1 − exp(−Ω(ϵ2

1
p∆′))

= 1 −O(1/poly(n)).

iii) Available Colors in L: Next, we consider the number of avail-

able colors in L. We show that with probability 1 − 1/poly(n),

for each v ∈ L, we have дL(v) ≥ max{degL(v),∆L − ∆λL} + 1,

where дL(v) = |Ψ(v)| − (degG (v) − degL(v)). It is straightfor-

ward to see that дL(v) ≥ degL(v) + 1, since дL(v) = (|Ψ(v)| −
degG (v)) + degL(v) ≥ 1 + degL(v). Thus, we only need to show

that дL(v) ≥ ∆L − ∆λL + 1.
We first calculate the expected value of дL . In the last inequality

we use the assumption that degG (v) ≤ |Ψ(v)| −1 and ∆′ ≤ |Ψ(v)| −
1.

E[дL] = (|Ψ(v)| − degG (v)) + E[degL(v)]

= (|Ψ(v)| − degG (v)) + q degG (v)

= |Ψ(v)| − (1 − q) degG (v)

≥ q∆′.

We prove that дL(v) ≥ (1 − ϵ3)q∆
′
with probability 1 − 1/poly(n).

Here we use the following variant of a Chernoff bound. If it is

known that E[X ] ≤ β , then the probability that X deviates from

E[X ] by an additive term of more than ϵβ is exp(−Ω(ϵ2β)). We set

X = degL(v), ϵ = ϵ3(∆
′/∆) = Θ(ϵ3), and β = q∆ ≥ E[degL(v)].

Pr[дL(v) ≥ (1 − ϵ3)q∆
′] = Pr[degL(v) ≥ q degG (v) − ϵ3q∆

′]

= 1 − exp(−Ω(ϵ2
3
q∆′))

= 1 −O(1/poly(n))

Remember that ϵ3 = Θ

(√
logn
q∆

)
= Θ

(√
logn
q∆′

)
, and we already

know that ϵ3 < 1. Using the above concentration bound, we infer

that дL(v) ≥ q∆ − q∆λ − O
(√

q∆ logn
)
holds with probability

1 − 1/poly(n).

дL(v) ≥ (1 − ϵ3)q∆
′

≥ q∆′ −O
(√

q∆′
logn

)
≥ q∆ − q∆λ −O

(√
q∆ logn

)
.

Combining this with ∆L ≤ (1 + ϵ3)q∆ = q∆ + O(
√
q∆ logn),

we obtain дL(v) ≥ ∆L − q∆λ − O(
√
q∆ logn). Note that q∆λ +

O(
√
q∆ logn) = o

(
(q∆)λ

)
= o

(
∆λL

)
,
6
and so we finally obtain

дL(v) ≥ ∆L − ∆λL + 1.

iv) Remaining Degrees: The degree upper bounds of ∆i
and ∆L follow immediately from the concentration bounds on

6
The bound

√
q∆ logn ≪ (q∆)λ can be derived from the assumptions λ = 1

2
+

2

3γ +2 and ∆ = ω(logγ n), as follows: q∆ = Θ(∆
3

4 log

1

2 n) = ω(log
3

4
γ + 1

2 n) =⇒√
q∆ logn = (q∆)

1

2 log
1/2 n ≪ (q∆)

1

2 (q∆)
1

2

(
3

4
γ + 1

2

)−1
= (q∆)λ .

degBi (v) and degL(v) calculated in the proof of i). The bounds

degBi (v) ≤ max{O(logn),O(1/
√
∆) · deg(v)} and degL(v) ≤

max{O(logn),O(q) · deg(v)} can be derived by a straightforward

application of Chernoff bound. □

3.2 Congested Clique Algorithm for
High-Degree Graphs

In this section, we show that the (∆ + 1)-list coloring problem

can be solved in O(1) rounds in the CONGESTED-CLIQUE model

when the degrees are assumed to be sufficiently high. The for-

mal statement is captured in Theorem 3.2. First, we show that

the partitioning algorithm can indeed be implemented in the

CONGESTED-CLIQUE model. Then, we show how to color the

parts resulting from the graph partitioning efficiently. The proof

of Theorem 3.2 is completed by showing that only O(1) recursive
applications of the partitioning are required.

