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Topological superconductivity in a phase-controlled

Josephson junction
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Topological superconductors can support localized Majorana
states at theirboundaries!™. These quasi-particle excitations obey
non-Abelian statistics that can be used to encode and manipulate
quantum information in a topologically protected manner®’.
Althoughssignatures of Majoranabound states have been observed
in one-dimensional systems, there is an ongoing effort to find
alternative platforms that do not require fine-tuning of parameters
and can be easily scaled to large numbers of states®> 2., Here we
present an experimental approach towards a two-dimensional
architectureofMajoranaboundstates. UsingaJosephsonjunction
made of a HgTe quantum well coupled to thin-film aluminium, we
are able to tune the transition between a trivial and a topological
superconductingstate by controlling the phase difference across the
junction and applying an in-plane magnetic field??. We determine
the topologicalstate of the resulting superconductorby measuring
the tunnelling conductance at the edge of the junction. At low
magnetic fields, we observe a minimum in the tunnelling spectra
near zero bias, consistent with a trivial superconductor. However,
as the magnetic field increases, the tunnelling conductance
develops a zero-bias peak, which persists over a range of phase
differences that expands systematically with increasing magnetic
field. Our observations are consistent with theoretical predictions
for this system and with full quantum mechanical numerical
simulations performed onmodelsystems with similar dimensions
and parameters. Our work establishes this system as a promising
platform for realizing topological superconductivity and for
creating and manipulating Majorana modes and probing topological
superconducting phases in two-dimensional systems.

Majorana bound states (MBS) are quasiparticle excitations that are
their own antiparticles and hence can serve as the basis of topological
quantum computing, where quantum information can be stored and
manipulated robustly®?3. Spectroscopic studies have been conducted
in various one-dimensional systems, such as proximitized nanowires
and atomic chains, where zero-bias peaks existin the tunnelling spectra
inpartsofthe parameterspaceassociated with MBS!'9-12:14-21 Despite
the growing evidence, scalable networks of Majorana qubits are chal-
lenging to obtain in such one-dimensional platforms, owing to both the
intrinsic instabilities associated with one-dimensional systems and the
technological obstacles in their physical implementation'>?*, Therefore,
to understand and use the full power of MBS physics, two-dimensional
platforms that can realize topological superconductivity are in demand
forpatterning large-scale networksofMajoranadevices, aswellasinte-
grating them with other quantum information devices and systems, in
a reproducible and controlled fashion?>.

We design and implement a controllable two-dimensional platform
for realizing topological superconductivity. This platform is based
on a recent theoretical proposal for a planar Josephson junction cre-
ated from a two-dimensional electron gas (2DEG) subject to a strong
Rashba spin—orbit interaction, sandwiched between two aluminium

