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ABSTRACT

In solar flares and other astrophysical systems, a major challenge for solving particle acceleration

problem associated with magnetic reconnection is the enormous scale separation between kinetic

scales and observed reconnection scale. Because of this, it has been difficult to draw any definite con-

clusions by just using kinetic simulations. Particle acceleration model that solves energetic particle

transport equation can capture the main acceleration physics found in kinetic simulations, and thus

provide a practical way to make observable predictions and directly compare model results with obser-

vations. Here we study compression particle acceleration in magnetic reconnection by solving Parker

(diffusion-advection) transport equation using velocity and magnetic fields from two-dimensional

high-Lundquist-number magnetohydrodynamics (MHD) simulations of a low-β reconnection layer.

We show that the compressible reconnection layer can give significant particle acceleration, leading

to the formation of power-law particle energy distributions. We analyze the acceleration rate and

find that the acceleration in the reconnection layer is a mixture of first-order and second-order Fermi
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processes. When including a guide field, we find the spectrum becomes steeper and both the power-

law cutoff energy and maximum particle energy decrease as plasma becomes less compressible. This

model produces a 2D particle distribution that one can use to generate radiation map and directly

compare with solar flare observations. This provides a framework to explain particle acceleration at

large-scale astrophysical reconnection sites, such as solar flares.

Keywords: acceleration of particles — magnetic reconnection — Sun: flares — Sun:

corona
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1. INTRODUCTION

Energy conversion and particle acceleration in strongly magnetized plasmas are important processes

that hold the key for understanding many explosive solar and astrophysical high-energy phenom-

ena (Zweibel & Yamada 2009; Lin 2011). Magnetic reconnection is a major mechanism that drives

the release of magnetic energy and nonthermal particle acceleration by reorganizing the topology and

connectivity of magnetic field lines (Fu et al. 2013a, 2017). One of the best examples for magnetic

reconnection and the associated particle acceleration is solar flares. Observations have suggested that

magnetic reconnection converts 10% to 50% of the magnetic energy (up to ∼ 1033 ergs) into plasma

kinetic energy within 1 − 10 minutes. During the process, a large amount of electrons in the flare

region (> 1036 electrons) are accelerated into a power-law energy spectrum f(ε) ∝ ε−s with spectral

index from s ∼ 3 to more than s = 9 with a medium about 5 (Lin & Hudson 1976; Krucker et al.

2010; Oka et al. 2013, 2015; Effenberger et al. 2017). The acceleration of ions in a flare region can

be as efficient as that of electrons. This is suggested by RHESSI ’s observation on the correlation

between electron-generated hard X-ray flux and ion-generated γ-ray flux (Shih et al. 2009). In-situ

solar energetic particle (SEP) observation has also shown that the electron and ion spectra often

resemble power-law distributions (Mason et al. 2012). How such efficient particle acceleration occurs

over a large-scale reconnection region remains an important unsolved problem in reconnection study.

During solar flares, large-scale magnetic reconnection is in the weakly collisional (high Lundquist

number) regime and is likely to have magnetic structures with a range of spatial scales. One attractive

scenario emerged in the past decade is the plasmoid-dominated reconnection, where a hierarchy of

plasmoids develop in a macroscopic reconnection layer (Shibata & Tanuma 2001; Loureiro et al.

2007; Bhattacharjee et al. 2009; Comisso et al. 2016) and naturally bring the current sheet from

the macroscopic scale to kinetic scale (Daughton et al. 2009; Ji & Daughton 2011). It is therefore

important to study particle acceleration in magnetic reconnection using a multi-scale approach. For

magnetic reconnection at kinetic scales, kinetic simulations provide first-principle description for

particle acceleration, but the domain size is limited due to the demanding computational expense.

The standard approach to study particle acceleration on large scales is to solve energetic particle
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transport equation (e.g. Parker 1965; Zank et al. 2014), but this has not been applied in reconnection

study until recently (see below for a more detailed discussion). Instead, test-particle simulations have

been widely used to study particle acceleration during reconnection on large scales. Below we review

the previous theories and numerical simulations on particle acceleration in magnetic reconnection.

