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We investigate how ideas from covariance localization in numerical weather prediction 
can be used in Markov chain Monte Carlo (MCMC) sampling of high-dimensional posterior 
distributions arising in Bayesian inverse problems. To localize an inverse problem is to 
enforce an anticipated “local” structure by (i) neglecting small off-diagonal elements of the 
prior precision and covariance matrices; and (ii) restricting the influence of observations 
to their neighborhood. For linear problems we can specify the conditions under which 
posterior moments of the localized problem are close to those of the original problem. 
We explain physical interpretations of our assumptions about local structure and discuss 
the notion of high dimensionality in local problems, which is different from the usual 
notion of high dimensionality in function space MCMC. The Gibbs sampler is a natural 
choice of MCMC algorithm for localized inverse problems and we demonstrate that its 
convergence rate is independent of dimension for localized linear problems. Nonlinear 
problems can also be tackled efficiently by localization and, as a simple illustration of 
these ideas, we present a localized Metropolis-within-Gibbs sampler. Several linear and 
nonlinear numerical examples illustrate localization in the context of MCMC samplers for 
inverse problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We consider inverse problems in the Bayesian setting. Let x be an n-dimensional real-valued random vector. The obser-
vations are defined by

y = h(x) + v,

where y is a k-dimensional vector, h is a given function, and v is a random variable with known distribution. The observa-
tions y, along with the distribution of v, define a likelihood pl(y|x). A prior probability density p0 describes prior knowledge 
about x. For example, one may know that the variables are likely to be within a certain interval. The prior distribution often 
also describes the smoothness of a random field whose discretization is the vector x. The prior and likelihood together 
define the posterior density:

p(x|y) ∝ p0(x)pl(y|x).
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Throughout this paper, we assume Gaussian errors, v ∼ N (0, R) and Gaussian priors p0(x) = N (m, C), as is common; see, 
e.g., [58]. In addition, we assume that

(i) the state dimension n is large and the number of observations k is also large, i.e., k = O (n);
(ii) the prior covariance and precision matrices are nearly banded;
(iii) each predicted observation [h(x)] j has significant dependence on only � � n components of x (i.e., the contribution 

from the remaining components of x is small), and R is diagonal.

In simple terms, nearly banded means that the elements away from the diagonal are small, but we make the meaning of 
nearly banded and significant dependence more precise below. We call problems that satisfy the above assumptions “local.”

In numerical weather prediction (NWP) and ensemble Kalman filtering (EnKF), local problems arise frequently. During 
a typical EnKF step, the covariance of 108 variables needs to be estimated accurately, but the number of samples used is 
usually 100 or less. This seemingly impossible task is made possible by “localization” [28,30,31]. During localization, a nearly 
banded forecast covariance matrix is transformed into an (exactly) banded matrix by setting small off-diagonal elements to 
zero, e.g., by multiplying each entry of the covariance with a suitable “localization function” [22]. In addition, the influence 
of each observation is restricted to its neighborhood. Practitioners agree that localization is a key requirement for making 
EnKF applicable to large-scale NWP problems. Note that localization trades numerical efficiency against errors which can be 
controlled: problems with banded forecast covariance structure and local observations are more easily solved, and the errors 
introduced by localization are controllable, e.g., they vanish when localization thresholds are sufficiently small. From a more 
theoretical perspective, it was shown in [6] that one can estimate a covariance matrix of bandwidth l with O (l + logn)

samples. Reference [61] explains how this result is used in the context of EnKF.
This paper examines localization in the context of Bayesian inverse problems and Markov chain Monte Carlo (MCMC) 

samplers for the associated posterior distributions. It is known that sampling generic high dimensional (posterior) distribu-
tions is challenging; see, e.g., [1,51]. We suggest, however, that one can design relatively simple MCMC algorithms to sample 
high dimensional posterior distributions of localized inverse problems efficiently. Specifically, we discuss the following three 
questions:

(a) Is the localized problem near the local problem (Section 2)?
(b) Can one solve a localized problem efficiently by MCMC (Section 3)?
(c) Are local inverse problems of practical importance (Section 4)?

In Section 4 we also explain that the notion of high dimensionality of a local inverse problem is different from what is usu-
ally considered in the MCMC literature [8,12–14,17,45,57]. Numerical illustrations are provided in Section 5. We summarize 
our conclusions in Section 6.

2. Localization of inverse problems

To localize an inverse problem means to enforce that prior interactions (correlations and/or conditional dependencies) 
and the effects of observations are confined to a neighborhood. For local problems, in the sense of Assumptions (i)–(iii) in 
Section 1, one may thus expect that errors introduced by localization are small. We prove this intuitive result for linear 
and Gaussian problems, and then discuss how localization can be used in nonlinear problems. Note that localization as 
described here can also be interpreted in the context of a more general robust Bayesian analysis [32], which examines how 
perturbations to the prior and likelihood affect the posterior distribution.

2.1. Localization of prior covariance and precision matrices

Let [C]i, j be the i, j entry of a covariance matrix C. Suppose that |[C]i, j | � |[C]i,i| for |i − j| ≥ l. During localization, these 
“small” off-diagonal elements are set to zero. The resulting localized covariance matrix Cloc has entries

[Cloc]i, j = [C]i, j1|i− j|≤l, (1)

where 1|i− j|≤l is an indicator function. We define the bandwidth l of a m ×m matrix A by

l = min{r : [A]i, j = 0 if |i − j| > r}.
With these definitions and notation, it becomes clear that localization turns the prior covariance matrix C with small off-
diagonal elements into a banded matrix Cloc, whose bandwidth is less or equal to the threshold l used during localization. 
Moreover, the localized prior covariance matrix Cloc is positive definite if the minimum eigenvalue of C is above δC , where

δC := max
i

∑
|[C]i, j|. (2)
j:|i− j|>l
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We show in Appendix A (Proposition A.2) that

‖C− Cloc‖ ≤ δC , (3)

i.e., the localized prior covariance matrix is a small perturbation of the prior covariance matrix. Note that, throughout this 
paper, we use ‖ · ‖ to denote the l2 norm for a vector x with elements x1, . . . , xn , ‖ x ‖ =

√∑n
j=1 x

2
j , as well as the l2

operator norm for a matrix A, ‖ A ‖ = supv∈Rn,‖v‖=1 ‖Av‖.
Working with prior precision matrices, rather than prior covariance matrices, is sometimes more natural. In this case, 

one can write the prior distribution as p0(x) =N (m, �−1), where � is the prior precision matrix. Precision matrices can be 
localized in the same way as covariance matrices. We assume, as above, that |[�]i, j | � |[�]i,i| for |i − j| ≥ l and localize the 
prior precision matrix by setting small off-diagonal elements equal to zero. The result is a localized prior precision matrix 
with entries

[�loc]i, j = [�]i, j1|i− j|≤l.

Under our assumptions, the localized precision matrix is a small perturbation of the precision matrix:

‖� − �loc‖ ≤ δ�, δ� := max
i

∑
j:|i− j|>l

|[�]i, j|. (4)

Localization of the covariance or precision matrices results in localized prior distributions p0,loc(x) =N (m, Cloc) or p0,loc =
N (m, �−1

loc ).

2.2. Localization of the observation matrix

We first consider the case h(x) = Hx, where H is a given k × n matrix. Assumption (ii) in Section 1 implies that each 
observation [Hx] j may depend on all components of x, but the contributions of many components are negligible. In this 
case, the observation matrix H can be localized similarly to how we localized the prior covariance.

For a given observation matrix H and a given threshold lH , define a localized observation matrix by

[Hloc] j,i = [H] j,i1|o j−i|≤lH ,

where o j represents the “center” of the j-th observation. Following (2), we can quantify the difference between H and Hloc

by

δH = max
i

⎧⎨⎩ ∑
j:|i−o j |>lH

|[H] j,i |,
∑

i:|i−o j |>lH

|[H] j,i |
⎫⎬⎭ . (5)

As before, if δH is small, then errors due to the localization are expected to be small.

2.3. Localized posterior distributions of linear-Gaussian inverse problems

We continue to assume that h(x) = Hx, so that the true (original) posterior distribution is a Gaussian with mean and 
covariance given by

m̂ = m+ K (y−Hx) ,

Ĉ = (I− KH)C,

K = CHT (R+HCHT )−1,

where K is the Kalman gain.
Localization of the observation matrix leads to the localized likelihood ploc,l(y|x) = N (Hlocx, R). If we also localize the 

prior covariance matrix, we obtain the localized prior p0,loc(x) = N (m, Cloc). The localized prior and likelihood then define 
the localized posterior ploc(x|y) ∝ ploc,l(y|x)ploc,0(x), whose mean and covariance are given by

m̂loc = m+ Kloc (y−Hlocx) ,

Ĉloc = (I− KlocHloc)Cloc,

Kloc = ClocH
T
loc(R+HlocClocH

T
loc)

−1.

We prove in Appendix A (Proposition A.2) that the means and covariance matrices of the localized and original posterior 
distributions satisfy
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‖m̂− m̂loc‖ ≤(δC + δH ) · D1(‖R−1‖, ‖̂C‖,‖C−1‖) · (‖m‖ + ‖y‖),
‖̂C− Ĉloc‖ ≤(δC + δH ) · D2(‖R−1‖, ‖̂C‖,‖C−1‖),

where the functions D1 and D2 are defined in Proposition A.2. Similarly, if we work with the prior precision matrix, we 
obtain, after localization, the prior p0,loc(x) = N (m, �−1

loc ), which leads to a localized posterior whose mean and covariance 
are given by

m̂p,loc = m+ Kp,loc (y−Hlocx) , (6)

Ĉp,loc = (I− Kp,locHloc)�
−1
loc , (7)

Kp,loc = �−1
locH

T
loc(R +Hloc�

−1
locH

T
loc)

−1. (8)

We find in Proposition A.3 that:

‖m̂− m̂p,loc‖ ≤ (δ� + δH ) · D3(‖R−1‖, ‖̂C‖,‖�‖) · (‖m‖ + ‖y‖),
‖̂C− Ĉp,loc‖ ≤ (δ� + δH ) · D4(‖R−1‖, ‖̂C‖,‖�‖),

where D3 and D4 are defined in Proposition A.3.
In summary, the difference between the localized and unlocalized posterior distributions depends on the localization 

thresholds we chose, on the structure of the prior covariance or precision matrix, as well as on the observation matrix H
and its localization. The bandwidth of localizations of C or � and H should therefore be tuned to obtain small differences 
between the localized and unlocalized problems.

We use a threshold for localization because it makes our proofs simpler. In practice, one may localize more effectively 
using suitable localization functions [22], which set small off-diagonal elements to zero smoothly and which can preserve 
positive-definiteness during localization. Moreover, we only consider (nearly) banded covariance matrices, which arise, for 
instance, in linear-Gaussian Bayesian inverse problems on one-dimensional spatial domains. The conceptual ideas of lo-
calization, however, can be used in problems with 2D spatial domains (see Section 5 for a numerical example). In fact, we 
anticipate that many of our ideas can be adapted to matrices with more general sparsity patterns but defer this investigation 
to future work.

2.4. Localization of nonlinear problems

In a nonlinear inverse problem, the function h is not linear, and thus the posterior distribution is non-Gaussian even 
when the prior distribution is Gaussian. However, the function h is usually well understood because it is the result of 
a careful modeling effort. Thus, it is not unreasonable to assume that it is known whether h is local in the sense of 
Assumption (iii) in Section 1. If h is local, then we can localize it by neglecting the some of the components of x when 
computing the components, [h]i , of h (see Section 3.2.3 for more detail on how to do this). The localized h, along with the 
localized Gaussian prior, defines the localized posterior distribution of a nonlinear inverse problem. The localized posterior 
distribution may be close to the posterior distribution of the unlocalized problem, but we do not prove this statement in the 
general, nonlinear setting. The lack of theoretical results, however, does not prevent us from using localization in nonlinear 
problems, and we present such an example in Section 5. Moreover, more than a decade of experience with using localization 
in EnKF and NWP can also be viewed as numerical and empirical evidence that localization is indeed applicable in nonlinear 
problems (see also [40]).