superconducting leads®? (Fig. 1a). In this system, the phase transition
between trivial and topological superconductivity can be tuned using
two independent knobs: the phase difference across the junction, ¢,
and the Zeeman energy Ez, which is governed by an external mag-
netic field applied in the plane of the junction. In a long Josephson
junction that is translationally invariant along x, the direction parallel
to the superconducting electrodes, supercurrent is carried by bands of
Andreev bound states in the normal (non-superconducting) region,
formed by successive Andreev reflections atthe normal-superconductor
interfaces?®?7. The energy of each Andreev state thus depends both on
¢ and on the phase accumulated by the quasiparticles traversing the
junction atvarious angles from the x direction. Therefore, the Andreev
states can have a full range of wavevectors, with the x-components of
their wavenumbers kx varying in magnitude from 0 to nearly the Fermi
wavenumber kr. Their energies hence disperse to form a continuous
sub-gap spectrum. Notably, when normal reflection at the normal—
superconductor interface is weak, these Andreev bands are relatively
flatand disperse only weakly with changing kx (Fig. 1¢). Thisleadstoa
strongly enhanced density of states near zero energy in the vicinity of
the topological phase transition. When normal reflection is taken into
account, the bands acquire a non-zero width (Fig. 11).
A topological phase transition in a clean junction is accompanied by
a zero-energy crossing at kx = 0 (Fig. 1b). When the Zeeman energy
is zero, the kx = 0 Andreev states are two-fold degenerate and cross
at @ = N in the absence of normal reflections. A finite magnetic field
parallel to the x axis separates the kx = 0 states by a phase difference
A = 2NEz/E1, where Et = (N/2)(hwvr/W) is the Thouless energy (7 is
thereduced Planck constant, vr is the Fermi velocity, and Wis the width
ofthe junction.). In the range of ¢ values between these two crossings,
the occupancy of fermionic states becomes odd, and the system under-
goes aphase transition into a topological superconducting phase. Wecan
map outthis phaseboundary inthe ¢p—Ezspace (Fig. I ¢). As Ezincreases
from 0 to the Thouless energy Er, the junction becomes topological in
a growingrange of ¢ values, with predicted MBS on the end of a semi-
infinite junction. As Ez further increases beyond Er, this ¢ range starts
todecrease, forming overall diamond shapes (dashed linesin Fig. 1¢). In
aphysical system, normal reflection can occur at the interfaces, which
hybridize the left- and right-moving modes in the junction and shift
the phase boundary from the ideal scenario. In this case, the topologi-
cal phase occupies regions deformed from the diamond shape, but its
dependence on the magnetic field and the phase difference is robust
(solid colour in Fig. 1¢) and largely insensitive to changes in geometry
and in electron chemical potential. Consequently, for a wide range of
magnetic fields, the application of a small phase bias can easily tune the
system in and out of the topological superconducting phase and is hence
apowerful experimental knob that can be controlled in a rapid manner.
Our planar Josephson junction consists of an 8-nm-wide HgTe quan-
tum well contacted by thermally evaporated aluminium leads about
15 nm thick, with 5 nm of titanium as a sticking layer. The junction

!Department of Physics, Harvard University, Cambridge, MA, USA. 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA. *Max-Planck-Institut fur
Physik komplexer Systeme, Dresden, Germany. 4IBM T. J. Watson Research Center, Yorktown Heights, NY, USA. Physikalisches Institut (EP3) and Institute for Topological Insulators, Universit&t
Wiirzburg, Wiirzburg, Germany. SInstitut fiir Theoretische Physik und Astrophysik and Wiirzburg-Dresden Cluster of Excellence ct.qmat, Universitat Wiirzburg, Wiirzburg, Germany.

*e-mail: yacoby@g.harvard.edu

2MAY2019IVOL569INAtUrel93


https://doi.org/10.1038/s41586-019-1148-9
https://doi.org/10.1038/s41586-019-1148-9
mailto:yacoby@g.harvard.edu
mailto:yacoby@g.harvard.edu

21

¢ 2
Trivial
<
o
(%)
C
[
g 1
el
[0]
2]
©
£
o
0
-2 -1 0 1 2
Zeeman energy, E, (Et)
e (@) B,=0T ¥r  B,=10T A B, =16T
] N /2“ W 12
[
5 | 5 - S
g o0 g Qpb—— § 0
c C ‘ C
we || w h_ A
-2} o NV -2 J -2
i | O
_kF,1_kF.2 0 kF.ZkF.1 _kF.1_kF,2 0 kF,ZkF.1 _kF,1_kF,2 0 kF,ZkF1
kX kX X
B,=10T

- ||

il
PRI
W

il

A
v “““JH“‘|»I|

Fig. 1| Topological transition in a phase-controlled Josephson junction.
a, Device schematic for a planar Josephson junction of length L and width
W created from a HgTe 2DEG (cyan) sandwiched between two aluminium
superconducting leads, the ends of which connect to form a flux loop (steel
blue). (We made devices both with and without the hole inside the flux
loop and found little difference between the two designs. Data presented in
the main text were taken from a device with a wider junction (600 nm) and
without the hole in the mesa.) The tip of the tunnel probe (gold) overlaps
with the 2DEG and is separated from it by a region of CdHgTe (pastel
colours below the tip). The perpendicular component of the external
magnetic field B: is used to tune the phase difference across the junction.

