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ABSTRACT

The well-known Knudsen relations and the total exchange flow (TEF) analysis framework provide

quantifications of exchange flow across an open boundary to the adjacent ocean in terms of bulk values

(Knudsen theory: inflow and outflow volume or salinity) or with resolution in salinity space (TEF:

profiles of volume and salt flux in salinity coordinates). In the present study, these theories are ex-

tended toward mixing of salinity, defined as the decay of salinity variance due to turbulent mixing. In

addition to the advective fluxes, diffusive fluxes across the boundary are also considered now. These

new Knudsen and TEF relations for mixing are derived by applying Gauss’s theorem to the salinity

square and salinity variance equations. As a result of the analysis, four different Knudsen relations for

the mixing in estuaries are derived. The first one is exact and considers nonperiodicity as well as

nonconstancy of the inflow and outflow salinities. The other three formulations are approximate only,

in the sense that either nonperiodicity or nonconstancy or both are relaxed. The simplest of those

formulations has recently been derived by MacCready et al. and estimates the estuarine mixing as the

product of inflow salinity, outflow salinity, and time-averaged river runoff. These four mixing esti-

mates are systematically assessed by means of a number of idealized estuarine test cases. For periodic

tidal flow, the simplest estimate still predicts the effective (physical plus numerical) mixing within an

error of about 10%.

1. Introduction

Estuaries can be regarded as mixing zones which dilute

saltwater inflowing from the ocean with freshwater from

river runoff to produce brackish water flowing back into

the ocean (Fischer 1976). To underline this key estuarine

function, Wang et al. (2017) used the name mixing ma-

chine to characterize estuarine dynamics. Since mixing is

such a fundamental property in estuaries, several authors

have proposed quantitative measures for it. In an early

estuarine model, Hansen and Rattray (1965) quantified

mixing in terms of a constant eddy diffusivity to param-

eterize tidal mixing. This was also used by Hetland and

Geyer (2004) to show how increased eddy diffusivity

results in a decreased length of the estuarine brackish

water zone. One limitation of eddy diffusivity as a mea-

sure of estuarine mixing is that it represents for a tracer

the ratio of the turbulent flux and the vertical gradient, the

estuarine-wide average of which has no physical signifi-

cance. Second, eddy diffusivity may be specifically high at

unstratified locations where nomixing is taking place since

the waters are already mixed, as, for example, in the

freshwater region or the bottom boundary layer. For the

same reason, the turbulent dissipation rate which can di-

rectly be measured and often is used to indicate mixing

(Peters and Bokhorst 2000) is not suitable to quantify es-

tuarine mixing. Another candidate for quantifying estua-

rine mixing could be the turbulent buoyancy flux (Peters

andBokhorst 2001), which, however, is a vectorial quantity

where opposing contributions might partially compensate

each other. This occurs, for example, in tidal flow with

downward buoyancy flux during ebb and upward buoy-

ancy flux during flood, although mixing of salt occurs in

both situations. An interesting alternative might be to use
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diahaline salt fluxes as measure for mixing, as proposed

by Walin (1977).

Physically, mixing occurs on the microscale, when

small-scale tracer gradients caused by turbulent stir-

ring are smoothed by the divergence of molecular

tracer fluxes. This molecular mixing is quantified as

the scalar dissipation rate of tracer variance per unit

volume, xc 5 2nc(=c0)2 (Umlauf and Burchard 2005),

where nc is the molecular tracer diffusivity, =c0 is the
gradient of the turbulent tracer fluctuation, and the

overbar denotes an ensemble average (Lesieur 1997).

Therefore, Burchard and Rennau (2008) proposed to

use the volume integral of xc as a measure for basin-

wide mixing, a quantity which can easily be calculated

from numerical model results. This method was first

applied by Burchard et al. (2009) to quantify salt mix-

ing in a coastal ocean simulation of the western Baltic

Sea. A first application of the salinity variance dissi-

pation to estuarine mixing has recently been demon-

strated by Wang et al. (2017) using the total exchange

flow (TEF) analysis framework of MacCready (2011).

Burchard and Rennau (2008) also showed how the ef-

fective (physical plus numerical) mixing can be con-

sistently quantified locally for numerical simulations,

such that the integral of the sum of both gives the ef-

fective total mixing. This model analysis method has

later been refined by Klingbeil et al. (2014), including

a numerical analysis for a model simulation of the

western Baltic Sea. A first numerical mixing analysis

for estuaries using these methods has recently been

carried out by Ralston et al. (2017), who proposed to

reduce physical mixing such that the effective mixing

remains at realistic levels.

Knudsen (1900) formulated volume flux and salt flux

relations for freshwater, saltwater, and brackish water in

estuaries to quantify this water mass transformation.

He also mentioned that mixing is responsible for the

transformation, but neither defined nor quantified the

mixing itself. While Knudsen (1900) limited his early

theory to bulk values of inflowing and outflowing salin-

ities and transports of volume and salt, Walin (1977)

much later introduced an isohaline framework to de-

scribe volume, salt, and tracer transports with resolu-

tion in salinity space. Following a similar concept,

MacCready (2011) introduced the TEF analysis frame-

work providing volume and salt transport as functions of

salinity classes. Moreover, he connected the TEF con-

cept to the Knudsen quantities of inflow and outflow

salinities and net transports per salinity class in a con-

sistent way. Wang et al. (2017) showed for a numerical

model study of the Hudson River estuary how the ef-

fective mixing integrated over an estuarine control vol-

ume can be quantified by means of the TEF concept.

In their recent review, Burchard et al. (2018) ap-

plied the Knudsen relations and the TEF analysis

framework to the multidecadal inflow dynamics of

the Baltic Sea, refining earlier short-term studies by

Walin (1981). The review by Burchard et al. (2018)

additionally provides a translation of the Knudsen

(1900) paper into English. The TEF framework is

also used to track reactive biogeochemical tracers

such as nutrients and dissolved oxygen in large es-

tuarine systems.

Based on the Knudsen relations and the TEF anal-

ysis framework, MacCready et al. (2018) derived a

quantification for time-averaged and volume-integrated

estuarine mixing as the product of the inflow salin-

ity, the outflow salinity, and the time-averaged river

runoff.

The present manuscript adds the following aspects to

the new theory of MacCready et al. (2018):

1) An exact Knudsen mixing relation is formulated from

which the Knudsen mixing relation by MacCready

et al. (2018) and other approximate relations are

derived by assuming periodic estuarine volume, salt

content, and salt variance (or salt square) and/or

constancy of the inflow and outflow salinities.

2) The TEF analysis framework developed byMacCready

(2011) is used to consistently derive these relations.

This particularly leads to the distinction between

the square of the characteristic outflow or inflow

salinity and the characteristic outflow or inflow

salinity squares.

3) In addition to advective fluxes, diffusive fluxes of salt,

salt square, and salt variance are included into the

TEF concept.

4) The TEF relations are discretized in such a way that

they are fully consistent with the effective (physical

plus numerical) mixing in the model.

