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ABSTRACT

The well-known Knudsen relations and the total exchange flow (TEF) analysis framework provide
quantifications of exchange flow across an open boundary to the adjacent ocean in terms of bulk values
(Knudsen theory: inflow and outflow volume or salinity) or with resolution in salinity space (TEF:
profiles of volume and salt flux in salinity coordinates). In the present study, these theories are ex-
tended toward mixing of salinity, defined as the decay of salinity variance due to turbulent mixing. In
addition to the advective fluxes, diffusive fluxes across the boundary are also considered now. These
new Knudsen and TEF relations for mixing are derived by applying Gauss’s theorem to the salinity
square and salinity variance equations. As a result of the analysis, four different Knudsen relations for
the mixing in estuaries are derived. The first one is exact and considers nonperiodicity as well as
nonconstancy of the inflow and outflow salinities. The other three formulations are approximate only,
in the sense that either nonperiodicity or nonconstancy or both are relaxed. The simplest of those
formulations has recently been derived by MacCready et al. and estimates the estuarine mixing as the
product of inflow salinity, outflow salinity, and time-averaged river runoff. These four mixing esti-
mates are systematically assessed by means of a number of idealized estuarine test cases. For periodic
tidal flow, the simplest estimate still predicts the effective (physical plus numerical) mixing within an
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error of about 10%.

1. Introduction

Estuaries can be regarded as mixing zones which dilute
saltwater inflowing from the ocean with freshwater from
river runoff to produce brackish water flowing back into
the ocean (Fischer 1976). To underline this key estuarine
function, Wang et al. (2017) used the name mixing ma-
chine to characterize estuarine dynamics. Since mixing is
such a fundamental property in estuaries, several authors
have proposed quantitative measures for it. In an early
estuarine model, Hansen and Rattray (1965) quantified
mixing in terms of a constant eddy diffusivity to param-
eterize tidal mixing. This was also used by Hetland and
Geyer (2004) to show how increased eddy diffusivity
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results in a decreased length of the estuarine brackish
water zone. One limitation of eddy diffusivity as a mea-
sure of estuarine mixing is that it represents for a tracer
the ratio of the turbulent flux and the vertical gradient, the
estuarine-wide average of which has no physical signifi-
cance. Second, eddy diffusivity may be specifically high at
unstratified locations where no mixing is taking place since
the waters are already mixed, as, for example, in the
freshwater region or the bottom boundary layer. For the
same reason, the turbulent dissipation rate which can di-
rectly be measured and often is used to indicate mixing
(Peters and Bokhorst 2000) is not suitable to quantify es-
tuarine mixing. Another candidate for quantifying estua-
rine mixing could be the turbulent buoyancy flux (Peters
and Bokhorst 2001), which, however, is a vectorial quantity
where opposing contributions might partially compensate
each other. This occurs, for example, in tidal flow with
downward buoyancy flux during ebb and upward buoy-
ancy flux during flood, although mixing of salt occurs in
both situations. An interesting alternative might be to use
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diahaline salt fluxes as measure for mixing, as proposed
by Walin (1977).

Physically, mixing occurs on the microscale, when
small-scale tracer gradients caused by turbulent stir-
ring are smoothed by the divergence of molecular
tracer fluxes. This molecular mixing is quantified as
the scalar dissipation rate of tracer variance per unit
volume, y° =2v¢(V¢')* (Umlauf and Burchard 2005),
where ¢ is the molecular tracer diffusivity, Vc' is the
gradient of the turbulent tracer fluctuation, and the
overbar denotes an ensemble average (Lesieur 1997).
Therefore, Burchard and Rennau (2008) proposed to
use the volume integral of x“ as a measure for basin-
wide mixing, a quantity which can easily be calculated
from numerical model results. This method was first
applied by Burchard et al. (2009) to quantify salt mix-
ing in a coastal ocean simulation of the western Baltic
Sea. A first application of the salinity variance dissi-
pation to estuarine mixing has recently been demon-
strated by Wang et al. (2017) using the total exchange
flow (TEF) analysis framework of MacCready (2011).
Burchard and Rennau (2008) also showed how the ef-
fective (physical plus numerical) mixing can be con-
sistently quantified locally for numerical simulations,
such that the integral of the sum of both gives the ef-
fective total mixing. This model analysis method has
later been refined by Klingbeil et al. (2014), including
a numerical analysis for a model simulation of the
western Baltic Sea. A first numerical mixing analysis
for estuaries using these methods has recently been
carried out by Ralston et al. (2017), who proposed to
reduce physical mixing such that the effective mixing
remains at realistic levels.

Knudsen (1900) formulated volume flux and salt flux
relations for freshwater, saltwater, and brackish water in
estuaries to quantify this water mass transformation.
He also mentioned that mixing is responsible for the
transformation, but neither defined nor quantified the
mixing itself. While Knudsen (1900) limited his early
theory to bulk values of inflowing and outflowing salin-
ities and transports of volume and salt, Walin (1977)
much later introduced an isohaline framework to de-
scribe volume, salt, and tracer transports with resolu-
tion in salinity space. Following a similar concept,
MacCready (2011) introduced the TEF analysis frame-
work providing volume and salt transport as functions of
salinity classes. Moreover, he connected the TEF con-
cept to the Knudsen quantities of inflow and outflow
salinities and net transports per salinity class in a con-
sistent way. Wang et al. (2017) showed for a numerical
model study of the Hudson River estuary how the ef-
fective mixing integrated over an estuarine control vol-
ume can be quantified by means of the TEF concept.
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In their recent review, Burchard et al. (2018) ap-
plied the Knudsen relations and the TEF analysis
framework to the multidecadal inflow dynamics of
the Baltic Sea, refining earlier short-term studies by
Walin (1981). The review by Burchard et al. (2018)
additionally provides a translation of the Knudsen
(1900) paper into English. The TEF framework is
also used to track reactive biogeochemical tracers
such as nutrients and dissolved oxygen in large es-
tuarine systems.

Based on the Knudsen relations and the TEF anal-
ysis framework, MacCready et al. (2018) derived a
quantification for time-averaged and volume-integrated
estuarine mixing as the product of the inflow salin-
ity, the outflow salinity, and the time-averaged river
runoff.

The present manuscript adds the following aspects to
the new theory of MacCready et al. (2018):

1) An exact Knudsen mixing relation is formulated from
which the Knudsen mixing relation by MacCready
et al. (2018) and other approximate relations are
derived by assuming periodic estuarine volume, salt
content, and salt variance (or salt square) and/or
constancy of the inflow and outflow salinities.

2) The TEF analysis framework developed by MacCready
(2011) is used to consistently derive these relations.
This particularly leads to the distinction between
the square of the characteristic outflow or inflow
salinity and the characteristic outflow or inflow
salinity squares.

3) Inaddition to advective fluxes, diffusive fluxes of salt,
salt square, and salt variance are included into the
TEF concept.

4) The TEF relations are discretized in such a way that
they are fully consistent with the effective (physical
plus numerical) mixing in the model.

To set the scene, section 2 uses a stationary box es-
tuary to link the Knudsen relations to estuarine mixing
and to derive in a simple way the mixing relation in-
troduced by MacCready et al. (2018). A detailed deri-
vation of mixing estimates for general time-dependent
estuaries based on mass and salt conservation is then
given in section 3. The performance of the derived
mixing estimates is investigated in section 4, with two
analytical scenarios directly prescribing the exchange
flow at an estuarine transect without considering the
estuary itself. Scenarios explicitly including estuarine
mixing are assessed, using a one-dimensional longitu-
dinal estuary model as well as a two-dimensional model
(including vertical resolution). The results and their
implications are discussed in section 5 and some con-
clusions are drawn in section 6.
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FIG. 1. Schematic box estuary to demonstrate the Knudsen relation for estuarine mixing.
(a) Box estuary in basic state when salinities in inflow and outflow boxes are mixed. (b) Box
estuary after adiabatic volume and salt fluxes have been applied for a period AT, indicating how
salinity would be distributed without mixing. In both cases, blue colors qualitatively indicate
salinity (white is for zero salinity). Volume fractions before and after adiabatic inflows are

indicated as well.