3. MCMC for local inverse problems

MCMC is often used for the numerical solution of Bayesian inverse problems. To illustrate the behavior of some MCMC 
algorithms on localized problems, we first consider the extreme case of a linear problem with diagonal covariance and 
precision matrix and with a diagonal observation function h(x) = x. Specifically, suppose the target distribution is the 
n-dimensional Gaussian distribution p(x) = N (0, I), where I is the identity matrix of dimension n. Suppose that the current 
state of the Markov chain is xk . The Metropolis–Hastings (MH) algorithm proposes a move to x′ by drawing from a proposal 
distribution q(x′|xk), and accepts or rejects the move with probability

ak+1 = min

{
1,

p(x′)q(xk|x′)
p(xk)q(x′|xk)

}
;

see, e.g., [33,38,43]. Averages over the samples generated in this way converge to expected values with respect to the tar-
get distribution p as k → ∞. A question of practical importance is: how many samples are needed to accurately estimate 
expectations with respect to the target distribution? The answer depends on the proposal distribution. For a Gaussian pro-
posal distribution q(xk+1|xk) = N (xk, σ 2I), which produces a so-called random walk Metropolis (RWM) chain, one must 
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Fig. 1. IACT as a function of dimension for various MCMC samplers applied to an isotropic Gaussian. Dots represent IACT, averaged over all n variables, 
for emcee (red), RWM (purple), Hamiltonian MCMC (blue), and MALA (teal). The dashed lines represent linear fits (emcee and RWM), fits to a square root 
(Hamiltonian MCMC), and a fit to a 1/3-degree polynomial (MALA). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

choose a proposal variance σ 2 such that the acceptance probability is reasonably large while, at the same time, the ac-
cepted MCMC moves are large enough to explore the space appropriately. An optimal choice that achieves this trade-off 
for RWM is σ 2 = O (n−1), where n is the dimension of the problem; see, e.g., [5,51,52]. Optimal scalings of the proposal 
variance with problem dimension are also known for other MCMC algorithms. For example, the proposal distribution of the 
Metropolis-adjusted Langevin algorithm (MALA) is defined by

x′ = xk + σ 2

2
∇ log p(xk) + σ ξ

where ∇ denotes a gradient and ξ is a vector of n standard normal variates. An optimal choice is σ = O (n−1/3). For 
Hamiltonian Monte Carlo (see, e.g., [16,41]) an optimal step size is σ = O (n−1/4) [4] (here and below we refer to σ as a 
step size and to σ 2 as the proposal variance).

Setting aside issues of transient behavior [11], the efficiency of an MCMC algorithm can be assessed by computing the 
integrated auto-correlation time (IACT). Throughout this paper we use the definitions and numerical approximations of IACT 
discussed in [63]. Heuristically, the number of effective samples is the number of samples divided by IACT; see, e.g., [33,38]. 
In Fig. 1 we compute IACT for various MCMC algorithms applied to the n-dimensional isotropic Gaussian, as a function 
of n. We observe that IACT grows with dimension for all algorithms we consider, but at different rates. For both RWM and 
an affine invariant sampler [18,26] called emcee (or the MCMC Hammer), IACT grows linearly with the dimension n; for 
Hamiltonian MCMC, we observe that IACT grows with the square root of n, while for MALA, IACT grows as n1/4. Similar 
tests were done for the “t-walk” [10], a general purpose ensemble sampler. The numerical results of [10] suggest a linear 
scaling of t-walk’s IACT with dimension.

However, sampling an isotropic Gaussian is trivial, and MCMC should be independent of dimension for this problem 
because it can be decomposed into n independent sub-problems (see also [40,49]). An MCMC sampler that naturally makes 
use of local problem structure is the Gibbs sampler (sometimes Gibbs samplers are also called “heat bath” or “partial 
resampling,” and these can be viewed as examples of “single-component Metropolis algorithms,” see, e.g., [23]). The basic 
Gibbs sampler is as follows. Let the target density be p(x), where x is shorthand for the vector with n elements x1, x2, . . . , xn . 
Set j = 1, and let xk be the current state of a Markov chain. Then a Gibbs sampler proceeds as follows:

(i) Set k → k + 1.
(ii) Sample xk+1

j from the conditional distribution p(x j |xk+1
1 , . . . xk+1

j−1, x
k
j+1, . . . , x

k
n).

(iii) Repeat (ii) for all n elements x j of x.

Repeating this process Ne times, one obtains samples such that averages over these samples converge to expected values 
with respect to the target distribution p as Ne → ∞.

The Gibbs sampler generates independent samples, independently of dimension, for the isotropic Gaussian (an extreme 
example of a local problem). Similarly, a block Gibbs sampler generates independent samples, independently of dimension, 
if the covariance or precision matrices are block-diagonal. This suggests that MCMC based on Gibbs samplers may be more 
effective for local problems than the MCMC algorithms we considered above. In this section, we investigate this idea in 
more detail and study convergence rates of Gibbs samplers for Gaussian distributions with banded covariance and precision 
matrices.
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Fig. 2. Sparsity pattern of a 4-block-tridiagonal matrix with bandwidth l = 4. The red color indicates nonzero entries and the blue color indicates zero 
entries. The black squares define the q = 4 blocks Ci, j .

Many of the results we present below may be known, but we decided to summarize what is important about Gibbs 
sampling for our purposes because (i) the Gibbs sampler and its effectiveness in local problems is essential to the under-
standing of how MCMC can function in high-dimensional problems with local structure; (ii) we could not find references on 
the connection between MCMC convergence rates and local problem structure, perhaps because relevant results are spread 
over several papers and books in different disciplines (applied mathematics, physics, and statistics) and over several decades.

3.1. Dimension independent convergence rates of Gibbs samplers

For simplicity, we assume that there are m blocks of the same size q so that n = mq. We divide the n elements of 
x according to the m blocks and write x = (x1, · · · , xm), with the understanding that each x j consists of q consecutive 
elements in x. A blocked Gibbs sampler uses the conditionals defined for each x j , i.e., at the kth step, we sample the block 
x j using the q-dimensional conditional p(x j |xk+1

1 , . . .xk+1
j−1, x

k
j+1, . . . , x

k
m). We call the resulting algorithm a “Gibbs sampler 

with block-size q” because the “standard” Gibbs sampler above is a Gibbs sampler of block-size one in this terminology.
We first consider a Gibbs sampler with block-size q for Gaussian distributions with q-block-tridiagonal covariance matri-

ces. We say that a matrix A is q-block-tridiagonal, if

Ai, j = 0 for (i, j) /∈ {(i, i), (i, i + 1), (i, i − 1), i = 1, · · · ,m},
where Ai, j is the (i, j)-th q × q block of A. It is straightforward to see that a matrix with bandwidth l is l-block-tridiagonal, 
and a q-block-tridiagonal matrix has bandwidth less than 2q. Fig. 2 illustrates a 4-block-tridiagonal matrix with bandwidth 
l = 4. The convergence rate of the Gibbs sampler is dimension-independent if the covariance matrix is q-block-tridiagonal, 
as detailed in the following theorem.

Theorem 3.1. Suppose the Gibbs sampler with block-size q is applied to a Gaussian target distribution p =N (m, C) with m blocks of 
size q. Suppose C is q-block-tridiagonal. Then the distribution of xk converges to p geometrically fast in all coordinates, and we can 
couple xk and a sample z ∼N (m, C) such that

E‖C−1/2(xk − z)‖2 ≤ βkn(1 + ‖C−1/2(x0 −m)‖2), (9)

where

β ≤ 2(1− C−1)2C4

1+ 2(1− C−1)2C4
, (10)

with C being the condition number of C.

Similarly, the convergence rate of the Gibbs sampler is dimension-independent if the precision matrix, rather than the 
covariance matrix, is block-tridiagonal. One can modify Theorem 3.1 to address the case of banded precision matrices.

Theorem 3.2. Suppose the Gibbs sampler with block-size q is applied to a Gaussian target distribution p =N (m, �−1) with m blocks 
of size q. Suppose � is q-block-tridiagonal. Then the distribution of xk converges to p geometrically fast in all coordinates, and we can 
couple xk and a sample z ∼N (m, �−1) such that equation (9) holds with

β ≤ C(1− C−1)2

1+ C(1 − C−1)2
, (11)

where C is the condition number of �.
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The proofs of Theorems 3.1 and 3.2 can be found in Appendix A.
While upper bounds for the rate of convergence β are independent of the dimension, the upper bounds themselves are 

linear in n and involve a norm of the initial condition, which may also scale linearly in n. This does not cause practical dif-
ficulties because the dimension independent scaling of the convergence rate implies that the number of iterations required 
to reach a given error level scales logarithmically in n, which is essentially a constant in practice (even when n is large). For 
example, suppose one wants that the l2 error E‖C−1/2(xk − z)‖2 be bounded by a threshold ε. To reach this goal, the Gibbs 
sampler must perform k iterations, where

βkn(1 + ‖C−1/2(x0 −m)‖2) ≤ ε ⇒ k ≥ logn − logε + log(1 + ‖C−1/2(x0 −m)‖2)
− logβ

.

Finally, we emphasize that dimension-independent convergence for linear problems is not a new observation, and that 
there are multiple ways to accelerate this convergence [20,25]. Yet it is often assumed that the spectral gap of an associated 
linear operator, e.g., the Gauss–Seidel operator, is dimension independent. Our theoretical contribution here is to show that 
this dimension-independent gap indeed exists when the inverse problem is local.

3.1.1. Banded covariance matrices vs. banded precision matrices
The upper bounds on the convergence rates depend on the condition number of the covariance matrix, or, equivalently, 

on the condition number of the precision matrix. This means that convergence is fast, in any dimension, only if this con-
dition number is moderate. However, if the condition number of the covariance matrix is moderate, a banded covariance 
matrix implies that the precision matrix can be approximated by a banded matrix, and vice versa. This equivalence is made 
precise in Lemma 2.1 of [7]. Thus, our assumptions and Theorems 3.1 and 3.2 describe and apply to one unified class of 
problems: convergence of the Gibbs sampler is fast, in any dimension, if the covariance and precision matrices are banded, 
i.e., if statistical interactions (correlations and conditional dependencies) are local.

3.1.2. Computational costs
While the upper bound of the convergence rate is independent of dimension, the actual computational cost of sampling 

may not be independent of dimension. The Gibbs sampler for Gaussians with banded covariance matrix requires matrix 
square roots and linear solves of matrices of sizes m × m and d × d, where d = n − m. These square roots need only be 
computed once (not once per sample), but the cost of this computation increases with n at a rate that depends on the 
bandwidth of the covariance matrix. Generating a sample requires, at each block, solution of a banded linear problem, and 
some matrix-vector multiplications and vector-vector operations. The cost-per-sample is dominated by the linear solve, and 
this cost also increases with n and at a rate that depends on the bandwidth of the covariance matrix. The computational 
cost for one sample is thus, roughly, m times the cost of the linear solve.

If the precision matrix is banded, the conditional distributions used during Gibbs sampling simplify and it is sufficient 
to condition on neighboring blocks (see, e.g., equation (21) in the Appendix). The required matrix operations (square roots, 
linear solves) depend on the size of the blocks q, but not on the number of blocks. Assuming that q � m � n, the compu-
tational cost of a Gibbs sampler for a Gaussian with banded precision matrix is, roughly, m times the cost of computations 
with blocks of size q.

Our discussion of the Gibbs sampler so far has applied to generic (localized) Gaussian targets. Thus the Gibbs sampler 
can, in principle, be used to draw samples from posterior distributions of linear inverse problems. Assuming that the prior 
covariance or precision matrices are localized, the localized posterior covariance and precision matrices are also banded, 
because, as shown in [7], the basic arithmetic operations in (7) preserve bandedness. The convergence rate of the Gibbs 
sampler is independent of dimension in this case. However, linear inverse problems can be solved by a variety of other 
specialized MCMC techniques; see, e.g., [8,20]. We do not claim that the Gibbs sampler is necessarily a competitive com-
putational strategy for large scale (million or more variables in x) linear inverse problems with local structure, but we 
do anticipate that effective samplers can be built from a combination of localization, Gibbs sampling, acceleration, and 
preconditioning methods.