To set the scene, section 2 uses a stationary box es-

tuary to link the Knudsen relations to estuarine mixing

and to derive in a simple way the mixing relation in-

troduced by MacCready et al. (2018). A detailed deri-

vation of mixing estimates for general time-dependent

estuaries based on mass and salt conservation is then

given in section 3. The performance of the derived

mixing estimates is investigated in section 4, with two

analytical scenarios directly prescribing the exchange

flow at an estuarine transect without considering the

estuary itself. Scenarios explicitly including estuarine

mixing are assessed, using a one-dimensional longitu-

dinal estuary model as well as a two-dimensional model

(including vertical resolution). The results and their

implications are discussed in section 5 and some con-

clusions are drawn in section 6.
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2. A mechanistic model of estuarine mixing

We use here a simple box-type estuary model as

prototype of an estuarine mixing machine to motivate

the estuarine mixing relation which has recently been

introduced by MacCready et al. (2018). This box model

is similar to the estuary box model introduced as river

boundary condition in climate models (Sun et al. 2017).

The model has a lower layer of volume Vin with salinity

sin and an upper layer of volume Vout with salinity sout,

with the constant total volume V 5 Vin 1 Vout (see

Fig. 1a). The lower box has a saline inflow of Qin with

salinity sin and the upper layer has a freshwater inflow

Qr and a saline outflow of Qout with salinity sout. In

this simple box model with only two water masses, the

lower salinity equals the inflow salinity sin and the upper

salinity equals the outflow salinity sout. Inflows (gener-

ally Qr and Qin) have a positive sign and outflows

(generally Qout) have a negative sign. Under these cir-

cumstances, assuming a steady state or periodic vari-

ability in time, the transports fulfill the following

balances of volume,

Q
in
1Q

out
1Q

r
5 0, (1)

and salt,

Q
in
s
in
1Q

out
s
out

5 0: (2)

Combining (1) and (2), the well-known Knudsen (1900)

relations can be derived:

Q
in
5

s
out

s
in
2 s

out

Q
r
, Q

out
52

s
in

s
in
2 s

out

Q
r
, (3)

which means that by only knowing the freshwater run-

off and representative inflow and outflow salinities, in-

flow and outflow volumes can be estimated. In the same

way, stationary budgets of salinity square,

Q
in
(s

in
)2 1Q

out
(s

out
)2 5 s

in
s
out

Q
r
, (4)

and salinity variance per unit volume,

Q
in
(s

in
2 s)2 1Q

out
(s

out
2 s)2 1Q

r
s2 5 s

in
s
out

Q
r
, (5)

can be derived from (1) and (2), where s5 (sinVin 1
soutVout)/V is the mean salinity in the box estuary. Both

the balances of the squared salinity and the salinity

variance per unit volume are not closed, since they

include a source of sinsoutQr on the right-hand side.

To guarantee stationary conditions also for these bal-

ances, an internal sink term M5 sinsoutQr needs to be

assumed. Since (5) suggests that this term is an inter-

nal sink to salinity variance, M can be interpreted

as volume-integrated salinity mixing (Burchard et al.

2009). This is exactly the key result by MacCready et al.

(2018): estuarine mixing can be estimated as the prod-

uct of inflow and outflow salinities with the freshwater

runoff.

Using the box-type estuary, we demonstrate this

mixing relation geometrically, allowing time depen-

dence. For simplicity, we restrict ourselves to the budget

of the squared salinity shown in (4). Application of the

salinity-square fluxes from (4) for the short time DT
without internal mixing (advection step, see Fig. 1)

would increase volume-integrated salinity square from

FIG. 1. Schematic box estuary to demonstrate the Knudsen relation for estuarine mixing.

(a) Box estuary in basic state when salinities in inflow and outflow boxes are mixed. (b) Box

estuary after adiabatic volume and salt fluxes have been applied for a periodDT, indicating how
salinity would be distributed without mixing. In both cases, blue colors qualitatively indicate

salinity (white is for zero salinity). Volume fractions before and after adiabatic inflows are

indicated as well.
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Vs2a 5 (s
in
)2V

in
1 (s

out
)2V

out
(6)

to

Vs2b 5 (s
in
)2(V

in
1DTQ

in
)

1 (s
out

)2(V
out

2DTQ
in
2DTQ

r
) , (7)

such that the mixing M required to mix this back to the

initial state (mixing step, see Fig. 1) would be

M5V
s2b 2 s2a
DT

5 [(s
in
)2 2 (s

out
)2]Q

in
2 (s

out
)2Q

r

5 s
in
s
out

Q
r
, (8)

where we used the first relation of (3) for the last step.

Since the result for M is independent of DT, it is also

valid for DT/ 0. Thus, in this stationary case without

temporal and spatial salinity variation within inflowing

and outflowing waters, the simple mixing relation of

MacCready et al. (2018),

M5 s
in
s
out

Q
r
, (9)

holds exactly.

With sin being the salinity input to the system, which

does not depend on the dynamics inside the estuary it-

self, sout can be calculated as function of mixing, runoff

and input salinity:

s
out

5
M

s
in
Q

r

, (10)

such that the ratio of outflowing and inflowing salinity,

Mc5
s
out

s
in

5
M

(s
in
)2Q

r

52
Q

in

Q
out

, (11)

can be regarded as a measure of the estuarine bulk

mixing completeness, where (sin)
2Qr is the maximum

possible mixing (MacCready et al. 2018). It should be

noted that the relation sout/sin 5 2Qin/Qout had already

been formulated by Knudsen (1900).

The usefulness of this simple estimate for the mixing

M can be readily shown for real estuaries, if some esti-

mates for inflow and outflow salinity and runoff are

available. Since Knudsen (1900) developed his theory

for the Baltic Sea, first Baltic Sea mixing estimates are

made here. Knudsen (1900) gave the following inflow

and outflow salinities obtained from single observa-

tions: sin 5 17.4 gkg21 and sout 5 8.7 g kg21 (giving a

mixing completeness of Mc 5 50%). Together with the

long-term runoff of the Baltic Sea of Qr 5 15 252m3 s21

(Matthäus and Schinke 1999), this would result in

an integrated mixing of M 5 sinsoutQr 5 2.31 3
106m3 s21 (g kg21)2. A more representative estimate

may be given based on the model results by Burchard

et al. (2018). Over an averaging period of 66 years

(1948–2013), the following values were calculated for

the straits connecting the Baltic Sea to the rest of the

ocean, the Darss Sill (denoted by A here, their Fig. 5)

and the Drogden Sill (denoted by B here, their Fig. 6):

A: QA
in 5 8022m3 s21, QA

out 5217 774m3 s21,

sAin 5 14:60 g kg21, sAout 5 8:81 g kg21;

B: QB
in 5 8164m3 s21, QB

out 5214 510m3 s21,

sBin 5 18:54 g kg21, sBout 5 8:49 g kg21.

Due to the long term integration, storage terms can be

neglected. With this,

s
in
5
QA

ins
A
in 1QB

ins
B
in

QA
in 1QB

in

,

s
out

5
QA

outs
A
out 1QB

outs
B
out

QA
out 1QB

out

,

(12)

such that sin 5 16.59 g kg21 and sout 5 8.67 g kg21 (re-

sulting in a mixing completeness of Mc 5 54%), and

withQr 52(QA
in 1QB

in 1QA
out 1QB

out)5 16 098m3 s21, an

estimated mixing rate of M 5 2.32 3 106m3 s21 (gkg21)2

results. It certainly is coincidence that both estimates

are so close to each other, but quite likely the real long-

term mixing of the Baltic Sea is on the order ofM’ 23
106m3 s21 (gkg21)2. Future research will challenge these

mixing estimates.