2. A mechanistic model of estuarine mixing

We use here a simple box-type estuary model as
prototype of an estuarine mixing machine to motivate
the estuarine mixing relation which has recently been
introduced by MacCready et al. (2018). This box model
is similar to the estuary box model introduced as river
boundary condition in climate models (Sun et al. 2017).
The model has a lower layer of volume V;, with salinity
sin and an upper layer of volume V¢ with salinity sqy,
with the constant total volume V = V;, + Vg, (see
Fig. 1a). The lower box has a saline inflow of Q;, with
salinity s;, and the upper layer has a freshwater inflow
0O, and a saline outflow of Q.. with salinity suy. In
this simple box model with only two water masses, the
lower salinity equals the inflow salinity s;, and the upper
salinity equals the outflow salinity s, Inflows (gener-
ally O, and Qj,) have a positive sign and outflows
(generally Q,,) have a negative sign. Under these cir-
cumstances, assuming a steady state or periodic vari-
ability in time, the transports fulfill the following
balances of volume,

Qi+ Qo ¥ 2, =0, 1)
and salt,

QinSin T QouSour = 0- 2)
Combining (1) and (2), the well-known Knudsen (1900)
relations can be derived:

Q — sout Q
in —5 r’

N

— in
Qout -

in out in out

which means that by only knowing the freshwater run-
off and representative inflow and outflow salinities, in-
flow and outflow volumes can be estimated. In the same
way, stationary budgets of salinity square,

Qin (Sin)2 + Qout (Sout)2 = Sinsout Qr ’ (4)

and salinity variance per unit volume,

-2 —2 _
Qin (Sin - S) + Qoul(soul - S) + Qrsz = Sinsoul Qr ’ (5)

can be derived from (1) and (2), where 5= (s;,Vin +
Sout Vout)/V is the mean salinity in the box estuary. Both
the balances of the squared salinity and the salinity
variance per unit volume are not closed, since they
include a source of sj,5,, @, on the right-hand side.
To guarantee stationary conditions also for these bal-
ances, an internal sink term M = 5,5, Q, needs to be
assumed. Since (5) suggests that this term is an inter-
nal sink to salinity variance, M can be interpreted
as volume-integrated salinity mixing (Burchard et al.
2009). This is exactly the key result by MacCready et al.
(2018): estuarine mixing can be estimated as the prod-
uct of inflow and outflow salinities with the freshwater
runoff.

Using the box-type estuary, we demonstrate this
mixing relation geometrically, allowing time depen-
dence. For simplicity, we restrict ourselves to the budget
of the squared salinity shown in (4). Application of the
salinity-square fluxes from (4) for the short time AT
without internal mixing (advection step, see Fig. 1)
would increase volume-integrated salinity square from
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ng = (Sin)zvin + (Sout)2 Voul (6)

to
Vsp = (s,) (V,, + ATQ,)
+ (Soul)z(vout - ATQin - ATQr) > (7)

such that the mixing M required to mix this back to the
initial state (mixing step, see Fig. 1) would be

2 _ 2
Sp Sa:

AT [(Sin)2 - (Sout)z]Qin - (Sout)er
= sinsouLQr ’ (8)

M=V

where we used the first relation of (3) for the last step.
Since the result for M is independent of AT, it is also
valid for AT — 0. Thus, in this stationary case without
temporal and spatial salinity variation within inflowing
and outflowing waters, the simple mixing relation of
MacCready et al. (2018),

M= sinsout Qr ’ (9)

holds exactly.

With s;, being the salinity input to the system, which
does not depend on the dynamics inside the estuary it-
self, sy can be calculated as function of mixing, runoff
and input salinity:

M

s =
out ’
Sin Qr

(10)

such that the ratio of outflowing and inflowing salinity,

Sw_ MOy
Qout’

(11)

can be regarded as a measure of the estuarine bulk
mixing completeness, where (si,)°Q, is the maximum
possible mixing (MacCready et al. 2018). It should be
noted that the relation s,u/Sin = —Qin/Qout had already
been formulated by Knudsen (1900).

The usefulness of this simple estimate for the mixing
M can be readily shown for real estuaries, if some esti-
mates for inflow and outflow salinity and runoff are
available. Since Knudsen (1900) developed his theory
for the Baltic Sea, first Baltic Sea mixing estimates are
made here. Knudsen (1900) gave the following inflow
and outflow salinities obtained from single observa-
tions: s;, = 17.4gkg "' and s, = 8.7gkg ™! (giving a
mixing completeness of Mc = 50%). Together with the
long-term runoff of the Baltic Sea of O, = 15252 m>s™!
(Matthdus and Schinke 1999), this would result in
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an integrated mixing of M = siuSou@, = 2.31 X
10°m®s ' (gkg ')%>. A more representative estimate
may be given based on the model results by Burchard
et al. (2018). Over an averaging period of 66 years
(1948-2013), the following values were calculated for
the straits connecting the Baltic Sea to the rest of the
ocean, the Darss Sill (denoted by A here, their Fig. 5)
and the Drogden Sill (denoted by B here, their Fig. 6):

A: QA =8022m’s™!, Q4 = —17774m*s ™!,

out

sh=14.60gkg™", sA, =881gkg™’;

out

B: 0B =8164m3s™!, OB = —-14510m3s7},

out

sB=1854gkg !, sB, =849gkg .

out

Due to the long term integration, storage terms can be
neglected. With this,

AA B B
_ Qinsin * OinSin

S.
S
(12)
A A B B
s = outsout+ outSout
out A B ’
oul+Q0uL

such that s;, = 16.59gkg_1 and sgu = 8.67gkg_1 (re-
sulting in a mixing completeness of Mc = 54%), and
with Q, = —(04 + 0B + 02 + 0B) =16098m*s™!, an
estimated mixing rate of M = 2.32 X 10°m>s™! (gkg™')?
results. It certainly is coincidence that both estimates
are so close to each other, but quite likely the real long-
term mixing of the Baltic Sea is on the order of M ~ 2 X
10°m®s ™! (gkg™")% Future research will challenge these
mixing estimates.

3. Derivation of an exact mixing relation using TEF

Here, the TEF analysis framework first described
by MacCready (2011) for volume and salinity is ex-
tended to squared salinity and salinity variance. The
framework is derived from the Reynolds-averaged
continuity equation,

dut+adv+ow=0, 13)
X y Z
and the Reynolds-averaged salinity equation using the
eddy diffusivity assumption for turbulent salinity fluxes,

as+ 0 (us)+ 8y(vs) +0,(ws) —9,(K,0,5)

- ay(Khays) —d,(K,d,5)=0. (14)
Cartesian coordinates are used, with time #, the space
vector (x, y, z), and the velocity vector (u, v, w). Hori-
zontal and vertical eddy diffusivities are denoted by
K;, and K, respectively, and s is salinity. Kinematic
boundary conditions are applied, that is, there is no
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volume flux through the surface at z = n and the bottom
at z = —H. This implies that precipitation and evapo-
ration are neglected (Klingbeil et al. 2018). Conse-
quently, surface and bottom salinity fluxes are set to
zero.

Carrying out a volume integration of (13), the volume
budget of an estuary can be expressed as

(15)

t

aV:—J undA—J u dA,
A(0) A

r

where A(0) is the open-boundary transect area (which
may be composed of several separate subareas) for sa-
linities larger than zero typically located at the open
boundary, and A, is the area through which freshwater
of zero salinity is discharged into the control volume.
More generally, we define A(S) as the part of the open-
boundary transect with salinities s larger than a specific
salinity S, s > S. Furthermore, u,, is the normal velocity
component (positive outwards). Similarly, volume in-
tegration of the salinity equation in (14) results in

atj sdV = —J (u,s—K,0,s)dA, (16)
14 A(0)

where 9,5 denotes the salinity gradient normal to the
transect A(0) (pointing outward).