3.2. Metropolis-within-Gibbs for localized nonlinear inverse problems

In Section 3.1 we described the Gibbs sampler for generic Gaussian target distributions with banded covariance and 
precision matrices. When h(x) is nonlinear, however, the posterior distribution is not Gaussian and in general may not 
have tractable full conditionals, which makes the direct use of Gibbs sampling infeasible. In this section we continue to 
assume that the prior is Gaussian and use the Gibbs sampler to draw from this prior and then Metropolize. This simple 
Metropolis-within-Gibbs (MwG) sampler can handle nonlinear h and samples non-Gaussian posterior distributions. The 
sampler can be localized (l-MwG) by localizing the Gaussian prior and the likelihood.

3.2.1. Localized Metropolis-within-Gibbs sampling: banded covariance
Suppose the prior covariance matrix is block-tridiagonal (after localization), with m blocks of size q, and further suppose 

that xk is the current state of the Markov chain. One iteration of the l-MwG sampler is as follows. Start with the first of m
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blocks. Use the Gibbs proposal with block-size q (see Section 3.1) to propose a local move x′ by drawing a sample from the 
localized Gaussian prior, conditioned on the current state xk . Accept or reject the (local) move by taking the observations 
into account, i.e., accept with probability

a = min

⎧⎨⎩1,
exp

(
−0.5

(
y− h(x′)

)T R−1
(
y− h(x′)

))
exp

(
−0.5 (y− h(x))T R−1 (y− h(x))

)
⎫⎬⎭ . (12)

Iterating these steps over all m blocks completes one move of l-MwG. The l-MwG sampler converges to the localized 
posterior distribution. This follows from the usual theory of Metropolis-within-Gibbs sampling.

3.2.2. Localized Metropolis-within-Gibbs sampling: banded precision
The l-MwG sampler can also be applied if the precision matrix, rather than the covariance matrix, is given. The sampler 

is as described above, but the implementation using precision matrices can be numerically more efficient. If the precision 
matrix has bandwidth l, then the conditional distribution of a block depends only on a few neighboring blocks, so that 
the computations required for drawing a sample from the conditional distributions require only matrices of size much less 
than n (see also Section 3.1.1, and equation (21) in the appendix). This conditional independence also implies that one can 
sample the block independently of other far away blocks. This provides opportunities for leveraging parallel computing to 
reduce overall wall-clock time.

3.2.3. Localization of the likelihood
The l-MwG sampler requires that h(x) be evaluated for each block even though only a small number of the components 

of x are changed during one of the local moves. Since we assume that h(x) is a local function, i.e., each element of h(x)
depends only on a few components of x, one may want to use the local structure of h(x) during sampling. This localization 
can accelerate the computations of h(x), and can also increase acceptance rates and shorten the burn-in period. Yet changing 
h(x) alters the likelihood and, therefore, the posterior distribution of the inverse problem. For linear h, we showed in 
Section 2 that this change in the posterior distribution can be small. We now show how to localize the likelihood under the 
assumption that the localized posterior distribution can be written as

ploc(x|y) ∝ p0,loc(x)exp

⎛⎝−
∑
j

H j(xI j ,y j)

⎞⎠ , (13)

where the observations y j are the observations “assigned” to the set of variables xI j , p0,loc is the localized Gaussian prior 
distribution, and the functions H j can be nonlinear.

Recall that the Gibbs sampler for the Gaussian prior produces a local update x′ from x such that x j = x′
j for j �= i. 

Localization of the likelihood means to accept the proposed local adjustment of the sample, x′ , with probability

min

{
1,

exp(−∑
j:i∈I j

H j(x′
I j
,y j))

exp(−∑
j:i∈I j

H j(xI j ,y j))

}
, (14)

i.e., we only use the observations assigned to the block we are sampling when we consider acceptance of the move.
The stationary distribution of the l-MwG sampler is the localized posterior distribution (13). To prove this statement, it 

suffices to check the detailed balanced relation

ploc(x|y)Q i(x,x
′) = ploc(x

′|y)Q i(x
′,x)

for x �= x′ , where Q i is the transition density resulting from the above two steps (propose a local sample using the Gibbs 
proposal for the prior, then accept or reject it using the local criterion (14)). For x �= x′ , the transition density has the explicit 
form:

Q i(x,x
′) = Ki(x,x

′)min

{
1,

exp(−∑
j:i∈I j

H j(x′
I j
,y j))

exp(−∑
j:i∈I j

H j(xI j ,y j))

}
,

where the transition density Ki(x, x′) is defined by the Gibbs move. The Gaussian prior p0,loc(x) is the invariant distribution 
of this transition, in the sense that

p0,loc(x)Ki(x,x
′) = p0,loc(x

′)Ki(x
′,x).
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Without loss of generality, we assume 
∑

j:i∈I j
H j(x′

I j
, y j) ≤ ∑

j:i∈I j
H j(xI j , y j) which leads to

ploc(x|y)Q i(x,x
′) = p0,loc(x)Ki(x,x

′)exp

⎛⎝−
∑
j:i∈I j

H j(xI j ,y j)

⎞⎠ ,

ploc(x
′|y)Q i(x

′,x) = p0,loc(x
′)Ki(x

′,x)exp

⎛⎝−
∑
j:i∈I j

H j(xI j ,y j)

⎞⎠ exp(−∑
j:i∈I j

H j(xI j ,y j))

exp(−∑
j:i∈I j

H j(x′
I j
,y j))

.

Because we also have that

p0,loc(x)Ki(x,x
′) = p0,loc(x

′)Ki(x
′,x), x′

j = x j ∀ j �= i,

detailed balance, i.e., ploc(x|y)Q i(x, x′) = ploc(x′|y)Q i(x′, x), is now verified.

3.2.4. Computational requirements of l-MwG
Recall that the convergence rate of the Gibbs sampler for the localized prior is independent of dimension (Theorems 3.1

and 3.2). This means that the size of the proposed moves does not decrease as the dimension of x increases, since the size 
of the move depends only on the local properties of the prior in one of the blocks, rather than the overall number of blocks. 
In contrast, the step sizes of many other MCMC algorithms decrease with the dimension of x (see Fig. 1). Moreover, the 
proposed l-MwG moves are local, i.e., x′ is different from x only in a few (much less than n) of its components, independent 
of the number of observations k and of the dimension n of x. Because we assume that k = O (n), the number of observations 
grows with the dimension, but the number of observations per block remains fixed. This suggests that the acceptance ratio 
in equation (12) may be independent of dimension.

If the size of the proposed moves and the acceptance ratio do not decrease with dimension, then the convergence rate 
of the Gibbs sampler could be independent of dimension. Indicators of sampling efficiency, e.g., IACT, would depend only on 
the properties of the blocks rather than on the number of blocks, with properties of each block defined by the local structure 
of the prior covariance and precision matrices and local properties of the observation function. The overall computational 
cost per sample of l-MwG is then linear in the number of blocks. We do not provide a proof for the dimension independence 
convergence of l-MwG, but we provide numerical examples (linear and nonlinear) in which IACT is indeed independent of 
dimension, while IACT increases with dimension for other MCMC algorithms. We also present an example in which we 
deliberately violate some of our assumptions to demonstrate the limitations of these ideas.

3.2.5. Limitations of l-MwG
We note that l-MwG has the format of “sample from the prior and correct (Metropolize) to account for the likelihood.” 

This approach is generally not efficient and, in particular, degenerates as the observational noise diminishes and the posterior 
concentrates with respect to the prior. Localization can somewhat mitigate the effect of posterior concentration (at least, 
relative to non-localized samplers) as Metropolization is applied only to low-dimensional blocks. Nonetheless, practical 
MCMC samplers will require more sophisticated proposal distributions and localization. The l-MwG presented here should 
be viewed as a first and simple example of an MCMC sampler that can achieve dimension independent performance by 
exploiting underlying local structure. We remark that l-MwG using “likelihood-informed proposals” is feasible by mixing 
localization with other MCMC strategies, such as more sophisticated proposal distributions [24], acceleration by matrix 
splittings and analogies of Gibbs samplers to linear solvers (see [20]), multigrid methods [25], or preconditioning. This is 
beyond the scope of this paper, and will be investigated in the future.

4. Discussion of assumptions and effective dimension

4.1. Physical interpretation of local problems

We have shown, for linear problems, that localization causes small errors if a problem is local (see Assumptions (i–iii) 
in Section 1). We argued in Section 3 that localized problems can be solved efficiently by MCMC. All this is relevant only 
if there are indeed inverse problems which are local and which can be localized, i.e., if Assumptions (i–iii) in Section 1 are 
valid for some interesting problems.

The assumptions in Section 1 correspond to prior distributions with short correlation lengths (e.g., in a Gaussian process) 
and small neighborhood sizes (e.g., in a Gaussian Markov random field [54]) relative to the dimensions of the physical 
domain. A common choice is Gaussian prior distributions with precision matrices defined via Laplace-like operators; see, e.g., 
[8,15,36,39,45,58] and our examples in Section 5. These priors typically have banded precision matrices and, in many cases, 
also have (nearly) banded covariance matrices. The priors are updated to posterior distributions by likelihoods involving 
observations that depend largely on local properties. This means in particular that the set of observations, y, may inform 
all components of x, but each individual component of the observation, [y] j , j = 1, . . . , k, may only inform a subset of the 
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components of x. An example of a local observation function is when some or all components of the “quantity of interest” 
x are directly observed, which is often the case in state estimation problems.

We expect that the assumptions are valid in many geophysical and engineering applications, where the target distribu-
tion is the posterior distribution of a physical quantity defined over a spatial domain. For example, observation matrices H
in image deblurring are often constructed through the discretization of kernels that have (nearly) compact support, and, for 
that reason, are typically local. Observations of diffusion processes are local on sufficiently short time scales. PDEs where 
information is carried mostly along characteristics (e.g., transport equations) give rise to local observations when the quan-
tity of interest is an initial condition. We already brought up NWP and the EnKF as an example of a local problem in which 
localization enables efficient computations in high dimensional problems. Similarly, exploiting localization in importance 
sampling (particle filtering) is also a current topic in NWP, see, e.g., [34,35,44,46–50,60,62]. NWP, however, is usually not 
considered an inverse problem due to its sequential-in-time nature.

It is important to realize that many important problems are not local, and that localization is not useful for such prob-
lems. An example is computed tomography, where each observation might depend on material properties along an entire 
tomographic ray, leading to observation matrices which are not local in the sense we define here.

4.2. Connections with infinite dimensional inverse problems and effective dimensions

One can think of x as the discretization of a physical quantity in some domain, for instance on a grid with n degrees of 
freedom or in Fourier basis of n modes. For a given domain, the dimension n of x grows as the discretization is refined. If 
the number of observations k is held constant and we let n → ∞, then we describe what happens as the discretization is 
refined while the domain and observation network remain fixed. This leads to the concept of an effective dimension, which 
may be small (finite) even when the apparent dimension is large (infinite); see, e.g., [1,9].

Related to a small effective dimension are low-rank updates from prior to posterior distributions [14,17,57]. A low-rank 
update means that the posterior distribution differs from the prior distribution in neff � n directions. More precisely, for 
Gaussian problems, a low-rank update means that the difference between prior and posterior covariance is low rank. In 
practice this occurs, for example, when the number of observations is much less than the dimension of x, or when the ob-
servations constrain only a few linear combinations of the components of x. Indeed, some definitions of effective dimension 
are directly related to the difference of prior and posterior covariance. In [1], an effective dimension is defined by:

neff,1 = tr((C− Ĉ)C−1), (15)

where C and Ĉ are prior and posterior covariance, respectively, and where tr(·) is the trace of a matrix. Alternatively, one 
can consider precision matrices and define an effective dimension by

neff,2 = tr((�̂ − �)�−1), (16)

where � and �̂ are the prior and posterior precision matrices, respectively. Other effective dimensions have been defined 
for specific importance sampling algorithms; see, e.g., [1,9]. Certain MCMC and importance sampling algorithms can ex-
ploit a small effective dimension or low rank updates, and can be made discretization invariant—such that indicators of 
computational efficiency become independent of the chosen grid; see, e.g., [8,12,13,17,45].

