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In an ultrathin topological insulator (TI) film, a hybridization gap opens in the TI surface states, and the system 
is expected to become either a trivial insulator or a quantum spin Hall insulator when the chemical potential is 
within the hybridization gap. Here we show, however, that these insulating states are destroyed by the presence 
of a large and long-range-correlated disorder potential, which converts the expected insulator into a metal. We 
perform transport measurements in ultrathin dual-gated topological insulator films as a function of temperature, 
gate voltage, and magnetic field, and we observe a metalliclike nonquantized conductivity, which exhibits a 
weak antilocalizationlike cusp at low magnetic fields and gives way to a nonsaturating linear magnetoresistance 
at large fields. We explain these results by considering the disordered network of electron- and hole-type puddles 
induced by charged impurities. We argue theoretically that such disorder can produce an insulator-to-metal 
transition as a function of increasing disorder strength, and we derive a condition on the band gap and the 
impurity concentration necessary to observe the insulating state. We also explain the linear magnetoresistance in 
terms of strong spatial fluctuations of the local conductivity using both numerical simulations and a theoretical 
scaling argument. 

DOI: 10.1103/PhysRevB.98.214203 

 
I. INTRODUCTION 

Three-dimensional (3D) topological insulators (TIs) are an 
exotic state of matter in which gapless electronic excitations 
exist at the surface of a bulk system with gapped conduction 
and valence bands [1]. These surface states exhibit a number 
of interesting phenomena associated with their linear dis- 
persion and spin-momentum locking [2], including magnetic 
monopole responses to an applied electric field [3] and a 
strong magnetoelectric effect [4]. Angle-resolved photoemis- 
sion spectroscopy (ARPES) measurements have identified 
gapless Dirac surface states in several materials, including 
Bi1 xSbx, Bi2Se3, Sb2Te3, and Bi2Te3 [2]. 

When a TI crystal is made very thin, however, the nature 
of the surface states undergoes a significant change. In such 
ultrathin TI films, electrons have a finite amplitude for quan- 
tum tunneling between the top and bottom surfaces, resulting 
in a hybridization gap for the surface states whose magnitude 
depends on the film thickness d [5,6]. For appropriate values 
of the film thickness and for a sufficiently clean system,   
this gap can stabilize the quantum spin Hall state, which is 
characterized by one-dimensional helical edge states around 
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the border of the TI surface {as has been observed in mag- 
netically doped TI films [7] and in the two-dimensional (2D) 
TI HgTe/CdTe [8,9]}. 

One can therefore expect a basic dichotomy of possibilities 
for an undoped ultrathin TI film. Either the system becomes 
a trivial insulator with a vanishing conductivity in the limit 
of zero temperature, or it becomes a quantum spin Hall 
insulator with a quantized conductance. The fate of the TI 
film, vis-à-vie these two possibilities, is predicted to depend 
in a nontrivial way on the value of the thickness d with the 
system oscillating between a quantum spin Hall and a trivial 
insulating state as a function of thickness [6]. 

In this paper, however, we find evidence for a third possi- 
bility outside of this dichotomy in which a hybridization gap 
exists, but the insulating state is destroyed  by the presence 
of long-range-correlated disorder. We measure the resistivity 
of ultrathin films of pristine (BixSb1  x )2Te3  with x     0.2 as 
a function of temperature, chemical potential, and magnetic 
field, and we find a number of features that suggest that a 
dominant role is played by long-range-correlated disorder, 
which arises inevitably due to charged impurities in the film 
and in the substrate. Our films are four quintuple layers (QLs) 
thick, which is predicted to produce a quantum spin Hall 
insulator [6], but we find instead a finite nonquantized value 
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of the resistance in the limit of zero temperature. We provide 
an explanation for this observation in terms of an insulator-to- 
metal transition produced by increasing long-ranged disorder. 
We also observe a prominent weak antilocalization correction 
and a large linear magnetoresistance at high magnetic fields, 
which we explain in terms of strong spatial fluctuations of the 
local conductivity. 

The remainder of this paper is organized as follows. In 
Sec. II, we briefly describe our sample preparation and mea- 
surement setup. Section III describes our zero-field mea- 
surements and presents theoretical arguments to explain a 
resistivity that is both finite and nonquantized in the limit of 
zero temperature. Section IV presents results for the resistivity 
as a function of magnetic field and gate voltage along with   
a theoretical discussion of both the weak antilocalization 
corrections and the linear magnetoresistance that we observe. 

 
II. SAMPLE PREPARATION AND MEASUREMENT SETUP 

Our TI films are made from four QLs of (Bi0.2Sb0.8 )2Te3 
grown on a SrTiO3(111) substrate using molecular-beam epi- 
taxy in an ultrahigh vacuum. Each QL layer is 1-nm thick. 
The Bi, Sb, and Te effusion cells as well as the SrTiO3(111) 
substrate are held at high temperatures in order to ensure 
precise control of surface stoichiometry.  The  crystallinity 
of the films is monitored by reflection high-energy electron 
diffraction pattern. More detailed characterization of these 
films is presented in Refs. [10,11]. 

To prevent oxidation in ambient conditions, 2 nm of 
amorphous tellurium and 2 nm of alumina capping layer is 
deposited on top of the films. The samples tend to degrade  
at high temperatures, and hence all the processing was per- 
formed at no higher than 100 ◦C. Contacts were made using 
electron-beam lithography. In the dual-gated devices, the top- 
gate dielectric was made from 20 nm of HfO2 grown by 
atomic layer deposition [12]. Magnetotransport measurements 
are performed in a dilution refrigerator with an 8-T magnet 
and using standard low-frequency lock-in techniques. Results 
in this paper are taken from five Hall bar devices, which we 
denote as H1, H2, H3, H4, and H5. 