Particle-in-cell (PIC) kinetic simulation has been popular in modeling particle acceleration during

magnetic reconnection, as it includes the full range of plasma physics. Previous kinetic simulations

have extensively studied several acceleration mechanisms, such as direct acceleration close to the

reconnection X-point (Hoshino et al. 2001; Drake et al. 2005; Fu et al. 2006; Oka et al. 2010; Egedal

et al. 2012, 2015; Wang et al. 2016), Fermi-type acceleration in contracting magnetic islands (Drake

et al. 2006; Oka et al. 2010), acceleration in island-merging regions (Oka et al. 2010; Liu et al. 2011;

Drake et al. 2013; Nalewajko et al. 2015), and acceleration at reconnection front (Fu et al. 2011,

2012; Liu et al. 2017a,b; Xu et al. 2018). By summing over particle guiding-center motions, several

recent studies have identified curvature drift along the motional electric field as the major particle

acceleration mechanism (Dahlin et al. 2014; Guo et al. 2014, 2015; Li et al. 2015, 2017) in the weak

guide-field case. However, because of the enormous scale separation between kinetic scales (ion skin

depth ∼ 10 − 100 m) and scale of the observed reconnection region (∼ 107 m), it has been difficult

to draw any definite conclusion and compare solar flare observations with the modeling results. To

overcome this major difficulty and solve particle acceleration problem in solar flare reconnection, one

has to come up with a description for the acceleration of particles in macroscopic fluid scale.

Test-particle simulations are widely used in studying particle acceleration during solar flares. Both

full particle orbits and the particle guiding-center motions have been calculated in background electric

and magnetic fields provided by MHD simulations. Under the guiding-center approximation, one can

solve particle motions in realistic scales by removing the high-frequency gyromotions. Test-particle

method usually generates hard power-law energy spectra (Onofri et al. 2006; Gordovskyy et al.

2010a,b; Zhou et al. 2015, 2016) that can extend to tens of keV for electrons and tens of MeV for

protons but may be too hard to explain the observations (power-law index for electrons 1 < s < 2).

Acceleration due to parallel electric field is usually the dominant particle acceleration mechanism
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found in the these simulations. This is likely due to the large anomalous resistivity and coarse grids

used in these simulations, resulting in much broader current layers and much larger resistive electric

field than that in real systems. Furthermore, the large anomalous resistivity is not supported by

current 3D PIC simulations of reconnection layers (Roytershteyn et al. 2012; Liu et al. 2013; Le et al.

2018). One can avoid this problem by ignoring the parallel electric field completely (Zhou et al. 2015;

Birn et al. 2017), leading to particle energy spectra that are close to solar flare observations. But this

method still does not take into account the effect of wave-particle interaction that scatters particles

and changes the acceleration processes.

The standard approach to solve large-scale particle acceleration and transport problem is to use

the energetic particle transport theory, which has been widely used in studying shock acceleration

and cosmic ray transport. The primary acceleration mechanism is due to adiabatic compression

and is included in the Parker transport equation (Parker 1965; Blandford & Eichler 1987). Various

other acceleration mechanisms (e.g. fluid shear and fluid acceleration) could also be included in the

transport theory (Earl et al. 1988; Zank 2014). It is worthwhile noting that the acceleration due to

curvature drift and gradient drift found to be important in earlier kinetic simulations has also been

included in the transport theory (Jones 1990; le Roux & Webb 2009). Several studies have attempted

to develop similar transport theories (or reduced kinetic equations) for studying particle acceleration

during reconnection (Drake et al. 2006, 2013; Egedal et al. 2013; Zank 2014; le Roux et al. 2015;

Montag et al. 2017). These studies include previously studied particle acceleration mechanisms, such

as parallel reconnection electric field and contracting and merging magnetic islands. While some of

the studies assume that the reconnection layer is incompressible and only consider incompressible

effects (e.g. Drake et al. 2006, 2013), other recent studies emphasized both compressible and incom-

pressible effects (Zank et al. 2014; le Roux et al. 2015; Montag et al. 2017). Recently, for the first

time, Li et al. (2018) used fully kinetic simulations to show that compression energization dominates

the acceleration of high-energy particles in reconnection with a weak guide field (< 20% of the re-

connecting component), and the compression and shear effects are comparable when the guide field

is moderate (∼ 0.5 times of the reconnecting magnetic field component). Meanwhile, some recent
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MHD simulations also suggest that the reconnection layer is compressible especially when the plasma

β is low and the guide field is weak (Birn et al. 2012; Provornikova et al. 2016). These simulation

results suggest that one may study particle acceleration in a large-scale solar flare reconnection site

using the transport theory.