Our assumptions and problem setting describe a different mechanism for reaching large dimensions, because we assume 
that the number of observations is on the order of the dimension, k = O (n). The assumptions translate to a problem for 
which the discretization and the number of observation per unit “length” remain fixed, while the size of the domain grows. 
As an example, consider a Gaussian process defined on an interval of length L. Further suppose that this process is observed 
every r units of distance, i.e., we have L/r observations. We investigate the situation where the domain size L gets bigger 
but the number of observations per unit length remains constant. The limit L → ∞ may not be meaningful because it 
would correspond to an infinitely large domain. Considering large L, however, is meaningful because it describes a large 
domain and a large number of observations. Moreover, as L increases, the dimension n, the number of observations k, and 
the effective dimension all increase. The cartoon example of sampling a high-dimensional isotropic Gaussian illustrates the 
performance one can expect from MCMC when the size of the domain is large, and the number of observations is on the 
order of the dimension (i.e., large, well-observed domains).

The assumptions defining a local problem (see Section 1) do not in general imply that updates from prior to posterior 
are low-rank. Rather, we replace assumptions about low effective dimension and/or low-rank updates by assumptions about 
locality of the precision/covariance matrices and local observations. The Gibbs samplers discussed above are efficient when 
precision and covariance matrices are banded, and if observations are local. If these assumptions are only approximately 
satisfied, we propose to localize the problem, i.e., to replace covariance/precision matrices by banded matrices. The resulting 
localized problem can be solved efficiently, but at the cost of additional errors due to the localization procedure.

In summary, we suggest that while MCMC for generic high-dimensional problems might remain difficult, one can effec-
tively solve two classes of problems. If an effective dimension is small and/or an update from prior to posterior distribution 
is low rank, then one can exploit this structure and create effective MCMC algorithms. This case has been discussed ex-
tensively over the past years. Our contribution is to suggest that MCMC can also be made efficient if effective dimensions 
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Fig. 3. Illustration of the Gaussian inverse problem of example 1. Teal – 50 samples of the prior distribution. Red – 50 samples of l-MwG. Blue (often 
hidden) – 50 samples of posterior distribution. Orange line – “true state” that gives rise to the data. Orange dots – data.

are large or if updates from prior to posterior distributions are high rank, as long as the prior covariance and precision 
matrices are banded and the observations are local. In fact, the situation we describe is analogous to linear algebra. High-
dimensional matrices are easy to deal with if they are either low-rank or banded (sparse). The same seems true in MCMC 
for Bayesian inverse problems—these problems are manageable if either an effective dimension is small, or if the covariance 
and precision matrices have banded structure and if the observations are local.

5. Numerical illustrations

We consider several linear and nonlinear examples to illustrate local inverse problems, their localization, as well as the 
dimension independence of Gibbs and l-MwG samplers.

5.1. Example 1: Gaussian prior with exponential covariance function

We consider a Gaussian prior on the interval z ∈ [0, L] with mean and covariance function

μ(z) = 5 sin(2π z), k(z, z′) = C exp

(
−|z − z′|

2ρ

)
.

where ρ = 0.02, C = 10, and fix a discretization of the domain with �z = 0.01. This results in a slowly varying prior mean 
and, for a given discretization, the covariance matrix has off-diagonal elements that decay quickly away from the diagonal.

For a given domain size L, the dimension of the discretized Gaussian is n = L/�z, i.e., we have 100 state variables per 
unit length. For numerical stability we add 10−6 I to the discretized covariance matrix. Samples from the prior are shown 
(in teal) for a problem with L = 2 in Fig. 3. The data are measurements of a prior sample, collected every 2�z length units. 
The measurements are perturbed by Gaussian noise with mean zero and identity covariance matrix, i.e., R = I, the identity 
matrix of size n/2. Note that the observation network is such that no localization of the observation matrix H is required, 
because the observations are already local (point-wise measurements and diagonal R). For a given L we have n variables to 
estimate and n/2 data points, or, equivalently, we have 100 variables and 50 measurements per unit length. The true state 
and measurements are illustrated (in orange) for a problem with L = 2 in Fig. 3. The data and prior distribution define a 
Bayesian posterior distribution, and we show 50 samples of this posterior distribution (for L = 2) in Fig. 3.

To illustrate the banded structure and relative size of the elements of the prior and posterior covariance/precision ma-
trices, we plot the absolute value of the elements of these matrices, scaled by their largest element, in the left panels of 
Fig. 4. These scaled absolute values are between 0 and 1, and indicate where off-diagonal elements are small. The prior and 
posterior covariance matrix have nearly banded structure in the sense that the elements near the diagonal are larger than 
the off-diagonal elements. The condition number of the prior precision and covariance matrices is about 64 (independently 
of the domain length). We localize the prior covariance matrix by setting all elements smaller than 0.1 equal to zero. Since 
the prior precision matrix is tridiagonal, we do not need to localize it. The l-MwG sampler in “precision matrix implemen-
tation” already makes use of the banded structure of the precision matrix because we condition only on a few neighbors, 
rather than the full state. Since the observation matrix H is already local (direct observations of the state variables), H does 
not need to be localized. The likelihood has the form (13) and we make use of this structure by considering blocks of size 
2 with one observation in each block.

For a fixed domain length L, we apply RWM, pCN [12], MALA, Hamiltonian MCMC, and l-MwG (with covariance local-
ization or in precision matrix implementation). We tune the proposal variance of RWM, pCN, MALA, Hamiltonian MCMC 
by considering a scaling of the step size with n−k , for several different values of k, e.g., k = {1, 2, 3, 4, 5, 6} (recall that the 
dimension of our discretization is n = L/�z). We call the step size that lead to the smallest IACT “optimal.” All chains are 
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Fig. 4. Covariance and precision matrices, IACT, acceptance rate and errors for Example 1. Left panels. Prior and posterior covariance and precision matrices 
of example 1 with L = 0.5. Top row: prior covariance (left) and precision matrix (right). Bottom row: posterior covariance (left) and precision matrix (right). 
Right panels. Top row: IACT as a function of domain length for RWM, pCN, Hamiltonian MCMC (left) and MALA and l-MwG (right). Bottom row: acceptance 
rate as a function of domain length (left) and mean squared error in posterior mean (right).

Table 1
Configurations and IACT scalings for examples 1, 2 and 3. In each cell, left to right, are the configurations and 
results for examples 1, 2 and 3.

Algorithm Tuned step size Sample size IACT scaling

RWM n−1/2,n−1/2,n−1/2 106,106,106 n,n,n
MALA n−1/6,n−1/4,n−1/4 104,104,104 n1/4,n1/4,n1/4

Hamiltonian MCMC n−1/2,n−1/2,n−1/3 105,105,105 n,n,n
pCN n−1/2,n−1/2,n−1/3 106,106,106 n,n,n
l-MwG (precision) n/a 500,500,5000 const., const.,n1/2

l-MwG (covariance) n/a 500,500,5000 const., const.,n1/2

initialized by a random sample from the prior and we produce 106 samples with pCN and RWM, 105 with Hamiltonian 
MCMC, 103 with MALA, and 500 with the l-MwG samplers. The set-up for this problem is also summarized in Table 1.

We perform numerical experiments for domain lengths ranging from L = 0.5 to L = 7, which leads to problems of 
dimension n = 50 to n = 700, and with 25 to 350 observations. For each domain length and algorithm we compute the 
corresponding IACT. This leads to the scalings, obtained by least-squares fitting of polynomials, of IACT with dimension, 
as shown in Table 1, and as illustrated in Fig. 4. We observe that RWM, pCN, Hamiltonian MCMC, and MALA exhibit an 
increasing IACT (at different rates) as the domain size and the number of observations increase, while both implementations 
of l-MwG are characterized by an IACT that remains constant.

We further compute the acceptance rate (i.e., the acceptance ratio, averaged over all moves) for RWM, pCN, Hamiltonian 
MCMC, and MALA. Results are shown in Fig. 4, and we note that our tuning of the step-size for each algorithm keeps the 
acceptance rate constant as dimension increases. Finally, we compute an error to check that each algorithm indeed samples 
the correct distribution. We define an “error in posterior mean” by

e = 1

n

n∑
j=1

([m̂] j − [x̄] j)2, (17)

where m̂ is the posterior mean and where x̄ is the average over the MCMC samples. We compute this error, which describes 
how far our estimated posterior mean is from the actual posterior mean, for each algorithm and show the results in Fig. 4. 
We note that all algorithms lead to a small error. Since this is also true for l-MwG with prior covariance localization, we 
conclude that the localized problem is indeed nearby the unlocalized problem we set out to solve.

In this example, it is not the overall dimension, the overall number of observations, or the rank of the update of prior to 
posterior covariance matrix that defines performance bounds for l-MwG. Because the local problem structure is used during 
problem formulation and during its MCMC solution, the characteristics of each loosely coupled block define the behavior of 
the sampler. The overall number of blocks is irrelevant.

One may wonder why the IACT of pCN increases with dimension, even though pCN is “by design” dimension inde-
pendent. The reason is how dimension increases in this example (see the discussion in Section 4.2). The pCN algorithm 
is dimension independent if the dimension increases because a discretization is refined, while the size of the domain, the 
number of observations, and an effective dimension remain constant. In the current example, pCN is dimension independent 
for fixed domain size L and a fixed observation network (fixed k), while we decrease the discretization parameter �z. In 
such a scenario, an effective dimension remains constant. However, as we increase the domain size L and the number of ob-
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Fig. 5. Left panel. Effective dimensions (see Section 4.2) as a function of dimension (equivalently domain size and number of observations). Right panel. 
Eigenvalues of prior (solid) and posterior (dashed) covariance matrices for domains of sizes between L = 1 and L = 6.

servations k, while keeping the discretization parameter �z fixed, the apparent and effective dimensions both increase, and 
the performance of pCN deteriorates (see left panel of Fig. 5 and also Section 4.2). Similarly, the number of non-negligible 
eigenvalues of prior or posterior covariance matrices increases with the domain size and the number of observations (see 
right panel of Fig. 5). The usual scenario considered for pCN (and other function space MCMC algorithms) is that the num-
ber of “relevant” eigendirections remains constant as dimension increases. This, too, is not the case for this example and 
may not be true for other local inverse problems.

The original convergence analysis of pCN can be found in [27], and applies to a setting where dimension increases 
because the discretization of the unknown function is refined. The analysis requires that the limiting (n → ∞) observation 
operator be well defined. This is not the case in the above example, with increasing domain size and an increasing number 
of observations. The limit of an increasing domain size would be a domain of infinite size, which is difficult to describe 
with mathematical rigor.

5.2. Example 2: Gaussian prior with squared Laplacian as precision matrix

We now consider a Gaussian prior on z ∈ [0, L] with mean zero and with a precision matrix derived from the squared 
Laplacian, which leads to a pentadiagonal precision matrix after discretization. As before, we fix the discretization and chose 
�z = 0.01. The Laplacian is approximated by the n = L/�z dimensional matrix L = 1/(�z)2A, where A is a matrix with 2 on 
the main diagonal and −1 on the first upper and lower diagonal. We define the prior precision matrix by � = (1/ρ2I + L)2, 
where ρ = 0.06. As in example 1, we collect data by collecting noisy measurements of a prior sample every L/(2�z)
units. The data are perturbed by a Gaussian random variable with mean zero and covariance R = I. As in Example 1, the 
discretization and observation network yields 100 discrete state variables and 50 data points per unit length. The condition 
number of the prior precision or covariance matrix is about 21 · 103.