3. Derivation of an exact mixing relation using TEF

Here, the TEF analysis framework first described

by MacCready (2011) for volume and salinity is ex-

tended to squared salinity and salinity variance. The

framework is derived from the Reynolds-averaged

continuity equation,

›
x
u1 ›

y
y1 ›

z
w5 0, (13)

and the Reynolds-averaged salinity equation using the

eddy diffusivity assumption for turbulent salinity fluxes,

›
t
s1 ›

x
(us)1 ›

y
(ys)1 ›

z
(ws)2 ›

x
(K

h
›
x
s)

2 ›
y
(K

h
›
y
s)2 ›

z
(K

y
›
z
s)5 0: (14)

Cartesian coordinates are used, with time t, the space

vector (x, y, z), and the velocity vector (u, y, w). Hori-

zontal and vertical eddy diffusivities are denoted by

Kh and Ky, respectively, and s is salinity. Kinematic

boundary conditions are applied, that is, there is no
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volume flux through the surface at z5 h and the bottom

at z 5 2H. This implies that precipitation and evapo-

ration are neglected (Klingbeil et al. 2018). Conse-

quently, surface and bottom salinity fluxes are set to

zero.

Carrying out a volume integration of (13), the volume

budget of an estuary can be expressed as

›
t
V52

ð
A(0)

u
n
dA2

ð
Ar

u
n
dA , (15)

where A(0) is the open-boundary transect area (which

may be composed of several separate subareas) for sa-

linities larger than zero typically located at the open

boundary, and Ar is the area through which freshwater

of zero salinity is discharged into the control volume.

More generally, we define A(S) as the part of the open-

boundary transect with salinities s larger than a specific

salinity S, s . S. Furthermore, un is the normal velocity

component (positive outwards). Similarly, volume in-

tegration of the salinity equation in (14) results in

›
t

ð
V

s dV52

ð
A(0)

(u
n
s2K

h
›
n
s) dA , (16)

where ›ns denotes the salinity gradient normal to the

transect A(0) (pointing outward).

For any tracer c, the total (advective plus diffusive)

outward tracer flux Fc can be defined at the open

boundary to allow for the inclusion of diffusive cross-

boundary tracer fluxes into the Knudsen (1900) and

MacCready (2011) theorems:

Fc 5 u
n
c2K

h
›
n
c , (17)

with F1 5 un being the volume flux. Using (17), the

volume-integrated salinity budget in (16) can be re-

written as

›
t

ð
V

s dV52

ð
A(0)

Fs dA . (18)

If we now multiply (14) by 2s, we obtain a salinity-

squared equation:

›
t
s2 1 ›

x
(us2)1 ›

y
(ys2)1 ›

z
(ws2)2 ›

x
(K

h
›
x
s2)

2 ›
y
(K

h
›
y
s2)2 ›

z
(K

y
›
z
s2)52xs (19)

with the local salt mixing

xs 5 2[K
h
(›

x
s)2 1K

h
(›

y
s)2 1K

y
(›

z
s)2] ; (20)

see Burchard and Rennau (2008). Integrating the s2

equation [(19)] over the total volume V results in

›
t

ð
V

s2 dV52

ð
A(0)

Fs2 dA2M , (21)

with the volume-integrated mixing

M5

ð
V

xs dV , (22)

and the effective flux of squared salinity at the open

boundary Fs2 . Combining (14) and (19), a budget equa-

tion for the salinity variance is derived:

›
t

ð
V

s02 dV52

ð
A(0)

Fs02 dA2 s2
ð
Ar

u
n
dA2M , (23)

with the salinity deviation s0 5 s2 s, where s5
(1/V)

Ð
V
s dV is the volume-averaged salinity and Fs02

is the effective flux of salinity variance at the open

boundary. To derive (23), budget equations for the

mean salinity s and its square s2 are derived by using (15)

and (18). Based on this, a budget equation for the vari-

ance per unit volume, s02 is derived, which is then volume

integrated [see (2) and (3) of MacCready et al. (2018)].

The boundary flux of s02 is finally split between open

boundaries with s . 0 and river boundaries with s 5 0.

Compared to the volume-integrated budget of the

squared salinity from (21), the variance budget in (23) is

additionally increased by freshwater input (second term

on right-hand side). The salinity variance budget is more

clearly related to the concept of molecular mixing, and it

highlights the importance of the river flow as a source of

unmixed, high-variance water. On the other hand, the

salinity-squared budget arrives at the same net mixing

M, and in a steady state it relies only on information at

the ocean boundary section, not the whole estuarine

volume. This makes the salinity-squared formalism po-

tentially easier to apply to analysis of observations.

For any tracer c, its time-averaged boundary flux can

be expressed in salinity coordinates:

2

*ð
A(0)

Fc dA

+
5Qc(0)5

ðsmax

0

qc(s) ds (24)

with

qc(S)52
›Qc(S)

›S
and Qc(S)52

*ð
A(S)

Fc dA

+
,

(25)

where angle brackets denote temporal averaging. In (25),

Qc(S) is the incoming transport of c through the cross-

sectional area A(S) with salinities s higher than S, and

qc(S) is the incoming boundary flux of c per salinity class.
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Bulk values for inflow and outflow of any tracer c can

be defined:

Qc
in 5

ðSmax

0

(qc)1 dS$ 0;

Qc
out 5

ðSmax

0

(qc)2 dS# 0, (26)

where for any function a, the positive part is calculated

as (a)1 5max(a, 0) and the negative part is calculated as

a2 5min(a, 0), resulting in positive inflow transports

and negative outflow transports. For the volume fluxes

with c 5 1, we write for simplicity q 5 q1 and Q 5 Q1.

The tracer c could be any tracer, including reactive

tracers such as biogeochemical constituents or radioac-

tively decaying tracers (Walin 1977). In the following,

we will use c5 s for salinity transports, c5 s2 for salinity-

square transports, and c5 s02 for transport of salinity

variance per unit volume.

When numerically calculating the inflow and outflow

transports in well-mixed conditions, the algorithm in

(26) has been found to be numerically noisy, giving in-

consistent results for different numbers of salinity bins.

Therefore, MacCready et al. (2018) propose for the

basic situation of inflow at high salinities and outflow at

low salinities to determine the dividing salinity Sdiv at

which Qc(S) has its maximum. Parameter Qc
in is then

calculated as Qc(Sdiv).

Based on the definitions in (26), the tracer concen-

trations representative for inflow and outflow are cal-

culated as

c
in
5

Qc
in

Q
in

; c
out

5
Qc

out

Q
out

. (27)

Equations (24)–(27) are a generalization of the TEF

concept of MacCready (2011). For salinity s, the identity

of Qs
in and Qs

out from (26) and the inflow and outflow

salinities Fin and Fout as defined by MacCready (2011)

have already been shown by Burchard et al. (2018, see

their appendix C). Similarly, this identity could also be

shown for any tracer c.

In the following, a key issue will be the general in-

equality of (s2)in and (sin)
2 as well as of (s2)out and

(sout)
2. To derive a condition for their equality, we

calculate

(s2)
in
5 (s

in
)2 0

ðSmax

0

q1 dS

ðSmax

0

q1S2 dS5

�ðSmax

0

q1S dS

�2

,

(s2)
out

5 (s
out

)2 0

ðSmax

0

q2 dS

ðSmax

0

q2S2 dS5

�ðSmax

0

q2S dS

�2

,

(28)

where the latter equalities are only given if s is constant

over the positive and constant over the negative ranges

of q. Therefore, we call this condition the constancy

condition. This is true in the box estuary case (section 2),

but is generally not valid.