b, The bound-state spectrum (in units of the induced superconducting gap
A) for kx = 0 for a junction that is long in the x direction and symmetric

in the y direction. The state is two-fold degenerate in the absence of any
external magnetic field (dashed lines), and spin-split in the presence of

an in-plane field (solid lines), accommodating a topological phase that

region is 600 nm wide and about 1 um long, with one end of each lead
connected to form a flux loop. As previously established, our HgTe
quantumwell, grownbymolecularbeamepitaxy,providesa2 DEG with
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develops in the range of ¢ values between the zero-bias crossings (blue
shaded regions). ¢, The boundary between the topological and trivial
phases’ superconductivity in the ¢—E7 space. Normal reflection at the
superconducting—normal interface can cause it to deviate (light blue
ribbons) from the diamond shapes (dashed lines) that correspond to the
case of perfect transparency. d, False-colour scanning electron micrograph
of a device with a narrow junction. The mesa region containing the 2DEG
is coloured in green, the superconducting contact is purple and the tunnel
probe is yellow. e, Dispersion of the Andreev band as a function of kx, at
three values of Zeeman energy (kr 1, kr» are the Fermi momenta of the two
spin components). The circle, star and triangle correspond to the regions
in c. The Andreev bands become relatively flat during the topological
phase transition (middle panel). f, Including some normal reflection in the
calculations shown in e results in a finite width of the bands. Solid lines

in red, blue, purple and green in b, e, f represent spin-up and spin-down
electrons and holes, respectively.

high mobility and dominant Rashba spin—orbit coupling, and the thin
aluminium leads can superconduct up to 1.8 T of in-plane magnetic
fields”27.
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Fig. 2 | Phase modulations of the tunnelling conductance at low and
high fields. a—c, Differential conductance colour plots (in units of e/h;
e, electron charge; h, Planck constant) as a function of the bias voltage
(horizontal axis) and the phase difference (left vertical axis) offset from
the Agp = 0 point, identified by the value of ¢ at which the coherence
peaks reach a maximum. The right vertical axis shows the actual B: field
produced by the magnet. d—f, Line cuts of a—c showing the differential

Using our vector magnet, we apply a magnetic field B: perpendic-
ular to the sample plane to generate the flux that controls the phase
difference across the junction, and an in-plane magnetic field Bx in
the x direction to tune the Zeeman energy (Fig. 1a, d). On the outer
edgeofthe junction, we fabricate aweakly coupled electrode by evap-
orating 10 nm of titanium and 100 nm of gold, with approximately
10 nm of CdHgTe as a tunnel barrier, which is immediately above the
HgTelayer in the MBE-grown heterostructure. The overlapping area is
approximately 100 nm X 100 nm, which gives a tunnelling resistance
of around 300kQ.

By applying an a.c. excitation in addition to ad.c. voltage bias on the
tunnel probe and measuring the a.c. current through the supercon-
ducting lead, we can obtain a two-terminal differential conductance
curve as we vary the d.c. bias. The observed spectrum of the proxim-
itized 2DEG typically exhibits two broad coherence peaks separated
by about 120 PV in bias voltage and a valley near zero bias (Fig. 2a).
Toseehow the spectrum disperses with the phase difference ¢, we scan
B:overarange of a few milliteslas near zero and record the differential
conductance as a function of both the bias voltage and B:. As shown
by the colour maps in Fig. 2a—c, the tunnelling spectrum exhibits a
strong periodic modulation with Bz, where the period matches the
area of the flux loop, considering the magnetic flux repelled by the
superconducting lead. The in-plane field also generates an asymmetry
between positive and negative voltage biases, which we attribute to a
particle-hole asymmetry. To highlight the contribution to the tunnel-
ling conductance near zero energy, we symmetrize the data at positive
and negative biases (the raw data and further discussion are presented
in Supplementary Information section 3).

