

1 **Diversity and evolution of actin-dependent phenotypes**

2
3 Katrina B. Velle^a and Lillian K. Fritz-Laylin^{a*}

4
5 *Correspondence: lfritzlaylin@umass.edu

6 ^a The University of Massachusetts Amherst, Department of Biology, Amherst, MA 01003

7 phone: 413-545-2578

8 Other Authors: kvelle@umass.edu

9 **ABSTRACT**

10 The actin cytoskeleton governs a vast array of core eukaryotic phenotypes that include cell movement,
11 endocytosis, vesicular trafficking, and cytokinesis. Although the basic principle underlying these processes is
12 strikingly simple—actin monomers polymerize into filaments that can depolymerize back into monomers—
13 eukaryotic cells have sophisticated and layered control systems to regulate actin dynamics. The evolutionary
14 origin of these complex systems is an area of active research. Here, we review the regulation and diversity of
15 actin networks to provide a conceptual framework for cell biologists interested in evolution and for evolutionary
16 biologists interested in actin-dependent phenotypes.

17

18 **Complex regulation underlies actin phenotype diversity**

19 Actin is among the most abundant proteins in eukaryotic cells and is often maintained at concentrations in
20 excess of 200 μM [1]. At such high concentrations, actin monomers readily assemble into dynamic polymers.
21 To avoid becoming a solid brick of polymerized actin, a cell must maintain tight control over its actin monomer
22 pool (**Fig 1**). This control is mediated by a dizzying and ever-growing list of molecular regulators, including
23 monomer-binding proteins that suppress spontaneous actin assembly, capping proteins that restrict polymer
24 elongation, and polymer-severing proteins that promote disassembly [2,3•]. A key player among these
25 regulators is profilin. Most actin monomers are bound to profilin, an association that impedes the formation of
26 new polymers—a process called nucleation—yet can promote elongation (**Fig 1-2**) [3•].

27 Even at cellular concentrations of actin monomers, the inherent instability of actin dimers and trimers
28 can create a kinetic barrier to nucleation. To overcome this barrier, cells typically employ three well-defined
29 classes of actin nucleators: the Arp2/3 complex, formin family proteins, and tandem actin monomer-binding
30 proteins of nucleation [4] (**Fig 2**). Distinct isoforms of Arp2/3 complex subunits and different classes of formins
31 and tandem actin monomer-binders each have their own localizations and capacities for promoting actin
32 assembly [5, 6••, 7, 8]. Moreover, the efficient assembly of specific subcellular structures can require
33 collaboration between multiple actin nucleators [8-11•]. Adding yet another layer of complexity, actin isoform
34 diversity, post translational modifications, and profilin binding can each influence the assembly of actin
35 networks [3•,12-14]. The resulting actin networks are extended and shaped through the activities of elongation

36 factors, crosslinkers, and bundling proteins, and by myosin motor proteins that mediate network contraction via
37 filament sliding [15].

38 Collectively, actin networks give rise to a huge variety of dynamic cell phenotypes (**Fig. 1**), many of
39 which are associated with membranes. For example, the membrane localization of Arp2/3 complex activators
40 drives the rapid expansion of branched actin assemblies leading to cell movement [16,17]. In organisms
41 without a cell wall, actin polymerization at the cortex can provide structure, support, and cell shape.
42 Additionally, actin networks can act as tracks for myosin motors to transport cargo, often to and from various
43 cell membranes. Beyond these cytoplasmic functions, actin assembly plays important roles in the nucleus
44 including chromatin remodeling and DNA repair [18,19]. In addition to forming polymers, actin monomers
45 themselves have important functions, including regulating the nuclear localization of proteins, altering
46 chromatin methylation, and promoting transcription [20].

47

48 **The pre-eukaryotic origins of actin**

49 The ubiquity of phenotypes that are controlled by actin raises a seemingly simple question: “Where did actin
50 come from?” The discovery of actin structural homologs in bacteria, and more recently in archaea, indicates
51 that actin-like polymers are used by cells across the tree of life. These proteins are commonly referred to as
52 “actins” despite no obvious sequence homology to eukaryotic actin, raising the possibility that this term may
53 carry eukaryotic connotations that are misleading.

54 The genetic diversity of bacterial actins is greater than all eukaryotic actins and Arps (actin related
55 proteins) put together and fittingly, bacterial actins contribute to a wide variety of basic cell biology [21, 22●]. In
56 contrast to the diverse roles played by eukaryotic actin, individual bacterial actins appear to have distinct
57 functions: FtsA helps organize the cell wall synthesis required for cell division [23], ParM segregates plasmids
58 [24], MamK maintains organelle organization in magnetotactic bacteria [25], and MreB is important for
59 determining rod shape [26,27]. The filaments formed by each of these actins have unique properties that are
60 presumably optimized for their specific function (**Fig 3**). For example, MreB filaments contain two antiparallel
61 strands with no helical twist [28]. This structure allows bending in a single direction, causing the filaments to
62 orient around the circumference of rod-shaped bacteria [26]. In addition to their own actins, many pathogenic

63 bacteria (and even some viruses) encode actin regulators used to hijack eukaryotic actin assembly, typically
64 for motility and/or cell-to-cell transmission [29-31]. Studying these host-pathogen interactions have made
65 valuable contributions to defining the mechanisms of actin nucleation [32-34].

66 Recent discoveries of actin and actin regulators in archaea have given support to an archaeal origin of
67 the eukaryotic actin cytoskeleton [35-38]. Ettema et al. identified crenactin, an actin homolog in the
68 crenarchaeon *Pyrobaculum calidifontis* [38] that forms double stranded helical filaments, and can be
69 depolymerized by its regulator, arcadin-2 [35]. More recently, homologs of actin and profilin were identified in
70 Asgard archaea [36,37••], which are more closely related to eukaryotes than *P. calidifontis*. Despite well over
71 a billion years of evolutionary distance, profilins from Asgard archaea not only interact with mammalian actin,
72 but also impair spontaneous actin nucleation, similar to eukaryotic profilins [37••]. This early evolution of actin
73 binding proteins is thought to have “locked in” actin’s amino acid sequence and structure even prior to
74 eukaryogenesis [39]. For instance, a core feature of eukaryotic actin, the hydrophobic groove, binds well-
75 characterized proteins like gelsolin and ADF/cofilin [40,41], and mediates the interaction between crenactin
76 and arcadin-2 [35].

77 Although actin is present in bacteria and archaea, the gene family has undergone rampant expansion
78 during eukaryotic evolution. Due to various rounds of gene duplication, many organisms express several actin
79 paralogs, including tissue-specific actins in multicellular organisms (**Fig 3**) that are commonly referred to as
80 “isoforms” despite being encoded by distinct genes. For example, humans have two cytoplasmic and four
81 muscle actin isoforms that, despite ≥93% amino acid identity, can vary in their localizations (as both mRNA
82 and proteins) and post translational modifications [3•,42]. The complexity of isoform diversity and regulation
83 among eukaryotic actins [3•,43] is an emerging theme that may change our fundamental understanding of
84 actin network control.