The temporally averaged freshwater runoff is

defined as

Q
r
52

*ð
Ar

u
n
dA

+
. (29)

With (24) and after temporal averaging, the volume-

integrated budgets in (15), (16), and (21) can be re-

written as

V
stor

5 h›
t
Vi5

ðSmax

0

q(S) dS1Q
r

5Q
in
1Q

out
1Q

r
, (30)

S
stor

5 h›
t
(sV)i5

�
›
t

ð
V

s dV

�
5

ðSmax

0

qs(S) dS

5Q
in
s
in
1Q

out
s
out

, (31)

(S2)
stor

5 ›
t
(s2V)

D E
5

�
›
t

ð
V

s2 dV

�
5

ðSmax

0

qs2 (S) dS2 hMi

5Q
in
(s2)

in
1Q

out
(s2)

out
2 hMi , (32)

and

(S02)
stor

5 ›
t
(s02V)

D E
5

�
›
t

ð
V

s02 dV
�

5

ðsmax

0

qs02 (s) ds2

*
s2
ð
Ar

u
n
dA

+
2 hMi

5 Q
in
(s02)

in
1Q

out
(s02)

out
2

*
s2
ð
Ar

u
n
dA

+
2 hMi ,

(33)

where s2 is the volume-averaged salinity square and s02 is
the volume-averaged salinity variance, and Vstor, Sstor,

(S2)stor and (S02)stor are the storage terms for volume,

salinity, salinity-squared, and salinity variance. These

vanish in case of periodicity. The variance budget in (33)

includes the temporal covariance between the square of
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the mean salinity and the freshwater runoff, as seen in

the second-to-last term. A stationary version of (33) has

already been derived for the box estuary in (5). Com-

bining (30) and (31), we obtain the time-dependent

versions of the Knudsen relations [see (3)]:

Q
out

52
s
in

s
in
2 s

out

Q
R
1

s
in

s
in
2 s

out

V
stor

2
1

s
in
2 s

out

S
stor

, (34)

Q
in
5

s
out

s
in
2 s

out

Q
R
2

s
out

s
in
2 s

out

V
stor

1
1

s
in
2 s

out

S
stor

. (35)

Assuming periodicity of the volume and salt budgets,

(30) and (31), the Knudsen (1900) relations (1)–(3) are

readily obtained. Under these conditions, the total vol-

ume transport equals the (negative) runoff,Q(0)52Qr,

and the total salt transport vanishes, Qs(0)5 0.

From (34) and (35) in combination with (32), a hier-

archy of four different Knudsen relations for mixing can

be derived, depending on the assumption of periodicity

and constancy.

1) We obtain an exact Knudsen relation for mixing by

allowing nonconstancy [(s2)in 6¼ (sin)
2 and (s2)out 6¼

(sout)
2] and nonperiodicity:

hMi5M
e
5

s
out

(s2)
in
2 s

in
(s2)

out

s
in
2 s

out

(Q
r
2V

stor
)

1
(s2)

in
2 (s2)

out

s
in
2 s

out

S
stor

2 (S2)
stor

. (36)

2) For the case of constancy [(s2)in 5 (sin)
2 and (s2)out 5

(sout)
2] as in the box estuary case of section 2, (36)

may be simplified to the approximate, constant, and

nonperiodic Knudsen relation

hMi’M
c
5 s

in
s
out

(Q
r
2V

stor
)

1 (s
in
1 s

out
)S

stor
2 (S2)

stor
. (37)

3) Assuming periodicity, but allowing nonconstancy, an

approximate, nonconstant, and periodic Knudsen

relation for the mixing is obtained from (36):

hMi’M
p
5

s
out

(s2)
in
2 s

in
(s2)

out

s
in
2 s

out

Q
r
. (38)

4) Assuming again constancy, (38) may be simplified to

the approximate, constant, and periodic Knudsen

relation for mixing,

hMi’M
cp
5 s

in
s
out

Q
r
. (39)

The latter is the mixing relation which has been de-

rived by MacCready et al. (2018) by assuming period-

icity of (33) and approximating the representative

inflowing and outflowing salinity variances per unit

volume as

(s02)
in
5 (s2)

in
2 2s

in
s1 s2

’ (s
in
)2 2 2s

in
s1 s2 ,

(s02)
out

5 (s2)
out

2 2s
out

s1 s2

’ (s
out

)2 2 2s
out

s1 s2 ,

(40)

which is equivalent to (s2)in ’ (sin)
2 and (s2)out ’ (sout)

2.

The accuracy of the mixing estimates in (37)–(39) is in-

vestigated in the following sections.

Mixing relations could also be derived from the sa-

linity variance equation in (33), but they would be more

difficult to apply to observations. Even for periodic

conditions or long averaging periods, detailed time-

dependent information about the internal salinity field

would be needed to calculate the variance flux into the

domain. Furthermore, the time dependence of the fresh-

water inflow is included, as indicated by the third term

on the right-hand side of (33), which contains the tem-

poral covariance between the freshwater runoff and the

squared mean salinity. Only for constant freshwater

runoff this term would simplify to hs2iQr.

4. Idealized example calculations

Four idealized test cases, two analytical and two nu-

merical, are used here to analyze the performance of the

TEF-based Knudsen mixing analysis.

a. Analytical test cases

For the two analytical test cases presented here,

we prescribe conditions for u and s at the estuarine

transect under consideration, in such a way that a

specified runoffQr is obtained and that the salt budget

is closed. The classical estuarine solution by Hansen

and Rattray (1965) is not suitable, since its advective

salt budget is not closed (e.g., MacCready and Geyer

2010). In these two analytical cases, the estuary itself

exists only virtually, without being explicitly consid-

ered or calculated. The first analytical test case uses

linear and stationary profiles of velocity and salinity to

demonstrate that, even under such simple conditions,

the consideration of nonconstancy in inflow salinity

[(sin)
2 6¼ (s2)in] and outflow salinity [(sout)

2 6¼ (s2)out]

is essential. In the second analytical test case, a tidal

flow with spatial homogeneity across the investigated
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transect is prescribed, the well-mixed case. This sim-

plest example of a tidally energetic estuary demon-

strates that even under these conditions an exchange

flow develops, where nonconstancy in inflow and out-

flow salinities matters.

1) LINEAR EXCHANGE AND SALINITY PROFILE

Assuming a flat-bottom estuarine transect with con-

stant depth H and width W, and a constant net outflow

Qr 52WHur, the following stationary and laterally

homogeneous vertical linear profiles of u and s fulfill

volume and salt conservation (see Figs. 2a,b):

u(z)5Du

�
2

z

H
2

1

2

�
2 u

r
;

s(z)5Ds

�
2

z

H
2

1

2
1

1

12

Du

u
r

�
, (41)

with the bottom to surface velocity and salinity differ-

ences Du and Ds, respectively, where for Du . 6ur pos-

itivity of s(z) is guaranteed. According to (25), we obtain

Q(S)5

ð
A(S)

u dA5W

ðz(S)
z(Smax)

u dz , (42)

with

z(S)5max

�
H

�
2

S

Ds
2

1

2
1

1

12

Du

u
r

�
, 0

�
, z(S

max
)52H .