Implementation of the Graph Partitioning. The partitions can be

computed in O(1) rounds on CONGESTED-CLIQUE. Partitioning
the vertex set V is straightforward, as every vertex can make the

decision independently and locally, whereas it is not obvious how

to partitionC to make all vertices agree on the same partition. Note

that we can assume |C | ≤ (∆+1)|V |; if |C | is greater than (∆+1)|V |

initially, then we can let each vertex decrease its palette size to

∆ + 1 by removing some colors in its palette, and we will have

|C | ≤ (∆ + 1)|V | after removing these colors.

A straightforward way of partitioning C is to generate

Θ(|C | logn) random bits at a vertex v locally, and then v broad-

casts this information to all other vertices. Note that it takes

O(logk) = O(log |V |) = O(logn) bits to encode which part of

C1 ∪ · · · ∪ Ck each c ∈ C is in. A direct implementation of the

approach cannot be done in O(1) rounds, due to the message size

constraint of CONGESTED-CLIQUE, as each vertex can send at

most Θ(n logn) bits in each round.

To solve this issue, observe that it is not necessary to use total

independent random bits for each c ∈ C , and Θ(logn)-wise inde-
pendence suffices. More precisely, suppose X is the summation of

n K-wise independent 0-1 random variables with mean p, and so

µ = E[X ] = np. A Chernoff bound with K-wise Independence [59]
guarantees that

Pr[X ≥ (1 + q)µ] ≤ exp

(
−min{K ,q2µ}

)
.

In order to guarantee a failure probability of 1/poly(n) in all applica-
tions of Chernoff bound in Lemma 3.1, it suffices that K = Θ(logn).
Therefore, to compute the decompositionC = C1 ∪ · · · ∪Ck with K-
wise independent random bits, we only needO(K · log(|C | logk)) =
O(log2 n) total independent random bits.

7
Broadcasting O(log2 n)

bits of information to all vertices can be done in O(1) rounds via
Lenzen’s routing (Lemma 2.1).

The Algorithm of (∆ + 1)-list coloring on High-degree Graphs. We

next present our CONGESTED-CLIQUE-model coloring algorithm

for high-degree graphs, using the partitioning explained above.

7
It is well-known that n Bernoulli random variables with p = 1/2 with d -wise
independence can be constructed from O (d logn) Bernoulli random variables with

p = 1/2 with total independence [2, Section 16.2].
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Theorem 3.2. Suppose ∆ = Ω(log4+ϵ n) for some constant
ϵ > 0. There is an algorithm that solves (∆ + 1)-list coloring in
CONGESTED-CLIQUE in O(1) rounds.

Proof. We show that a constant-depth recursive applications of

Lemma 3.1 suffices to give an O(1)-round CONGESTED-CLIQUE
(∆ + 1)-list coloring algorithm for graphs with ∆ = Ω(log4+ϵ n),
for any constant ϵ > 0. Consider the graph G = (V ,E). First, we
apply the graph partitioning algorithm of Lemma 3.1 to partition

vertices V into subsets B1, . . . ,Bk ,L with parameter n = |V |, and

k =
√
∆. After that, let arbitrary k =

√
∆ vertices to be responsible

for coloring eachG[Bi ]. Each of these k vertices, in parallel, gathers

all information of G[Bi ] from vertices Bi , and then computes a

proper coloring of G[Bi ], where each vertex v ∈ Bi uses only

the palette Ψ(v) ∩ Ci . The existence of such a proper coloring is

guaranteed by Property (ii). Using this approach, we can color all

vertices in V \ L in O(1) rounds using Lenzen’s routing. Note that
Property (i) guarantees that |E(G[Bi ])| = O(n). Finally, each vertex

v ∈ L removes the colors that have been taken by its neighbors

in V \L from its palette Ψ(v). In view of Property (iii), after this

operation, the number of available colors for each v ∈ L is at

least дL(v) ≥ max{degL(v),∆L − ∆λL} + 1. Now the subgraph G[L]
satisfies all conditions required to apply Lemma 3.1, so long as

∆L = ω(logγ n). We will see that this condition is always met in

our application.

We then recursively apply the algorithm of the lemma on the

subgraph induced by vertices L with the same parameter n. The
recursion stops once we reach a point that |E(G[L])| = O(n), and
so we can apply Lenzen’s routing to let one vertex v gather all

information of G[L] and compute its proper coloring.