85

86 **Tracing the evolution of complex actin networks**

87 Actin coordinates almost all cellular activities, and homologs of its major regulators have been identified in
88 nearly every eukaryotic species. Phylogenetic analyses indicate that profilin [44], formins [45,46], the Arp2/3
89 complex and its upstream activators [47,48], major classes of myosin motors [49], and various other actin

90 regulators were most likely present in the genome of the last common eukaryotic ancestor. However, the
91 presence of an individual actin binding protein does not tell much of a story; most actin-dependent cell
92 behaviors are emergent properties of complex actin polymer networks. Tracing the evolution of actin
93 phenotypes requires integrating the biochemical and phylogenetic information about the proteins that make up
94 and control the underlying networks in the context of the rest of the cell and its environment.

95 Although recent analyses have begun to unravel the evolutionary history of actin structures [50] and
96 behaviors like motility [51••] and phagocytosis [52], there are three major complications that we must
97 consider. The first complication is the large degree of overlap between networks that encode distinct
98 phenotypes. For example, many of the branched actin network components used for phagocytosis are also
99 used for branched-actin mediated cell crawling, *and* for endocytosis [53,54]. This raises the possibility that the
100 capacity to perform one of these membrane remodeling behaviors automatically allows for the others.
101 Alternatively, each behavior may have evolved separately. Differentiating these hypotheses requires identifying
102 the genes specific to each phenotype and determining their phylogenetic history [55]. The second complication
103 to tracing the evolution of actin-dependent phenotypes is the relatively few lineages for which we have direct
104 evidence linking genotype to phenotype (**Fig 4**). We understand the mechanisms underlying the actin-based
105 cell behaviors of a few closely-related species in great molecular detail. The problem comes when we assume
106 that because a gene required for a behavior in a model organism is conserved, then the associated behavior
107 must be, too. However, this is a hypothesis that should be tested by determining the function of actin and its
108 regulators in organisms spanning eukaryotic diversity. The third complication is the possibility that there is no
109 clear evolutionary history to trace for some actin-dependent phenotypes because they are controlled by
110 outside factors, such as the extracellular environment.

111

112 **Leveraging eukaryotic diversity to understand actin cytoskeletal phenotypes**

113 A major bottleneck to understanding actin-dependent phenotypes is the complexity of the actin cytoskeleton at
114 every level (**Fig 1**). At the sequence level, eukaryotes often have multiple actin isoforms. At the structural level,
115 actin functions both as a monomer and as a polymer with diverse network architectures, each controlled by a
116 wide variety of regulators. At the cellular level, actin monomers and networks interface with nearly every other

117 cell system, particularly membranes, organelles, microtubules, and septins. An obvious approach to this
118 problem is to study organisms whose reduced cytoskeletal complexity and unique properties promise to reveal
119 new actin biology, including:

120

121 Fungi: Much of our mechanistic understanding of actin networks is the result of rapid and inexpensive forward
122 genetics screens in fungi, particularly budding and fission yeasts. These species continue to be a powerhouse
123 for understanding dynamic actin networks, particularly those driving cytokinesis and endocytosis [56-58•] due
124 to their vast repertoire of molecular and genetic tools, a relatively small number of actin regulators, and easily
125 quantifiable actin phenotypes, particularly actin cables and patches (**Fig. 4A**). More diverse fungi, particularly
126 the chytrids—deeply divergent motile fungi that include *Allomyces macrogynus* and *Batrachochytrium*
127 *dendrobatidis* (**Fig. 4**)—have retained phenotypes lost in other fungal lineages. Such ancestral phenotypes
128 include flagella/cilia, dynamic protrusions, and cell motility, making chytrid fungi poised to become model
129 systems to study the evolution of these actin-based structures and processes [51••].

130

131 Chlamydomonas: In contrast to budding and fission yeast, the two actin genes of the “green yeast”
132 *Chlamydomonas reinhardtii* have clear roles in flagella/cilia assembly [59]. While one actin homolog, IDA5,
133 resembles the major actins from other eukaryotic species, the second actin, NAP1, has diverged significantly
134 [60,61]. NAP1 protein is insensitive to the broad-spectrum actin polymerization inhibitor latrunculin [43].
135 *Chlamydomonas* cells, which live in the soil among species known to produce actin toxins, presumably monitor
136 actin polymerization and induce expression of the second, biochemically unique actin if polymerization of the
137 first is inhibited [60]. The powerful forward genetic screens possible in their haploid cells make
138 *Chlamydomonas* an unparalleled system with which to study actin’s contributions to flagellar function and the
139 evolution of biochemically unique actin isoforms [62].

140

141 Giardia: The genome of *Giardia lamblia* encodes a single actin gene, but no canonical actin binding proteins,
142 including profilin, formins, Arp2/3, or myosins [63,64]. Although it represents the most divergent eukaryotic
143 actin known to assemble into polymers, it has retained core actin functions; reducing *Giardia* actin protein

144 levels results in gross defects in exocytosis, endocytosis, and cytokinesis [65]. *Giardia* actin likely has its own
145 collection of binding partners [66,67], and represents a unique system in which to probe the limits of actin
146 sequence diversity.

147

148 *Naegleria*:

149 Cousin to the “brain-eating amoeba,” *Naegleria gruberi* is profoundly different from other eukaryotes. *Naegleria*
150 amoebae lack cytoplasmic microtubules [68,69], suggesting a heavy reliance on actin, especially considering
151 that these cells can crawl at phenomenal speeds of >100 $\mu\text{m}/\text{min}$ and divide in under 2 h [70]. Further, while
152 myosin II is conserved in opisthokonts and related groups, organisms in all other major eukaryotic lineages
153 lack myosin II, except *Naegleria* and its relatives (**Fig 4B**) [71,72]. Therefore, *Naegleria* is a unique system to
154 study the evolution of actin networks that drive motility and cytokinesis in the absence of microtubule
155 interactions.