(43)

With this, q(S) results in

q(S)5HW
Du

Ds

�
S

Ds
2

1

12

Du

u
r

2
u
r

Du

�
; (44)

see Fig. 2c The volume transports result as

Q
in
5

1

2
WHDu

�
u
r

Du
2
1

2

�2

,

Q
out

52
1

2
WHDu

�
u
r

Du
1
1

2

�2

, (45)

FIG. 2. Linear exchange flow. Profiles of (a) velocity and (b) salinity. (c) Red is volume transport above a certain value of S,Q(S), and

black is volume transport per salinity class, q(S)52›SQ(S). (d) Red is salinity transport above a certain value of S, Qs(S), and black is

salinity transport per salinity class, qs(S)52›SQ
s(S). (e) Red is salinity-squared transport above a certain value of S,Qs2 (S), and black is

salinity-squared transport per salinity class, qs2 (S)52›SQ
s2 (S).
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such that volume conservation (1) is fulfilled. Following

(25),Qs, qs,Qs2 , and qs2 can also be calculated (Figs. 2d,e).

Here, the following parameters have been used: H 5
10m,Du5 0.5ms21, ur5 0.02ms21,Ds5 10gkg21,W5
1000m, and Qr 5 200m3 s21.

The resulting Knudsen estimates are summarized

here:

Q
in
5 160m3 s21; Q

out
52360m3 s21 ;

s
in
5 12:00 g kg21; s

out
5 5:33 g kg21 ;

(s2)
1/2

in 5 12:04 g kg21; (s2)
1/2

out 5 5:52 g kg21 ;

M
e
5M

p
5 12 222m3 s21 (g kg21)2 ;

M
cp
5M

c
5 12 800m3 s21 (g kg21)2 ,

which implies a mixing completeness of Mc 5 44.4%

and a mixing estimate error of Mcp by about 5%.

2) OSCILLATING AND WELL-MIXED TIDAL FLOW

We propose here an analytical test scenario for a well-

mixed tidal flow with oscillating salinity, given as

u(t)5 u
r
1 u

a
cos (vt);

s(t)5 s
r
1 s

a
cos (vt1f) , (46)

with the residual velocity ur , 0, the mean salinity sr, the

velocity and salinity amplitudes ua . 0 and sa . 0 with

sr 2 sa $ 0, the tidal frequency v5 2p/T with the tidal

period T, and the tidal phase f. It is assumed that the

tidal flow passes through a constant cross-sectional area

A. Then the cross-sectionally and tidally averaged salt

transport is

1

T

ðT
0

us dt5u
r
s
r
1

u
a
s
a

2
cos(f) , (47)

such that zero residual salt transport requires

cos(f)522
u
r
s
r

u
a
s
a

, with u
a
s
a
$ 2ju

r
js
r
. (48)

The inflow and outflow volume fluxes and salinities,Qin,

Qout, sin, sout, (s
2)in, and (s2)out are calculated by means

of (26) and (27) in sufficient accuracy [see MacCready

et al. (2018) for the more accurate dividing-salinity ap-

proach]. Figure 3 shows an example for A 5 10 000m2,

ur520.1ms21 [resulting inQr5 1000ms21, which in this

periodic case equals2Q(0)], ua5 1ms21, sr5 20 gkg21,

and sa5 10gkg21, resulting inf521:16520:1853 2p

[note that (48) also gives a solution with f. 0, which,

however, is not used here since it results in increasing

salinity for negative flow velocity, i.e., ebb flow].

The resulting Knudsen estimates are summarized

here:

Q
in
5 813:240m3 s21; Q

out
521813:240m3 s21 ;

s
in
5 28:424 g kg21; s

out
5 12:748 g kg21 ;

(s2)
1/2

in 5 28:471 g kg21; (s2)
1/2

out 5 13:060 g kg21 ;

M
e
5M

p
5 350 000m3 s21 (g kg21)2 ;

M
cp
5M

c
5 362 346m3 s21 (g kg21)2 ,

which implies a mixing completeness of Mc 5 44.8%

and a mixing estimate error of Mcp by about 3.5%.

b. Idealized numerical scenarios

The two numerical estuarine examples presented here

both explicitly simulate estuarine mixing and show

how this is represented by the TEF-based Knudsen

mixing analysis. The first is a vertically integrated and

one-dimensional test case with and without explicit

physical mixing and with strong numerical mixing,

due to the diffusive first-order upstream scheme used.

It is demonstrated that the numerical mixing directly

calculated equals the net inflow of squared salinity in

this periodic scenario, if physical mixing is absent.

The second, vertically resolved, two-dimensional test

case includes physical mixing parameterized by

means of a turbulence closure model. It is shown for

this tidal flow scenario how small deviations from

periodicity significantly influence the accuracy of the

mixing estimates.

1) PERIODIC ONE-DIMENSIONAL ESTUARY

Here, we simulate a one-dimensional estuary by

means of the following finite-volume momentum

equation,

›
t
(uD)52gD›

x
h2 c

D

juju
D

, (49)

where the two terms on the right-hand side are the

pressure gradient (with gravitational acceleration g 5
9.81m s22) and the bottom friction (with the drag co-

efficient cD 5 2.5 3 1023), the salinity equation,

›
t
(sD)52›

x
[D(us2K

h
›
x
s)] , (50)

where the term on the right-hand side denotes salinity

advection and diffusion, and the surface elevation

equation,

›
t
h52›

x
(uD) , (51)

where D5H1h is the total water depth. The estuary

is L 5 100 km long, W 5 1km wide, and the depth

decreases linearly from 15m at the mouth to 5m at

the river end, where a freshwater discharge of

Qr 52Q(0)5 200m3 s21 is prescribed. Salinity at the
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mouth is prescribed as 30 g kg21, and the tidal ele-

vation amplitude for the harmonic M2 tide (pe-

riod T 5 44 714 s) is 2m. The salinity advection is

discretized by means of a first-order upstream scheme,

and the salinity diffusion is discretized by central

differences:

sn11
i Dn11

i 2 sni D
n
i

Dt
52

Dn11/2
i11/2 u

n11/2
i11/2 ~s

n
i11/2 2Dn11/2

i21/2 u
n11/2
i21/2 ~s

n
i21/2

Dx

1K
h

Dn11/2
i11/2 (s

n
i11 2 sni )2Dn11/2

i21/2 (s
n
i 2 sni21)

Dx2
, (52)

with the interfacial advection salinities

~sni11/2 5

�
sni for un

i11/2 . 0,

sni11 otherwise,
(53)

where Dt and Dx denote time step and spatial incre-

ment, superscript indices indicate the time step number,

and subscript indices indicate the spatial step number.

The discrete values for un11/2
i11/2 are calculated by a straight-

forward discretization of (49) and the interface depths

are defined asDn11/2
i11/2 5 (1/4)(Dn

i 1Dn
i11 1Dn11

i 1Dn11
i11 ).