 
III. TRANSPORT AT ZERO MAGNETIC FIELD 

As mentioned in the Introduction, hybridization between 
the two parallel TI surfaces leads to a gap opening at the 
Dirac point of the surface dispersion relation (as illustrated 
in Fig. 1). The size � of this gap is generally expected to      
be between 5 and 50 meV; this range encompasses estimates 
from density functional theory and tight-binding models for 
the gaps in four-QL-thick Bi2Se3 and Bi2Te3 [6]. For situa- 
tions where the chemical potential resides in the middle of 
the gap and there is no band bending, one would expect the 
TI surface to become an insulator with an activation energy 
�/2 for the conductivity. Such a state would have either zero 
conductivity in the limit of zero temperature (if the system is 
a trivial insulator) or a quantized conductance 2e2/h (if the 
system forms a quantum spin Hall state). 

Using a dual-gated field-effect transistor setup, we shift the 
chemical potential for both the top and the bottom surfaces 
of our samples across a wide range in order to search for 

 

 
momentum 

FIG. 1. Schematic of the dispersion of the Dirac surface states 
(red lines). Hybridization between top and bottom surfaces opens   
a small gap � at the r point. The bulk conduction- and valence- 
band states are denoted by the upper and lower blue shaded areas, 
respectively. 

 
 

these insulating states. At high negative voltages, the chemical 
potential resides far below the energy of the Dirac point, 
whereas at large positive voltages the chemical potential is 
high above. When the two gate voltages are chosen such  
that both surfaces are at the charge-neutral point (CNP), the 
system assumes its maximally insulating state. This behavior 
is shown in Fig. 2 for five different samples as a function of the 
back-gate voltage. (The behavior as a function of both back- 
and top-gate voltages is discussed in Appendix B) 

Contrary to the expectation for a clean system, our mea- 
surements reveal a conductivity that is neither insulatinglike 
nor quantized. Indeed, Fig. 2 shows that the resistance takes a 
value of order h/e2 at the CNP, but this value varies from one 
sample to the next. As shown in Fig. 3, the resistivity depends 
very weakly on temperature, even though the temperature is 
far below �/kB 2: 50 K. Using the traditional description of 

 
 

FIG. 2. Sheet resistivity of five different Hall bar devices— 
denoted H1 (blue curve), H2 (brown), H3 (green), H4 (yellow) and H5 
(purple)—as a function of back-gate voltage. The top-gate voltage is 
held fixed at Vtg = 0. The measurement temperature was ∼30 mK. 
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FIG. 3. (a) The longitudinal resistivity ρxx of device H1 as a 
function of back-gate voltage for different values of the temperature. 
(b) The maximal resistivity (corresponding to the CNP) of device 
H1 is plotted as a function of temperature, showing only a weak, 
logarithmic dependence on temperature. 

 
an undoped semiconductor, one would predict an activated 
dependence ρxx exp[�/(2kBT )]. 

Taken together, these two observations suggest that the 
system is not well described by either the clean band insu- 
lator or quantum spin Hall insulator states. The most trivial 
explanation for our results would be that the surface bands 
simply do not have a band gap. For example, in four-QL- 
thick films of Bi2Te3 the Dirac point lies within a deep local 
minimum of the valence band [13], and consequently there  
is no finite window of energy with zero density of states. In 
Sb2Te3, tunneling experiments have shown that films of the 
same thickness have a thermodynamic gap that is no larger 
than a few meV [14]. Still, it is worth considering whether 
there is another more interesting explanation for the lack of 
insulating behavior, especially since similar results have been 
recorded for transport in thin films of Bi2Se3 [15], despite a 
Dirac point that lies well outside the bulk valence-band states 
and a gap � on the order of tens of meV [6,16]. For bulk 
samples of (Bi1 xTex )2Te3, the location of the Dirac point 
shifts within the bulk gap as a function of the composition 

FIG. 4. (a) Schematic of the disorder potential landscape. 
Charged impurities produce a slowly varying Coulomb potential 
that locally creates puddles of electrons (red) and holes (blue). The 
typical correlation length of the potential, rs is labeled, and thin 
black lines show contours of constant potential. White regions denote 
tunnel barriers between electron and hole puddles, which exist at 
large enough band-gap �. (b) A schematic of band bending, showing 
the energy along some particular direction on the surface. The surface 
band-gap � is labeled along with the typical magnitude r of the 
disorder potential and the width xt of the tunnel barrier between 
electron and hole puddles. 

 
x so that at not-too-small values of x its position is similar to 
what is shown in Fig. 1 (see, e.g., Ref. [17] for a discussion). 

The apparent breakdown of the clean insulator picture 
can be rationalized by considering the effects of long-ranged 
disorder induced by Coulomb impurities, which exist both in 
the TI film and in the substrate. Such impurities are known 
to provide long-wavelength fluctuations of the local Fermi 
energy, which provide a finite density of states at zero energy 
due to band bending [18]. (A similar picture of fluctuating 
Fermi energy in the presence of an insulating gap has been 
used to describe, for example, graphene nanoribbons [19] and 
dual-gated bilayer graphene [20].) This random band-bending 
effect is illustrated in Fig. 4. When the surface gap � is 
sufficiently large, the fluctuations of the Fermi energy lead to 
the formation of isolated electron and hole puddles [red and 
blue regions of Fig. 4(a), respectively], separated by insulating 
tunnel barriers (white regions). When the chemical potential 
μ is precisely in the middle of the band gap (which we 
define as μ 0), electron and hole puddles appear in equal 
numbers. One can estimate the condition for maintaining a 
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good insulating state at μ 0 by demanding that the typical 
tunneling action S for electron tunneling across such a barrier 
satisfy S      h̄ . 

