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Topological superconductors can support localized Majorana 
states at their boundaries1–5. These quasi-particle excitations obey 
non-Abelian statistics that can be used to encode and manipulate 
quantum information in a topologically protected manner6,7. 
Although signatures of Majorana bound states have been observed 
in one-dimensional systems, there is an ongoing effort to find 
alternative platforms that do not require fine-tuning of parameters 
and can be easily scaled to large numbers of states8–21. Here we 
present an experimental approach towards a two-dimensional 
architecture of Majorana bound states. Using a Josephson junction 
made of a HgTe quantum well coupled to thin-film aluminium, we 
are able to tune the transition between a trivial and a topological 
superconducting state by controlling the phase difference across the 
junction and applying an in-plane magnetic field22. We determine 
the topological state of the resulting superconductor by measuring 
the tunnelling conductance at the edge of the junction. At low 
magnetic fields, we observe a minimum in the tunnelling spectra 
near zero bias, consistent with a trivial superconductor. However, 
as the magnetic field increases, the tunnelling conductance 
develops a zero-bias peak, which persists over a range of phase 
differences that expands systematically with increasing magnetic 
field. Our observations are consistent with theoretical predictions 
for this system and with full quantum mechanical numerical 
simulations performed on model systems with similar dimensions 
and parameters. Our work establishes this system as a promising 
platform for realizing topological superconductivity and for 
creating and manipulating Majorana modes and probing topological 
superconducting phases in two-dimensional systems. 

Majorana bound states (MBS) are quasiparticle excitations that are 
their own antiparticles and hence can serve as the basis of topological 
quantum computing, where quantum information can be stored and 
manipulated robustly6,23. Spectroscopic studies have been conducted 
in various one-dimensional systems, such as proximitized nanowires 
and atomic chains, where zero-bias peaks exist in the tunnelling spectra 
in parts of the parameter space associated with MBS10–12,14–21. Despite 
the growing evidence, scalable networks of Majorana qubits are chal- 
lenging to obtain in such one-dimensional platforms, owing to both the 
intrinsic instabilities associated with one-dimensional systems and the 
technological obstacles in their physical implementation13,24. Therefore, 
to understand and use the full power of MBS physics, two-dimensional 
platforms that can realize topological superconductivity are in demand 
for patterning large-scale networks of Majorana devices, as well as inte- 
grating them with other quantum information devices and systems, in 
a reproducible and controlled fashion25. 

We design and implement a controllable two-dimensional platform 
for realizing topological superconductivity. This platform is based 
on a recent theoretical proposal for a planar Josephson junction cre- 
ated from a two-dimensional electron gas (2DEG) subject to a strong 
Rashba spin–orbit interaction, sandwiched between two aluminium 

superconducting leads22 (Fig. 1a). In this system, the phase transition 
between trivial and topological superconductivity can be tuned using 
two independent knobs: the phase difference across the junction, φ, 
and the Zeeman energy EZ, which is governed by an external mag- 
netic field applied in the plane of the junction. In a long Josephson 
junction that is translationally invariant along x, the direction parallel 
to the superconducting electrodes, supercurrent is carried by bands of 
Andreev bound states in the normal (non-superconducting) region, 
formed by successive Andreev reflections at the normal–superconductor 
interfaces26,27. The energy of each Andreev state thus depends both on 
φ and on the phase accumulated by the quasiparticles traversing the 
junction at various angles from the x direction. Therefore, the Andreev 
states can have a full range of wavevectors, with the x-components of 
their wavenumbers kx varying in magnitude from 0 to nearly the Fermi 
wavenumber kF. Their energies hence disperse to form a continuous 
sub-gap spectrum. Notably, when normal reflection at the normal– 
superconductor interface is weak, these Andreev bands are relatively 
flat and disperse only weakly with changing kx (Fig. 1e). This leads to a 
strongly enhanced density of states near zero energy in the vicinity of 
the topological phase transition. When normal reflection is taken into 
account, the bands acquire a non-zero width (Fig. 1f). 