The first-order upstream scheme in (53) is known to be

highly diffusive and the effective (physical plus numer-

ical) mixing of the advection–diffusion scheme in each

grid box at each time step can be calculated numerically

exactly according to Klingbeil et al. (2014) as

FIG. 3. Oscillating tidal flow. (a) Velocity (red), salinity (black), and salinity flux (blue) time series for the oscillating exchange flow

scenario in (46). (b) Red is volume transport above a certain value of S, Q(S), and black is volume transport per salinity class,

q(S)52›SQ(S). (c) Red is salinity transport above a certain value of S, Qs(S), and black is salinity transport per salinity class,

qs(S)52›SQ
s(S). (d) Red is salinity-squared transport above a certain value of S, Qs2 (S), and black is salinity-squared transport per

salinity class, qs2 (S)52›SQ
s2 (S).
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such for tidally periodic conditions the tidally averaged

sum of the effective mixing can be quantified as

hM
num

i1 hM
phy

i5 1

n
max

�
nmax

n51
�
imax

i51

Mn11/2
i
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W

n
max

�
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"
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1/2 (~sn1/2)

2 2K
h

(sn1)
2 2 (sn0)

2

Dx

#
Dn11/2

1/2 , (55)

assuming that snimax
5 ~sni

max11/2
5 snimax11

5 0, since they are

located in the freshwater range. In (55) the first term is

the numerical mixing hMnumi and the second term is the

physical mixing hMphyi.
For no explicit longitudinal diffusion (Kh 5 0), the

resulting dynamics of this simple numerical estuary is

shown in Fig. 4 for Dt5T/1000 and Dx5L/100. Tidal

velocity and salinity are highly variable and lead to a salt

intrusion over the first half (50 km) of the estuary

(Figs. 4a,b). The exchange flow is analyzed at x 5 5 km

(see Figs. 4c–e). It can be seen that the inflow of volume

(and consequently also the inflow of salinity, salinity

squared, and salinity variance) occurs at a narrow sa-

linity range with S . 28 g kg21 (sin 5 28:5517 g kg21,

(s2)
1/2
in 5 28:5537 g kg21). In contrast, outflows occur at

the broad salinity range between 16 and 28 gkg21, with

a peak at low salinities of around 17 g kg21 (sout 5
19:9178 g kg21, (s2)

1/2
out 5 20:1780 g kg21). This outflow

peak at low salinities can be explained by the rela-

tively low friction which allows the tidal wave to be re-

flected back from the end of the estuary, such that at late

ebb increased outflow occurs. Since (sin)
2 ’ (s2)in and

(sout)
2 ’ (s2)out, the two mixing estimates from (38),

Mp, and (39),Mcp, differ by only 6% (see Table 1). Note

that for this periodic scenario Me 5Mp and Mc 5Mcp

hold. The mixing completeness results in Mc 5 70%.

Figure 4e shows the exchange flow profiles for the

square of salinity and the variance per unit volume of

salinity in comparison. The variance profiles show a

slightly smaller amplitude, since the difference to mean

salinity s instead of the difference to zero is transported.

For both profiles, the values for S 5 0 are similar, with

Qs2 (0)5 hMi and Qs02 (0)5 hMi2 hs2iQr for this simple

scenario with constant river runoff [see (33)]. Here,

the following mixing relations hold: hMi5 hMnumi5
Qs2 (0)5Qs02 (0)1 hs2iQr 5Me 5Mp. Table 1 gives an

overview of the mixing relations.

When applying a longitudinal diffusivity of Kh 5
100m2 s21, the salt wedge extends about 10 km farther

into the estuary and salinities at the mouth are closer to

the open boundary salinity (not shown). Using the ef-

fective flux for salinity and its square according to (17),

Fs 5 us2Kh›xs and Fs2 5 us2 2Kh›xs
2, exchange pro-

files including the contribution from the diffusive flux

can be computed (see Fig. 5). Compared to the simula-

tion without explicit diffusivity, these profiles are (i)

shifted to higher salinities and cover a smaller range

(due to the increased salinities at the analyzed loca-

tion) and (ii) have larger amplitudes (due to the in-

creased fluxes and due to the fact that a smaller

salinity range is given). The mixing completeness has

increased to 73%. Table 1 shows that total mixing is

increased by about 20% in comparison to the scenario

with Kh 5 0. Numerical mixing is strongly reduced,

since salinity gradients are smoothed by physical mix-

ing which dominates over numerical mixing now.

Also here, the following mixing relations hold: hMi5
hMphyi1 hMnumi5Qs2 (0)5Qs02 (0)1 hs2iQr 5Me 5Mp

and the constant Knudsen mixing relation derived by

MacCready et al. (2018), Mcp, approximates that values

quite closely.

2) PERIODIC TWO-DIMENSIONAL ESTUARY

Finally, we simulate a periodic two-dimensional

width-averaged tidal estuary to compare the estuarine

mixing estimates in (36)–(39) with the effective (physical
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plus numerical) tidally averaged mixing integrated

over the entire estuary. The setup is similar to the one

used by Warner et al. (2005) for evaluating various

turbulence closure schemes and by Burchard and

Hofmeister (2008) for computing terms in the potential

energy anomaly budget.

The idealized estuary is 100km long and 500m wide

and the depth varies linearly between 15m at the ocean

FIG. 4. One-dimensional estuary without explicit longitudinal diffusion. (a) Tidal mean velocity huDi/hDi (red) and instantaneous

velocity u(x, t) for 10 different tidal phases (black). (b) Tidal mean salinity hsDi/hDi (red) and instantaneous salinity s(x, t) for 10 different

tidal phases (black). Exchange flow profiles at x 5 5 km [see vertical line in (a) and (b)] with (c) red showing volume transport above a

certain value of S,Q(S), and black showing volume transport per salinity class, q(S)52›SQ(S); (d) red showing salinity transport above a

certain value of S, Qs(S), and black showing salinity transport per salinity class, qs(S)52›SQ
s(S); and (e) red showing salinity-squared

and variance transport above a certain value of S,Qs2(S) andQs02(S), and black showing salinity-squared and variance transport per salinity

class, qs2(S)52›SQ
s2(S) and qs02(S)52›SQ

s02(S).

TABLE 1. One-dimensional estuary without and with explicit longitudinal diffusion: compilation of the mixing estimates, averaged over

one tidal period, and rounded to integer values. For this periodic test case with constant river runoff, the following exact relations hold:

hMi5 hMphyi1 hMnumi5Qs2(0)5Qs02(0)1 hs2iQr 5Me.

Mixing estimate Variable

Value,

Ah 5 0 [m3 s21 (g kg21)2]

Value,

Ah 5 100m2 s22 [m3 s21 (g kg21)2]

Exact mixing hMi 106 888 125 963

Physical mixing hMphyi 0 70 646

Numerical mixing hMnumi 106 888 55 317

Boundary flux of s2 Qs2 (0) 106 888 125 963

Boundary flux of s02, s. 0 Qs02 (0) 104 146 119 087

Boundary flux of s02, s5 0 hs2iQr 2742 6875

Exact Knudsen relation Me 5Mp 106 888 125 963

Constant and periodic relation Mc 5Mcp 111 737 127 338
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side (where a constant salinity of 30 g kg21 and a har-

monic semidiurnal M2 tide with an elevation amplitude

of 0.6m are prescribed) and 5m at the river end (where

a constant freshwater runoff of Qr 5 50m3 s21 is pre-

scribed). Eddy viscosity and eddy diffusivity are calcu-

lated bymeans of a k–« two-equation turbulence closure

model (Umlauf and Burchard 2005), and explicit lon-

gitudinal mixing is neglected. As a numerical model,

the General Estuarine Transport Model (GETM;

Burchard and Bolding (2002); www.getm.eu) is applied.