Atlow in-plane fields, the tunnelling spectra reveal a conductance
minimum near zero bias, irrespective of the applied phase difference
across the junction. This behaviour (Fig. 2a,b) resembles recent meas-
urements in a graphene Josephson junction and is interpreted as the
behaviour of the bulk Andreev bound states and their dependence on

conductance curves as a function of the bias voltage on the tunnel probe at
four representative phase differences, averaged over repeating lines spaced
at integer periods. a, d, Data taken at Bx = 0 T, where no zero-bias peak
exists for any phase difference. b, e, Data taken at Bx = 0.7 T, where a
zero-bias peak exists for a range of phase differences within each period.

¢, f, Data taken at Bx = 1.0 T, where a zero-bias peak persists through

most of the period.

the phase difference across the junction’®. We attribute the missing
zero-bias conductance peak atlow in-plane fields near a phase differ-
ence of N to the presence of weak normal reflections at the normal—
superconducting interface. Athigh in-plane fields, a conductance peak
developsnearzerobiasoverarangeof ¢ values,repeating periodically
(Fig.2c, ). The emergence of arobust and extended zero-bias peak in
¢ indicates the spectrum of the sub-gap states that concentrate near
zero energy and persist over a wider range of ¢p values as the in-plane
magnetic field increases (Fig. 3a—h).

To fully capture how the phase range containing the zero-bias peak
grows with the magnetic field, we quantify the emergence of this con-
ductance peak by extracting the curvature of the differential conduct-
ance curve around zero bias by using a parabolic fit on the raw data
(Fig.31). Weperformthisanalysisatall values of phasedifference ¢ and
in-plane field Bx to produce a colour map illustrating the development
of the zero-bias peak in the ¢—Bx phase space (Fig. 31). Atlow fields,
most ¢ values give adip (positive curvature) in the zero-bias conduct-
ance, shown in red in Fig. 31, indicative of a conventional supercon-
ducting phase. As Bx increases, the differential conductance becomes
flatternear zerobias, and the parabolic fityields asmall absolute value,
givingrise to a white region in the colour plot, which expands to occupy
higher fractions of each period in ¢. As the magnetic field continues to
grow from 0.6 Tto 1.2 T,the blueregion of negative curvature emerges,
marking the zero-bias peak, and expands to fill the entire period.
Similarbehaviour of the expanding zero-bias-peak region is observed
for negative values of Bx, resulting in a phase diagram that is consistent
with the predicted topological phase transition (Fig. 1c).

To simulate transport through the device, we describe the semicon-
ductor by a tight-binding model with uniform Rashba spin—orbit cou-
pling defined in a rectangular region. The region comprises a normal
part sandwiched between two segments with proximity-induced super-
conductivity held at different phases (Supplementary Fig. 14; similar
toFig. 1a). Weevaluate the conductancebetweenametallic tunnelling
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Fig. 3 | Development of a zero-bias peak and reconstructed phase
diagram. a—h, Progression of tunnelling conductance colour plots (in
units of e?/h) as the magnetic field Bx varies from —1.0 T to 1.2 T, omitting
the field values shown in Fig. 2 except for Bx = 0 T, which serves as a point
of reference. All plots span over a range of 0.8 mT in Bz, except B = 1.2 T.
i, Colour plot showing the extracted zero-bias curvature (in unitsof

probe attached to the edge of the normal region and two grounded
superconducting leads that contact the superconducting regions on
both sides, employing a scattering-matrix approach using the KWANT
package?!.

Motivated by the experimental observation thatthe superconducting
coherencepeaks donotshiftin energy with the in-plane magnetic field,
we assume a suppressed g factor in the proximitized parts and neglect
the Zeeman field outside the normal region. Our model includes dop-
ing of the semiconductor due to the superconductor by assuming a
higher density in the proximitized parts of the former. We account
for the experimental resolution and non-uniform phase differences
across the junction due to flux focusing by artificially broadening the
theoretical data in energy and phase.