For any tracer c, the total (advective plus diffusive)
outward tracer flux F° can be defined at the open
boundary to allow for the inclusion of diffusive cross-
boundary tracer fluxes into the Knudsen (1900) and
MacCready (2011) theorems:

F=uc—K,o .c, 17)
with F' =u, being the volume flux. Using (17), the
volume-integrated salinity budget in (16) can be re-
written as

at[ sdv=—J FdA. (18)
Jv A(0)

If we now multiply (14) by 2s, we obtain a salinity-
squared equation:

3,57 +0,(us’) + 9, (vs”) + 9, (ws”) — 9,(K,9,5%)
—9,(K,9,8%) = 0,(K,9.8)=—x (19)
with the local salt mixing
X =2[K,(3,5)" + K,(3,9)" + K (0,5)°];  (20)

see Burchard and Rennau (2008). Integrating the s
equation [(19)] over the total volume V results in
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atJ 2dV = _J F dA- M, @1)
v A(0)
with the volume-integrated mixing
M= J X dv, (22)
14

and the effective flux of squared salinity at the open
boundary F*'. Combining (14) and (19), a budget equa-
tion for the salinity variance is derived:

a,J s*dv = —J F"dA —EZJ u,dA—M, (23)
1% A(0) A,

with the salinity deviation s'=s—35, where 5=
(1/V)[,sdV is the volume-averaged salinity and F*
is the effective flux of salinity variance at the open
boundary. To derive (23), budget equations for the
mean salinity 5 and its square 52 are derived by using (15)
and (18). Based on this, a budget equation for the vari-
ance per unit volume, s” is derived, which is then volume
integrated [see (2) and (3) of MacCready et al. (2018)].
The boundary flux of s is finally split between open
boundaries with s > 0 and river boundaries with s = 0.
Compared to the volume-integrated budget of the
squared salinity from (21), the variance budget in (23) is
additionally increased by freshwater input (second term
on right-hand side). The salinity variance budget is more
clearly related to the concept of molecular mixing, and it
highlights the importance of the river flow as a source of
unmixed, high-variance water. On the other hand, the
salinity-squared budget arrives at the same net mixing
M, and in a steady state it relies only on information at
the ocean boundary section, not the whole estuarine
volume. This makes the salinity-squared formalism po-
tentially easier to apply to analysis of observations.

For any tracer c, its time-averaged boundary flux can
be expressed in salinity coordinates:

- <L(O)F" dA> = 0°(0) = J:"‘“qﬂ(s) ds  (24)
with
_90°(9)

d (S) = — F¢dA ),
A0 <L(S) >
s)

q°(S) =

where angle brackets denote temporal averaging. In (25),
Q°(S) is the incoming transport of ¢ through the cross-
sectional area A(S) with salinities s higher than S, and
q°(S) is the incoming boundary flux of ¢ per salinity class.
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Bulk values for inflow and outflow of any tracer c can
be defined:

Smax
o, =J ()" dS=0;
0

Smax
» :j () ds =0, (26)
0

where for any function a, the positive part is calculated
as (a)" = max(a, 0) and the negative part is calculated as
a- = min(a, 0), resulting in positive inflow transports
and negative outflow transports. For the volume fluxes
with ¢ = 1, we write for simplicity ¢ = ¢' and Q = Q.
The tracer c¢ could be any tracer, including reactive
tracers such as biogeochemical constituents or radioac-
tively decaying tracers (Walin 1977). In the following,
we will use ¢ = s for salinity transports, ¢ = s for salinity-
square transports, and ¢ = s for transport of salinity
variance per unit volume.

When numerically calculating the inflow and outflow
transports in well-mixed conditions, the algorithm in
(26) has been found to be numerically noisy, giving in-
consistent results for different numbers of salinity bins.

S

(SZ)in _ (sin)z = J maxq+ dSJ
0

0

Smax m
(Sz)out = (Sout)z = J q_ dSJ
0 0

where the latter equalities are only given if s is constant
over the positive and constant over the negative ranges
of g. Therefore, we call this condition the constancy
condition. This is true in the box estuary case (section 2),
but is generally not valid.

The temporally averaged freshwater runoff is

defined as
- J u, dA ).
< Ar

With (24) and after temporal averaging, the volume-
integrated budgets in (15), (16), and (21) can be re-
written as

Q,= (29)

sz\x
Voo = (0,V) = L 4(S)ds + 0,

= Qin + Qout + Qr’ (30)
Smax
Sstor = <at(§V)> = <atj de> = J qs(S) das
Vv 0
= Qinsin + Qoutsout ’ (31)
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Therefore, MacCready et al. (2018) propose for the
basic situation of inflow at high salinities and outflow at
low salinities to determine the dividing salinity Sg;, at
which Q°(S) has its maximum. Parameter Qf, is then
calculated as Q°(Saiv)-

Based on the definitions in (26), the tracer concen-
trations representative for inflow and outflow are cal-
culated as

— Qlcn . gut

c. ; =
mn an

Cout = 0. 27)
out

Equations (24)—(27) are a generalization of the TEF
concept of MacCready (2011). For salinity s, the identity
of @, and @}, from (26) and the inflow and outflow
salinities Fj, and F,, as defined by MacCready (2011)
have already been shown by Burchard et al. (2018, see
their appendix C). Similarly, this identity could also be
shown for any tracer c.

In the following, a key issue will be the general in-
equality of (s*)i, and (s;,)* as well as of (5%)oy and
(Sout)®. To derive a condition for their equality, we
calculate

2

2 (28)

(Dor = (3,67V) ) = <8, J v dv> _ qu 55— )
= 0, ()iy + Qo (%) — (M), (32)

and
(5%) o0 = (0,°V)) = <81JVSQ dV>
f-evsts]

= Qin(slz)in + Qout(slz)out - <§2,[A un dA> - <M> ’

r

u dA> — (M)

r

(33)

where s? is the volume-averaged salinity square and s is
the volume-averaged salinity variance, and Vi, Sstor,
(8%, and (8?),,, are the storage terms for volume,
salinity, salinity-squared, and salinity variance. These
vanish in case of periodicity. The variance budget in (33)
includes the temporal covariance between the square of
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the mean salinity and the freshwater runoff, as seen in
the second-to-last term. A stationary version of (33) has
already been derived for the box estuary in (5). Com-
bining (30) and (31), we obtain the time-dependent
versions of the Knudsen relations [see (3)]:

S. S.
— in in
Qout - s. —s§ QR + 5. —s§ Vstor
in out in out
! S 34
s. —s§ stor ? ( )
in out
Sout sout
Qin_s —5 QR_S —5 Vstor
in out in out
1
S0 (35)
S. S
m out

Assuming periodicity of the volume and salt budgets,
(30) and (31), the Knudsen (1900) relations (1)-(3) are
readily obtained. Under these conditions, the total vol-
ume transport equals the (negative) runoff, Q(0) = - Q,,
and the total salt transport vanishes, Q°(0) = 0.

From (34) and (35) in combination with (32), a hier-
archy of four different Knudsen relations for mixing can
be derived, depending on the assumption of periodicity
and constancy.

1) We obtain an exact Knudsen relation for mixing by
allowing nonconstancy [(s?);, # (sin)” and (%), #
(sout)’] and nonperiodicity:

2y — 2
— sout (S )in sin(s )

M)y=M Qg —V,
(M) = M, ==l n o (0, V)
(%) = (5
+ — : Sstor - (Sz)stor : (36)
Sin Sout

2) For the case of constancy [(s?);, = (sin)” and (s2),, =
(sout)’] as in the box estuary case of section 2, (36)
may be simplified to the approximate, constant, and

nonperiodic Knudsen relation

<M> =~ Mc = sinsout(Qr - Vstor)

+ (sin + Sout)Sstor B (Sz)stor . (37)

3) Assuming periodicity, but allowing nonconstancy, an
approximate, nonconstant, and periodic Knudsen
relation for the mixing is obtained from (36):

oty -t = S 5,

p s. —S
m out

out Qr . (38)

4) Assuming again constancy, (38) may be simplified to
the approximate, constant, and periodic Knudsen
relation for mixing,
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<M> ~ Mcp = SinSout Qr '

(39)

The latter is the mixing relation which has been de-
rived by MacCready et al. (2018) by assuming period-
icity of (33) and approximating the representative
inflowing and outflowing salinity variances per unit
volume as

(s?),, = (%), — 25,5 +5
2 — =

~(s;)" — 25, 5+5%,

(Sa)out = (s2)0ut N 2soulg + §2

~ 2 _ 4+ 2
- (Sout) 2Souts +s ’

(40)

which is equivalent to (s2),, = (sin)* and (s2),, = (Sout)’-
The accuracy of the mixing estimates in (37)—(39) is in-
vestigated in the following sections.