To estimate the action S, we first assume that the typical 
magnitude r of the disorder potential is sufficiently large that 
r  �. We  also assume that the typical correlation length 
rs of the potential is much larger than the film thickness. 
Both of these assumptions are validated below. Under these 
assumptions one can use numerical estimates for r and rs 
based on a gapless TI surface [21,22]. These estimates give 

 

 
0.8 

6 0.7 

4 0.6 

2 0.5 

0 0.4 
 

-2 0.3 

-4 0.2 

 
 

and 

3 2 1/6 
r s 

2 
h̄ vN 1/3, (1) 

 
-6 

 
0 5 10 15 20 25 30 

0.1 
 
0 

N −1/3 
r  i , (2) (2αs )4/3 

 
FIG. 5. Longitudinal resistance Rxx of device H5 as a function 

where Ni is the (three-dimensional) concentration of impu- 
rities  in  the  TI  film  and  substrate,  h̄  is  the  reduced  Planck 
constant, v  is the Dirac velocity, and αs      e2/(4πε0εh̄ v) is 
the effective fine-structure constant with ε as the effective 
dielectric constant and ε0 as the vacuum permittivity. If one 
assumes an impurity concentration of order 1019 cm−3 (as is 
typical for antisite defects and vacancies in TI crystals [23]), 
a Dirac velocity v of order 5 105 m/s, and an effective 
dielectric constant ε as large as several hundred (due to the 
close proximity of the highly polarizable  SrTiO3  substrate), 
then αs is of order 0.1, the disorder potential r is of order 
20 meV, and rs ∼ 40 nm. It is worth noting that at chemical 

of back-gate voltage Vbg and magnetic-field B. The measurement 
temperature T 50 mK. Rxy is everywhere much smaller than Rxx. 
The vertical dashed lines demarcate the three regimes of voltage 
depicted in Figs. 6(a)–6(c). 

 
Producing a well-insulating TI thin film apparently requires 
either a larger hybridization gap � or a much smaller impurity 
concentration Ni. For the remainder of this paper we set 
� 0 when discussing transport. 

The zero-field dc resistivity is given by ρ (h/e )/(kF£), 
where kF is the typical Fermi wave vector and £ is the 
electron mean free path. For the puddled scenario depicted  
in Fig. 4, the typical value of kF at zero chemical potential is 

potentials far from the CNP, both rs and r will generally be 
smaller than their μ 0 values. At small �, the dependence 
of the disorder potential amplitude r on the gap � is weak, 
so that one can use the result of Eq. (1), which corresponds 

α1/3N 1/3, whereas the mean free path is on the same order 
as rs . Thus, the resistivity at zero chemical potential is given 
by [21] 

to � = 0. The dependence of r on the gap � is discussed in h 
ρ ~ α ln(1/α ). (4) 

In order to estimate the width xt of the typical spatial 
separation between electron and hole puddles, one can note 
that the typical in-plane electric field is F  ∼ r/(ers ) so that 
xt is given by eFxt ∼ �. Solving for xt and

3
substituting 

For our samples, this expression gives a value of order 
0.3h/e2. 
Our picture of conduction through a spatially disordered 

landscape is also consistent with measurements of the super- 
2/3 2/ Eqs. (1) and (2) gives x  ∼ 4πε ε�/(α e2N ). The typi- 

cal tunneling action between electron and hole puddles can be 
estimated as the product of the height � of the tunnel barrier 
and the time xt /v  needed to traverse it. So S �xt /v h̄ �2/[α5/3(h̄ vN 1/3 )2].  For  the  system  to  be  insulating,  one 

 

IV. MAGNETOTRANSPORT 

s i We also study the electron transport under the application 
must have S » h̄ , which is equivalent to 

� » α5/6h̄ vN 1/3. (3) 
of a perpendicular magnetic field. The measured longitudinal 
resistance Rxx is plotted in Fig. 5 for device H5 as a function of 

 
Equation (3) can be viewed as a generic requirement for the 
existence of an insulating state in a gapped 2D system on a 
substrate with charged impurities. That is, either the gap � 
must be large enough or the impurity concentration Ni must 
be small enough that Eq. (3) is satisfied. 

In our samples, the right-hand side of Eq. (3) is of order 
10 meV. For much smaller values of the gap, one can say 
that electron and hole puddles are well connected by quantum 
tunneling, and there is no meaningful “insulating barrier” 
between them. Our samples apparently correspond to such a 
situation where Eq. (3) is violated so that one can think of 
the surface as effectively ungapped even though � is finite. 

magnetic  field,  the resistance is maximized  near the   CNP, 
which for this device corresponds to Vbg 16 V. The resis- 
tance also increases monotonically as a function of B. In gen- 
eral, we observe an asymmetry between positive and negative 
voltages relative to the CNP with negative voltages generally 
corresponding to smaller resistance. This asymmetry suggests 
that negative values of the chemical potential correspond to  
a larger density of states than positive values of the chemical 
potential, which may arise either because of curvature of the 
Dirac band or because of proximity of the Dirac point to the 
bulk valence-band states (as depicted in Fig. 1). In our mea- 
surement conditions,  the Hall resistance Rxy  is  everywhere 

the field strength B and the back-gate voltage Vbg. For a given 

more detail in Ref. [18]. s 

conducting proximity effect, which we present in Appendix C. 
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FIG. 6. (a)–(c) The measured WAL correction to the conductiv- 
ity of device H5 as a function of magnetic field for different ranges of 
the back-gate voltage Vbg (the range of Vbg is indicated in the title of 
each plot and is equivalent to the three ranges demarcated in Fig. 5). 
For each plot, the different curves correspond to different values of 
Vbg. (d) The value of the constant α extracted from a fit to Eq. (5) 
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as a function of Vbg. (e) The extracted phase coherence length as a 
function of Vbg. The measurement temperature is T = 50 mK. 

 
much smaller than the longitudinal resistance Rxx; this is 
shown explicitly in Appendix A. Thus we can approximate the 
conductivity  σ   (L/w)/Rxx, where  L/w   2  is  the  aspect 
ratio of the sample H5. The leading-order correction to this 
expression is of order (Rxy/Rxx )2, which is smaller than 5% 
throughout the regime of our measurements. 