A topological phase transition in a clean junction is accompanied by 
a zero-energy crossing at kx = 0 (Fig. 1b). When the Zeeman energy 
is zero, the kx = 0 Andreev states are two-fold degenerate and cross 
at φ = π in the absence of normal reflections. A finite magnetic field 
parallel to the x axis separates the kx = 0 states by a phase difference 
Δφ = 2πEZ/ET, where ET = (π/2)(ħvF/W) is the Thouless energy (ħ is 
the reduced Planck constant, vF is the Fermi velocity, and W is the width 
of the junction.). In the range of φ values between these two crossings, 
the occupancy of fermionic states becomes odd, and the system under- 
goes a phase transition into a topological superconducting phase. We can 
map out this phase boundary in the φ–EZ space (Fig. 1c). As EZ increases 
from 0 to the Thouless energy ET, the junction becomes topological in 
a growing range of φ values, with predicted MBS on the end of a semi- 
infinite junction. As EZ further increases beyond ET, this φ range starts 
to decrease, forming overall diamond shapes (dashed lines in Fig. 1c). In 
a physical system, normal reflection can occur at the interfaces, which 
hybridize the left- and right-moving modes in the junction and shift 
the phase boundary from the ideal scenario. In this case, the topologi- 
cal phase occupies regions deformed from the diamond shape, but its 
dependence on the magnetic field and the phase difference is robust 
(solid colour in Fig. 1c) and largely insensitive to changes in geometry 
and in electron chemical potential. Consequently, for a wide range of 
magnetic fields, the application of a small phase bias can easily tune the 
system in and out of the topological superconducting phase and is hence 
a powerful experimental knob that can be controlled in a rapid manner. 

Our planar Josephson junction consists of an 8-nm-wide HgTe quan- 
tum well contacted by thermally evaporated aluminium leads about 
15 nm thick, with 5 nm of titanium as a sticking layer. The junction 
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Fig. 1 | Topological transition in a phase-controlled Josephson junction. 
a, Device schematic for a planar Josephson junction of length L and width 
W created from a HgTe 2DEG (cyan) sandwiched between two aluminium 
superconducting leads, the ends of which connect to form a flux loop (steel 
blue). (We made devices both with and without the hole inside the flux 
loop and found little difference between the two designs. Data presented in 
the main text were taken from a device with a wider junction (600 nm) and 
without the hole in the mesa.) The tip of the tunnel probe (gold) overlaps 
with the 2DEG and is separated from it by a region of CdHgTe (pastel 
colours below the tip). The perpendicular component of the external 
magnetic field Bz is used to tune the phase difference across the junction. 
b, The bound-state spectrum (in units of the induced superconducting gap 
Δ) for kx = 0 for a junction that is long in the x direction and symmetric  
in the y direction. The state is two-fold degenerate in the absence of any 
external magnetic field (dashed lines), and spin-split in the presence of 
an in-plane field (solid lines), accommodating a topological phase that 

develops in the range of φ values between the zero-bias crossings (blue 
shaded regions). c, The boundary between the topological and trivial 
phases’ superconductivity in the φ–EZ space. Normal reflection at the 
superconducting–normal interface can cause it to deviate (light blue 
ribbons) from the diamond shapes (dashed lines) that correspond to the 
case of perfect transparency. d, False-colour scanning electron micrograph 
of a device with a narrow junction. The mesa region containing the 2DEG 
is coloured in green, the superconducting contact is purple and the tunnel 
probe is yellow. e, Dispersion of the Andreev band as a function of kx, at 
three values of Zeeman energy (kF,1, kF,2 are the Fermi momenta of the two 
spin components). The circle, star and triangle correspond to the regions 
in c. The Andreev bands become relatively flat during the topological 
phase transition (middle panel). f, Including some normal reflection in the 
calculations shown in e results in a finite width of the bands. Solid lines 
in red, blue, purple and green in b, e, f represent spin-up and spin-down 
electrons and holes, respectively. 

 

region is 600 nm wide and about 1 μm long, with one end of each lead 
connected to form a flux loop. As previously established, our HgTe 
quantum well, grown by molecular beam epitaxy, provides a 2DEG with 

high mobility and dominant Rashba spin–orbit coupling, and the thin 
aluminium leads can superconduct up to 1.8 T of in-plane magnetic 
fields28,29. 
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Fig. 2 | Phase modulations of the tunnelling conductance at low and 
high fields. a–c, Differential conductance colour plots (in units of e2/h; 
e, electron charge; h, Planck constant) as a function of the bias voltage 
(horizontal axis) and the phase difference (left vertical axis) offset from 
the Δφ = 0 point, identified by the value of φ at which the coherence 
peaks reach a maximum. The right vertical axis shows the actual Bz field 
produced by the magnet. d–f, Line cuts of a–c showing the differential 

conductance curves as a function of the bias voltage on the tunnel probe at 
four representative phase differences, averaged over repeating lines spaced 
at integer periods. a, d, Data taken at Bx = 0 T, where no zero-bias peak 
exists for any phase difference. b, e, Data taken at Bx = 0.7 T, where a 
zero-bias peak exists for a range of phase differences within each period.   
c, f, Data taken at Bx = 1.0 T,  where a zero-bias peak persists through  
most of the period. 