Mixing relations could also be derived from the sa-
linity variance equation in (33), but they would be more
difficult to apply to observations. Even for periodic
conditions or long averaging periods, detailed time-
dependent information about the internal salinity field
would be needed to calculate the variance flux into the
domain. Furthermore, the time dependence of the fresh-
water inflow is included, as indicated by the third term
on the right-hand side of (33), which contains the tem-
poral covariance between the freshwater runoff and the
squared mean salinity. Only for constant freshwater
runoff this term would simplify to (s*)Q.,.

4. Idealized example calculations

Four idealized test cases, two analytical and two nu-
merical, are used here to analyze the performance of the
TEF-based Knudsen mixing analysis.

a. Analytical test cases

For the two analytical test cases presented here,
we prescribe conditions for u and s at the estuarine
transect under consideration, in such a way that a
specified runoff O, is obtained and that the salt budget
is closed. The classical estuarine solution by Hansen
and Rattray (1965) is not suitable, since its advective
salt budget is not closed (e.g., MacCready and Geyer
2010). In these two analytical cases, the estuary itself
exists only virtually, without being explicitly consid-
ered or calculated. The first analytical test case uses
linear and stationary profiles of velocity and salinity to
demonstrate that, even under such simple conditions,
the consideration of nonconstancy in inflow salinity
[(5in)” # (s*)in] and outflow salinity [(sou)’ # (s*)ou
is essential. In the second analytical test case, a tidal
flow with spatial homogeneity across the investigated
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FI1G. 2. Linear exchange flow. Profiles of (a) velocity and (b) salinity. (c) Red is volume transport above a certain value of S, Q(S), and
black is volume transport per salinity class, g(S) = —dsQO(S). (d) Red is salinity transport above a certain value of S, Q°(S), and black is
salinity transport per salinity class, ¢*(S) = —9sQ*(S). (¢) Red is salinity-squared transport above a certain value of S, 0 (S), and black is

salinity-squared transport per salinity class, g* (S) = —as0* (S).

transect is prescribed, the well-mixed case. This sim-
plest example of a tidally energetic estuary demon-
strates that even under these conditions an exchange
flow develops, where nonconstancy in inflow and out-
flow salinities matters.

1) LINEAR EXCHANGE AND SALINITY PROFILE

Assuming a flat-bottom estuarine transect with con-
stant depth H and width W, and a constant net outflow
O, = —WHu,, the following stationary and laterally
homogeneous vertical linear profiles of u and s fulfill
volume and salt conservation (see Figs. 2a,b):

u(z)=Au(—%—%) —u;

z 1 1 Au

= -
$(2) As( H 2 12 ur)’
with the bottom to surface velocity and salinity differ-
ences Au and As, respectively, where for Au > 6u, pos-
itivity of s(z) is guaranteed. According to (25), we obtain

(41)

z(S)
udz,

max)

o) | “2)

udA = WJ
A(S)

z(S,

with

S 1 1 Au
z(S) = max{H (—A—S -3 + - ur),O}, 2(S,,0=—"H.

(43)
With this, g(S) results in
Au /S 1 Au u, )\
] e o) )
see Fig. 2c The volume transports result as
1 u 1 2
Qin 7§WHAM<E E) 5
= Lyauf 1Y 45
Qou = 5 WHAU| - +5 ] (45)
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such that volume conservation (1) is fulfilled. Following
(25), 0%, ¢*, 0", and ¢*" can also be calculated (Figs. 2d.¢).
Here, the following parameters have been used: H =
10m,Au=0.5ms ', u,=0.02ms ', As=10gkg ', W=
1000m, and Q, = 200m>s~ L.
The resulting Knudsen estimates are summarized
here:

0,, =160 m’s™h; Q= —360 m’s7!;
=12.00gkg™"; s, =533gkg™';

(sz)ilé2 =12.04gkg " (sz)(l)/uzl =552gkg™";
M, =M, =12222m’s" (gkg')’;

M, =M, =12800m’s " (gkg '),

N

in

which implies a mixing completeness of Mc = 44.4%
and a mixing estimate error of M., by about 5%.

2) OSCILLATING AND WELL-MIXED TIDAL FLOW

We propose here an analytical test scenario for a well-
mixed tidal flow with oscillating salinity, given as

u(t)=u, +u, cos(wt);

s(t)y=s, +s5, cos(wt+ @), (46)
with the residual velocity u, <0, the mean salinity s,, the
velocity and salinity amplitudes u, >0 and s, >0 with
s, — 8, =0, the tidal frequency w = 27/T with the tidal
period T, and the tidal phase ¢. It is assumed that the
tidal flow passes through a constant cross-sectional area
A. Then the cross-sectionally and tidally averaged salt
transport is

1 T
T Jo usdt=us + M“TS“ cos(¢), 47)
such that zero residual salt transport requires
us )
cos(¢p) = _Zursr’ with  ws =2Juls. (48)

The inflow and outflow volume fluxes and salinities, Q;,,,
Qouts Sins Souts (82)in, and (s?) oy are calculated by means
of (26) and (27) in sufficient accuracy [see MacCready
et al. (2018) for the more accurate dividing-salinity ap-
proach]. Figure 3 shows an example for A = 10000 m?,
u, = —0.1ms ! [resultingin Q, = 1000ms ™, which in this
periodic case equals —Q(0)],u, = 1ms™',s, =20gkg ',
ands, = 10gkg ', resultingin ¢ = —1.16 = —0.185 X 27
[note that (48) also gives a solution with ¢ >0, which,
however, is not used here since it results in increasing
salinity for negative flow velocity, i.e., ebb flow].

The resulting Knudsen estimates are summarized
here:
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0, =813240m’s™"; Q= —1813240m’s™";
s, =28424¢gkg™"y s, =12.748gkg ™"
(D) =284T1gkg s (%) = 13.060gkg "

M, =M, =350000m"s " (gkg™")*;
M, =M, =362346m’s" (gkg '),

which implies a mixing completeness of Mc = 44.8%
and a mixing estimate error of M., by about 3.5%.

b. Idealized numerical scenarios

The two numerical estuarine examples presented here
both explicitly simulate estuarine mixing and show
how this is represented by the TEF-based Knudsen
mixing analysis. The first is a vertically integrated and
one-dimensional test case with and without explicit
physical mixing and with strong numerical mixing,
due to the diffusive first-order upstream scheme used.
It is demonstrated that the numerical mixing directly
calculated equals the net inflow of squared salinity in
this periodic scenario, if physical mixing is absent.
The second, vertically resolved, two-dimensional test
case includes physical mixing parameterized by
means of a turbulence closure model. It is shown for
this tidal flow scenario how small deviations from
periodicity significantly influence the accuracy of the
mixing estimates.