156

157 **Moving forward: using discovery-based science to shed light on “dark” actin biology**

158 Most of what we know about actin comes from studying a handful of genetically tractable species, most of
159 which belong to a single major eukaryotic group: the opisthokonts. This group encompasses animals, fungi,
160 and related organisms, leaving entire major eukaryotic groups with nearly no experimental data, especially
161 regarding the actin cytoskeleton (**Fig 4B**). Because of the massive numbers of genes gained and lost by major
162 eukaryotic groups [71], there undoubtedly remain important and widespread actin biology that cannot be
163 discovered using opisthokont models. Employing the following major approaches should identify completely
164 new actin biology:

165

166 Comparative genomics: Because of its deep evolutionary conservation, comparative genomics is an obvious
167 choice for studying actin. In particular, phylogenetic profiling is a conceptually simple method that can be used
168 to identify the molecular underpinnings of actin phenotypes. Phylogenetic profiling works by identifying genes
169 that are *only* conserved in species that display a given phenotype. This methodology has been successfully
170 applied to flagellar motility, actin-based cell migration [51], and, at even finer resolution, to identify actin

171 regulatory complex subunits [73]. The power of this approach will only grow as we sequence more genomes
172 spanning eukaryotic diversity.

173

174 Genetic screens: Although genetic screens may seem “old fashioned” in the age of CRISPR, many actin
175 regulators were discovered using forward genetic screens. Developing forward genetics in emerging model
176 systems could rapidly provide the information necessary to either verify the hypothesis that actin filament
177 networks are generally conserved or lead to major discoveries that overturn this dogma.

178

179 Biochemistry: Biochemical techniques such as proteomics, fractionation, and *in vitro* reconstitution assays
180 have been used to identify and characterize novel actin regulators [74,75●] and can be readily extended to
181 new species. The recent development of methods that can identify transient associations, such as BiOLD and
182 APEX [76], may prove even more fruitful for identifying regulators of inherently dynamic and ephemeral actin
183 networks.

184

185 **Outlook and Conclusions**

186 The broad conservation of actin and actin binding proteins highlights their importance to cell biology. Much of
187 our understanding of the evolution of the behaviors encoded by actin networks, however, relies on the
188 assumption that their biochemistry, network properties, and higher-level phenotypes are all conserved. Given
189 the billions of years of evolution separating the major eukaryotic lineages, it is almost certain that actin-
190 dependent phenotypes have diverged at least to some level. A coherent understanding of the diversity,
191 molecular underpinnings, and evolution of eukaryotic actin phenotypes must encompass associations with the
192 other cell systems that interface with actin at every angle. Future investigations should focus on how actin
193 phenotypes evolved in conjunction with microtubules, organelles, and cell membranes.

194

195 **Acknowledgements:**

196 We thank Alison Wirshing (Brandeis University), Samantha Dundon (Yale), Alexander Paredez (University of
197 Washington), Evan Craig (University of Kansas Medical Center), Aoife Heaslip (University of Connecticut),

198 Michelle Facette (University of Massachusetts, Amherst), Qiong Nan (University of Massachusetts, Amherst),
199 and Clinton Parraga (University of Connecticut) for providing images. We also thank Kenneth Campellone
200 (University of Connecticut), Alison Wirshing, Bruce Goode (Brandeis University), Samantha Dundon, Prachee
201 Avasthi (University of Kansas Medical Center), Ethan Garner (Harvard University), Samuel Lord (University of
202 California San Francisco), and Alexander Paredez for helpful feedback on the manuscript. This research did
203 not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

204

205 **Conflict of Interest:**

206 The authors have no conflicts of interest to declare.

207

208 **Figure Legends:**209 **Figure 1. Distinct actin-driven phenotypes arise from diversity at both the molecular and network level.**

210 The diverse structures and processes orchestrated by actin polymers arise from overlapping network
211 architectures, molecules, and regulatory pathways. **Molecular level (top):** Small G-proteins, lipids, and
212 kinases are among the upstream molecules that signal to Nucleation Promoting Factors (NPFs) to activate
213 actin polymerization. NPFs vary in their localization and capacity to activate nucleators that include formins and
214 the Arp2/3 complex. Distinct isoforms of Arp2/3 complex subunits impact the localization of actin assembly,
215 and specific formin family proteins are often associated with discrete phenotypes. Finally, variability exists
216 among actin isoforms themselves, and the actin monomer binding protein profilin influences actin nucleation
217 and elongation. **Network level (middle):** Branched actin assemblies are typically derived from Arp2/3
218 complex-mediated nucleation and their growth at the tips of the resulting polymers and addition of new actin
219 branches provides outward, expansive, pushing forces. In contrast, actin bundles are frequently nucleated by
220 formin family proteins, and can result in stable, crosslinked actin assemblies and/or contractile networks that
221 exert force via myosin motor activity. **Phenotype level (bottom):** Adding an additional layer of complexity,
222 interactions can also occur between these and related actin networks, which cumulatively drive nearly every
223 cellular function, from motility to cell division.

224

225 **Figure 2. Actin assembly is driven by multiple actin nucleation pathways. Upper panels:** The Arp2/3
226 complex, formin family proteins, and tandem actin monomer-binding proteins of nucleation are three well-
227 characterized types of actin nucleators. **Top Left:** The Arp2/3 complex typically binds to the side of a pre-
228 existing filament where it nucleates a new filament. Alone, the Arp2/3 complex is not an efficient nucleator, but
229 NPFs such as WASP can activate the Arp2/3 complex, with two WASP molecules per Arp2/3 complex
230 producing maximum activation [77]. The Arp2/3 complex can also be activated to form unbranched filaments
231 by WISH/DIP/SPIN90 (not shown) [78]. **Top Middle:** Donut-shaped formin dimers nucleate actin, as well as
232 elongate filaments by processively associating with and delivering profilin-bound monomers to the growing end
233 of the filament [79]. **Top Right:** Tandem actin monomer-binders, including Cordon-Bleu (Cobl) and Spire,
234 recruit multiple actin monomers to form an actin nucleus. Two of the various proposed models are shown [80-
81].

235 83]. **Lower Panels**: There are several examples of direct and indirect collaboration between the pathways in
236 the top panels [8]. **Lower Left**: Collaboration between the Arp2/3 complex and formin family proteins is critical
237 for efficient actin assembly in structures such as lamellipodia [10,11●]. While the exact molecular mechanism
238 for this collaboration remains elusive, the possibility that formins provide seed filaments from which the Arp2/3
239 complex can branch remains an attractive model. The actin nucleated by the Arp2/3 complex could also
240 provide filaments that are elongated by formins. **Lower Right**: The *Drosophila* tandem actin monomer-binder
241 Spire and the formin cappuccino have been shown to directly cooperate, with formin-mediated dimerization of
242 Spire facilitating the nucleation step, followed by elongation by cappuccino [84]. There is also evidence for a
243 “ping-pong” mechanism, where Spire binds the growing end when the formin dissociates, and vice versa [9].
244

245 **Figure 3. Bacterial, archaeal, and eukaryotic actin homologs with unique properties drive diverse**
246 **functions**. Selected actins with distinct filament characteristics and cell functions are shown for Bacteria (**top**
247 **panel**), Archaea (**middle panel**), and Eukarya (**bottom panel**). Examples of Eukaryotic and Archaeal cells that
248 contain different actin isoforms and regulators are highlighted (**insets**). A “?” indicates unknown information.
249 Detailed references supporting the data presented within each colored rectangle are displayed to the right.
250