The simulation uses a temporal discretization with 500

baroclinic and 5000 barotropic time steps for one tidal

period, 40 equidistant s layers in the vertical, and 200

equidistant spatial steps along the estuary. As advec-

tion scheme for momentum and salinity, the Superbee

scheme is used, implemented bymeans of a directional-

split method (Pietrzak 1998), which is known for its

antidiffusive properties (Klingbeil et al. 2014). The

simulation is first run for 100 tidal periods which results

in an almost periodic state. A perfect periodic state is,

however, not approximated, due to the occurrence of

internal waves with a frequency different from the tidal

frequency. Initialized with this almost periodic solu-

tion, the time-averaged mixing during 10 tidal periods

is finally evaluated. For this, the cross section at x 5
22.5 km is evaluated, since it is neither directly influ-

enced by the open boundary conditions (maximum

salinity in that cross section does not reach the boundary

value) nor situated in the freshwater range at any time.

Estuary-integrated parameters are then calculated for

22.5 # x # 100 km.

Figure 6 shows snapshots of salinity and current ve-

locity at full flood and full ebb as well as physical and

numerical mixing at full ebb (where the physical mixing

has its maximum in this simple tidal estuary without

lateral variation). These 10 tidal periods under in-

vestigation are time dependent in the sense that the

volume, salt, and salt-squared storage terms amount

to Vstor 5 0.0219m3 s21, Sstor 528.26m3 s21 g kg21, and

(S2)stor 5 2137m3 s21 (g kg21)2.

Exchange flow profiles at x 5 22.5 km are shown in

Fig. 7. The profiles of q, qs, qs2 and qs02 show signifi-

cant oscillations in the range of medium salinities be-

tween 12 and 18 g kg21, which can be explained by the

internal waves moving at the salinity interface. As

already in Fig. 4e, also here the amplitude of the salin-

ity variance transport is smaller than for the salinity

square (see Fig. 7c). The volume transport integrated

over all salinity classes results in Q(0)52Qr 1
Vstor 5249:9781m3 s21, the integrated salinity trans-

port is Qs(0)5 Sstor 528:26m3 s21 g kg21, and the

salinity square transport is Qs2 (0)5 hMi1 (S2)stor 5
12 873m3 s21(g kg21)2 . The salinity variance transport is

Qs02 (0)5 hMi2 hs2iQr 1 (S02)stor 5 12 438m3 s21(g kg21)2

m3s21 (gkg21)2 (see Table 2).

The resulting values for the inflow and outflow salin-

ities are sin 5 20.48 gkg21, sout 5 14.04 gkg21, (s2)
1/2
in 5

20:51 g kg21, and (s2)
1/2
out 5 14:34 g kg21, such that the

mixing completeness amounts to Mc 5 69%.

Using the numerical analysis methods by Klingbeil

et al. (2014), tidally averaged physical and numerical

mixing is estimated as hMphyi5 13 458m3 s21(g kg21)2

and hMnumi52448m3 s21(g kg21)2, where the negative

numerical mixing appears due to the antidiffusive prop-

erties of the Superbee advection scheme. With this, the

effective total mixing is hMi5 13 009m3 s21(g kg21)2,

which is identical to the value resulting from the tid-

ally averaged and vertically integrated advective fluxes

FIG. 5. One-dimensional estuary with explicit longitudinal diffusionKh5 100m2 s21: exchange flowprofiles at x5 5 km [see vertical line

in (a) and (b) of Fig. 4] with (a) red showing volume transport above a certain value of S,Q(S), and black showing volume transport per

salinity class, q(S)52›SQ(S); (b) red showing salinity transport above a certain value of S,Qs(S), and black showing salinity transport per

salinity class, qs(S)52›SQ
s(S); and (c) red showing salinity-squared and variance transport above a certain value of S,Qs2(S) andQs02(S),

and black showing salinity-squared and variance transport per salinity class, qs2(S)52›SQ
s2(S) and qs02(S)52›SQ

s02(S).
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of S2 through the open boundary, corrected by the

storage of (S2)stor. The estimate from the nonconstant

and nonperiodic Knudsen relation for mixing, Me from

(36), is identical to this value as well, whereas the con-

stant and nonperiodic estimate, Mc from (37) based

on (s2)in ’ (sin)
2 and (s2)out ’ (sout)

2, amounts to Mc 5
14 221m3 s21 (g kg21)2, which is an overestimation by

9.3%. For the estimates ignoring time dependence

[assuming Vstor 5 Sstor 5 (S2)stor 5 0], the nonconstant

relation from (38) givesMp5 13154m3 s21 (gkg21)2 [i.e.,

an overestimation by 1% due to the dominance of the

negative second term in (36) over the positive third term]

and the constant and periodic relation from (39) gives

Mcp 5 14376m3 s21 (gkg21)2 (i.e., an overestimation by

10.5%). As an overview, all mixing estimates for aver-

aging over 10 tidal periods are compiled in Table 2.

Realistic applications are generally far away from

stationary or periodic conditions, due to the relevance of

more than one tidal constituent or dominating effects of

fluctuations in wind or river runoff. Therefore, the de-

pendence of the four TEF-based Knudsen mixing esti-

mates on the averaging period is shown in Fig. 8. For

averaging over full tidal cycles, all estimates are within

about 15%, and none of the approximate relations Mc,

Mp, and Mcp is generally closer to the exact value

Me 5 hMi than the others. However, when averaging

over fractional tidal periods, the approximate relations

show strong fluctuations. For short averaging periods,

Mc and Mp even give negative values at times. These

two estimates do also show a strong dependence on the

exact averaging period when it is close to full tidal cycles.

In a real situation with various tidal frequencies, this

could lead to strong inaccuracies of these relations.

By definition, only the exact relation Me and the con-

stant and periodic relation Mcp are constrained to give

nonnegative values. This underlines the usefulness

and robustness of the simple relation Mcp 5 sinsoutQr

derived by MacCready et al. (2018).

5. Discussion

The theory developed here provides a generalization

of the total exchange flow (TEF) analysis framework

first developed byMacCready (2011) and later extended

by MacCready et al. (2018) to estimate mixing. This

generalization includes several aspects.

First of all, TEF profiles are defined in (25) for an

arbitrary tracer c, as already proposed by Walin (1977).

FIG. 6. Periodic two-dimensional estuary, brackish region: (a) salinity (color shading) and current velocity

(contour lines) at full flood, (b) salinity and current velocity at full ebb, (c) physical mixing per unit volume at full

ebb, and (d) numerical mixing per unit volume at full ebb. The vertical black line at x 5 22.5 km indicates the

location for the TEF analysis.
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This has been used here to include TEF profiles also for

the square and the variance of salinity, but this might

also be interesting for budgeting nutrients, heat, or

particulate matter in estuaries. These generalized TEF

profiles allow for the consistent calculation of inflow and

outflow values in terms of the Knudsen relations [see

(26) and (27)]. Based on volume-integrated scalar

equations, exact Knudsen-type budgets for these scalars

can be formulated, including temporal changes (stor-

age), net transports at the freshwater and the marine

boundaries, and internal transformations [see (30)–

(33)]. These budgets for volume and salt are identical to

the Knudsen relations, as already shown by MacCready

(2011). The resulting salinity variance budget in (33) is

equal to the budget derived by MacCready et al. (2018),

apart from the effect of temporal covariance between

runoff and mean salinity square. As sink term, the

volume-integrated mixing is included in the salinity

variance budget. Assuming stationarity or periodicity

and further simplifying this equation, MacCready et al.