 
Using our vector magnet, we apply a magnetic field Bz perpendic- 

ular to the sample plane to generate the flux that controls the phase 
difference across the junction, and an in-plane magnetic field Bx in 
the x direction to tune the Zeeman energy (Fig. 1a, d). On the outer 
edge of the junction, we fabricate a weakly coupled electrode by evap- 
orating 10 nm of titanium and 100 nm of gold, with approximately 
10 nm of CdHgTe as a tunnel barrier, which is immediately above the 
HgTe layer in the MBE-grown heterostructure. The overlapping area is 
approximately 100 nm × 100 nm, which gives a tunnelling resistance 
of around 300 kΩ. 

By applying an a.c. excitation in addition to a d.c. voltage bias on the 
tunnel probe and measuring the a.c. current through the supercon- 
ducting lead, we can obtain a two-terminal differential conductance 
curve as we vary the d.c. bias. The observed spectrum of the proxim- 
itized 2DEG typically exhibits two broad coherence peaks separated 
by about 120 μV in bias voltage and a valley near zero bias (Fig. 2a). 
To see how the spectrum disperses with the phase difference φ, we scan 
Bz over a range of a few milliteslas near zero and record the differential 
conductance as a function of both the bias voltage and Bz. As shown 
by the colour maps in Fig. 2a–c, the tunnelling spectrum exhibits a 
strong periodic modulation with Bz, where the period matches the 
area of the flux loop, considering the magnetic flux repelled by the 
superconducting lead. The in-plane field also generates an asymmetry 
between positive and negative voltage biases, which we attribute to a 
particle–hole asymmetry. To highlight the contribution to the tunnel- 
ling conductance near zero energy, we symmetrize the data at positive 
and negative biases (the raw data and further discussion are presented 
in Supplementary Information section 3). 

At low in-plane fields, the tunnelling spectra reveal a conductance 
minimum near zero bias, irrespective of the applied phase difference 
across the junction. This behaviour (Fig. 2a, b) resembles recent meas- 
urements in a graphene Josephson junction and is interpreted as the 
behaviour of the bulk Andreev bound states and their dependence on 

the phase difference across the junction30. We attribute the missing 
zero-bias conductance peak at low in-plane fields near a phase differ- 
ence of π to the presence of weak normal reflections at the normal– 
superconducting interface. At high in-plane fields, a conductance peak 
develops near zero bias over a range of φ values, repeating periodically 
(Fig. 2c, f). The emergence of a robust and extended zero-bias peak in 
φ indicates the spectrum of the sub-gap states that concentrate near 
zero energy and persist over a wider range of φ values as the in-plane 
magnetic field increases (Fig. 3a–h). 

To fully capture how the phase range containing the zero-bias peak 
grows with the magnetic field, we quantify the emergence of this con- 
ductance peak by extracting the curvature of the differential conduct- 
ance curve around zero bias by using a parabolic fit on the raw data 
(Fig. 3i). We perform this analysis at all values of phase difference φ and 
in-plane field Bx to produce a colour map illustrating the development 
of the zero-bias peak in the φ–Bx phase space (Fig. 3i). At low fields, 
most φ values give a dip (positive curvature) in the zero-bias conduct- 
ance, shown in red in Fig. 3i, indicative of a conventional supercon- 
ducting phase. As Bx increases, the differential conductance becomes 
flatter near zero bias, and the parabolic fit yields a small absolute value, 
giving rise to a white region in the colour plot, which expands to occupy 
higher fractions of each period in φ. As the magnetic field continues to 
grow from 0.6 T to 1.2 T, the blue region of negative curvature emerges, 
marking the zero-bias peak, and expands to fill the entire period. 
Similar behaviour of the expanding zero-bias-peak region is observed 
for negative values of Bx, resulting in a phase diagram that is consistent 
with the predicted topological phase transition (Fig. 1c). 

To simulate transport through the device, we describe the semicon- 
ductor by a tight-binding model with uniform Rashba spin–orbit cou- 
pling defined in a rectangular region. The region comprises a normal 
part sandwiched between two segments with proximity-induced super- 
conductivity held at different phases (Supplementary Fig. 14; similar 
to Fig. 1a). We evaluate the conductance between a metallic tunnelling 
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Fig. 3 | Development of a zero-bias peak and reconstructed phase 
diagram. a–h, Progression of tunnelling conductance colour plots (in 
units of e2/h) as the magnetic field Bx varies from −1.0 T to 1.2 T, omitting 
the field values shown in Fig. 2 except for Bx = 0 T, which serves as a point 
of reference. All plots span over a range of 0.8 mT in Bz, except Bz = 1.2 T. 
i, Colour plot showing the extracted zero-bias curvature (in units of 

e2 h−1 μeV−2) as a function of both the in-plane magnetic field Bx and 
the phase difference offset Δφ. The blue region in the phase diagram 
shows where a well defined zero-bias peak is present in the tunnelling 
conductance. Its emergence and expansion with the application of both 
positive and negative in-plane magnetic fields agrees with the predicted 
phase transition (Fig. 1c). 

 
probe attached to the edge of the normal region and two grounded 
superconducting leads that contact the superconducting regions on 
both sides, employing a scattering-matrix approach using the KWANT 
package31. 