Nowwe analyze the number of iterations needed to reach a point

that |E(G[L])| = O(n). Here we use γ = 2 and λ = 3/4.8 Define

V1 = V and ∆1 = ∆ as the vertex set and the maximum degree for

the first iteration. Let V = B1 ∪ · · · ∪ Bk ∪ L be the outcome of

the first iteration, and define V2 = L and ∆2 = ∆L . Similarly, for

i > 2, we define Vi and ∆i based on the set L in the outcome of the

graph partitioning algorithm for the (i − 1)th iteration. We have

the following formulas.

∆1 = ∆

∆i = ∆i−1 ·O

(√
logn

∆
1/4

i−1

)
by Property iv)

|V1 | = n

|Vi | = |Vi−1 | ·O

(√
logn

∆
1/4

i−1

)
by Property i)

Let α > 0 be chosen such that ∆ = ∆1 = (logn)2+α , and assume

α = Ω(1) and i = O(1). We can calculate the value of ∆i and |Vi | as
follows.

∆i = O
(
(logn)2+α ·(3/4)i−1

)
|Vi | = O(n/∆) · ∆i = n ·O

(
(logn)α ((3/4)

i−1−1)
)

8
We choose γ = 2 (the smallest possible) to minimize the degree requirement in

Theorem 3.2.

Thus, given that α = Ω(1) and i = O(1), the condition of ∆i =
ω(logγ n) = ω(log2 n) for applying Lemma 3.1 must be met.

Next, we analyze the number of iterations it takes to make ∆i |Vi |
sufficiently small. In the CONGESTED-CLIQUE model, if ∆i |Vi | =
O(n), then we are able to compute a proper coloring of Vi in O(1)
rounds by information gathering. Let us write ∆ = log

2+α n, where
α = 2 + β . The lemma statement implies that β = Ω(1). Note that
the condition for ∆i |Vi | = O(n) can be re-written as

(2 − α) + 2α(3/4)i−1 ≤ 0.

Combining this with α = 2 + β , we obtain the formula −β + 2(2 +

β)(3/4)i−1 ≤ 0, and this can be re-written as (4/3)i−1 ≥
2(2+β )

β .

Now we can calculate the minimum i needed so that the condition

for ∆i |Vi | = O(n) is met:

i ≥ 1 + log
4/3 2(2 + β)/β .

Since β = Ω(1), we have 1 + log
4/3 2(2 + β)/β = O(1), and so

our algorithm takes only O(1) iterations. In particular, when β ≥

10.8, i.e., ∆ = Ω(log12.8 n), we have i ≥ 1 + log
4/3 2(2 + β)/β for

i ≥ 4. Therefore, ∆4 |V4 | = O(n), and so 3 iterations suffice. Since

each iteration can be implemented in CONGESTED-CLIQUE in

O(1) rounds, overall we get an algorithm with round complexity

O(1). □

Similar to the proof of Theorem 3.2, the graph partitioning al-

gorithm also leads to an O(1)-round MPC coloring algorithm with

S = Õ(n)memory per processor and Õ(m) total memory. This gives

a simple alternate proof of a result of [7] that (∆+1)-coloring can be

solved with S = Õ(n)memory per processor. However, the coloring

algorithm of [7] takes only one round of communication, and it

uses only Õ(n) bits in total.

3.3 Massively Parallel Computation with
Strongly Sublinear Memory

We now show how to apply Lemma 3.1 as well as the CLP algo-

rithm of [21], as summarized in the following lemma, to prove

Theorem 1.2.

Lemma 3.3 ([21, 53]). Let G be an n-vertex graph withm edges
and maximum degree ∆. Suppose any vertex v has a palette |Ψ(v)|

that satisfies |Ψ(v)| ≥ max

{
degG (v) + 1,∆ − ∆3/5

}
. Then the list-

coloring problem can be solved w.h.p. in O(
√
log logn) rounds of low-

memory MPC with local memory O(nα ) for an arbitrary constant
α ∈ (0, 1) and total memory Õ

(∑
v degG (v)

2
)
if ∆2 = O (nα ).

The proof of Lemma 3.3 almost immediately follows from [21,

53]; there are only few changes that have to be made in order to

turn their CONGESTED-CLIQUE algorithm into a low-memory

MPC algorithm. The details are deferred to the full version of the

paper [20].

Proof of Theorem 1.2. We present a recursive algorithm based

on the randomized partitioning algorithm of Lemma 3.1. If ∆ =
poly(logn) then the conditions of Lemma 3.3 are satisfied trivially;

we can solve the problem inO(log∗ ∆+
√
log logn) = O(

√
log logn)

rounds of low-memory MPC with total memory Õ(n · ∆2) = Õ(m).