Our data show two notable features as a function of the 
magnetic field. For any given gate voltage there is a sharp cusp 
in Rxx (B ) near B 0, which previous experimental studies 
have attributed to weak antilocalization (WAL) [15,24–27]. 
The correction �σWAL to the conductivity associated with 
WAL is described by the theory of Hikami et al. [28], 

α e2 
    ( 

1      h̄ 
) ( 

     h̄ 
) 

 
 

 

 

FIG. 7. (a)–(c) The resistance Rxx of Hall bar device H5 as 
a function of magnetic field is shown for different values of the 
back-gate voltage, whose value for each plot is indicated by the 
arrow pointing downward. The thick black line in each plot shows 
the experimental data, and the thin red line is a straight-line guide to 
the eye that indicates the linear slope of Rxx versus B . (d) The value 
of the slope dRxx/dB of device H5 at large B is plotted as a function 
of back-gate voltage Vbg. VCNP 16 V indicates the voltage at the 
charge neutral point. 

 
 

chemical potentials either far below or far above the Dirac 
point. In the latter case, the current is carried only by the 
linear Dirac surface states above the gap. In the opposite 
limit of small Vbg, the current moves through an admixture of 
Dirac surface states and valence-band states. For intermediate 
voltages, the disorder potential mixes these two behaviors 
spatially by random band bending. 

�σWAL = 
π h 

ψ 
2 

+ 
4eBL2 − ln 4eBL2 . (5) By  fitting  our  data  to  Eq.  (5),  we  are  able  to extract estimates for the constant α  and the phase-coherence length Here ψ (z) is the Digamma function, Lφ is the phase co- 

herence length, and α is a numerical coefficient defined so 
that α < 0 indicates WAL and α > 0 corresponds to weak 
localization. The quantity 2 α is usually associated with the 
number of parallel conduction channels. 

In  Fig.  6,  we plot �σWAL σ (B ) σ (0) as a function 
of magnetic field for different values of the back-gate volt- 
age. The sharp logarithmic cusp of �σWAL(B ) is consistent 
with Eq. (5), and we can perform good fits in the range of 

2 T < B < 2 T in order to extract the  parameters α and Lφ. 
Interestingly, for low enough voltages that the chemical 

potential is far below the CNP, we find that all measured 
curves �σWAL(B ) are identical, irrespective of the gate volt- 
age [Fig. 6(a)]. Similarly, all measured values of �σWAL(B ) 
for voltages far above the CNP also collapse onto a single 
curve [Fig. 6(c)], although this curve is distinct from the one 
corresponding to low voltages. In the intermediate voltage 
range of 9 V ( Vbg ( 23.4 V (between the two dashed ver- 
tical lines in Fig. 6), the behavior of �σWAL(B ) transitions 
smoothly from one limiting curve to the other [Fig. 6(b)]. 
We interpret these two limiting curves as corresponding to 

Lφ as a function of the back-gate voltage. These results 
are shown in Figs. 6(d) and 6(e), respectively. It is worth 
remarking that the inferred value of α  is everywhere close  
to   1 as one might expect for a conduction process with   
two parallel channels (arising from the two parallel surfaces). 
The estimated phase-coherence length is on the order of 
several hundred nanometers, consistent with previous studies 
at low temperatures [24,26]. Our interpretation of WAL is also 
consistent with the logarithmic temperature dependence of the 
resistivity observed at zero field and low temperatures [shown 
in Fig. 3(b)], since increased temperature leads to a shorter 
phase-coherence length Lφ, which enters the conductivity in 
the argument of a logarithm. 

At larger magnetic fields, the WAL correction gives way 
to a resistance that increases linearly with magnetic-field 

strength with no evidence of saturation. As shown in Fig. 7, 
this linear magnetoresistance (LMR) effect is most prominent 
near the CNP. As the chemical potential is moved away from 
the CNP in either direction, the slope of the LMR is reduced. 

Multiple explanations have been proposed during the past 
few decades for nonsaturating LMR in 2D electron systems. 

φ φ 
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For example, Wang and Lei have proposed a mechanism for 
LMR on a TI surface based on Zeeman splitting [29]. How- 
ever, the magnitude of the LMR associated with this mech- 
anism is much smaller than the value we observe. Indeed,   
to explain our largest observed LMR slope with the Zeeman 
splitting mechanism would apparently require an electron    
g factor of several hundred, which seems inconsistent with 
transport experiments in a tilted magnetic field [30]. Other 
authors have explored more generic semiclassical explana- 
tions for LMR and have shown how it can arise from either 
persistent gradients of electron density [31] or mesoscopic 
spatial fluctuations of the mobility [32,33]. Such fluctuations 
are commonly treated using either resistor network models 
[32] or effective medium approaches [34,35], which give 
largely equivalent results [36]. 