Motivated by the experimental observation that the superconducting 
coherence peaks do not shift in energy with the in-plane magnetic field, 
we assume a suppressed g factor in the proximitized parts and neglect 
the Zeeman field outside the normal region. Our model includes dop- 
ing of the semiconductor due to the superconductor by assuming a 
higher density in the proximitized parts of the former. We account 
for the experimental resolution and non-uniform phase differences 
across the junction due to flux focusing by artificially broadening the 
theoretical data in energy and phase. 

The calculated conductance, plotted as a function of bias voltage and 
phase in Fig. 4a–f, reproduces key features of the experimental data. 
At low Zeeman fields, the heights of the coherence peaks at V ≈ ±70 μV 
are modulated in phase and the conductance has a dip at zero bias for 
all values of the phase. At fields above Bx = 0.5 T, a peak at zero bias 
develops while the coherence peaks remain visible. In a minor devia- 
tion from the experiment, the coherence peaks shift to slightly higher 
energies V ≈ ±100 μV in the numerical simulations, which can be 
reconciled by accounting for a small gap suppression by the Zeeman 
effect in the superconductor. 

The emergence of the zero-bias peak at finite fields is clearly visible 
in Fig. 4g, in which the curvature of the zero-bias conductance with 
bias voltage is plotted as a function of phase difference and the mag- 
netic field. In the experimental field range, the numerical results in 
Fig. 4g are in excellent agreement with the experimental data in Fig. 3i. 
For all phase differences, the curvature monotonously decreases 
with the in-plane field and eventually transitions from a dip to a peak. 
At Bx = 1 T, a zero-bias peak exists for all values of the phase. 

Comparing the theoretical curvature plot in Fig. 4g with the phase 
diagram in Fig. 1c reveals that the most pronounced zero-bias peaks 
occur close to the topological phase boundaries. At the same time, a 
zero-bias dip exists deep inside the topological phase. This is consistent 
with our numerical findings that the Majorana wavefunction is almost 
completely delocalized over the junction area for the experimental sam- 
ple dimensions (see Supplementary Information section 7), precluding 
a dominant Majorana signature in the measurement. Instead, the peak 
originates from a band of quasi-one-dimensional sub-gap states living 
inside the junction (Fig. 1e). The density of states is enhanced at low 
energies as the band crosses zero energy in the vicinity of the topolog- 
ical phase transition, which manifests itself as a zero-bias conductance 
peak when the energy broadening is larger than the induced gap in the 
quasi-one-dimensional band. In the presence of normal reflection, the 
band acquires a finite width (Fig. 1f), and the zero-bias conductance 
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Fig. 4 | Numerical simulation of the tunnelling conductance using a 
tight-binding model. a–f, Calculated tunnelling conductance between a 
metallic tunnelling probe attached to the edge of the normal region and 
two grounded superconducting leads. d–f, Line cuts at four representative 
phase differences, taken from the conductance colour plots a–c, at three 
Bx fields corresponding to those shown in Fig. 2. The emergence of 
the zero-bias peak in finite fields agrees with the experimental data. 

g, Predicted zero-bias curvature of the tunnelling conductance (in units of 
e2 h−1 μeV−2) as a function of both the in-plane magnetic field, B, and the 
phase difference, φ. Indicative of a zero-bias peak, the blue regions trace 
out the transition between the trivial and topological superconducting 
phases. Outlined in black dashed lines is the regime corresponding to the 
experimental data. 

 
peak can exist in a broader parameter window around the phase tran- 
sition (see Supplementary Information section 8 for a discussion about 
the density of states). 

Future directions to improve this platform include enhancing the 
interface quality and adopting narrower and longer junctions, which 
will result in a harder gap in the junction (that is, stronger signals in the 
observed spectrum, such as a deeper dip or sharper contrast in the tun- 
nelling conductance) and enable robust control of the topological tran- 
sition without requiring higher magnetic fields (see Supplementary 
Information section 10). Notably, our approach does not rely on any 
fine-tuning of the chemical potential or the in-plane magnetic field 
and can be easily generalized to other two-dimensional materials, 
where the interplay of phase bias, spin–orbit coupling and Zeeman 
effect can create exciting opportunities to investigate topological 
superconductivity. 

Data Availability 
The data that support the findings of this study are available within the paper and 
its Supplementary Information. Additional data are available from the correspond- 
ing author upon request. 
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