The calculated conductance, plotted as a function of bias voltage and
phase in Fig. 4a—f, reproduces key features of the experimental data.
AtlowZeemanfields, theheightsofthe coherencepeaksatV = £ 70 yV
are modulated in phase and the conductance has a dip at zero bias for
all values of the phase. At fields above Bx = 0.5 T, a peak at zero bias
develops while the coherence peaks remain visible. In a minor devia-
tion from the experiment, the coherence peaks shift to slightly higher
energies V = £100 MV in the numerical simulations, which can be
reconciled by accounting for a small gap suppression by the Zeeman
effect in thesuperconductor.
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e> ™' yeV~2) as a function of both the in-plane magnetic field Bx and
the phase difference offset A¢. The blue region in the phase diagram
shows where a well defined zero-bias peak is present in the tunnelling
conductance. Its emergence and expansion with the application of both
positive and negative in-plane magnetic fields agrees with the predicted
phase transition (Fig. 1c).

The emergence ofthe zero-bias peak at finite fields is clearly visible
in Fig. 4g, in which the curvature of the zero-bias conductance with
bias voltage is plotted as a function of phase difference and the mag-
netic field. In the experimental field range, the numerical results in
Fig.4gareinexcellentagreement with the experimental datain Fig. 3i.
For all phase differences, the curvature monotonously decreases
with the in-plane field and eventually transitions from a dip to a peak.
AtBx = 1 T, azero-bias peak exists for all values of the phase.

Comparing the theoretical curvature plot in Fig. 4g with the phase
diagram in Fig. 1c reveals that the most pronounced zero-bias peaks
occur close to the topological phase boundaries. At the same time, a
zero-biasdip existsdeep insidethe topological phase. Thisis consistent
with our numerical findings that the Majorana wavefunction is almost
completelydelocalized overthejunctionareafortheexperimental sam-
ple dimensions (see Supplementary Information section 7), precluding
a dominant Majorana signature in the measurement. Instead, the peak
originates fromaband of quasi-one-dimensional sub-gap statesliving
inside the junction (Fig. 1e). The density of states is enhanced at low
energies as the band crosses zero energy in the vicinity of the topolog-
ical phase transition, which manifests itself as a zero-bias conductance
peak when the energy broadening is larger than the induced gap in the
quasi-one-dimensional band. In the presence of normal reflection, the
band acquires a finite width (Fig. 1), and the zero-bias conductance
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Fig. 4 | Numerical simulation of the tunnelling conductance using a
tight-binding model. a—f, Calculated tunnelling conductance between a
metallic tunnelling probe attached to the edge of the normal region and
two grounded superconducting leads. d—f, Line cuts at four representative
phase differences, taken from the conductance colour plots a—c, at three
Bx fields corresponding to those shown in Fig. 2. The emergence of

the zero-bias peak in finite fields agrees with the experimental data.

peak can exist in a broader parameter window around the phase tran-
sition (see Supplementary Information section 8 for a discussion about
the density ofstates).

Future directions to improve this platform include enhancing the
interface quality and adopting narrower and longer junctions, which
will resultin aharder gap in the junction (that is, stronger signals in the
observed spectrum, such as a deeper dip or sharper contrast in the tun-
nelling conductance) and enable robust control of the topological tran-
sition without requiring higher magnetic fields (see Supplementary
Information section 10). Notably, our approach does not rely on any
fine-tuning of the chemical potential or the in-plane magnetic field
and can be easily generalized to other two-dimensional materials,
where the interplay of phase bias, spin—orbit coupling and Zeeman
effect can create exciting opportunities to investigate topological
superconductivity.

Data Availability

The data that support the findings of this study are available within the paper and
its Supplementary Information. Additional data are available from the correspond-
ing author uponrequest.

g, Predicted zero-bias curvature of the tunnelling conductance (in units of
e>h~" eV~2) as a function of both the in-plane magnetic field, B, and the
phase difference, ¢. Indicative of a zero-bias peak, the blue regions trace
out the transition between the trivial and topological superconducting
phases. Outlined in black dashed lines is the regime corresponding to the
experimental data.
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