1) PERIODIC ONE-DIMENSIONAL ESTUARY

Here, we simulate a one-dimensional estuary by
means of the following finite-volume momentum
equation,

|1e]ue
0,uD)=—gDd n— gy (49)
where the two terms on the right-hand side are the
pressure gradient (with gravitational acceleration g =
9.81ms %) and the bottom friction (with the drag co-

efficient ¢, = 2.5 X 107?), the salinity equation,

a,(sD)=—0a [D(us — K, 9 s)], (50)
where the term on the right-hand side denotes salinity
advection and diffusion, and the surface elevation
equation,

d,1=—0,(uD), (51)
where D = H + 7 is the total water depth. The estuary
is L = 100km long, W = 1km wide, and the depth
decreases linearly from 15m at the mouth to Sm at
the river end, where a freshwater discharge of
0, =—0(0)=200m>s™! is prescribed. Salinity at the
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FIG. 3. Oscillating tidal flow. (a) Velocity (red), salinity (black), and salinity flux (blue) time series for the oscillating exchange flow
scenario in (46). (b) Red is volume transport above a certain value of S, Q(S), and black is volume transport per salinity class,
q(S) = —9sQ(S). (c) Red is salinity transport above a certain value of S, Q°(S), and black is salinity transport per salinity class,
¢ (S) = —950°(S). (d) Red is salinity-squared transport above a certain value of S, O (S), and black is salinity-squared transport per

salinity class, cfZ S)= -950" (9).

mouth is prescribed as 30 gkg ™', and the tidal ele-

vation amplitude for the harmonic M, tide (pe-
riod T = 44714s) is 2m. The salinity advection is

discretized by means of a first-order upstream scheme,
and the salinity diffusion is discretized by central
differences:

n+lpn+l _ npyn n+1/2,,n+1/25n _ pn+l12,,n+12
s D; siD} _ DYl n St — Din S
At Ax
D}jl+1/2 § L — ) — D(l:rl/Z s — Sr]_
+Kh z+1/2( i+1 l) i 1/2( i i 1), (52)

with the interfacial advection salinities

n
" — S
i+1/2 n

Siv1

n
for ul,,,>0,

. 53
otherwise, (33)
where At and Ax denote time step and spatial incre-
ment, superscript indices indicate the time step number,
and subscript indices indicate the spatial step number.

Ax?

The discrete values for u?; 2 are calculated by a straight-

forward discretization of (49) and the interface depths
are defined as D' [2 = (1/4)(D" + D!, + D' + D).
The first-order upstream scheme in (53) is known to be
highly diffusive and the effective (physical plus numer-
ical) mixing of the advection—diffusion scheme in each
grid box at each time step can be calculated numerically
exactly according to Klingbeil et al. (2014) as
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n 2 n n\2 ryn n n n n 2
M2 = —WAx (st Dy — (s7)°D; + DR R ) — DR R )
! At Ax
n n 2 n\2 n n\2 n 2
- K DERIG7)” = )71 = DRI — (57-0)7] (54)
h Ax2
such for tidally periodic conditions the tidally averaged
sum of the effective mixing can be quantified as
1 Pnax Imax .
(M) + (M) =—— > > M2
Noax n=1 i=1
n 2 — 1
= _ z ul/zl/Z( 1/2 Kh(sl) (s()) DT/—;I/Z , (55)

max n=

_n

assuming that s7 =} =s; =0, since they are
located in the freshwater range In (55) the first term is
the numerical mixing (M) and the second term is the
physical mixing (Mphy).

For no explicit longitudinal diffusion (K, =0), the
resulting dynamics of this simple numerical estuary is
shown in Fig. 4 for Ar = T7/1000 and Ax = L/100. Tidal
velocity and salinity are highly variable and lead to a salt
intrusion over the first half (50km) of the estuary
(Figs. 4a,b). The exchange flow is analyzed at x = 5km
(see Figs. 4c—e). It can be seen that the inflow of volume
(and consequently also the inflow of salinity, salinity
squared, and salinity variance) occurs at a narrow sa-
hnlty range with S > 28gkg ! (sin =28.5517gkg ™!

(s 2)12 =28.5537gkg !). In contrast, outflows occur at
the broad salinity range between 16 and 28 gkg , with
a peak at low sahmtles of around 17gkg™! (sOm =
19.9178 gkg ', (s2)0ul 20.1780gkg '). This outflow
peak at low salinities can be explained by the rela-
tively low friction which allows the tidal wave to be re-
flected back from the end of the estuary, such that at late
ebb increased outflow occurs. Since (siy)° ~ (5*);, and
(Sow)* = (5?)ou» the two mixing estimates from (38),
M,, and (39), M,,, differ by only 6% (see Table 1). Note
that for this periodic scenario M, =M, and M. =M,
hold. The mixing completeness results in Mc = 70%.
Figure 4e shows the exchange flow profiles for the
square of salinity and the variance per unit volume of
salinity in comparison. The variance profiles show a
slightly smaller amplitude, since the difference to mean
salinity 5 instead of the difference to zero is transported.
For both profiles, the values for S = 0 are similar, with
07 (0) = (M) and Q" (0) = (M) — (*)Q, for this simple

Ax

scenario with constant river runoff [see (33)]. Here,
the following mixing relations hold: (M) = (Muym) =
07 (0)= 0" (0) + 3*)Q, = M, = M,,. Table 1 gives an
overview of the mixing relations.

When applying a longitudinal diffusivity of K, =
100m?s ™!, the salt wedge extends about 10km farther
into the estuary and salinities at the mouth are closer to
the open boundary salinity (not shown). Using the ef-
fective flux for salinity and its square according to (17),
F*=us — K,d,s and F*' = us® — K,d,s*, exchange pro-
files including the contribution from the diffusive flux
can be computed (see Fig. 5). Compared to the simula-
tion without explicit diffusivity, these profiles are (i)
shifted to higher salinities and cover a smaller range
(due to the increased salinities at the analyzed loca-
tion) and (ii) have larger amplitudes (due to the in-
creased fluxes and due to the fact that a smaller
salinity range is given). The mixing completeness has
increased to 73%. Table 1 shows that total mixing is
increased by about 20% in comparison to the scenario
with K, = 0. Numerical mixing is strongly reduced,
since salinity gradients are smoothed by physical mix-
ing which dominates over numerical mixing now.
Also here, the following mixing relations hold: (M) =
(Mpny) + (Muum) = o~ 0)= QSQ(O) +(5)0, =M. =M,
and the constant Knudsen mixing relation derived by
MacCready et al. (2018), M,,, approximates that values
quite closely.

2) PERIODIC TWO-DIMENSIONAL ESTUARY

Finally, we simulate a periodic two-dimensional
width-averaged tidal estuary to compare the estuarine
mixing estimates in (36)—-(39) with the effective (physical
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plus numerical) tidally averaged mixing integrated
over the entire estuary. The setup is similar to the one
used by Warner et al. (2005) for evaluating various
turbulence closure schemes and by Burchard and
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FIG. 4. One-dimensional estuary without explicit longitudinal diffusion. (a) Tidal mean velocity («D)/(D) (red) and instantaneous
velocity u(x, t) for 10 different tidal phases (black). (b) Tidal mean salinity (sD)/(D) (red) and instantaneous salinity s(x, r) for 10 different
tidal phases (black). Exchange flow profiles at x = 5km [see vertical line in (a) and (b)] with (c) red showing volume transport above a
certain value of S, Q(S), and black showing volume transport per salinity class, g(S) = —dsQ(S); (d) red showing salinity transport above a
certain value of S, Q°(S), and black showing salinity transport per salinity class, ¢*(S) = —dsQ°(S); and (e) red showing salinity-squared
and variance transport above a certain value of S, 0*'(S) and Q*“(S), and black showing salinity-squared and variance transport per salinity
class, ¢(S) = —050°(S) and ¢**(S) = —950°(S).

Hofmeister (2008) for computing terms in the potential
energy anomaly budget.

The idealized estuary is 100km long and 500 m wide
and the depth varies linearly between 15 m at the ocean

TABLE 1. One-dimensional estuary without and with explicit longitudinal diffusion: compilation of the mixing estimates, averaged over
one tidal period, and rounded to integer values. For this periodic test case with constant river runoff, the following exact relations hold:

(M) = (Myny) + (Myum) = Q¥(0) = Q*(0) + () Q, = M...