251 **Figure 4. Actin polymer networks generate diverse eukaryotic phenotypes.**

252 (A) Selected organisms are stained with phalloidin to label polymerized actin (green), and a subset are also
253 stained with DAPI or Hta1-mCherry (*Schizosaccharomyces pombe* only) to detect DNA (magenta). Scale bars,
254 5 μ m. Notable structures include, (p) actin patches, (c) actin cables, (r) cytokinetic ring, (l) lamellipodium, (m)
255 microvilli, (s) actin-filled pseudopod, (f) phragmoplast. Images were provided by: Alison Wirshing and Bruce
256 Goode (*Saccharomyces cerevisiae*), Samantha Dundon and Thomas Pollard (*S. pombe*), Clinton Parraga (*Mus*
257 *musculus*) Alexander Paredez (*Giardia lamblia*), Aoife Heaslip (*Toxoplasma gondii*) Qiong Nan (*Zea mays*),
258 and Evan Craig and Prachee Avasthi (*Chlamydomonas reinhardtii*). (B) This diagram illustrates the
259 phylogenetic relationships between the selected organisms in (A) and other groups (branch lengths have no
260 meaning). Gray circles indicate the presence of a myosin II gene. Organisms for which there is abundant
261 information available pertaining to actin are in bold. This was estimated by PubMed searches for the keyword

262 “actin” and the species name, genus name, or common name (whichever yielded the greatest number of
263 results). Organisms for which there were ≥ 250 results were considered to have abundant information available.

264 REFERENCES:

265 1. Pollard TD, Blanchard L, Mullins RD: **Molecular mechanisms controlling actin filament dynamics in**
266 **nonmuscle cells.** *Annu Rev Biophys Biomol Struct* 2000, **29**:545-576.

267 2. Carlier MF, Shekhar S: **Global treadmilling coordinates actin turnover and controls the size of actin**
268 **networks.** *Nat Rev Mol Cell Biol* 2017, **18**:389-401.

269 3. • Skruber K, Read TA, Vitriol EA: **Reconsidering an active role for G-actin in cytoskeletal regulation.** *J*
270 *Cell Sci* 2018, **131**.
271 **This review discusses cytoskeletal regulation at the level of actin monomers, including**
272 **pertinent information about specific actin isoforms, profilin, and other actin binding proteins.**
273 **Further, a section on imaging G-actin outlines emerging techniques for studying actin**
274 **monomers.**

275 4. Campellone KG, Welch MD: **A nucleator arms race: cellular control of actin assembly.** *Nat Rev Mol Cell*
276 *Biol* 2010, **11**:237-251.

277 5. Rottner K, Stradal TE: **How distinct Arp2/3 complex variants regulate actin filament assembly.** *Nat Cell*
278 *Biol* 2016, **18**:1-3.

279 6. •• Molinie N, Rubtsova SN, Fokin A, Visweshwaran SP, Rocques N, Polesskaya A, Schnitzler A, Vacher S,
280 Denisov EV, Tashirova LA, et al.: **Cortical branched actin determines cell cycle progression.** *Cell*
281 *Res* 2019.
282 **This study is the most recent example of specific isoforms of Arp2/3 complex subunits driving**
283 **differential localization. This work shows that Arp2/3 complexes containing the ArpC1B isoform**
284 **localize to lamellipodial protrusions to promote motility, while ArpC1A-containing complexes**
285 **localize to retromer-positive endosomes.**

286 7. Abella JV, Galloni C, Pernier J, Barry DJ, Kjaer S, Carlier MF, Way M: **Isoform diversity in the Arp2/3**
287 **complex determines actin filament dynamics.** *Nat Cell Biol* 2016, **18**:76-86.

288 8. Dominguez R: **The WH2 domain and actin nucleation: necessary but insufficient.** *Trends Biochem Sci*
289 2016, **41**:478-490.

290 9. Montaville P, Jegou A, Pernier J, Comperre C, Guichard B, Mogessie B, Schuh M, Romet-Lemonne G,
291 Carlier MF: **Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis**
292 **by a ping-pong mechanism.** *PLoS Biol* 2014, **12**:e1001795.

293 10. Isogai T, van der Kammen R, Leyton-Puig D, Kedziora KM, Jalink K, Innocenti M: **Initiation of**
294 **lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex.** *J Cell Sci*
295 2015, **128**:3796-3810.

296 11. • Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T, Freise A, Bruhmann S, Kollasser J, Block J,
297 Dimchev G, et al.: **FMNL formins boost lamellipodial force generation.** *Nat Commun* 2017, **8**:14832.
298 **This study of mammalian cell lamellipodia is a nice example of data showing collaboration**
299 **between Arp2/3 and formins in a single cell structure, with each nucleator contributing to the**
300 **behavior of the whole.**

301 12. Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD, Johnson HE, Haugh JM, Kovar DR, Bear JE:
302 **Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent**
303 **pathways.** *Dev Cell* 2015, **32**:54-67.

304 13. Suarez C, Carroll RT, Burke TA, Christensen JR, Bestul AJ, Sees JA, James ML, Sirotnik V, Kovar DR:
305 **Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex.** *Dev Cell*
306 2015, **32**:43-53.

307 14. A M, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN: **A complex containing lysine-acetylated actin**
308 **inhibits the formin INF2.** *Nat Cell Biol* 2019.

309 15. Svitkina TM: **Ultrastructure of the actin cytoskeleton.** *Curr Opin Cell Biol* 2018, **54**:1-8.

310 16. Krause M, Gautreau A: **Steering cell migration: lamellipodium dynamics and the regulation of**
311 **directional persistence.** *Nat Rev Mol Cell Biol* 2014, **15**:577-590.

312 17. Mullins RD, Bieling P, Fletcher DA: **From solution to surface to filament: actin flux into branched**
313 **networks.** *Biophys Rev* 2018, **10**:1537-1551.

314 18. Baarlink C, Plessner M, Sherrard A, Morita K, Misu S, Virant D, Kleinschmitz EM, Harniman R, Alibhai D,
315 Baumeister S, et al.: **A transient pool of nuclear F-actin at mitotic exit controls chromatin**
316 **organization.** *Nat Cell Biol* 2017, **19**:1389-1399.

317 19. Caridi CP, D'Agostino C, Ryu T, Zapotoczny G, Delabaere L, Li X, Khodaverdian VY, Amaral N, Lin E, Rau
318 AR, et al.: **Nuclear F-actin and myosins drive relocalization of heterochromatic breaks.** *Nature*
319 2018, **559**:54-60.