Drury (2012) considered reconnection acceleration by assuming the reconnection region as a black

box with a certain compression ratio r between the upstream and downstream regions. He found that

compression acceleration leads to a power-law spectrum f(p) ∝ p−χ and the spectral index depends

on the compression ratio in a similar way as in diffusive shock acceleration χ = −3r/(r − 1). For

nonrelativistic particles, the spectral index s for energy spectrum f(ε) is related to χ by s = (χ−1)/2.

As discussed above, reconnection layer in the weakly collisional regime may have magnetic structures

in various scales. It is worthwhile studying whether power-law energy spectrum can still develop

and how the spectral features depend on key plasma parameters of the reconnection layer. The goal

of this paper is to study large-scale compression acceleration during magnetic reconnection in the

plasmoid-dominated regime.

In this paper, we solve Parker (diffusion-advection) transport equation using the background ve-

locity and magnetic fields from high-Lundquist-number MHD simulations of a low-β reconnection

layer. We assume that electrons and protons are already energetic and can interact with the back-

ground magnetic fluctuation existed in the reconnection region. In Section 2, we describe the MHD

simulations and stochastic integration method for solving the Parker transport equation. In Sec-

tion 3, we present our simulation results. We show that particles are significantly accelerated by the

compression reconnection layer in the plasmoid-dominated regime. The acceleration leads to forma-

tion of power-law energy distribution for both electrons and protons. The power-law index, cutoff

energy and the maximum energy depend on the guide-field strength and the diffusion model. This

model also produces 2D particle distribution that one can use to generate radiation map and directly

compare with observations. This provides a framework to explain particle acceleration at large-scale

reconnection sites, such as solar flares. In Section 4, we discuss the conclusions and the implications

based on our simulation results.
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2. NUMERICAL METHODS

2.1. MHD Simulations

We carry out simulations of magnetic reconnection using the Athena MHD code (Stone et al. 2008).

We use a third-order piecewise parabolic reconstruction, the Harten-Lax-van Leer Discontinuities

(HLLD) Riemann solver, the MUSCL-Hancock (VL) integrator, and the constrained transport (CT)

algorithm to ensure the divergence-free state of the magnetic field. The code solves the resistive

MHD equations

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+∇ ·

[
ρvv +

(
p+

B ·B
2

)
I −BB

]
= 0,

∂e

∂t
+∇ ·

[(
e+ p+

B ·B
2

)
v −B(B · v)

]
= ∇ · (B × ηj),

∂B

∂t
−∇× (v ×B) = η∇2B,

where

e =
p

γ − 1
+
ρv · v

2
+
B ·B

2
, j = ∇×B,

where ρ is the mass density, v is the velocity, e is the total energy density, B is the magnetic field, p

is the gas pressure, γ (=5/3) is the adiabatic index, j is the current density, and η is the resistivity.

Unless specified otherwise, we normalize the simulations by L0 = 5000 km (the simulation box size is

104 km) and vA = 1000 km s−1, which are the typical parameters of the reconnection site of a solar

flare. We assume the normalized magnetic field B0 = 50 G and particle density is 1.2 × 1010cm−3.

We choose η = 10−5 and the same box sizes Lx = Ly = 2 in all simulations, resulting a Lundquist

number S = LyvA/(2η) = 105. The simulation box is x ∈ [0, 2] and y ∈ [0, 2]. The simulations start

from two current sheets with

B =B0

[
tanh

(
x− x1
λ

)
− tanh

(
x− x2
λ

)]
ŷ − B0ŷ+

B0

[√
sech2

(
x− x1
λ

)
+
B2
g

B2
0

+

√
sech2

(
x− x2
λ

)
+
B2
g

B2
0

− Bg

B0

]
ẑ, (1)
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where B0 = 1.0 is the strength of the reconnecting magnetic field, Bg is the strength of the guide field,

x1 = 0.5 and x2 = 1.5 are the x-positions of the current sheets, and λ = 0.005 is the half-thickness of

the current sheet. The grid sizes are nx×ny = 8192×4096, so we can resolve the initial current sheet

by at least 10 cells. We employ an initial magnetic flux perturbation to speed up the reconnection

onset.