In Fig. 6, we illustrate the banded structure of the prior and posterior covariance and precision matrices for a problem 
with domain length L = 0.5. As in example 1, the prior covariance matrix is nearly banded (off-diagonal elements are small 
compared to diagonal elements), while the prior precision matrix is banded (pentadiagonal). Thus, as before, we localize 
the prior covariance matrix by setting all elements below a threshold of 0.01 equal to zero. The l-MwG sampler in prior 
precision matrix implementation does not require localization since the prior precision is banded. We also apply RMW, pCN, 
MALA, Hamiltonian MCMC, and tune their step-size as described in Example 1, with our findings summarized in Table 1. 
The number of samples we consider for each algorithm is also given in Table 1.

We vary the domain length L from L = 0.5 to L = 7, apply the various samplers and compute the corresponding IACTs. 
This leads to the scalings of IACT with domain length (or, equivalently, dimension) as shown in Table 1, and as illustrated 
in Fig. 6. While the scalings of IACT with domain size for RWM, Hamiltonian MCMC and pCN are equal (all scale linearly), 
we find that IACT of pCN and Hamiltonian MCMC is reduced compared to RWM. As in Example 1, we find that the l-MwG 
samplers and MALA exhibit smaller IACT than the other algorithms we tested, and that IACT of the l-MwG samplers remains 
constant as we increase the domain length. We further find that the acceptance rate of MALA first increases with L, but 
then levels off (due to our tuning of the step-size). Similarly, the acceptance rate of RWM, pCN, and Hamiltonian MCMC 
first decreases, but then levels off for large L. All algorithms yield a small error (see equation (17)), which, in the case of 
l-MwG in covariance matrix implementation, supports our claim that the localized problem is indeed a small perturbation 
of the unlocalized problem. The reasons for increase in IACT with dimension for pCN are the same as in example 1.
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Fig. 6. Covariance and precision matrices, IACT, acceptance rate and errors for Example 2. Left panels. Prior and posterior covariance and precision matrices 
of Example 2 with L = 0.5. Top row: prior covariance (left) and precision matrix (right). Bottom row: posterior covariance (left) and precision matrix (right). 
Right panels. Top row: IACT as a function of domain length for RWM, pCN, Hamiltonian MCMC (left) and MALA and l-MwG (right). Bottom row: acceptance 
rate as a function of domain length (left) and mean squared error in posterior mean (right).

Fig. 7. Covariance and precision matrices, IACT, acceptance rate and errors for Example 3. Left panels. Prior and posterior covariance and precision matrices 
of Example 3 with L = 0.5. Top row: prior covariance (left) and precision matrix (right). Bottom row: posterior covariance (left) and precision matrix (right). 
Right panels. Top row: IACT as a function of domain length for RWM, pCN, Hamiltonian MCMC (left) and MALA and l-MwG (right). Bottom row: acceptance 
rate as a function of domain length (left) and mean squared error in posterior mean (right).

5.3. Example 3: banded covariance, but full precision matrix

We now consider a discrete Gaussian prior and Gaussian inverse problem that does not necessarily have a limit as the 
discretization is refined. We pick this perhaps unphysical problem to illustrate limitations of l-MwG when the condition 
number is large and when it increases with dimension.

We pick a dimension, n, and chose a zero mean and a covariance matrix given by an n × n matrix C which has 2 on the 
main diagonal and −1 on the first upper and lower diagonal. We vary the dimension between n = 50 and n = 700 which 
leads to condition numbers between 1 ·103 and 2 ·105 (the condition number strictly increases with dimension). Because of 
the large condition number, the banded covariance does not imply that the precision matrix is also banded. In fact, for this 
prior, the covariance matrix is tridiagonal, but the precision matrix is full, as illustrated in Fig. 7. As in examples 1 and 2, we 
observe every other variable and perturb these measurements by a Gaussian with mean zero and covariance R = I, where 
I is the identity matrix of dimension n/2. Because the prior precision matrix is not banded, the posterior precision is also 
not banded as shown in Fig. 7.

We solve the Gaussian inverse problem by RWM, MALA, pCN, Hamiltonian MCMC and l-MwG. The set-up and tuning of 
the algorithms are as described in Examples 1 and 2, and summarized in Table 1. The l-MwG sampler in covariance matrix 
implementation does not require localization since the prior covariance is banded (tridiagonal). The precision matrix on the 
other hand cannot be localized efficiently because the bandwidth of the prior precision matrix is large (see Fig. 7), and 
also increases with n. We thus do not localize the l-MwG sampler in precision matrix implementation and condition on all 
variables during sampling, not only on nearby variables.

For each algorithm and dimension, we compute IACT (see Table 1 for the rates with which IACT increases with dimension 
for the various algorithms). We observe that IACT increases for all algorithms we consider, as illustrated by Fig. 7. We 
observe that IACT for the l-MwG samplers now also increases. The rate is n1/2 which is larger than the rate of MALA which, 
as in examples 1 and 2, is equal to n1/4. The reasons for increase in IACT with dimension for pCN are the same as in 
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Fig. 8. Top left: sparsity pattern of the matrix H for a 32 × 32 image. Top right: the largest eigenvalues of the prior precision (solid) and posterior precision 
(dashed) matrices of 32 × 32 (turquoise), 64 × 64 (blue) and 128 × 128 (purple) images. Center row: blurred images. Bottom row: mean of 104 samples of 
the Gibbs sampler.

examples 1 and 2. The increase in IACT of l-MwG with dimension can be understood within our theory by the increase 
in condition number with dimension. This numerical experiment thus suggests that our assumption of moderate condition 
number is indeed necessary (rather than being a tool for proving the theorems), which corroborates our claim that l-MwG 
is effective (nearly dimension independent) for a unified class of problems with banded precision and covariance matrix. 
The bandedness of one implies bandedness of the other by the small condition number.

5.4. Example 4: image deblurring

We consider a linear inverse problem similar to an inverse problem in image deblurring and assume that x is a column-
stack of the pixels of a 2D image. For example, for an image with 64 × 64 pixels, the dimension of x is n = 642 = 4,096. 
Thus, for high-resolution image deblurring (images with a large number of pixels), the dimension of x is huge (107 for a 
4,000 × 4,000 image). We consider the images of sizes 32 × 32, 64 × 64, 128 × 128, 256 × 256 and shown in Fig. 8. These 
images are obtained by cutting square images out of a given, slightly larger image. We use this example to illustrate that 
IACT of the Gibbs sampler can remain constant as the dimension of x and the number of observations increase with image 
size. Many practical difficulties, e.g., estimation of noise and regularization parameters (see, e.g., [3,19,42]), are neglected in 
this example.

We assume that the image x is blurred by multiplication from the left with a given n × n matrix H and that a noisy 
version of the blurred image, y, is available. Thus,

y = Hx+ η, η ∼ N (0, λ−1I),

where λ = 105 describes a (small) Gaussian measurement noise. The matrix H represents blurring the image by a Gaussian 
kernel with standard deviation 0.7, which is “realistic” because it effectively averages only a few pixels in each direction. 
Throughout this example we assume periodic boundary conditions. The prior is a Gaussian with mean zero and the prior 
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Table 2
Dimension, effective dimension and IACT of a Gibbs sampler as a function of the image size.
Image size: 32× 32 64× 64 128 × 128 256 × 256

Dimension: 1,024 4,096 16,384 65,536
neff,2: 4.8 · 108 7.4 · 109 1.2 · 1011 -
IACT (l-MwG): 2.92 2.97 1.74 1.11

precision is the 2D Laplacian, i.e., p0(x) = N (0, δ−1L−1), where δ = 10. For this set-up, the posterior distribution is the 
Gaussian

p(x|b) ∝ exp

(
−λ

2
||Hx− b||2 − δ

2
||L1/2x||2

)
,

and the posterior precision matrix is given by

� = λHTH+ δL.

The prior precision matrix L is banded and, thus, no localization of the prior is required. In this example, localization 
of the observation matrix is straightforward: since blurring occurs locally, only a few bands near the diagonal of H are 
“significant” and all other elements of H are “small.” We can thus localize H by setting all elements below a threshold 
equal to zero. The threshold is 1% of the maximum value of all elements of H. This gives rise to a sparse matrix Hloc whose 
sparsity pattern is illustrated for a 32 × 32 image in Fig. 8. Since Hloc and L are sparse, the posterior precision matrix 
�loc is also sparse (see also [7]). Errors due to localization of H are small. We compute that ||H − Hloc|| ≈ 0.02 and that 
the differences in the posterior covariance are ||Ĉ − Ĉloc|| ≈ 3.3 · 10−3, the error in the posterior mean is ||m̂ − m̂loc|| ≈ 1
(independently of image size).

We can compute the effective dimension neff,2 in (16) and the largest (at most 4000) eigenvalues of the prior and 
posterior precision matrices for some of the localized problems. Our results are shown in Fig. 8 and displayed in Table 2. 
We note that the effective dimension and the number of non-negligible eigenvalues increase with image size and dimension. 
Thus, as in the previous examples, the high-dimension of this local inverse problem is not caused by a large apparent, but 
small effective dimension, or by an increasing number of negligible eigenvalues, but rather all dimensions of this problem 
are large. We did not compute the effective dimension or eigenvalues corresponding to the 256 × 256 image because the 
required matrix operations were difficult to do (on our laptop) even when exploiting the sparsity of the matrices.

We implement a Gibbs sampler for the posterior distribution using the posterior precision matrix �loc. We define blocks 
using the 2D structure of the image rather than consecutive elements of the column stacks. In specific, the component index 
is two dimensional, i.e. [x]i, j denotes the (i, j)-th pixel of an n′ ×n′ image. And the (a, b)-th block of size q = q′ ×q′consists 
of entries

xa,b = ([x]a+i,b+ j, i, j = 1, · · · ,q′).
Two blocks xa1,b1 and xa2,b2 are neighbors if |a1 − a2| ≤ 1 and |b1 − b2| ≤ 1. During one iteration of the Gibbs sampler, we 
sample one block conditioned on the neighboring blocks. The blocks are of size 16 ×16 for the 32 ×32 and 64 ×64 images, 
for the 128 × 128 image we use blocks of size 32 × 32 and for the 256 × 256 image we use blocks of size 64 × 64. For each 
image, we draw 10,000 samples from the posterior distribution using the Gibbs sampler. We then compute IACT for every 
8th pixel. The averages of these IACTs are displayed in Table 2. IACT is near one for all four images we consider and we 
emphasize that, as in previous examples, IACT does not increase with dimension. The slight decrease in IACT as dimension 
increases can be attributed to the larger block size we use. For example, if the block size is the size of the image, we draw 
independent samples and IACT equals one.

We checked the results we obtained by the Gibbs sampler as follows. The sample average is, to three digits, the same as 
the posterior mean of the localized problem (as computed by linear algebra, rather than sampling). We also compute the 
trace of the sample covariance matrix and compared it to the trace of the sample covariance of 10,000 samples obtained 
by a “direct” sampler that makes use of the sparse Cholesky factorization of the posterior precision matrix. The average of 
these variances agrees to the first three digits. This is perhaps not surprising in view of the small IACT.

We also applied pCN and MALA for this problem, but could not obtain useable results even for the smallest image 
(dimension n = 1,024). We tuned the step sizes of these algorithms, but for all choices we considered, we either accepted 
often, in which case the moves were too small (large IACT), or we observed that larger moves were almost never accepted. 
The reason for the difficulties with MALA and pCN is the large effective dimension of this problem.