320 20. Bajusz C, Borkuti P, Kristo I, Kovacs Z, Abonyi C, Vilmos P: **Nuclear actin: ancient clue to evolution in**
321 **eukaryotes?** *Histochem Cell Biol* 2018, **150**:235-244.

322 21. Stoddard PR, Williams TA, Garner E, Baum B: **Evolution of polymer formation within the actin**
323 **superfamily.** *Mol Biol Cell* 2017, **28**:2461-2469.

324 22. • Wagstaff J, Lowe J: **Prokaryotic cytoskeletons: protein filaments organizing small cells.** *Nat Rev*
325 *Microbiol* 2018, **16**:187-201.
326 **This recent review provides extensive background information on cytoskeletal systems in**
327 **bacteria and archaea.**

328 23. Addinall SG, Lutkenhaus J: **FtsA is localized to the septum in an FtsZ-dependent manner.** *J Bacteriol*
329 1996, **178**:7167-7172.

330 24. Jensen RB, Gerdes K: **Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and**
331 **interacts with the centromere-like ParR-parC complex.** *J Mol Biol* 1997, **269**:505-513.

332 25. Komeili A, Li Z, Newman DK, Jensen GJ: **Magnetosomes are cell membrane invaginations organized**
333 **by the actin-like protein MamK.** *Science* 2006, **311**:242-245.

334 26. Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izore T, Renner LD, Holmes MJ, Sun Y,
335 Bisson-Filho AW, et al.: **MreB filaments align along greatest principal membrane curvature to**
336 **orient cell wall synthesis.** *Elife* 2018, **7**.

337 27. Doi M, Wachi M, Ishino F, Tomioka S, Ito M, Sakagami Y, Suzuki A, Matsuhashi M: **Determinations of the**
338 **DNA sequence of the mreB gene and of the gene products of the mre region that function in**
339 **formation of the rod shape of Escherichia coli cells.** *J Bacteriol* 1988, **170**:4619-4624.

340 28. van den Ent F, Izore T, Bharat TA, Johnson CM, Lowe J: **Bacterial actin MreB forms antiparallel double**
341 **filaments.** *Elife* 2014, **3**:e02634.

342 29. Lamason RL, Welch MD: **Actin-based motility and cell-to-cell spread of bacterial pathogens.** *Curr*
343 *Opin Microbiol* 2017, **35**:48-57.

344 30. Truong D, Copeland JW, Brumell JH: **Bacterial subversion of host cytoskeletal machinery: hijacking**
345 **formins and the Arp2/3 complex.** *Bioessays* 2014, **36**:687-696.

346 31. Welch MD, Way M: **Arp2/3-mediated actin-based motility: a tail of pathogen abuse.** *Cell Host Microbe*
347 2013, **14**:242-255.

348 32. Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ: **Interaction of human Arp2/3 complex and**
349 **the Listeria monocytogenes ActA protein in actin filament nucleation.** *Science* 1998, **281**:105-108.

350 33. Welch MD, Iwamatsu A, Mitchison TJ: **Actin polymerization is induced by Arp2/3 protein complex at**
351 **the surface of Listeria monocytogenes.** *Nature* 1997, **385**:265-269.

352 34. Suzuki T, Miki H, Takenawa T, Sasakawa C: **Neural Wiskott-Aldrich syndrome protein is implicated in**
353 **the actin-based motility of Shigella flexneri.** *EMBO J* 1998, **17**:2767-2776.

354 35. Izore T, Kureisaite-Ciziene D, McLaughlin SH, Lowe J: **Crenactin forms actin-like double helical**
355 **filaments regulated by arcadin-2.** *Elife* 2016, **5**.

356 36. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C,
357 Guy L, Ettema TJG: **Complex archaea that bridge the gap between prokaryotes and eukaryotes.**
358 *Nature* 2015, **521**:173-179.

359 37. •• Akil C, Robinson RC: **Genomes of Asgard archaea encode profilins that regulate actin.** *Nature*
360 2018, **562**:439-443.
361 **This work demonstrates that archaeal profilins can interact with mammalian actin to inhibit**
362 **nucleation.**

363 38. Ettema TJ, Lindas AC, Bernander R: **An actin-based cytoskeleton in archaea.** *Mol Microbiol* 2011,
364 **80**:1052-1061.

365 39. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC: **The evolution of compositionally**
366 **and functionally distinct actin filaments.** *J Cell Sci* 2015, **128**:2009-2019.

367 40. Paavilainen VO, Oksanen E, Goldman A, Lappalainen P: **Structure of the actin-depolymerizing factor**
368 **homology domain in complex with actin.** *J Cell Biol* 2008, **182**:51-59.

369 41. McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG: **Structure of gelsolin segment 1-actin complex**
370 **and the mechanism of filament severing.** *Nature* 1993, **364**:685-692.

371 42. Perrin BJ, Ervasti JM: **The actin gene family: function follows isoform.** *Cytoskeleton (Hoboken)* 2010,
372 67:630-634.

373 43. Onishi M, Pringle JR, Cross FR: **Evidence that an unconventional actin can provide essential F-actin**
374 **function and that a surveillance system monitors F-actin integrity in Chlamydomonas.** *Genetics*
375 2016, **202**:977-996.

376 44. Pandey DK, Chaudhary B: **Evolutionary expansion and structural functionalism of the ancient family**
377 **of profilin proteins.** *Gene* 2017, **626**:70-86.

378 45. Pruyne D: **Probing the origins of metazoan formin diversity: Evidence for evolutionary relationships**
379 **between metazoan and non-metazoan formin subtypes.** *PLoS One* 2017, **12**:e0186081.

380 46. Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M: **Origins and evolution of the formin multigene**
381 **family that is involved in the formation of actin filaments.** *Mol Biol Evol* 2008, **25**:2717-2733.

382 47. Veltman DM, Insall RH: **WASP family proteins: their evolution and its physiological implications.** *Mol*
383 *Biol Cell* 2010, **21**:2880-2893.

384 48. Kollmar M, Lbik D, Enge S: **Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP,**
385 **WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML.** *BMC*
386 *Res Notes* 2012, **5**:88.

387 49. Foth BJ, Goedecke MC, Soldati D: **New insights into myosin evolution and classification.** *Proc Natl*
388 *Acad Sci U S A* 2006, **103**:3681-3686.

389 50. Sebe-Pedros A, Burkhardt P, Sanchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I: **Insights**
390 **into the origin of metazoan filopodia and microvilli.** *Mol Biol Evol* 2013, **30**:2013-2023.