ψz(x, y) = ψ0B0

[
cos

(
2π(x− x1)

Lx

)
− cos

(
2π(x− x2)

Lx

)]
cos

(
2πy

Ly

)
, (2)

where ψ0 is the amplitude of the perturbation. Initially the total pressure (gas pressure + magnetic

pressure) is uniform in the simulation box. We choose ψ0 = 10−4 so that the initial density variation

is under 2.6%. The initial plasma β = 2p/B2 ≈ 0.1. We choose periodic boundary conditions along

both x and y directions. We perform 4 simulations with Bg = 0, 0.2, 0.5 and 1.0. The initial

plasma density ρ0 ≈ 1.0,
√

1.04,
√

1.25,
√

2, so the resulting Alfvén speed vA =
√

(B2
0 +B2

g)/ρ0

in the reconnection inflow region ≈ 1.0 for all four runs. Note that the Lundquist number in the

simulations is much smaller than the realistic number calculated from Coulomb collision. Previous

numerical simulations have shown that the reconnection rate becomes a few percent of the Alfvén

speed and independent of the Lundquist number when S & 104 (e.g. Bhattacharjee et al. 2009; Huang

& Bhattacharjee 2010).

2.2. Solving Parker Transport Equation

We then solve Parker’s transport equation

∂f

∂t
+ (v + vd) · ∇f −

1

3
∇ · v ∂f

∂ ln p
= ∇ · (κ∇f) +Q, (3)

where f(xi, p, t) is the particle distribution function as a function of the particle position xi, mo-

mentum p (isotropic momentum assumed), and time t; κ is the spatial diffusion coefficient tensor,

v is the bulk plasma velocity, and Q is the source. Note that the particle drift vd is out of the

simulation plane and is not considered here. We assume an isotropic particle distribution here based

on earlier results of kinetic simulations (Li et al. 2018), where we showed that the anisotropy is weak

for high-energy electrons and becomes even weaker as the simulation evolves. This indicates that
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plasma waves (or turbulence in 3D) can scatter particles to isotropize the particle distribution. The

diffusion coefficient tensor is given by

κij = κ⊥δij −
(κ⊥ − κ‖)BiBj

B2
, (4)

where κ‖ and κ⊥ are the parallel and perpendicular diffusion coefficients. κ‖ can be calculated from

the quasilinear theory (Jokipii 1971). Assuming that magnetic turbulence is well-developed and has

an isotropic power spectrum P ∼ k−5/3, the resulting κ‖ ∼ p4/3 when the particle gyroradius is much

smaller than the correlation length of turbulence. In particular, we use the following expression for

κ‖ (Giacalone & Jokipii 1999),

κ‖(v) =
3v3

20LcΩ2
0σ

2
csc

(
3π

5

)[
1 +

72

7

(
Ω0Lc
v

)5/3
]
, (5)

where v is the particle speed, Lc is the turbulence correlation length, Ω0 is the particle gyrofrequency,

σ2 = 〈δB2〉 /B2
0 is the normalized wave variance of turbulence. The normalization of the diffusion

coefficient is then κ0 = L0vA = 5× 1016 cm2 s−1, and the normalization of time is t0 = L0/vA = 5 s.

We assume that the correlation length Lc is equal to simulation box size/30 ≈ 333 km, which is the

largest eddy size in a reconnection-driven turbulence as shown by 3D MHD simulations of magnetic

reconnection (Huang & Bhattacharjee 2016). We assume the average magnetic field B0 = 50 G

and σ2 = 1. Then, κ‖ = 1.5 × 1014 cm2 s−1 for 10 keV protons and 4.0 × 1014 cm2 s−1 for 1 keV

electrons, corresponding to 0.003κ0 and 0.008κ0 using simulation units. Test-particle simulations have

suggested that κ⊥/κ‖ is about 0.02-0.04 and is nearly independent of particle energy (Giacalone &

Jokipii 1999). There are also observational evidence suggesting κ⊥/κ‖ can be quite large (e.g., Zhang

et al. 2003; Dwyer et al. 1997). Here we examine the effect of κ⊥/κ‖ by adopting three different

perpendicular diffusion κ⊥/κ‖ = 0.01, 0.05 and 1.0.