5.5. Example 5: a nonlinear inverse problem

We consider a nonlinear inverse problem whose likelihood involves numerical solution of the Lorenz’96 (L96) model [37]

dxi = (xi+1 − xi−2)xi−1 − xi + 8,

dt
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Fig. 9. Eigenvalues of the prior covariance matrices for the L96 model. Turquoise: n = 40. Blue: n = 400. Solid: prior covariance matrix. Dashed: approximate 
posterior covariance.

where i = 1, . . . , n and x−1 = xn−1, x0 = xn , xn+1 = x1. We consider L96 models with n = 40 and n = 400. Specifically, we 
try to estimate the initial condition x0 = (x1(0), . . . , xn(0))T given noisy observations of every other state variable at time 
T = 0.2. We write this as

y = HM0→T (x0) + η, η ∼ N (0, I), (18)

where H is a n/2 × n matrix which selects every other component of xT = M0→T (x0); M0→T is the numerical solver of 
the L96 model from t = 0 to t = T , i.e., M0→T (x0) maps the initial condition x0 to xT . We use a fourth order Runge–Kutta 
scheme with time step �t = 0.01.

We assume a Gaussian prior whose mean and covariance we obtain as follows. We initialize the L96 model with an arbi-
trary initial condition near the attractor and perform a simulation for 100 time units (104 time steps). The mean of this L96 
trajectory is used as the prior mean, and we use a localized version of the covariance matrix computed from the trajectory 
as the prior covariance matrix. The localization is done as follows. We first compute the Hadarmard (element by element) 

product of the sample covariance and a localization matrix whose elements are [A]i, j = exp

(
−

(
d(i, j)/(3

√
2)

)2
)
, where 

d is a periodic distance: d(i, j) = min{|i − j|, |i − j + n|, |i − j − n|}. Subsequently, off-diagonal elements below a threshold 
(1% of the largest element) are set to zero. This results in a localized, sparse prior covariance matrix. The eigenvalues of 
the prior covariances for problems of dimensions n = 40 and n = 400 are shown in Fig. 9. As in the above examples, the 
eigenvalues do not decay quickly and the number of non-negligible eigenvalues increases with dimension.

The localized prior and a likelihood defined by equation (18) define the (non-Gaussian) posterior distribution

p(x0|y) ∝ p0(x0)exp
(

−1

2
||HM0→T (x0) − y||2

)
. (19)

We minimize − log(p(x|y)) by Gauss–Newton, using adjoints for gradient calculations, and use the optimization result as 
a reference solution for the MCMC results. We compute the inverse of the Gauss–Newton approximation of the Hessian 
of − log(p(x|y)), evaluated at its minimizer, and use this matrix, P, as an approximation of posterior covariance (see, e.g., 
[2,29,55,59] for discussion of these approximations in NWP). The eigenvalues of the approximate posterior covariance matri-
ces for problems of dimension n = 40 and n = 400 are shown in Fig. 9. Note that the number of non-negligible eigenvalues 
increases with dimension. With the approximate posterior covariance P we can also compute an effective dimension. Here 
we use neff,1 as in (15), because the problem is naturally formulated in terms of covariance matrices, rather than precision 
matrices. We compute neff,1 = 17.94 when n = 40 and neff,1 = 181.36 when n = 400. As in the above examples, this effective 
dimension increases with dimension.

We use MALA, pCN and l-MwG to draw samples from the posterior distribution (19), which is not Gaussian because the 
L96 model is nonlinear, i.e., M0→T (x0) is not a linear function of x0. The MALA proposal we use is

x′
k+1 = xk + σ 2

2
∇ log p(xk) + σ ξ

where ξ ∼ N (0, CMALA). We chose the covariance matrix CMALA to be a diagonal n × n matrix whose diagonal elements are 
the diagonal elements of P. For this example, this choice for the covariance of ξ normalizes each dimension, and it gives 
better results, in terms of acceptance ratio and IACT, than using the identity matrix. We consider several choices for the step 
size σ , and for each choice generate 105 samples. For fixed σ , we compute IACT for all n variables, and then average. We 
also compute the average (along the chain) of the acceptance ratio. The results for L96 models of dimensions n = 40 and 
n = 400 are shown in Fig. 10. We note that a small step-size is required in order to retain a reasonable acceptance ratio. 
As we increase the dimension from n = 40 to n = 400, we note that the acceptance ratio for a given step size σ drops. For 
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Fig. 10. Average IACT (top) and average acceptance ratio (bottom) as a function of the step-size. Left: MALA. Right: pCN.

Table 3
IACT of MCMC methods: The IACT of MALA and pCN are minimized with σ
and β . The q in l-MwG-q is the block size.

MALA pCN l-MwG-2 l-MwG-4 l-MwG-8

n = 40 686 1,051 55 60 266
n = 400 3,153 3,257 43 81 257

this reason, IACT increases as the dimension increases. The smallest (average) IACTs we could achieve for the n = 40 and 
n = 400 dimensional problems are shown in Table 3. It is evident that IACT increases with dimension in this problem.

The pCN proposal we use is

�x′
k+1 =

√
1− β2�xk + β ξk

where ξk ∼ N (0, C) and where �x are perturbations from the prior mean. We consider several choices for β and, for each 
choice, we generate 105 samples and compute the average IACT and average acceptance ratio as above. Our results are 
shown in the right panels of Fig. 10. We find that the acceptance ratio of pCN is generally higher than that of MALA, but 
IACT of pCN and MALA are comparable. We also observe that IACT of pCN increases with dimension. The smallest IACT we 
found are shown in comparison with those of MALA in Table 3.

We implement the l-MwG sampler using the prior covariance matrix and observation localization. The blocks are con-
secutive components of x0 (but taking into account the periodicity of the L96 model) and the block sizes we tested are 2, 
4 and 8. Localization of the observation function is done by using, for each block, all observations within the block as well 
as the neighboring two observations on each side (accounting for the periodicity of L96). For each block size, we generate 
104 samples and compute an average IACT as above. Results are shown in Table 3. Note that IACT of l-MwG is significantly 
smaller than the IACT we computed for pCN or MALA. More importantly we observe that IACT does not increase significantly 
when we increase the dimension.

We illustrate the localized prior and posterior distributions in Fig. 11. Samples of the prior distribution serve as a refer-
ence and 500 samples of the prior are shown in turquoise; 500 samples of the posterior distribution, obtained by l-MwG 
with block size eight, are shown in blue. The true state is shown in red. Localization of the prior and using l-MwG to draw 
samples from the localized problem produces a meaningful posterior distribution: the uncertainty is reduced and the pos-
terior samples are centered around the true state. The lower panel of Fig. 11 illustrates how the uncertainty in the localized 
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Fig. 11. Top: 500 prior samples (turquoise), the true state (red) and 500 posterior samples obtained by l-MwG (blue). Bottom: 500 model states at time 
t = 0.2 obtained by using the L96 model on the prior (turquoise) and posterior (blue) samples. Shown in red is the true state and the orange dots are the 
observations.

prior and posterior distributions propagates through time. We show the 500 samples of the prior (turquoise) and posterior 
(blue) mapped to time T = 0.2 by the L96 dynamics M0→T (x0). Again, the true state (at time T ) is shown in red and lies 
well within the cloud of posterior samples. Plotting states at time T also allows us to compare to the observations, shown 
as orange dots, and we see good agreement between the model states at time T , generated from posterior samples, and the 
observations.

We emphasize that l-MwG, or in fact any MCMC method, may not be appropriate for solving this inverse problem. The 
minimizer of − log(p(x0|y)) and the associated Hessian-based covariance are good approximations of the posterior mean 
and covariances we computed by MCMC, but Gauss–Newton optimization is more efficient than MCMC for this problem. 
Our main messages for this example are that (i) l-MwG can be used on nonlinear problems; (ii) l-MwG, or other MCMC 
samplers that make use of the local structure of the problem, may be more effective than MCMC methods that do not make 
use of local problem structure (pCN and MALA); and (iii) increasing the dimension of this problem has almost no effect 
on the performance of l-MwG, but MCMC samplers that do not make use of local problem structure (pCN and MALA) are 
ineffective if the dimension and effective dimension are large.

6. Summary and conclusions

The main goal of this paper is to demonstrate that ideas of localization in numerical weather prediction (NWP) and 
the ensemble Kalman filter (EnKF) have relevance in inverse problems and MCMC. During localization, one restricts prior 
statistical interactions (correlations and/or conditional dependencies) and the effects of observations to neighborhoods. We 
have discussed conditions under which such ideas can be used in the context of inverse problems and their solution by 
MCMC. For example, we proved that localization introduces small errors for a class of linear “local” problems, but expect 
that this also holds for nonlinear local problems.

We reviewed the Gibbs sampler as a natural MCMC sampler that exploits local problem structure. We observed that its 
performance is dimension independent when sampling Gaussian distributions with banded precision and covariance matri-
ces. We presented a Metropolis-within-Gibbs sampler that can be applied to linear or nonlinear problems. We demonstrated 
our ideas in several numerical examples in which Gibbs samplers outperformed MALA, Hamiltonian MCMC, RWM and pCN.

Localization is useful for inverse problems only if there are interesting applications in which localization can be applied. 
We speculate that local structure is common in physics and engineering, with NWP being the most spectacular example. 
Finally, we have discussed that the notion of high dimensionality in local problems is different from what is usually assumed 
in function space MCMC. The literature on function space MCMC focuses on problems with a large apparent dimension, but 
few observations and low-rank updates from prior to posterior. Localization is useful in a different scenario, in which the 
apparent and effective dimensions, and the number of observations, are large, and updates from prior to posterior are not 
low-rank.

Our study neglects many practical challenges. For example, localization may require some tuning, which in itself can be 
computationally expensive. More importantly, we have not rigorously defined localization for non-Gaussian problems, where 
enforcing bandedness of the covariance matrices may not be sufficient because higher moments become important. Taking 
inspiration instead from the sparsity of the precision matrix, a useful route may be to consider the conditional independence 
structure of more general non-Gaussian Markov random fields [56]. We hope to address these issues in future work.
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Appendix A. Bias caused by localization

In Section 2, we propose to localize the prior covariance or precision matrix, and apply the l-MwG. This leads to sam-
ples from the localized posterior distribution, not from the exact posterior distribution. In this section we show that the 
difference between these two distributions can be small.

First we need the following estimate.

Lemma A.1. Suppose A is a symmetric positive definite matrix, and B is a symmetric matrix such that ‖B‖ ≤ ‖A−1‖−1 , then

‖(A+ B)−1 − A−1‖ ≤ ‖A−1‖2‖B‖
1− ‖B‖‖A−1‖ .

Proof. Let B = �L�T be the eigenvalue decomposition of matrix B. Remove columns of � that are eigenvectors of value 0, 
so L only contains nonsingular terms. Then by the Woodbury matrix identity

A−1 − (A+ �L�T )−1 = A−1�(L−1 + �TA−1�)−1�TA−1.

Let v be the eigenvector corresponds to the largest absolute eigenvalue of (L−1 + �TA−1�)−1. Then

|vT (L−1 + �TA−1�)v| ≥ |vT L−1v| − |vT�TA−1�v| ≥ ‖L‖−1 − ‖A−1‖.
Moreover, ‖L‖ = ‖B‖, so ‖(L−1 + �TA−1�)−1‖ ≤ (‖B‖−1 − ‖A−1‖)−1, and

‖(A+ B)−1 − A−1‖ ≤ ‖A−1‖2
‖B‖−1 − ‖A−1‖ . �

Proposition A.2. Let C be a prior covariance matrix and H be an observation matrix. Let Cloc and Hloc be localized covariance and 
observation matrices, and let δC and δH be as defined in (2) and (5).

a) The localized prior covariance and observation matrices are small perturbations of the unlocalized covariance and observation 
matrices in the sense that

‖C − Cloc‖ ≤ δC , ‖Hloc −H‖ ≤ δH .