(2018) derived their simple estuarine mixing estimate,

that is, that mixing is approximately the product of in-

flowing and outflowing salinity and river runoff, which is

represented by the mixing estimate Mcp defined in (39).

Deriving a budget for the salinity square instead of the

salinity variance gives a simpler exact relation for the

volume-integrated mixing, now without the necessity to

consider the mean salinity of the estuary [see (32) and

also Burchard and Rennau (2008)]. In combination with

the volume and the salt budget, an exact mixing estimate

is obtained, only including inflow and outflow values of

salinity and its square, the river runoff, and the storage

FIG. 7. Periodic two-dimensional estuary: Exchange flow profiles averaged over ten tidal periods almost in periodic equilibrium,

evaluated at x5 22.5 km (see the vertical lines in Fig. 6) with (a) red showing volume transport above a certain value of S,Q(S), and black

showing volume transport per salinity class, q(S)52›SQ(S); (b) red showing salinity transport above a certain value of S,Qs(S), and black

showing salinity transport per salinity class, qs(S)52›SQ
s(S); (c) red showing salinity-squared and variance transport above a certain

value of S, Qs2(S) (thick line) and Qs02(S) (thin line), and black showing salinity-squared and variance transport per salinity class,

qs2(S)52›SQ
s2(S) (thick line) and qs02(S)52›SQ

s02(S) (thin line).

TABLE 2. Periodic two-dimensional estuary: compilation of the mixing estimates, averaged over 10 tidal periods, and rounded to integer

values. The following exact relations hold:hMi5 hMphyi1 hMnumi5Qs2(0)2 (S2)stor 5Qs02(0)1 hs2iQr 2 (S02)stor 5Me.

Mixing estimate Variable Value [m3 s21 (g kg21)2]

Exact mixing hMi 13 009

Physical mixing hMphyi 13 458

Numerical mixing hMnumi 2448

Boundary flux s2 Qs2 (0) 12 873

Storage of s2 2(S2)stor 137

Boundary flux of s02 for s. 0 Qs02 (0) 12 438

Boundary flux of s02 for s5 0 hs2iQr 456

Storage of s02 2(S02)stor 116

Exact Knudsen relation Me 13 009

Constant Knudsen relation Mc 14 221

Stationary Knudsen relation Mp 13 154

Constant and periodic Knudsen relation Mcp 14 376
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terms for volume, salt and salt square [see (36)]. Two

approximations, 1) periodicity, that is, vanishing storage

terms, and 2) constancy of inflow and outflow salin-

ities, that is, (s2)in5 (sin)
2 and (s2)out5 (sout)

2, lead to the

simple mixing estimate by MacCready et al. (2018). The

exact mixing estimate from (36), relaxed by either ap-

proximate 1 or 2, leads to intermediate mixing esti-

mates that may be useful in specific idealized scenarios.

While constancy is fulfilled for the simple box estuary

scenario discussed in section 2, it is violated in basic

analytical cases with stationary and linear profiles of

velocity and salinity and periodic and cross-sectionally

constant velocity and salinity distributions. In these ca-

ses, the assumption of constancy leads to an error in

mixing estimates of the order of 5%. A similar error was

observed for the one-dimensional numerical estuary,

whereas the linearization error was about 10% in the

two-dimensional estuary scenario. Whereas the exact

mixing estimate in (36) is positive by definition and the

simple mixing estimate in (39) is positive by construc-

tion, the nonperiodic but constant estimate in (37) and

the nonconstant but periodic estimate in (38) may result

in negative estimates. This highlights the robustness and

usefulness of the simple mixing estimate in (39) pro-

posed by MacCready et al. (2018).

Diffusive fluxes in addition to the advective fluxes

across the marine boundary of the estuary are now in-

cluded in the TEF analysis. Since formally the boundary

of the estuary for the TEF analysis can be located any-

where and the boundary area for the TEF analysis might

be wide and allowing for horizontal eddy mixing, the

inclusion of diffusive fluxes may be essential. Also for

idealized models of estuaries, longitudinal diffusivity is

often applied to parameterize effects of lateral or ver-

tical shear dispersion (Okubo 1973; Fischer 1976); see

also the example of the one-dimensional estuary of the

present study.

Since closed budgets of estuarine mixing can only be

obtained by means of numerical modeling which in-

herently includes numerical mixing, the TEF theory has

been formulated here such that numerically accurate

formulations are applied. Based on the numerical mix-

ing theory developed by Klingbeil et al. (2014), mixing

estimates are numerically exact in the sense that they

reproduce the effective (physical plus numerical) mixing

of the model. This has been demonstrated here for the

one-dimensional and two-dimensional test scenarios.

6. Conclusions

TheKnudsen-type estuarine mixing estimates derived

here could be applied to analyze model simulations us-

ing any numerical model. Since most coastal ocean

models are based on a finite-volume type of spatial

discretization, the exact mixing estimate in (36) could be

exactly reproduced numerically as shown in Tables 1

FIG. 8. Periodic two-dimensional estuary, TEF-based Knudsen estimates in (36)–(39) for

mixing as a function of the length of the averaging period: exact nonconstant and nonperiodic

relation Me (red); approximate, constant, and nonperiodic relation Mc (gray); approximate,

nonconstant, and periodic relationMp (blue); and approximate, constant, and periodic relation

Mcp (black).
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and 2. Such an analysis could be performed not only

for one specific transect located somewhere near the

mouth of the estuary, but for several transects separat-

ing the estuary into finite-volume compartments as

demonstrated by Wang et al. (2017). This would help to

study the exchange flow and effective (physical plus

numerical) mixing characteristics of different regions

in the estuary.

Since the robust mixing estimate Mcp by MacCready

et al. (2018) has generally been proven to show an error

of at most 10% from the real mixing, it will for many real

estuaries give a first rule-of-thumb estimate of the long-

term-averaged basinwide mixing, as the classical case

of the Baltic Sea shows (section 2). However, variability

in time and space will only be recovered by the more

complete mixing estimates considering nonconstancy

of inflows and outflows as well as storage terms for

volume, salt, and salt squared.

There is a challenge left for the future which has not

been tackled here. The exchange of volume across the

air–sea interface as given by the net effect of precipita-

tion and evaporation is ignored here. This may be ac-

ceptable for classical estuaries in humid regions, but for

large estuaries such as the Baltic Sea (Reissmann et al.

2009; Burchard et al. 2018) this may result in large errors

in the mixing calculation. Precipitation may actually

be included as an additional source of freshwater ac-

counted for byQr. However, for inverse estuaries where

the river runoff may almost vanish and evaporation

dominates substantially over precipitation, such as the

Persian Gulf (Kämpf and Sadrinasab 2006) or Shark

Bay in Western Australia (Hetzel et al. 2015), the cur-

rent method will fail; for example, the simple mixing

estimate (39) introduced by MacCready et al. (2018)

would result in negative mixing (if using negative

surface-area-integrated evaporation as river runoff).
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