Otherwise, we execute the following algorithm.
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Randomized Partitioning: Let G be the graph that we want to

color.We apply the randomized partitioning algorithm of Lemma 3.1

to G, which gives us sets B1, . . . ,Bk and L, as well as color sets
C1, . . . ,Ck . The goal is now to first color B1, . . . ,Bk with colors

from C1, . . . ,Ck , respectively. Since the colors in the sets Ci are

disjoint, this gives a proper coloring of B :=
⋃k
i=1 Bi . Then, for

every vertex in L, we remove all colors already used by neighbors

in B from the palettes, leaving us with a list-coloring problem of

the graph induced by L with maximum degree ∆L .
In the following, we first describe how to color each set Bi with

colors in Ci , and then how to solve the remaining list-coloring

problem in L. For the parameters in Lemma 3.1, we use γ = 6 and

λ = 3/5.9

List-Coloring Problem in Bi : If the maximum degree ∆i in Bi sat-
isfies ∆2

i = O(n
α ), then, by Lemma 3.1 ii), Bi satisfies the conditions

of Lemma 3.3 We thus can apply the algorithm of Lemma 3.3 to Bi .
Otherwise, we recurse on Bi . Note that this is possible since, by
Lemma 3.1 ii) applied toG , Bi satisfies the conditions of Lemma 3.1.

List-Coloring Problem in L: If the maximum degree ∆L in L sat-

isfies ∆2

L = O(n
α ), then, by Lemma 3.1 iii) applied to G, L satisfies

the conditions of Lemma 3.3. We thus can apply the algorithm of

Lemma 3.3 to L. Otherwise, we recurse on L. Note that this is possi-
ble since by Lemma 3.1 iii), L satisfies the conditions of Lemma 3.1.

Number of Iterations: Since the maximum degree in L reduces

by a polynomial factor in every step, after at most O(1/α) steps,

the resulting graph has maximum degree at most O(nα/2), where
we satisfy the conditions of Lemma 3.3, and hence do not recurse

further. Note that when recursing on sets Bi , the degree drop is

even larger, and hence the same reasoning applies to bound the

number of iterations.

Memory Requirements: It is obvious that the recursive partition-
ing of the input graph G does not incur any asymptotic overhead

in the memory, neither local nor global. Now, let H be the set

of all graphs H on which we apply the algorithm of Lemma 3.3.

As we only apply this algorithm when the maximum degree ∆H
of H is O(nα/2) or poly(logn), we clearly have ∆2

H = O(nα ), so
the algorithm Lemma 3.3 is guaranteed to run with local memory

O(nα ).
It remains to show how to guarantee the total memory require-

ment of Õ(m), wherem is the number of edges in the input graphG ,
as promised in Theorem 1.2. First, observe that due to the specifica-

tions of Lemma 3.3, we can write the total memory requirement as∑
H ∈H

∑
v ∈H (degH (v))2. First, assume that the graph G has been

partitioned at least three times to get to H . By Lemma 3.1 iv), the

degree of any vertex v in H is either Õ(1) or at most

degG (v) · Õ
(
∆− 1

4

)
· Õ

(
∆− 1

4
· 3
4

)
· Õ

(
∆− 1

4
·( 3

4
)2
)

= degG (v) · Õ
(
∆−37/64

)
< Õ

(√
degG (v)

)
.

Note that in the above calculation we assume v always goes to

the left-over part L in all three iterations. If v goes to Bi , then the

9
The choice λ = 3/5 is to ensure that the number of available colors for each vertex

in each subgraph meets the palette size constraint specified in Lemma 3.3.

degree shrinks faster. Remember that we set q = Õ(∆−1/4). Hence,

we require a total memory of

Õ

( ∑
H ∈H

∑
v ∈H

(degH (v))2

)
= Õ

( ∑
H ∈H

∑
v ∈H

degG (v)

)
= Õ

( ∑
v ∈G

degG (v)

)
= Õ(m).

Note that the algorithm can be easily adapted to always per-

form at least three partitioning steps if ∆H is bounded from below

by a sufficiently large poly(logn), because then the conditions of

Lemma 3.1 are satisfied. On the other hand, if ∆H = poly(logn), it is

follows immediately that Õ
(∑

v (degH (v))2
)
= poly(logn) = Õ(1).

Put together, we have

∑
H ∈H

∑
v ∈H (degH (v))2 = Õ(m). □
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