Moreover, if δC ≤ ‖C−1‖−1 , then Cloc is positive semidefinite.
b) If δC ≤ ‖C−1‖−1, �1 ≤ ‖̂C‖−1 , the localization creates a small perturbation of the posterior covariance matrix in the sense that

‖̂C − Ĉloc‖ ≤ ‖̂C‖2�1

1− �1‖̂C‖ , �1 := ‖C−1‖2δC
1− δC‖C−1‖ + (2δH + δ2H )‖R−1‖.

c) Under the same conditions as in b), the localization creates a small perturbation of the posterior mean in the sense that

‖m̂loc − m̂‖ ≤
( ‖C−1‖2‖̂C‖δC

(1 − δC‖C−1‖)(1 − �1‖̂C‖) + ‖C−1‖‖̂C‖2�1

1− �1‖̂C‖
)

‖m‖ + ‖̂C‖‖R−1‖
1− �1‖̂C‖ (‖̂C‖�1 + δH )‖‖y‖.

Proof. For claim a), Define � = C − Cloc, apply Lemma B.2 with block size 1,

‖C− Cloc‖ ≤
⎛⎝max

i

∑
j

|[�]i, j|
⎞⎠ = δC .

The bound ‖H −Hloc‖ ≤ δH follows the same argument.
For claim b), we will exploit the identity ̂C−1 = C−1 +HTR−1H. By Lemma A.1,

‖C−1 − C−1
loc‖ ≤ ‖C−1‖2δC

−1 .

1− δC‖C ‖
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Under our normalization assumption that ‖H‖ = 1,

‖HTR−1H −HT
locR

−1Hloc‖ ≤ ‖(HT −HT
loc)R

−1H‖ + ‖HTR−1(H −Hloc)‖ + ‖(HT −HT
loc)R

−1(H −Hloc)‖
≤ 2δH‖R−1H‖ + δ2H‖R−1‖ ≤ (2δH + δ2H )‖R−1‖. (20)

Therefore

‖(C−1 +HTR−1H) − (C−1
loc +HT

locR
−1Hloc)‖ ≤ ‖C−1‖2δC

1− δC‖C−1‖ + (2δH + δ2H )‖R−1‖ =: �1.

We apply Lemma A.1 to ̂C = (C−1 +HTR−1H)−1, and obtain

‖̂C− Ĉloc‖ ≤ ‖̂C‖2�1

1− �1‖̂C‖ .

As a consequence, we also have that ‖̂Cloc‖ ≤ ‖̂C‖2�1
1−�1 ‖̂C‖ + ‖̂C‖ = ‖̂C‖

1−�1 ‖̂C‖ .
As for claim c), the difference is given by

m̂loc − m̂ = (̂ClocC
−1
loc − ĈC−1)m+ (̂ClocH

T
loc − ĈHT )R−1y.

The norm of the matrix (̂ClocHT
loc − ĈHT )R−1 can be bounded using claim b)

‖(̂ClocH
T
loc − ĈHT )R−1‖ ≤ ‖̂C− Ĉloc‖‖HTR−1‖ + ‖̂Cloc‖‖Hloc −H‖‖R−1‖

≤ ‖̂C‖‖R−1‖
1− �1‖̂C‖ (‖̂C‖�1 + δH ).

As for the norm of the matrix ̂ClocC
−1
loc − ĈC−1, we use

‖̂ClocC
−1
loc − ĈC−1‖ ≤ ‖(Cloc)

−1 − C−1‖‖̂Cloc‖ + ‖̂Cloc − Ĉ‖‖C−1‖.
From part (b), we have

‖C−1
loc − C−1‖‖̂Cloc‖ ≤ ‖C−1‖2‖̂C‖δC

(1− δC‖C−1‖)(1 − �1‖̂C‖) , ‖̂Cloc − Ĉ‖‖C−1‖ ≤ ‖C−1‖‖̂C‖2�1

1− �1‖̂C‖ .

In summary:

‖m̂loc − m̂‖ ≤
( ‖C−1‖2‖̂C‖δC

(1− δC‖C−1‖)(1 − �1‖̂C‖) + ‖C−1‖‖̂C‖2�1

1− �1‖̂C‖
)

‖m‖ + ‖̂C‖‖R−1‖
1− �1‖̂C‖ (‖̂C‖�1 + δH )‖‖y‖. �

Proposition A.3. Let � be a prior precision matrix and H be an observation matrix. Let δ� and δH be as defined in (4) and (5). Let �loc
and Hloc be the localized precision and observation matrices, then

a) If δ� ≤ ‖�‖, �2 ≤ ‖̂C‖−1 , the localization creates a small perturbation of the posterior precision and covariance matrix in the 
sense that ‖̂C−1 − Ĉ−1

p,loc‖ ≤ �2 and

‖̂C− Ĉp,loc‖ ≤ ‖̂C‖2�2

1− �2‖̂C‖ , where �2 := δ� + (2δH + δ2H )‖R−1‖.

b) Under the same conditions as in a), the localization creates a small perturbation of the posterior mean in the sense that

‖m̂p,loc − m̂‖ ≤ ‖̂C‖δ� + ‖�‖‖̂C‖2�2

1− �2‖̂C‖ ‖m‖ + ‖̂C‖‖R−1‖
1− �2‖̂C‖ (‖̂C‖�2 + δH )‖y‖.

Proof. The proofs are similar to the proofs of Proposition A.2. To prove a), we follow the proof of Proposition A.2 a) and 
find that ‖� − �loc‖ ≤ δ� , and (20)

‖HTR−1H −HT
locR

−1Hloc‖ ≤ (2δH + δ2H )‖R−1‖.
Therefore

‖(� +HTR−1H) − (�loc +HT R−1Hloc)‖ ≤ δ� + (2δH + δ2 )‖R−1‖ =: �2.
loc H
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We apply Lemma A.1 to ̂C = (� +HTR−1H)−1,

‖̂C− Ĉp,loc‖ ≤ ‖̂C‖2�2

1− �2‖̂C‖ .

As a consequence, we have that ‖̂Cp,loc‖ ≤ ‖̂C‖
1−�2 ‖̂C‖ .

To prove claim b), we write

m̂p,loc − m̂ = (̂Cp,loc�loc − Ĉ�)m+ (̂Cp,locH
T
loc − ĈHT )R−1y.

The norm of the matrix (̂Cp,locHT
loc − ĈHT )R−1 can be bounded directly using claim a)

‖(̂Cp,locH
T
loc − ĈHT )R−1‖ ≤ ‖̂C− Ĉp,loc‖‖HTR−1‖ + ‖̂Cp,loc‖‖Hloc −H‖‖R−1‖

≤ ‖̂C‖‖R−1‖
1− �2‖̂C‖ (‖̂C‖�2 + δH ).

The norm of the matrix ̂Cp,loc�loc − Ĉ� can be bounded by

‖̂Cp,loc�loc − Ĉ�‖ ≤ ‖�loc − �‖‖̂Cp,loc‖ + ‖̂Cp,loc − Ĉ‖‖�‖.
From part (a), we have

‖�loc − �‖‖̂Cp,loc‖ ≤ ‖̂C‖δ�

1− �2‖̂C‖ , ‖̂Cp,loc − Ĉ‖‖�‖ ≤ ‖�‖‖̂C‖2�2

1− �2‖̂C‖ .

In summary:

‖m̂p,loc − m̂‖ ≤ ‖̂C‖δ� + ‖�‖‖̂C‖2�2

1− �2‖̂C‖ ‖m‖ + ‖̂C‖‖R−1‖
1− �2‖̂C‖ (‖̂C‖�2 + δH )‖y‖. �

Appendix B. Convergence rates for Gibbs samplers

In this section, we prove Theorems 3.1 and 3.2.

B.1. Review of Gibbs and Gauss–Seidel

Our strategy for proving these theorems relies on the Gauss–Seidel operator associated with the Gibbs sampler. The 
connection between the Gibbs sampler and the Gauss–Seidel operator is well documented [21,25,53], but we briefly review 
it here so that our paper can be read and understood independently.

We consider sampling x ∼ N (m, �−1) using the Gibbs sampler of block size q, assuming � is of dimension mq × mq. 
We will use �i, j to denote its (i, j)-q × q sub-block, which should not be confused with the matrix entry [�]i, j . We say 
an mq × mq matrix � is block-strictly-lower-triangular (BSLT), if �i, j is nonzero only if i > j. We define block-diagonal 
and block-strictly-upper-triangular (BSUT) in an analogous way. Let � = �L + �D + �U be the BSLT + block-diagonal +
BSUT decomposition of the precision matrix �. In other words, �L consists of the blocks {�i, j}i> j of �, �D consists of the 
diagonal blocks of �, and �U = �T

L .
We investigate how the j-th coordinate is updated at the k + 1-th iteration. For simplicity, let us write the state before 

this coordinate update as

(z1, · · · , zm) = (xk+1
1 , · · · ,xk+1

j−1,x
k
j, · · · ,xkm).

Then log(p(z)), ignoring a constant term, can be written as

−1

2
(z−m)T�(z−m) = −1

2

∑
i,i′

(zi −mi)
T�i,i′(zi′ −mi′)

= −1

2
(z j −m j)

T� j, j(z j −m j) − 1

2
(z j −m j)

T
∑
i �= j

� j,i(zi −mi)

− 1

2

∑
i �= j

(zi −mi)
T�i, j(z j −m j) + F ′

j(z)

= −1

2
(z j −m′

j)
T� j, j(z j −m′

j)
T + F j(z).
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Here F j and F ′
j are functions independent of z j , and

m′
j := m j −

∑
i �= j

�−1
j, j� j,i(zi −mi) = m j −

∑
i< j

�−1
j, j� j,i(x

k+1
i −mi) −

∑
i> j

�−1
j, j� j,i(x

k
i −mi).

Using Bayes’ formula, we find that the probability of xk+1
j conditioned on xk+1

i , i < j and xki , i > j is proportional to 
exp(− 1

2 (z j −m′
j)

T� j, j(z j −m′
j)). In other words, the updated coordinate has the distribution

xk+1
j ∼ N

⎛⎝m j −
∑
i< j

�−1
j, j� j,i(x

k+1
i −mi) −

∑
i> j

�−1
j, j� j,i(x

k
i −mi),�

−1
j, j

⎞⎠ . (21)

One way to obtain a sample of this distribution is to find the solution, xk+1
j , of the linear equation

� j, j(x
k+1
j −m j) +

∑
i< j

� j,i(x
k+1
i −mi) +

∑
i> j

� j,i(x
k
i −mi) = ξk+1

j (22)

where ξk+1
j is an independent sample from N (0, � j, j).

Let � = �L +�D +�U be the BSLT + block-diagonal + BSUT decomposition of the precision matrix �. If we concatenate 
(22) for all coordinates j, the equation becomes

(�L + �D)(xk+1 −m) + �U (xk −m) = ξk+1,

where ξk+1 is the concatenation of ξk+1
j , and distributed as ξk+1 ∼N (0, �D). An equivalent representation is

(xk+1 −m) = −(�L + �D)−1�U (xk −m) + (�L + �D)−1ξk+1. (23)

The correlation between two consecutive iterations then is determined by

G := −(�L + �D)−1�U .

The spectral radius of G decides how fast the Gibbs sampler converges in l2 norm.
The matrix G is known as the “Gauss–Seidel operator,” which is also used in the iterative solution of linear equations. 

Recall that N (0, C) is the invariant distribution of xk −m. By comparing covariances on both sides of (23), we find that

C = GCGT + (�L + �D)−1�D(�L + �D)−T . (24)

It follows that C � GCGT , which in turn implies that the spectral radius of G is less than 1, which implies convergence. Here 
and below, for two symmetric matrices A and B, we use A � B to indicate that B − A is positive semidefinite. However, in 
order to show the convergence rate is dimension-independent, we need to exploit the banded structure of C or �, which 
will be the purpose of the next section.

B.2. Gauss–Seidel with localized structures

First we need two estimates.