391 51. •• Fritz-Laylin LK, Lord SJ, Mullins RD: **WASP and SCAR are evolutionarily conserved in actin-filled**
392 **pseudopod-based motility.** *J Cell Biol* 2017, **216**:1673-1688.
393 **This work is an example of the power of combining phylogenetic analysis with modern cell**
394 **biology to provide insights into an actin-dependent phenotype: a form of cell motility called**
395 **alpha-motility. This work provides the first evidence that crawling motility is evolutionarily**
396 **ancient and shows that multiple upstream regulators are needed for cell movement.**

397 52. Yutin N, Wolf MY, Wolf YI, Koonin EV: **The origins of phagocytosis and eukaryogenesis.** *Biol Direct*
398 2009, **4**:9.

399 53. Rougerie P, Miskolci V, Cox D: **Generation of membrane structures during phagocytosis and**
400 **chemotaxis of macrophages: role and regulation of the actin cytoskeleton.** *Immunol Rev* 2013,
401 **256**:222-239.

402 54. Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M: **The contributions of the**
403 **actin machinery to endocytic membrane bending and vesicle formation.** *Mol Biol Cell* 2018,
404 **29**:1346-1358.

405 55. Fritz-Laylin LK, Lord SJ, Mullins RD: **Our evolving view of cell motility.** *Cell Cycle* 2017, **16**:1735-1736.

406 56. Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL:
407 **Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile**
408 **activator.** *J Cell Biol* 2018, **217**:3512-3530.

409 57. Pedersen RTA, Drubin DG: **Type I myosins anchor actin assembly to the plasma membrane during**
410 **clathrin-mediated endocytosis.** *J Cell Biol* 2019, **218**:1138-1147.

411 58. • Swulius MT, Nguyen LT, Ladinsky MS, Ortega DR, Aich S, Mishra M, Jensen GJ: **Structure of the**
412 **fission yeast actomyosin ring during constriction.** *Proc Natl Acad Sci U S A* 2018, **115**:E1455-
413 E1464.
414 **This detailed electron microscopy study of the cytokinetic ring in yeast provides an excellent**
415 **example of how actin filaments are organized into higher order networks whose dynamic**
416 **property can only be achieved through the collaboration between multiple protein classes.**

417 59. Avasthi P, Onishi M, Karpiaik J, Yamamoto R, Mackinder L, Jonikas MC, Sale WS, Shoichet B, Pringle JR,
418 Marshall WF: **Actin is required for IFT regulation in Chlamydomonas reinhardtii.** *Curr Biol* 2014,
419 **24**:2025-2032.

420 60. Onishi M, Pecani K, Jones Tt, Pringle JR, Cross FR: **F-actin homeostasis through transcriptional**
421 **regulation and proteasome-mediated proteolysis.** *Proc Natl Acad Sci U S A* 2018, **115**:E6487-
422 E6496.

423 61. Jack B, Mueller DM, Fee AC, Tetlow AL, Avasthi P: **Partially Redundant Actin Genes in**
424 **Chlamydomonas Control Transition Zone Organization and Flagellum-Directed Traffic.** *Cell Rep*
425 **2019, 27:2459-2467 e2453.**

426 62. Craig EW, Mueller DM, Schaffer M, Engel BD, Avasthi P: **The elusive actin cytoskeleton of a green alga**
427 **expressing both conventional and divergent actins.** *bioRxiv* 2019.

428 63. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F,
429 Cipriano MJ, et al.: **Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.**
430 *Science* 2007, **317:1921-1926.**

431 64. Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR: **Myosin-independent cytokinesis**
432 **in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking.** *Proc*
433 *Natl Acad Sci U S A* 2017, **114:E5854-E5863.**

434 65. Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, Cande WZ: **An actin cytoskeleton**
435 **with evolutionarily conserved functions in the absence of canonical actin-binding proteins.** *Proc*
436 *Natl Acad Sci U S A* 2011, **108:6151-6156.**

437 66. Paredez AR, Nayeri A, Xu JW, Krkova J, Cande WZ: **Identification of obscure yet conserved actin-**
438 **associated proteins in Giardia lamblia.** *Eukaryot Cell* 2014, **13:776-784.**

439 67. Krkova J, Xu J, Lalle M, Steele-Ogus M, Alas GCM, Sept D, Paredez AR: **14-3-3 regulates actin filament**
440 **formation in the deep-branching eukaryote Giardia lamblia.** *mSphere* 2017, **2.**

441 68. Walsh CJ: **The role of actin, actomyosin and microtubules in defining cell shape during the**
442 **differentiation of Naegleria amebae into flagellates.** *Eur J Cell Biol* 2007, **86:85-98.**

443 69. Lai EY, Walsh C, Wardell D, Fulton C: **Programmed appearance of translatable flagellar tubulin mRNA**
444 **during cell differentiation in Naegleria.** *Cell* 1979, **17:867-878.**

445 70. Preston TM, King CA: **Locomotion and phenotypic transformation of the amoeboflagellate Naegleria**
446 **gruberi at the water-air interface.** *J Eukaryot Microbiol* 2003, **50:245-251.**

447 71. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman
448 J, Pham J, et al.: **The genome of Naegleria gruberi illuminates early eukaryotic versatility.** *Cell*
449 2010, **140:631-642.**

450 72. Sebe-Pedros A, Grau-Bove X, Richards TA, Ruiz-Trillo I: **Evolution and classification of myosins, a**
451 **paneukaryotic whole-genome approach.** *Genome Biology and Evolution* 2014, **6:290-305.**

452 73. Dey G, Jaimovich A, Collins SR, Seki A, Meyer T: **Systematic discovery of human gene function and**
453 **principles of modular organization through phylogenetic profiling.** *Cell Rep* 2015, **10:993-1006.**

454 74. Michelot A, Costanzo M, Sarkeshik A, Boone C, Yates JR, 3rd, Drubin DG: **Reconstitution and protein**
455 **composition analysis of endocytic actin patches.** *Curr Biol* 2010, **20:1890-1899.**

456 75. • Pollard TD: **Evolution of research on cellular motility over five decades.** *Biophys Rev* 2018, **10:1503-**
457 **1508.**
458 **This historic account of how cell biologists discovered that the actin cytoskeleton controls**
459 **various aspects of eukaryotic cell function is a great introduction to how genetics and**
460 **biochemistry can be used in conjunction to make powerful discoveries, and provides a solid**
461 **primer for those new to the actin cytoskeleton field.**

462 76. Gingras AC, Abe KT, Raught B: **Getting to know the neighborhood: using proximity-dependent**
463 **biotinylation to characterize protein complexes and map organelles.** *Curr Opin Chem Biol* 2019,
464 **48:44-54.**

465 77. Padrick SB, Doolittle LK, Brautigam CA, King DS, Rosen MK: **Arp2/3 complex is bound and activated by**
466 **two WASP proteins.** *Proc Natl Acad Sci U S A* 2011, **108:E472-479.**