 

between puddles is small because of the locally vanishing 
value of the electron density. Consequently, the current across 
the system is forced to pass through narrow “pinch points” 
of the random potential where the electric potential is close 
to zero and adjacent electron- or hole-type puddles are nar- 
rowly separated. These pinch points provide the bottleneck for 
conduction, and they become more prominent with increasing 
magnetic field [38]. (See Appendix D for simulated images 
of current flow.) One can think that an order unity number of 
such pinch points exist per square area r2 and, consequently, 
if G is the typical conductance of the pinch point, then the 
longitudinal resistivity of the system is ρxx 1/G. 

To estimate the typical conductance G of the pinch point, 
one can exploit the result for the (two-terminal) conductance 
jof  a  square  with  nonzero  Hall  conductivity  [39–41]:  GD = 

  
system is described by a local Drude-like conductivity tensor 
that varies as a function of position due to spatial fluctuations 
in the electron density. In particular, we suppose that one can 
define local longitudinal and Hall conductivities σxx (r) and 

|σxy|» σxx at the pinch point, and we arrive at the relation 
ρxx ∼ 1/|σ (0)|,  where  σ (0)  represents  the  Hall  conductivity 
at the pinch point. At ωcτ » 1, the Hall conductivity σxy ~ 
en/B = ±ek /(2πB ), and so our result for the longitudinal 

σxy (r), respectively, which vary as a function of position r. 
Such a description is generally valid so long as variations in 

resistivity is equivalent to 
h eB 

the electron density occur over a length scale rs that is much 
longer than the mean free path £ or the Fermi wavelength 
∼kF

−1. 
In the Drude model, the ratio σxy/σxx = ωcτ , where ωc is 

 
 

where 

 
 
 

(0) 
F 

ρxx ∼ e2 (0)  2 , (8) 
F 

represents  the  typical  Fermi  momentum  at the 

the cyclotron frequency and τ is the transport scattering time. 
For a gapless Dirac system, 

eB£ 
 

 

pinch point. 
In general, pinch points are locations where the random 

potential is close to zero. Thus, if the chemical potential is 
not  too  close  to  zero,  then  Eq.  (7)  implies  k (0) = |μ|/(h̄ v). 

ωcτ = h̄ kF 
, (6) F 

As the chemical potential is shifted away from the CNP,  the corresponding  value  of k(0)  increases, and the slope of  the 
where kF is the local value of the Fermi momentum and £ 
vτ is the local mean free path. (As declared above, we are 
again ignoring the effects of any small band-gap �.) Note that 
the ratio σxy/σxx becomes large when B is sufficiently large. 
The value of the local Fermi momentum can be described by 
the Thomas-Fermi equation, 

E [k  (r)] − eφ(r) = μ, (7) 

where EF      h̄ vkF     sgn(μ     eφ ) is the Fermi energy relative 
to the Dirac point and φ(r) is the electrostatic potential. The 
variation of kF with position implies that the value of ωcτ also 
varies as a function of position and should not, in general, be 
considered as a global constant. We also note that, although 
our description of the system involves both electron-type and 
hole-type puddles, a given region of space is presumed to 

F 
magnetoresistance declines. This is consistent with the exper- 
imental result in Fig. 7. On the other hand, as one approaches 
the CNP very closely, both the typical spatial size of the pinch 
point and its typical Fermi momentum are reduced, and the 
resistance  increases.  Although  the  relation  k (0) = |μ|/(h̄ v) 
implies a divergence of the resistance at μ → 0, such a 

other words, since the local conductivity is not well defined 
at scales shorter than the mean free path £, one can think that 
the minimal size of the pinch point is £ and, consequently, 
that the minimal value of k(0) is kF£/rs , where kF is the 
typical value of kF near the center of an electron or hole 
puddle. Using the estimates for kF and £ presented below and 
inserting the expression for k(0) into Eq. (8), gives a maximum 

contain only one or the other carrier type. In this sense the 
F 

magnetoresistance slope of order ρxx ∼ 0.03(h/e2 ) per Tesla 
model that we consider is distinct from “two-carrier models” 
(see, e.g., Ref. [37]) in which both electron- and hole-type 
carriers are assumed to coexist at all regions of space due to 
overlapping bands. 

In order to understand the appearance of LMR within this 
model, consider first the case when the system is close enough 
to the CNP that electron and hole puddles exist in almost 
equal number   μ    r. This is the regime where the LMR     
is observed to be most prominent experimentally, and one 
can understand its appearance using the following scaling 
arguments. Near the CNP, electron and hole puddles are nearly 
equally abundant, and the local conductivity at the boundary 

of field. This is consistent in order of magnitude with our 
measured result. 

In order to test our scaling arguments quantitatively, we 
implemented numeric finite-element simulations of current 
flow through a Hall bar geometry with a correlated disorder 
potential and a Drude-like conductivity tensor having a local 
value of kF(r) given by Eq. (7). For simplicity, our simulations 
assume a transport scattering time τ that is independent of 
energy or position. Although  there  is  no  reason  a  priori 
to expect this assumption to be accurate quantitatively, the 
scaling argument leading to Eq. (8) suggests that the longitu- 
dinal resistivity ρxx becomes independent of τ at sufficiently 

+ σ 2 . If the magnetic-field B is large enough, then 2 
xx 

Similar to these latter approaches, we suggest a way to 
understand our results based on a simple model in which the 

σ 

k 

divergence may be truncated by the finite mean free path. In 
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arguments suggest that one may reach an insulating state only 
when the gap is large enough and the impurity concentration 
is low enough that Eq. (3) is satisfied. 