Lemma B.1. For any positive definite qm × qm matrix C, denote its maximum eigenvalue as λmax, its minimum eigenvalue as λmin, its 
condition number as C = λmax/λmin, its inverse � = C−1 . Then the q × q blocks satisfy:

λminI � Ci,i � λmaxI, λ−1
maxI � �i,i � λ−1

minI, (25)

‖�−1/2
i,i �i, j�

−1/2
j, j ‖ ≤ 1− C−1, ‖C−1/2

i,i Ci, jC
−1/2
j, j ‖ ≤ 1− C−1. (26)

Proof. Let λi be an eigenvalue of Ci,i and v ∈ R
q be one of its eigenvectors with norm 1. Let v be the Rqm vector with its 

i-th block being v . Then

λi = vT Ci,i v = vT Cv ∈ [λmin, λmax].
The left inequality in (25) follows. The right inequality of equation (25) can be derived in a similar fashion.

Let x and y be the left and right singular vectors corresponding to the largest singular value of �i, j = �
−1/2
i,i �i, j�

−1/2
j, j . 

The vectors x and y are of dimension q, have norm one, ‖x‖2 = ‖y‖2 = 1, and xT�i, jy = ‖�i, j‖. Now consider an qm
dimensional vector v, where its i-th block is �−1/2x, its j-th block is −�

−1/2y, and all other blocks are zero. Then
i,i j, j



24 M. Morzfeld et al. / Journal of Computational Physics 380 (2019) 1–28
vT�v = xT�
−1/2
i,i �i,i�

−1/2
i,i x− 2xT�

−1/2
i,i �i, j�

−1/2
j, j y+ yT�

−1/2
j, j � j, j�

−1/2
j, j y

= 2− 2xT�i, jy = 2(1− ‖�i, j‖).
On the other hand,

‖v‖2 = ‖�−1/2
i,i x‖2 + ‖�−1/2

j, j y‖2 ≥ 2λmin.

Thus

2(1− ‖�i, j‖) = 2vT�v ≥ 2λminλ
−1
max = 2C−1.

The left inequality in (26) follows. Since the derivation above uses nothing of � other than its eigenvalues, so the right 
inequality in (26) also holds. �

For our proofs below, we need the following bound for an operator norm. For q = 1, this bound appeared in [6] as 
inequality (A2). Note that this bound is well-suited for block-sparse A since then the right hand side consists of only a few 
terms.

Lemma B.2. For any qm × qm matrix A, the following holds

‖A‖ ≤
⎛⎝ max

i=1,··· ,m

m∑
j=1

‖Ai, j‖
⎞⎠1/2 ⎛⎝ max

i=1,··· ,m

m∑
j=1

‖A j,i‖
⎞⎠1/2

.

Proof. First we show the claim for symmetric A = AT . In this case, the bound for the norm of A is

‖A‖ ≤ max
i=1,··· ,m

m∑
j=1

‖Ai, j‖. (27)

Let v = [v1, . . . , vm] ∈R
qm be an eigenvector so that λv = Av while |λ| = ‖A‖. Suppose ‖vi∗‖ = maxi{‖vi‖}, then

|λ|‖vi∗‖ = ‖λvi∗‖ =
∥∥∥∥∥∥

m∑
j=1

Ai∗, jv j

∥∥∥∥∥∥ ≤
m∑
j=1

‖Ai∗, j‖‖v j‖ ≤ ‖vi∗‖
m∑
j=1

‖Ai∗, j‖.

This leads to ‖A‖ ≤ ∑m
j=1 ‖Ai∗, j‖ and hence (27).

For a general A, note that ‖A‖ = ‖ATA‖1/2. The matrix P = ATA is symmetric, and its blocks are

Pi, j =
∑
k

AT
k,iAk, j .

Applying (27) to P, we obtain

‖P‖ ≤ max
i

m∑
j=1

‖Pi, j‖ ≤ max
i

∑
j

∑
k

‖AT
k,iAk, j‖

≤ max
i

∑
k

∑
j

‖Ak,i‖‖Ak, j‖

≤ max
i

∑
k

‖Ak,i‖
∑
j

‖Ak, j‖

≤
(
max

i

∑
k

‖Ak,i‖
)⎛⎝max

i

∑
j

‖Ai, j‖
⎞⎠ .

This leads to our general claim. �
Now we are at the position to establish bounds for the Gauss Seidel operator.

Lemma B.3. If � is block-tridiagonal with C being its condition number, then

GCGT � C(1 − C−1)2

1+ C(1− C−1)2
C.
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Proof. Since � is block-tridiagonal, �U has at most one nonzero block in each row and each column, and, likewise, 
�

−1/2
D �U�

−1/2
D has at most one nonzero block in each row and each column. Therefore, by Lemma B.2∥∥∥�

−1/2
D �U�

−1/2
D

∥∥∥ ≤ max
i=1,...,m−1

∥∥∥�
−1/2
i,i �i,i+1�

−1/2
i+1,i+1

∥∥∥ ,

which by Lemma B.1 is bounded by 1 − C−1.
To continue, we look at the right hand side of (24). We want to show that for some γ > 0,

GCGT � γ (�L + �D)−1�D(�L + �D)−T (28)

For this purpose, note that

GCGT = (�L + �D)−1�UC�T
U (�L + �D)−T ,

and that

�UC�T
U = �

1/2
D (�

−1/2
D �U�

−1/2
D )(�

1/2
D C�

1/2
D )(�

−1/2
D �U�

−1/2
D )T�

1/2
D .

Thus, in order to prove (28), it suffices to find a γ such that∥∥∥(�
−1/2
D �U�

−1/2
D )(�

1/2
D C�

1/2
D )(�

−1/2
D �U�

−1/2
D )T

∥∥∥ ≤ γ .

By Lemma B.1, this is straight forward, since we have that∥∥∥(�
−1/2
D �U�

−1/2
D )(�

1/2
D C�

1/2
D )(�

−1/2
D �U�

−1/2
D )T

∥∥∥ ≤ (1− C−1)2‖�D‖‖C‖ ≤ C(1 − C−1)2 =: γ ,

since �D is diagonal with blocks bounded in operator norm by λ−1
min.

Finally, we can plug (28) into (24), and find that

C = GCGT + (�L + �D)−1�D(�L + �D)−T � (γ −1 + 1)GCGT . �
Lemma B.4. If C is block-tridiagonal with C being its condition number, then

GCGT � 2(1− C−1)2C4

1+ 2(1− C−1)2C4
C.

Proof. Since �−1 = C, we apply the Woodbury’s formula to (�L + �D)−1 = (� − �U )−1,

(�L + �D)−1 = (� − �U )−1 = C+ C�U (I− C�U )−1C = (I− C�U )−1C.

Consequentially, G = (I − C�U )−1C�U .
Next, we claim that C�U is BUT, and that only the blocks (C�U )i,i, (C�U )i,i+1 are nonzero. To see it is BUT, recall that C

is block-tridiagonal, (�U )i, j = �i, j1i≤ j−1,

(C�U )i, j = Ci,i−1�i−1, j1i≤ j + Ci,i�i, j1i≤ j−1 + Ci,i+1�i+1, j1i≤ j−2.

Thus (C�U )i, j is nonzero only if i ≤ j, i.e., C�U is BUT. Moreover, if j ≥ i + 2, by the identity C� = I, we have

0 = (C�)i, j = Ci,i−1�i−1, j + Ci,i�i, j + Ci,i+1�i+1, j = (C�U )i, j,

proving our claim.
Next, not that for j = i, we have

(C�U )i,i = Ci,i−1�i−1,i1i≤i + Ci,i�i,i1i≤i−1 + Ci,i+1�i+1,i1i≤i−2 = Ci,i−1�i−1,i .

Likewise, for j = i + 1, we have

0 = (C�)i,i+1 = Ci,i−1�i−1,i+1 + Ci,i�i,i+1 + Ci,i+1�i+1,i+1 = (C�U )i,i+1 + Ci,i+1�i+1,i+1.

In other words, (C�U )i,i+1 = −Ci,i+1�i+1,i+1.
Applying Lemma B.2 leads to

‖C�U‖ ≤
(

max
i=1,··· ,m

{‖(C�U )i,i‖ + ‖(C�U )i,i+1‖}
)1/2 (

max
i=1,··· ,m

‖(C�U )i,i‖
)1/2

.
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Applying Lemma B.1 to (C�U )i,i = Ci,i−1�i−1,i gives

‖(C�U )i,i‖ ≤ ‖C1/2
i,i ‖‖C−1/2

i,i Ci,i−1C
−1/2
i−1,i−1‖‖C1/2

i−1,i−1‖‖�1/2
i−1,i−1‖‖�−1/2

i−1,i−1�i−1,i�
−1/2
i,i ‖‖�1/2

i,i ‖
≤ (1− C−1)2C ≤ (1− C−1)C.

Similarly, (C�U )i,i+1 = −Ci,i+1�i+1,i+1, which by Lemma B.1 implies that

‖(C�U )i,i+1‖ ≤ ‖C1/2
i,i ‖‖C−1/2

i,i Ci,i+1C
−1/2
i+1,i+1‖‖C1/2

i+1,i+1‖‖�i+1,i+1‖ ≤ (1 − C−1)C.

Consequentially, another application of Lemma B.2 implies that

‖C�U‖ ≤ √
2(1 − C−1)C.

To continue, we again want to use (24) by exploiting relations like (28). We first note that

GCGT = (I− C�U )−1C�UC�T
UC(I− C�U )−T ,

(�L + �D)−1�D(�L + �D)−T = (I− C�U )−1C�DC(I− C�U )−T .

Using ‖C�U‖ ≤ √
2(1 − C−1)C , we have

C�UC�T
UC � 2(1− C−1)2C2λmaxI.

Moreover,

C�DC � λ−1
maxCCI � λ−1

maxλ
2
minI.

Consequentially, C�UC�T
UC � 2(1 − C−1)2C4C�DC and

GCGT � 2(1 − C−1)2C4(�L + �D)−1�D(�L + �D)−T .

Combining the above inequality with (24) leads to

C = GCGT + (�L + �D)−1�D(�L + �D)−T � ((2(1 − C−1)2C4)−1 + 1)GCGT . �
B.3. Proofs of the main theorems

Armed with these results, the proofs for the main theorems follow from an elementary coupling argument.

Proof of Theorems 3.1 and 3.2. As discussed above, and illustrated in Section B.1, we can generate iterates from the Gibbs 
sampler with block-size q by solving the linear equations

(xk+1 −m) = G(xk −m) + (�L + �D)−1ξk+1 k = 0,1, · · · ,

where ξk+1 are i.i.d. samples from N (0, �D ).
Next we consider a random sample z0 from N (m, C). We can apply the block-Gibbs sampler with z0 as the initial 

condition, while using the same sequence ξk . In other words, we generate zk+1 by letting

(zk+1 −m) = G(zk −m) + (�L + �D)−1ξk+1 k = 0,1, · · · .

Since N (m, C) is the invariant measure for the Gibbs sampler, marginally zk ∼N (m, C).
Next we look at the difference between the two Gibbs samplers, �k = xk − zk . Note that

�0 ∼ N (x0 −m,C), �k+1 = G�k, k = 0,1 · · · .

Consequentially, �k ∼N (Gk�0, GkC(GT )k), where �0 := x0 −m. Since

�0�0T = C1/2(C−1/2�0)(C
−1/2�0)

T C1/2 � ‖C−1/2�0‖2C,

we find that

E‖C−1/2�k‖2 = ‖C−1/2Gk�0‖2 + tr(C−1/2GkC(GT )kC−1/2)

= tr(C−1/2Gk�0�
T
0 (GT )kC−1/2 + C−1/2GkC(GT )kC−1/2)

≤ (1+ ‖C−1/2�0‖2) · tr(C−1/2GkC(GT )kC−1/2). (29)
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If � is block-tridiagonal, then, by Lemma B.3,

C−1/2GkC(GT )kC−1/2 ≤ βkI, β = C(1 − C−1)2

1+ C(1 − C−1)2
.

Combining the above inequality with (29) proves Theorem 3.2.
If C is block-tridiagonal, then, by Lemma B.4,

C−1/2GkC(GT )kC−1/2 ≤ βkI, β = 2(1− C−1)2C4

1+ 2(1 − C−1)2C4 .

Combining the above inequality with (29) proves Theorem 3.1. �
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