Value, Value,
Mixing estimate Variable A, =0[m?s™" (gkg )] A, =100m*s 2 [m’s ! (gkg1)*]

Exact mixing (M) 106 888 125963
Physical mixing (Mpny) 0 70 646
Numerical mixing (M pym) 106 888 55317
Boundary flux of s 0+ (0) 106 888 125963
Boundary flux of 52, s> 0 0% (0) 104 146 119087
Boundary flux of 52, s =0 30, 2742 6875
Exact Knudsen relation M,=M, 106 888 125963
Constant and periodic relation M.=M, 111737 127338
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FIG. 5. One-dimensional estuary with explicit longitudinal diffusion K, = 100 m?*s~': exchange flow profiles at x = 5 km [see vertical line
in (a) and (b) of Fig. 4] with (a) red showing volume transport above a certain value of S, Q(S), and black showing volume transport per
salinity class, ¢(S) = —9sQ(S); (b) red showing salinity transport above a certain value of S, Q°(S), and black showing salinity transport per
salinity class, ¢*(S) = —d5Q°(S); and (c) red showing salinity-squared and variance transport above a certain value of S, Q*'(S) and Q*’(S),
and black showing salinity-squared and variance transport per salinity class, g~(S) = —950%(S) and ¢°*(S) = —950"(S).

side (where a constant salinity of 30gkg ' and a har-

monic semidiurnal M, tide with an elevation amplitude
of 0.6 m are prescribed) and 5m at the river end (where
a constant freshwater runoff of Q, = 50m>s™"' is pre-
scribed). Eddy viscosity and eddy diffusivity are calcu-
lated by means of a k—e two-equation turbulence closure
model (Umlauf and Burchard 2005), and explicit lon-
gitudinal mixing is neglected. As a numerical model,
the General Estuarine Transport Model (GETM;
Burchard and Bolding (2002); www.getm.eu) is applied.
The simulation uses a temporal discretization with 500
baroclinic and 5000 barotropic time steps for one tidal
period, 40 equidistant o layers in the vertical, and 200
equidistant spatial steps along the estuary. As advec-
tion scheme for momentum and salinity, the Superbee
scheme is used, implemented by means of a directional-
split method (Pietrzak 1998), which is known for its
antidiffusive properties (Klingbeil et al. 2014). The
simulation is first run for 100 tidal periods which results
in an almost periodic state. A perfect periodic state is,
however, not approximated, due to the occurrence of
internal waves with a frequency different from the tidal
frequency. Initialized with this almost periodic solu-
tion, the time-averaged mixing during 10 tidal periods
is finally evaluated. For this, the cross section at x =
22.5km is evaluated, since it is neither directly influ-
enced by the open boundary conditions (maximum
salinity in that cross section does not reach the boundary
value) nor situated in the freshwater range at any time.
Estuary-integrated parameters are then calculated for
22.5 = x = 100km.

Figure 6 shows snapshots of salinity and current ve-
locity at full flood and full ebb as well as physical and
numerical mixing at full ebb (where the physical mixing

has its maximum in this simple tidal estuary without
lateral variation). These 10 tidal periods under in-
vestigation are time dependent in the sense that the
volume, salt, and salt-squared storage terms amount
t0 Viror = 0.0219m>s ™!, Sior = —8.26m>s ™! gkg_l, and
($P)stor = —137m’s ™" (gkg ™))%

Exchange flow profiles at x = 22.5km are shown in
Fig. 7. The profiles of ¢q, ¢°, ¢* and ¢* show signifi-
cant oscillations in the range of medium salinities be-
tween 12 and 18 gkg ™!, which can be explained by the
internal waves moving at the salinity interface. As
already in Fig. 4e, also here the amplitude of the salin-
ity variance transport is smaller than for the salinity
square (see Fig. 7c). The volume transport integrated
over all salinity classes results in Q(0)= -0, +
Vior = —49.9781m>s™!, the integrated salinity trans-
port is Q%(0) = Sgor = —826m*s ' gkg™!, and the
salinity square transport is Q% (0) = (M) + (§?),., =
12873 m*s ! (gkg ')’ . The salinity variance transport is
07 (0) = (M) — () Q, + (57) gy = 12438 m*s (g 1)’
m’s~ ! (gkg ') (see Table 2).

The resulting values for the inflow and outflow salin-
ities are s;, = 20.48gkg ', 5o = 14.04gkg !, (Sz):f =
2051gkg ™!, and (s?).. =14.34gkg !, such that the
mixing completeness amounts to Mc = 69%.

Using the numerical analysis methods by Klingbeil
et al. (2014), tidally averaged physical and numerical
mixing is estimated as (M) =13458m’s~!(gkg ')’
and (M) = —448m3s~!(gkg ')’, where the negative
numerical mixing appears due to the antidiffusive prop-
erties of the Superbee advection scheme. With this, the
effective total mixing is (M) =13009m3s !(gkg ')’
which is identical to the value resulting from the tid-
ally averaged and vertically integrated advective fluxes
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FIG. 6. Periodic two-dimensional estuary, brackish region: (a) salinity (color shading) and current velocity
(contour lines) at full flood, (b) salinity and current velocity at full ebb, (c) physical mixing per unit volume at full
ebb, and (d) numerical mixing per unit volume at full ebb. The vertical black line at x = 22.5km indicates the

location for the TEF analysis.

of §% through the open boundary, corrected by the
storage of (5%)or- The estimate from the nonconstant
and nonperiodic Knudsen relation for mixing, M, from
(36), is identical to this value as well, whereas the con-
stant and nonperiodic estimate, M. from (37) based
on (2)in =~ (5in)” and (2)ou = (Sou)’> amounts to M, =
14221m?s™ ! (gkg )%, which is an overestimation by
9.3%. For the estimates ignoring time dependence
[assuming Vior = Sgior = (8%)stor = 0], the nonconstant
relation from (38) gives M, = 13154m’s ™" (gkg ') [i.e.,
an overestimation by 1% due to the dominance of the
negative second term in (36) over the positive third term]
and the constant and periodic relation from (39) gives
M, = 14376 m’ s~ ! (gkg™")? (i.e., an overestimation by
10.5%). As an overview, all mixing estimates for aver-
aging over 10 tidal periods are compiled in Table 2.
Realistic applications are generally far away from
stationary or periodic conditions, due to the relevance of
more than one tidal constituent or dominating effects of
fluctuations in wind or river runoff. Therefore, the de-
pendence of the four TEF-based Knudsen mixing esti-
mates on the averaging period is shown in Fig. 8. For
averaging over full tidal cycles, all estimates are within
about 15%, and none of the approximate relations M.,

M,, and M., is generally closer to the exact value
M, = (M) than the others. However, when averaging
over fractional tidal periods, the approximate relations
show strong fluctuations. For short averaging periods,
M, and M, even give negative values at times. These
two estimates do also show a strong dependence on the
exact averaging period when it is close to full tidal cycles.
In a real situation with various tidal frequencies, this
could lead to strong inaccuracies of these relations.
By definition, only the exact relation M, and the con-
stant and periodic relation M, are constrained to give
nonnegative values. This underlines the usefulness
and robustness of the simple relation M, = sinSou Q-
derived by MacCready et al. (2018).

5. Discussion

The theory developed here provides a generalization
of the total exchange flow (TEF) analysis framework
first developed by MacCready (2011) and later extended
by MacCready et al. (2018) to estimate mixing. This
generalization includes several aspects.

First of all, TEF profiles are defined in (25) for an
arbitrary tracer c, as already proposed by Walin (1977).
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FIG. 7. Periodic two-dimensional estuary: Exchange flow profiles averaged over ten tidal periods almost in periodic equilibrium,
evaluated at x = 22.5 km (see the vertical lines in Fig. 6) with (a) red showing volume transport above a certain value of S, Q(S), and black
showing volume transport per salinity class, g(S) = —dsQ(S); (b) red showing salinity transport above a certain value of S, Q*(S), and black
showing salinity transport per salinity class, ¢*(S) = —9s0°(S); (c) red showing salinity-squared and variance transport above a certain
value of S, Q%(S) (thick line) and Q(S) (thin line), and black showing salinity-squared and variance transport per salinity class,

g°(S) = —a507(S) (thick line) and ¢**(S) = —350*(S) (thin line).

This has been used here to include TEF profiles also for
the square and the variance of salinity, but this might
also be interesting for budgeting nutrients, heat, or
particulate matter in estuaries. These generalized TEF
profiles allow for the consistent calculation of inflow and
outflow values in terms of the Knudsen relations [see
(26) and (27)]. Based on volume-integrated scalar
equations, exact Knudsen-type budgets for these scalars
can be formulated, including temporal changes (stor-
age), net transports at the freshwater and the marine
boundaries, and internal transformations [see (30)-
(33)]. These budgets for volume and salt are identical to
the Knudsen relations, as already shown by MacCready
(2011). The resulting salinity variance budget in (33) is
equal to the budget derived by MacCready et al. (2018),
apart from the effect of temporal covariance between

runoff and mean salinity square. As sink term, the
volume-integrated mixing is included in the salinity
variance budget. Assuming stationarity or periodicity
and further simplifying this equation, MacCready et al.
(2018) derived their simple estuarine mixing estimate,
that is, that mixing is approximately the product of in-
flowing and outflowing salinity and river runoff, which is
represented by the mixing estimate M., defined in (39).