The magnetotransport shows signs of both weak antilo- 
calization and a nonsaturating linear magnetoresistance. The 
WAL correction �σWAL(B ) is described well by the usual 
Hikami-Larkin-Nagaoka theory, Eq. (5), with two parallel 
conduction channels (α 1). We also find that �σWAL(B ) 
collapses onto one of two curves when the chemical potential 
is far from the CNP. We have shown that the linear magnetore- 
sistance can be interpreted as the result of spatial fluctuations 
in the local conductivity arising from strong disorder fluctua- 
tions. Our estimate of the linear MR slope and its dependence 
on chemical potential are both consistent with observations. 

Taken together, our results provide new understanding of 
electron transport in ultrathin topological insulators and may 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
 

 
 

FIG. 8. Magnetoresistance for a simulated Hall bar with random 
disorder. (a) Two example curves are plotted for ρxx as a function of  
the  dimensionless  magnetic-field  B∗    B£2/(h̄ e).  Both  curves 
correspond to kF£     6, where kF  is the root-mean-square  deviation 
of the Fermi momentum from its mean value and £ is the mean free 
path, which is taken to be a constant. The curves are labeled by their 
corresponding value of the chemical potential μ, normalized to the 
root-mean-square amplitude r of the disorder potential. (b) shows a 
fit to the experimental data (thick blue curve, corresponding to device 
H5) for ρxx (B ) at the charge-neutral point (μ 0). The simulation 
data (black line with error bars) correspond to  kF      0.88 nm−1  and 
kF£ 6.5. (c) The magnetoresistance slope dρxx/dB∗ is plotted as a 
function of chemical potential μ, normalized to the disorder potential 
amplitude r. The slope is calculated by a linear fit to simulation data 
in the interval 0.2 < B∗ < 1, and, in this example, kF£ 6 is held 
constant. 

 
 

large fields. As shown in Fig. 8, the simulation consistently 
reproduces the LMR trend as well as the decline  in  the 
LMR slope with increasing chemical potential. Details of  
the simulation method are provided in Appendix D (along 
with results for ρxy, which are consistent with experiment). 
Within the assumption of a constant scattering time, one can 
fit the experimental data at the CNP quantitatively by set- 
ting the root-mean-square Fermi momentum kF 0.88 nm−1 

and the mean free path £ 7.4 nm. More details about the 
fitting are provided in Appendix D. 

 
V. CONCLUSION 

In this paper, we have presented experimental results for 
the resistivity of thin TI films as a function of temperature, 
chemical potential, and magnetic field. In the absence of 
disorder, these systems are predicted to form a quantum spin 
Hall state. We find, however, that the transport in our system 
is dominated by long-range fluctuations of the disorder po- 
tential, presumably induced by charged impurities in the film 
and in the substrate. In particular, such long-ranged disorder 
creates a random landscape of p- and n-type regions, and  
this landscape destroys the insulating state. Our theoretical 

bring us closer to realizing ideal quantum spin Hall insulators. 
More broadly, our improved understanding of the disorder- 
induced insulator-to-metal transition and LMR may be impor- 
tant for a wide class of disordered 2D electron systems. 
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APPENDIX A: HALL MEASUREMENTS 

In the main text, we focused on the longitudinal resistance 
Rxx and ignored the transverse Hall resistance Rxy. Here, we 
present results for Rxy, and we show that it is everywhere 
much smaller than  Rxx.  In  Fig.  9,  we  plot  Rxx  and  Rxy 
for device H3 as a function of back-gate voltage Vbg and 
magnetic-field strength B. 

From the Rxy data, we calculate the inverse Hall coefficient 
1/RH as shown in Fig. 10(a). The strong asymmetry in RH on 

(b) 

(c) 

(a) 
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FIG. 10. (a) Inverse Hall coefficient as a function of back-gate 
voltage. (b) Ratio of (ρxy/ρxx )2 plotted as a function of magnetic- 
field and back-gate voltages. Data correspond to device H3, which 
has an aspect ratio of L/w ≈ 1. 

 
In the presence of a perpendicular magnetic field, the 

conductivity is given, in general, by 
ρxx 

σxx = 
ρ2 2 

1 
 

 

 
 (A1) 

FIG. 9.  (a)  Longitudinal resistance R and (b) transverse Hall = ( 
+ ρ2 /ρ2 

) .
 

device H3, which comprises the central region (labeled) of the 
fabricated sample. The other regions in the image are not used for this 
paper. 

 

different sides of the CNP reflects an asymmetry in the band 
structure of the TI films. The sharp peaks in 1/RH near the 
CNP reflect a vanishing of the Hall resistance due to equal 
concentrations of electron and hole puddles, and they are  
not an indication of any singular behavior in the carrier con- 
centration. The minimum value of 1/RH 3 1012 cm−2  

suggests a typical carrier density of electron and hole puddles. 
Similar results for RH were seen in Ref. [42]. 

Figure 10(b) shows that for all relevant magnetic-field and 
back-gate voltages, the quantity  (ρxy/ρxx )2 1. Hence, the 
global conductivity can  be  well  approximated  by  σxx  
1/ρxx . 

 
APPENDIX B: DUAL-GATING 

In some of our samples, both a back gate and a top gate 
were fabricated, allowing the chemical potential to be modu- 
lated by two independent gate voltages. In Fig. 11, we present 
the low-temperature longitudinal resistance Rxx for sample 
H4 as a function of the top- and back-gate voltages Vtg and 
Vbg, respectively. For this sample, the longitudinal resistance 
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FIG. 11. Dependence of the longitudinal resistance Rxx on top- 
and back-gate voltages for device H4. 

 
 

exhibits a maximum of 0.5h/e2 at the CNP, and there is no 
sign of an insulating state with large resistance. The somewhat 
weaker variation of the resistance with Vtg as compared to its 
variation with Vbg is consistent with the top-gate capacitance 
being smaller than the back-gate capacitance. 