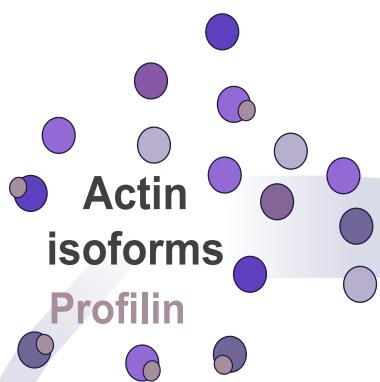
467 78. Wagner AR, Luan Q, Liu SL, Nolen BJ: **Dip1 defines a class of Arp2/3 complex activators that function**
468 **without preformed actin filaments.** *Curr Biol* 2013, **23:1990-1998.**

469 79. Breitsprecher D, Goode BL: **Formins at a glance.** *J Cell Sci* 2013, **126:1-7.**

470 80. Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD: **Drosophila Spire is an actin nucleation factor.** *Nature*
471 2005, **433:382-388.**

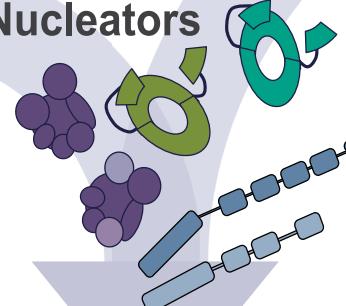
472 81. Rebowski G, Boczkowska M, Hayes DB, Guo L, Irving TC, Dominguez R: **X-ray scattering study of actin**
473 **polymerization nuclei assembled by tandem W domains.** *Proc Natl Acad Sci U S A* 2008,
474 **105:10785-10790.**

475 82. Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, Qualmann B: **Cordon-bleu is**
476 **an actin nucleation factor and controls neuronal morphology.** *Cell* 2007, **131:337-350.**

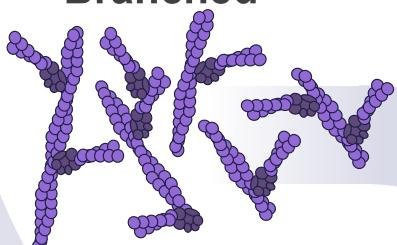

477 83. Chen X, Ni F, Tian X, Kondrashkina E, Wang Q, Ma J: **Structural basis of actin filament nucleation by**
478 **tandem W domains.** *Cell Rep* 2013, **3**:1910-1920.

479 84. Quinlan ME, Hilgert S, Bedrossian A, Mullins RD, Kerkhoff E: **Regulatory interactions between two actin**
480 **nucleators, Spire and Cappuccino.** *J Cell Biol* 2007, **179**:117-128.

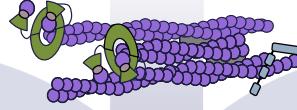
481


482

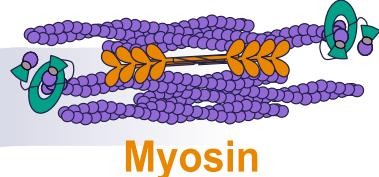
Molecules


Nucleation Promoting Factors

Nucleators



Networks


Branched

Crosslinked

Contractile

Myosin

Phenotypes

Lamellipodia

Cortex

Filopodia

Stress Fibers

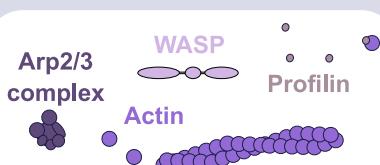
Endocytosis

Vesicular Trafficking

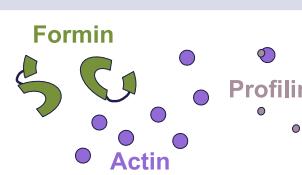
Cytokinesis

DNA repair

Motility


Membrane Blebbing

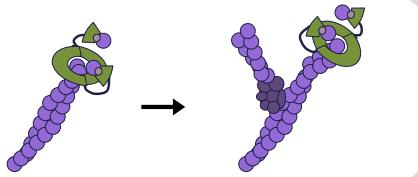
Upstream signals


GTPases, Lipids
Adaptor proteins
Kinases, etc.