Deriving a budget for the salinity square instead of the
salinity variance gives a simpler exact relation for the
volume-integrated mixing, now without the necessity to
consider the mean salinity of the estuary [see (32) and
also Burchard and Rennau (2008)]. In combination with
the volume and the salt budget, an exact mixing estimate
is obtained, only including inflow and outflow values of
salinity and its square, the river runoff, and the storage

TABLE 2. Periodic two-dimensional estuary: compilation of the mixing estimates, averaged over 10 tidal periods, and rounded to integer

values. The following exact relations hold:(M) = (Mppy) + (Mpum) = 07(0) = (5?)yor = Q7°(0) + 1) Or — (5P)yior

=M..

Mixing estimate Variable Value [m’s™! (gkg™")?]
Exact mixing (M) 13009
Physical mixing (Mophy) 13458
Numerical mixing (Moum) —448
Boundary flux s? 07 (0) 12873
Storage of s* ~(5%)s0r 137
Boundary flux of s for s >0 0 (0) 12438
Boundary flux of s for s =0 %0, 456
Storage of 57 —(5)gtor 116
Exact Knudsen relation M, 13009
Constant Knudsen relation M. 14221
Stationary Knudsen relation M, 13154
Constant and periodic Knudsen relation M., 14376
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FI1G. 8. Periodic two-dimensional estuary, TEF-based Knudsen estimates in (36)—(39) for
mixing as a function of the length of the averaging period: exact nonconstant and nonperiodic
relation M, (red); approximate, constant, and nonperiodic relation M, (gray); approximate,
nonconstant, and periodic relation M,, (blue); and approximate, constant, and periodic relation
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M., (black).

terms for volume, salt and salt square [see (36)]. Two
approximations, 1) periodicity, that is, vanishing storage
terms, and 2) constancy of inflow and outflow salin-
ities, that s, (s?)in = (5in)” and (s*)out = (Sout)’, lead to the
simple mixing estimate by MacCready et al. (2018). The
exact mixing estimate from (36), relaxed by either ap-
proximate 1 or 2, leads to intermediate mixing esti-
mates that may be useful in specific idealized scenarios.
While constancy is fulfilled for the simple box estuary
scenario discussed in section 2, it is violated in basic
analytical cases with stationary and linear profiles of
velocity and salinity and periodic and cross-sectionally
constant velocity and salinity distributions. In these ca-
ses, the assumption of constancy leads to an error in
mixing estimates of the order of 5%. A similar error was
observed for the one-dimensional numerical estuary,
whereas the linearization error was about 10% in the
two-dimensional estuary scenario. Whereas the exact
mixing estimate in (36) is positive by definition and the
simple mixing estimate in (39) is positive by construc-
tion, the nonperiodic but constant estimate in (37) and
the nonconstant but periodic estimate in (38) may result
in negative estimates. This highlights the robustness and
usefulness of the simple mixing estimate in (39) pro-
posed by MacCready et al. (2018).

Diffusive fluxes in addition to the advective fluxes
across the marine boundary of the estuary are now in-
cluded in the TEF analysis. Since formally the boundary

of the estuary for the TEF analysis can be located any-
where and the boundary area for the TEF analysis might
be wide and allowing for horizontal eddy mixing, the
inclusion of diffusive fluxes may be essential. Also for
idealized models of estuaries, longitudinal diffusivity is
often applied to parameterize effects of lateral or ver-
tical shear dispersion (Okubo 1973; Fischer 1976); see
also the example of the one-dimensional estuary of the
present study.

Since closed budgets of estuarine mixing can only be
obtained by means of numerical modeling which in-
herently includes numerical mixing, the TEF theory has
been formulated here such that numerically accurate
formulations are applied. Based on the numerical mix-
ing theory developed by Klingbeil et al. (2014), mixing
estimates are numerically exact in the sense that they
reproduce the effective (physical plus numerical) mixing
of the model. This has been demonstrated here for the
one-dimensional and two-dimensional test scenarios.

6. Conclusions

The Knudsen-type estuarine mixing estimates derived
here could be applied to analyze model simulations us-
ing any numerical model. Since most coastal ocean
models are based on a finite-volume type of spatial
discretization, the exact mixing estimate in (36) could be
exactly reproduced numerically as shown in Tables 1
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and 2. Such an analysis could be performed not only
for one specific transect located somewhere near the
mouth of the estuary, but for several transects separat-
ing the estuary into finite-volume compartments as
demonstrated by Wang et al. (2017). This would help to
study the exchange flow and effective (physical plus
numerical) mixing characteristics of different regions
in the estuary.

Since the robust mixing estimate M., by MacCready
et al. (2018) has generally been proven to show an error
of at most 10% from the real mixing, it will for many real
estuaries give a first rule-of-thumb estimate of the long-
term-averaged basinwide mixing, as the classical case
of the Baltic Sea shows (section 2). However, variability
in time and space will only be recovered by the more
complete mixing estimates considering nonconstancy
of inflows and outflows as well as storage terms for
volume, salt, and salt squared.

There is a challenge left for the future which has not
been tackled here. The exchange of volume across the
air-sea interface as given by the net effect of precipita-
tion and evaporation is ignored here. This may be ac-
ceptable for classical estuaries in humid regions, but for
large estuaries such as the Baltic Sea (Reissmann et al.
2009; Burchard et al. 2018) this may result in large errors
in the mixing calculation. Precipitation may actually
be included as an additional source of freshwater ac-
counted for by Q,. However, for inverse estuaries where
the river runoff may almost vanish and evaporation
dominates substantially over precipitation, such as the
Persian Gulf (Kampf and Sadrinasab 2006) or Shark
Bay in Western Australia (Hetzel et al. 2015), the cur-
rent method will fail; for example, the simple mixing
estimate (39) introduced by MacCready et al. (2018)
would result in negative mixing (if using negative
surface-area-integrated evaporation as river runoff).

Acknowledgments. This paper is a contribution to the
Collaborative Research Centre TRR 181 on Energy
Transfer in Atmosphere and Ocean (HB and KK) and
the Research Training Group Baltic TRANSCOAST
GRK 2000 (HB and XL), both funded by the German
Research Foundation. PM was supported by Grant
OCE-1736242 from the National Science Foundation.
The authors are grateful for the constructive comments
by Rob Hetland (Texas A&M) and another reviewer.

REFERENCES

Burchard, H., and K. Bolding, 2002: GETM—A general estuarine
transport model. Scientific documentation. Tech. Rep. EUR
20253 EN, European Commission, 157 pp.

——, and R. Hofmeister, 2008: A dynamic equation for the po-
tential energy anomaly for analysing mixing and stratification

BURCHARD ET AL.

647

in estuaries and coastal seas. Estuarine Coastal Shelf Sci., 77,
679-687, https://doi.org/10.1016/j.ecss.2007.10.025.

——, and H. Rennau, 2008: Comparative quantification of
physically and numerically induced mixing in ocean
models. Ocean Modell., 20, 293-311, https://doi.org/10.1016/
j.ocemod.2007.10.003.

——, F. Janssen, K. Bolding, L. Umlauf, and H. Rennau, 2009:
Model simulations of dense bottom currents in the western
Baltic Sea. Cont. Shelf Res.,29,205-220, https://doi.org/10.1016/
j.cs1.2007.09.010.

——, and Coauthors, 2018: The Knudsen theorem and the total
exchange flow analysis framework applied to the Baltic
Sea. Prog. Oceanogr., 165, 268-286, https://doi.org/10.1016/
j.pocean.2018.04.004.

Fischer, H. B., 1976: Mixing and dispersion in estuaries. Annu.
Rev. Fluid Mech., 8, 107-133, https://doi.org/10.1146/annurev.
11.08.010176.000543.