 
 

APPENDIX C: SUPERCONDUCTING PROXIMITY EFFECT 
 

 

 

FIG. 12. (a) Optical image and (b) Fraunhoffer pattern of de- 
vice JJ1. 

 
 

given by 

I  (B ) = I 1cos 
( 

πAB 
)

1, (C1) 

dicted to create a px ipy superconductor with  Majorana 
bound states [43,43–45]. Such Majorana states may enable 
topologically protected qubits for quantum computation [46], 
and consequently, there has been an intensive search for 
Majorana modes in exfoliated 3D TIs [47–49]. Achieving 
Josephson coupling is an important step towards engineering 
topological superconductivity. 

We investigated superconducting Josephson coupling me- 
diated by the TI thin film  as  depicted  schematically  in  
Fig. 12(a). An important consideration for achieving Joseph- 
son coupling is a transparent superconducting contact with 
minimum contact resistance. To make transparent contacts, 
we etched the tellurium capping layer covering our topo- 
logical insulator film (Bi, Sb)2Te3 and in situ evaporated Ti 
(5 nm)/Nb (2.5 nm)/ NbN (50 nm) without breaking vacuum 
in the evaporation chamber. The device dimensions were 
6 0.1 μm2, as shown in Fig. 12(b). 

The interference pattern of the critical current Ic (B ) of 
the Josephson junction under perpendicular magnetic-field  
B gives valuable information about the Josephson current 
density Jc (x ) along the junction width. In the case of a 
spatially uniform Josephson current density, the interference 
pattern corresponds to a single-slit Fraunhofer pattern where 
the lobes of Ic decays with  1/B.  On  the  other  hand,  for 
TIs in which conduction occurs dominantly at the edges of 
the system, the interference pattern is expected to resemble 
the double-slit-like diffraction pattern of a dc SQUID with 
nondecaying lobes. In this case the critical current Ic (B ) is 

where φ0  is the magnetic flux quantum and A is the area     
of the junction. Similar analyses of the interference pattern 
of Josephson junctions has shown edge dominant conduc- 
tion in a HgTe/HgCdTe 2D topological insulator [50] and 
Bi1.5Sb0.5Te1.7Se1.3 3D TIs [51]. In our devices, the normal 

Coupling superconductivity to TI surface states is pre- 
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= 

≈ ≈ 
≈ 

junction resistance RN 60 Q and the maximum 
Josephson current Ic 7 μA at the temperature 
of 50 mK give IcRN  420 μeV, which corresponds to 
about �sc/6e, where �sc is the superconducting gap. 
The Josephson junction displays an interference 
pattern as shown in Fig. 12(b), that cannot be 
explained by a uniform Josephson current 
distribution. The extracted period of the 
quasiperiodic oscillation of Ic is about 35 G, which 
matches well with the expected value of φ0/A  34 G. 
Imperfect constructive and destructive interferences 
visible in the pattern are indicative of the effect of 
random dis- order in the junction. Proximity-
induced Josephson coupling and the similar 
interference pattern were also observed by us in 
Josephson junctions made of Ti (5 nm)/Al (50 nm). 

 

APPENDIX D: NUMERIC 
SIMULATIONS OF 
CURRENT FLOW 

In the main text, we presented results for the 
magnetoresis- tance based on a model where the 
local conductivity  tensor σ̂ (r) varies with the 
position r  due to spatial variations in  the 
electron/hole concentration. Here we present more 
details about our numeric simulations of the 
resistivity. 
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σxy (r) σ (r)xx = 

  
((eφ)2)r ≡ r is the root-mean- 

  

 

 
 

FIG. 13. Example numeric solutions for the electrochemical potential V and the current jx in the x direction for a given realization of the 
random potential P (x, y ). (a) and (b) correspond to zero magnetic fields, and (c) and (d) correspond to the same random potential with a field 
of B∗ = 2. (b) and (d) have the same color scale. All images correspond to zero chemical potential μ = 0. 

 
 

Within the Drude model, the conductivity tensor has the 
form 

σ̂ (r) = 
(

σxx (r) −σxy (r)
)

, (D1) 

where the values of σxx (r) and σxy (r) are related to the value 
of the local electrostatic potential by 

 
Fermi momentum is then given by 

     kF(r) = kF|P (r)|, (D4) 

where kF r/(h̄ v) represents the root-mean-square value of 
the Fermi momentum at zero chemical potential. 

We also define a dimensionless magnetic-field strength, 
     eB£2 

( 
 £  

)2
 

 
 

e2 1 
 

  

B∗ ≡ 
h̄ √ 

= £B
 , (D5) 

σxx (r) = h 
kF (r)£ 

1 + [ω (r)τ ]2 , where £B = h̄ /(eB)  is  the  magnetic  length.  With  these definitions, ω τ  = (k  £)−1B∗/P (r), and we can rewrite the 
e2 ω (r)τ 

c F
 

  c  o  (r) = k (r)£ , (D2) 
 

 

elements of the conductivity tensor in dimensionless form as 
 

xy h F 1 + [ωc (r)τ ]2 
σxx (r) =  kF£|P (r)| ,  where kF(r) is the local value of the Fermi momentum, ωc (r) 

 
e2/h  

1 + 
( 1 )2[ B∗ ]2 

 

  
scattering time, and £ = vτ is the mean free path. In principle, σxy (r) = B∗sgn{P (r)} 

 
 

. (D6) 
both £ and τ may have a dependency on the local Fermi 

 
e2/h  

1 + 
( 1 )2[ B∗ ]2   

 
our numeric simulations, we take £ and τ to be constants 
with no spatial variation. The local Fermi momentum kF (r) 
is related to the disorder potential φ(r) by the Thomas-Fermi 
equation, Eq. (7) of the main text. 