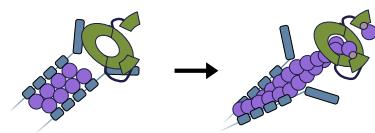
Mechanisms of Actin Assembly

The Arp2/3 Complex

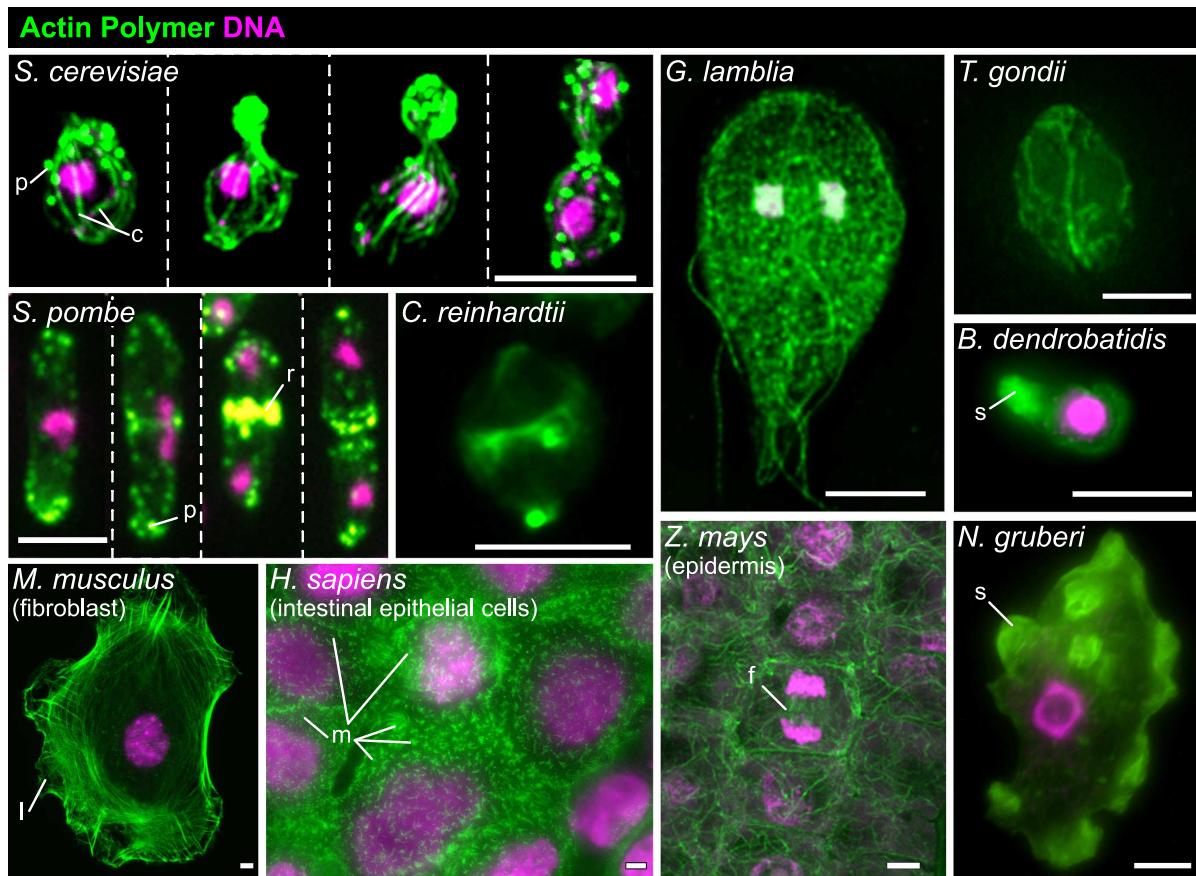
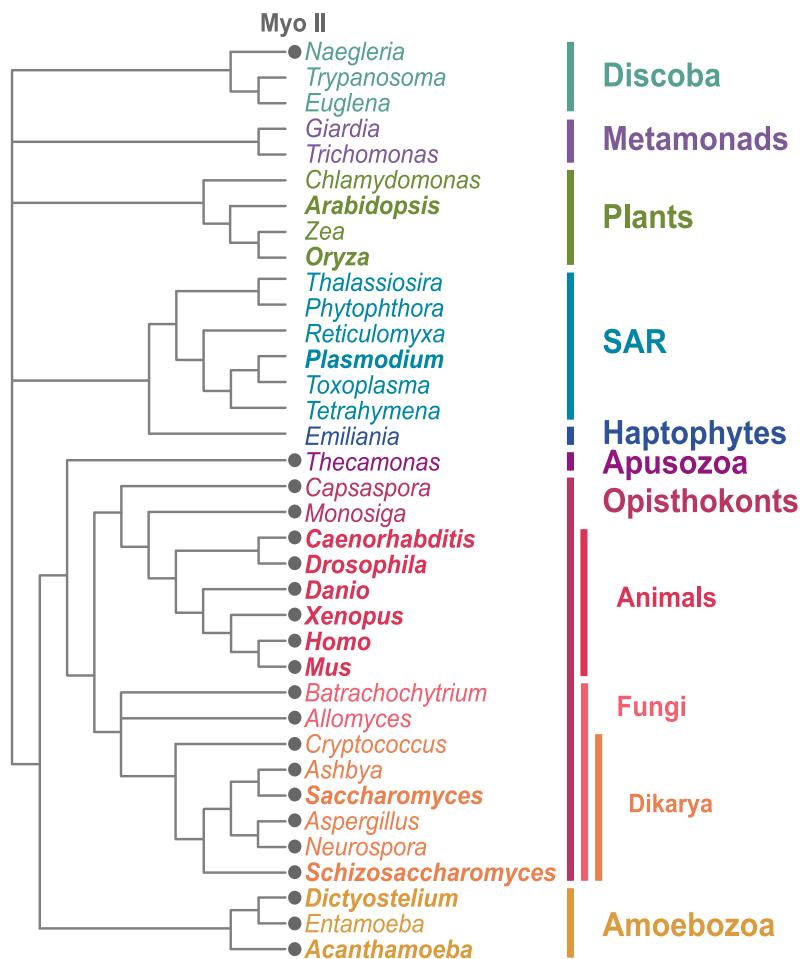
Formin Family Proteins



Tandem Actin Monomer-binding Proteins of Nucleation



Mechanisms of Nucleator Collaboration



The Arp2/3 Complex & Formins

Formins & Tandem Actin Monomer-binding Proteins of Nucleation

	Homolog	Filament Characteristics			References	
Bacteria	FtsA (<i>T. maritima</i>)	single-stranded filaments			Szwedziak et al., 2012	
	MreB (<i>C. crescentus</i>)	non-helical	antiparallel	non-staggered	van den Ent et al., 2014	
	ParM (<i>E. coli</i>)	helical (left-handed)	parallel	staggered	Bharat et al., 2015	
	MamK (<i>M. magneticum</i>)	helical (right-handed)	parallel	non-staggered	Löwe et al., 2016	
Archaea	Crenactin (<i>P. calidifontis</i>)	helical (right-handed)	parallel	staggered	Izoré et al., 2016	
	Actin (Lokiarchaea)	unknown			Spang et al., 2015	
	Organism	# Actins	# Profilins		References	
	Heimdall	1-7	1		Zaremba-Niedzwiedzka, 2017 (Table S7); Akil and Robinson, 2018	
Eukarya	Loki	4-5	2-3			
	Thor	1-2	1			
	Odin	1	1			
	Eukaryotic Actin	helical (right-handed)	parallel	staggered	Oda et al., 2009	
Eukarya	Organism	# Actins	# Profilins	# Formins	References	
	Animals					
	<i>H. sapiens</i>	6	4	15	Skruber et al., 2018; Pandey et al., 2017; Chalkia et al., 2008; Verheyen et al., 1994; Fyrberg et al., 1980	
	<i>D. melanogaster</i>	6	1	7		
	Fungi				Mertins & Gallwitz, 1987; Balasubramanian et al., 1994; Chalkia et al., 2008; Ng & Abelson, 1980; Pandey et al., 2017	
	<i>S. pombe</i>	1	1	3		
	<i>S. cerevisiae</i>	1	1	2		
	Amoebozoa				Joseph et al., 2008;	
	<i>D. discoideum</i>	17	3	10	Arasada et al., 2007; Manich et al., 2008; Chalkia et al., 2008	
	<i>E. histolytica</i>	8	1	6		
	Plants				Kandasamy et al., 2010; Pandey et al., 2017; Cvrčková et al., 2004; Avasthi et al., 2014; Avasthi (personal communication)	
	<i>A. thaliana</i>	8	5	21		
	<i>C. reinhardtii</i>	2	1	4		
	SAR				Aumeier et al., 2015 (Table S1);	
	<i>T. pseudonana</i>	1	0	6	Chalkia et al., 2008; Schüler & Matuschewski, 2006;	
Discoba	<i>P. falciparum</i>	2	1	2	Glöckner et al., 2014	
	<i>R. filosa</i>	5	?	5		
	<i>N. gruberi</i>	≥24	4	14	Fritz-Laylin et al., 2010 (Fig S4); Vizcaino-Castillo et al., 2019;	
	<i>T. cruzi</i>	4	1	3	El-Sayed et al., 2005 (Table S5)	
Metamonads	<i>G. lamblia</i>	1	0	0	Morrison et al., 2007;	
	<i>T. vaginalis</i>	12	9	5	Chalkia et al., 2008;	
					Carlton et al., 2007 (Table S15)	

A**B**