Hansen, D. V., and M. Rattray, 1965: Gravitational circulation in
straits and estuaries. J. Mar. Res., 23, 104-122.

Hetland, R. D., and W. R. Geyer, 2004: An idealized study of the
structure of long, partially mixed estuaries. J. Phys. Oceanogr.,
34, 2677-2691, https://doi.org/10.1175/JPO2646.1.

Hetzel, Y., C. Pattiaratchi, R. Lowe, and R. Hofmeister, 2015: Wind
and tidal mixing controls on stratification and dense water
outflows in a large hypersaline bay. J. Geophys. Res. Oceans,
120, 6034-6056, https://doi.org/10.1002/2015JC010733.

Kéampf, J., and M. Sadrinasab, 2006: The circulation of the Persian
Gulf: A numerical study. Ocean Sci., 2, 27-41, https://doi.org/
10.5194/0s-2-27-2006.

Klingbeil, K., M. Mohammadi-Aragh, U. Grawe, and H. Burchard,
2014: Quantification of spurious dissipation and mixing—
Discrete variance decay in a finite-volume framework. Ocean
Modell., 81, 49-64, https://doi.org/10.1016/j.ocemod.2014.06.001.

—— F.Lemarié, L. Debreu, and H. Burchard, 2018: The numerics
of hydrostatic structured-grid coastal ocean models: State of
the art and future perspectives. Ocean Modell., 125, 80-105,
https://doi.org/10.1016/j.ocemod.2018.01.007.

Knudsen, M., 1900: Ein hydrographischer Lehrsatz. Ann. Hydrogr.
Marit. Meteor., 28 (7), 316-320.

Lesieur, M., 1997: Turbulence in Fluids. 3rd ed. Fluid Mechanics
and Its Applications, Vol. 40, Kluwer Academic Publishers,
515 pp.

MacCready, P., 2011: Calculating estuarine exchange flow using
isohaline coordinates. J. Phys. Oceanogr., 41, 1116-1124,
https://doi.org/10.1175/2011JPO4517.1.

——, and W. R. Geyer, 2010: Advances in estuarine physics. Annu.
Rev. Mar. Sci., 2, 35-58, https://doi.org/10.1146/annurev-
marine-120308-081015.

——, ——, and H. Burchard, 2018: Estuarine exchange flow is
related to mixing through the salinity variance budget.
J. Phys. Oceanogr., 48, 1375-1384, https://doi.org/10.1175/
JPO-D-17-0266.1.

Matthius, W., and H. Schinke, 1999: The influence of river runoff
on deep water conditions of the Baltic Sea. Hydrobiologia,
393, 1-10, https://doi.org/10.1023/A:1003573328473.

Okubo, A., 1973: Effect of shoreline irregularities on stream-
wise dispersion in estuaries and other embayments. Neth.
J. Sea Res., 6, 213-224, https://doi.org/10.1016/0077-7579(73)
90014-8.

Peters, H., and R. Bokhorst, 2000: Microstructure observations of
turbulent mixing in a partially mixed estuary. Part I: Dissi-
pation rate. J. Phys. Oceanogr., 30, 12321244, https://doi.org/
10.1175/1520-0485(2000)030<1232:MOOTMI>2.0.CO;2.


https://doi.org/10.1016/j.ecss.2007.10.025
https://doi.org/10.1016/j.ocemod.2007.10.003
https://doi.org/10.1016/j.ocemod.2007.10.003
https://doi.org/10.1016/j.csr.2007.09.010
https://doi.org/10.1016/j.csr.2007.09.010
https://doi.org/10.1016/j.pocean.2018.04.004
https://doi.org/10.1016/j.pocean.2018.04.004
https://doi.org/10.1146/annurev.fl.08.010176.000543
https://doi.org/10.1146/annurev.fl.08.010176.000543
https://doi.org/10.1175/JPO2646.1
https://doi.org/10.1002/2015JC010733
https://doi.org/10.5194/os-2-27-2006
https://doi.org/10.5194/os-2-27-2006
https://doi.org/10.1016/j.ocemod.2014.06.001
https://doi.org/10.1016/j.ocemod.2018.01.007
https://doi.org/10.1175/2011JPO4517.1
https://doi.org/10.1146/annurev-marine-120308-081015
https://doi.org/10.1146/annurev-marine-120308-081015
https://doi.org/10.1175/JPO-D-17-0266.1
https://doi.org/10.1175/JPO-D-17-0266.1
https://doi.org/10.1023/A:1003573328473
https://doi.org/10.1016/0077-7579(73)90014-8
https://doi.org/10.1016/0077-7579(73)90014-8
https://doi.org/10.1175/1520-0485(2000)030<1232:MOOTMI>2.0.CO;2
https://doi.org/10.1175/1520-0485(2000)030<1232:MOOTMI>2.0.CO;2

648

——, and ——, 2001: Microstructure observations of turbulent
mixing in a partially mixed estuary. Part II: Salt flux and stress.
J. Phys. Oceanogr., 31, 1105-1119, https://doi.org/10.1175/
1520-0485(2001)031<1105:MOOTMI>2.0.CO;2.

Pietrzak, J., 1998: The use of TVD limiters for forward-in-time
upstream-biased advection schemes in ocean modeling. Mon.
Wea. Rev., 126, 812-830, https://doi.org/10.1175/1520-0493(1998)
126<0812:TUOTLF>2.0.CO:;2.

Ralston, D. K., G. W. Cowles, W. R. Geyer, and R. C. Holleman,
2017: Turbulent and numerical mixing in a salt wedge estuary:
Dependence on grid resolution, bottom roughness, and tur-
bulence closure. J. Geophys. Res. Oceans, 122, 692712, https://
doi.org/10.1002/2016JC011738.

Reissmann, J. H., and Coauthors, 2009: Vertical mixing in the
Baltic Sea and consequences for eutrophication—A re-
view. Prog. Oceanogr., 82, 47-80, https://doi.org/10.1016/
j.pocean.2007.10.004.

Sun, Q., M. M. Whitney, F. O. Bryan, and Y.-h. Tseng, 2017: A box
model for representing estuarine physical processes in Earth

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 49

system models. Ocean Modell., 112, 139-153, https://doi.org/
10.1016/j.ocemod.2017.03.004.

Umlauf, L., and H. Burchard, 2005: Second-order turbulence
models for geophysical boundary layers. A review of recent
work. Cont. Shelf Res., 25, 795-827, https://doi.org/10.1016/
j.cs1.2004.08.004.

Walin, G., 1977: A theoretical framework for the description
of estuaries. Tellus, 29, 128-136, https://doi.org/10.3402/
tellusa.v29i2.11337.

——, 1981: On the deep water flow into the Baltic. Geofysica, 17,
75-93.

Wang, T., W. R. Geyer, and P. MacCready, 2017: Total ex-
change flow, entrainment, and diffusive salt flux in estuar-
ies. J. Phys. Oceanogr., 47, 1205-1220, https://doi.org/10.1175/
JPO-D-16-0258.1.

Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell,
2005: Performance of four turbulence closure models im-
plemented using a generic length scale method. Ocean Mod-
ell., 8, 81-113, https://doi.org/10.1016/j.ocemod.2003.12.003.


https://doi.org/10.1175/1520-0485(2001)031<1105:MOOTMI>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<1105:MOOTMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0812:TUOTLF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0812:TUOTLF>2.0.CO;2
https://doi.org/10.1002/2016JC011738
https://doi.org/10.1002/2016JC011738
https://doi.org/10.1016/j.pocean.2007.10.004
https://doi.org/10.1016/j.pocean.2007.10.004
https://doi.org/10.1016/j.ocemod.2017.03.004
https://doi.org/10.1016/j.ocemod.2017.03.004
https://doi.org/10.1016/j.csr.2004.08.004
https://doi.org/10.1016/j.csr.2004.08.004
https://doi.org/10.3402/tellusa.v29i2.11337
https://doi.org/10.3402/tellusa.v29i2.11337
https://doi.org/10.1175/JPO-D-16-0258.1
https://doi.org/10.1175/JPO-D-16-0258.1
https://doi.org/10.1016/j.ocemod.2003.12.003