In order to address the problem computationally, we define 
the following dimensionless units. First, we define a normal- 
ized electrochemical potential: 

eφ(r) + μ 

Written in this form, the system is characterized by three 
dimensionless  parameters:  B∗,  μ/r,  and  kF£.  For  a  given 
choice of these parameters and for a given realization of the 
random potential P (r), one can solve for the current density 
j(r) through the system by solving the continuity equation, 

∇ · j = 0, (D7) 

where j = −σ̂ ∇V (r) and V (r) is the local deviation of the 
P (r) = , 

((eφ)2)r 
(D3) electrochemical potential away from equilibrium. Below we 

present results based on a finite-element solution to Eq. (D7). 
For definiteness, we choose our simulated system to be a Hall 

so that P (r) has a standard deviation of unity. Here, μ is bar with length L = 8ξ and width w = 4ξ , where ξ is the 
 

  text). Applying a unit voltage across the long end of the bar square value of the disorder potential. The local value of the 

kF£ energy and therefore on position. However, for simplicity in 

P (r) kF£ 
is the local value of the cyclotron frequency, τ is the transport 

P (r) 

the chemical potential and correlation length of the potential (equivalent to rs in the main 

c 
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1 
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gives  the  boundary  conditions V (x 0) 1, V (x L) 
0, and jy (y 0) jy (y w) 0. The finite-element mesh 
size was ξ/20. 

The random potential was taken to be a Fourier series with 
random coefficients whose magnitude decreases at high wave 
vectors. Specifically, we write 

 

P (x, y ) = Re

    
 

 

 

cm,n ei(kmx+kny )

l 
+ μ , (D8) 

m,n=−∞ 

 
where cm,n are random coefficients and 

 

km = 
πm  

L , kn = 
πn  

. (D9) 
w 

 

The coefficients cm,n are chosen to have a random phase in the 
complex plane and a random magnitude bounded by 

 

|c |2 ( e−
(
k2 +k2 

)
ξ 2 /2. (D10) 

 

ThLe normalization of the potential is such that c0,0 = 0 and 

Figure 13 shows a typical numerical solution for the poten- 
tial V (x, y ) and the current jx in the x direction at μ 0. 
Figures 13(a) and 13(b) show the potential and current at 
zero-field B∗  0, whereas Figs. 13(c) and 13(d) show the 
same system at large-field B∗   2. One can see from these 
images the strong effect of pinch points in the random poten- 
tial where the current is concentrated at narrow constrictions 
between puddles. This focusing of the current becomes more 
exaggerated at large magnetic fields, and correspondingly, the 
electrochemical potential V (r) drops abruptly at pinch points 
and becomes relatively constant far from the boundaries be- 
tween n- and p-type regions. 

For a given realization of the random potential, the lon- 
gitudinal resistivity can be defined from the simulation as  
ρxx �V/(L jx ), where jx  is  the  area-averaged  current 
density in the z direction and �V  1 is the voltage drop  
across the system. One can estimate the dependence of ρxx 
on magnetic-field B∗ by averaging the simulated resistivity 
ρxx over many realizations of the random potential for  a 
given value of B∗. Our numerical results, including those 
shown in Fig. 8 of the main text, are averaged over 100 such 
realizations. One can also define the Hall resistivity ρxy by 
numerically extracting the transverse voltage VH across the 
Hall bar at the midpoint x 4ξ for a given  realization. The 
Hall resistivity is defined by ρxy VH /(w jx ). 

In Fig. 14, we show the values of ρxx and ρxy as produced 
by our simulation for a range of magnetic-fields B∗ and μ/r. 
As in the experimental data (see Fig. 9), ρxy is much smaller 
than ρxy throughout the range of interest. 

In order to fit the experimental data at μ 0 to the nu- 
merical simulation, we calculate numerically the resistivity 

 
 
 
 

FIG. 14. Simulated values of the (a) longitudinal and (b) Hall 
resistivities as a function of magnetic field and chemical potential. 
The vertical axis corresponds to the dimensionless magnetic-field 
B∗, whereas the horizontal axis corresponds to the chemical potential 
μ in units of the root-mean-square disorder potential r. In this 

 
 

example, kF£ 6 everywhere. Compare to Fig. 9, and note that the 
scale of ρxy is much smaller than ρxx. 

 
 

ρxx/(h/e2 ) as a function of B∗ using discrete points B∗ 
0, 0.1, 0.2, . . . , 2 for £ 5–7. Linear interpolation allows us 
to estimate the value of ρxx for generic values of kF£ between 
5 and 7 and B∗ between 0 and 2. The resulting curves can be 
translated into real units by inserting the corresponding values 
of kF and £, which allows us to fit the data shown in Fig. 7(b) 
of the main text. The result of this fitting is shown in Fig. 8(b) 

  

of  the  main  text  and  corresponds to kF£ 6.5 and kF 
0.88 nm−1. This value of kF implies a typical electron/hole 
density 2πkF

2 1.2 1013 cm−2, which is consistent in or- 
der of magnitude with both our theoretical estimates and our 
measurements of the Hall constant. 

We extracted the dependence of the linear magnetoresis- 
tance slope d[ρxx/(h/e2 )]/dB∗ on the chemical potential by 
numerically evaluating the curve ρxx (B∗ ) for different values 
of μ/r and then fitting each curve to a line over the range  
0.2 < B∗ < 1. 

m,n 

∞ 
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