The Parker transport equation can be solved by integrating the stochastic differential equation cor-

responding to the Fokker-Planck form of the transport equation (Zhang 1999; Florinski & Pogorelov

2009; Pei et al. 2010; Kong et al. 2017). Neglecting the source term Q in Equation (3) and assuming
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F = fp2,

∂F

∂t
= −∇ · [(∇ · κ+ v)F ] +

∂

∂p

[p
3
∇ · vF

]
+∇ · (∇ · (κF )), (6)

which is equivalent to a system of stochastic differential equations (SDEs) of Ito type

dX = (∇ · κ+ v)ds+
∑
σ

ασdWσ(s), dp = −p
3

(∇ · v)ds, (7)

where
∑

σ α
µ
σα

ν
σ = 2κµν , dW is the normalized distributed random number with mean 0 and variance

√
∆t, and ∆t is the time step for stochastic integration. This corresponds to a Wiener process.

Numerical approximation is often-used for the Wiener process to replace the normal distribution.

We use a uniform distribution in [−
√

3,
√

3] in the code. For a two-dimensional problem,

α1 =


√

2κ⊥

0

 , α2 =

 0

√
2κ⊥

 , α3 =
√

2(κ‖ − κ⊥)

Bx/B

By/B

 , (8)

The parameters used at particle locations are calculated from vx, vy, Bx, By, ∇ · v, ∂Bx/∂x,

∂Bx/∂y, ∂By/∂x, ∂By/∂y, which are all obtained from the MHD simulations. We interpolate these

parameters to the particle positions and then calculate other required parameters:

∂κxx
∂x

=
∂κ⊥
∂x
− ∂(κ⊥ − κ‖)

∂x

B2
x

B2
− 2(κ⊥ − κ‖)

∂Bx

∂x
BxB − ∂B

∂x
B2
x

B3
,

∂κyy
∂y

=
∂κ⊥
∂y
− ∂(κ⊥ − κ‖)

∂y

B2
y

B2
− 2(κ⊥ − κ‖)

∂By

∂y
ByB − ∂B

∂y
B2
y

B3
,

∂κxy
∂x

= −∂(κ⊥ − κ‖)
∂x

BxBy

B2
− (κ⊥ − κ‖)

(
∂Bx

∂x
By +Bx

∂By

∂x

)
B − 2BxBy

∂B
∂x

B3
,

∂κxy
∂y

= −∂(κ⊥ − κ‖)
∂y

BxBy

B2
− (κ⊥ − κ‖)

(
∂Bx

∂y
By +Bx

∂By

∂y

)
B − 2BxBy

∂B
∂y

B3
,

∂B

∂x
=

1

B

(
Bx

∂Bx

∂x
+By

∂By

∂x

)
,

∂B

∂y
=

1

B

(
Bx

∂Bx

∂y
+By

∂By

∂y

)
.

κ‖ and κ⊥ can be functions of Bx, By and B, so ∂κ‖/∂x, ∂κ‖/∂y, ∂κ⊥/∂x, and ∂κ⊥/∂y still depend on

the derivatives ∂Bx/∂x, ∂Bx/∂y, ∂By/∂x, ∂By/∂y. The detailed expressions depend on the diffusion

model to choose.
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In this work, we use a derivative-free Milstein method (Burrage et al. 2004) to solve the stochastic

differential equation. It is different from the usual method due to one more term, which makes it

become a higher-order method.

dXt

dt
= f(Xt, t)dt+ g(Xt, t)dWt, (9)

Xn+1 = Xn + fnh+ gn∆Wn +
1

2
√
h

[g(X̄n)− gn][(∆Wn)2 − h], (10)

X̄n = Xn + fnh+ gn
√
h, (11)

∆Wn = [Wt+h −Wt] ∼
√
hN(0, 1), (12)

where X corresponds to spatial positions x, y and particle momentum p in our simulation. f(Xt, t)

is the deterministic term; g(Xt, t) is the probabilistic term; h is the time step; N(0, 1) indicates

a normal distribution, which substituted with uniform distribution [−
√

3,
√

3] in our simulations

to speed up the computation. For a 1D problem, the particle moves a distance satisfying l2x =

max
(
〈∆x〉2 , 〈∆x2〉

)
(Strauss & Effenberger 2017), where

〈∆x〉 =

(
vx +

dκ(x)

dx

)
∆t,

〈
∆x2

〉
= 2κ(x)∆t, (13)

and lx should be much smaller than the spatial variation scale of the fields. In this work, we assume

〈∆x〉2 < 〈∆x2〉 and choose ∆t so that lx � δx, where δx is the grid size. For our 2D problems, we

choose the following criteria to determine the time step.

∆tx = min

[
δx

80|vx + ∂xκxx + ∂yκxy|
,

(√
2κ⊥ +

√
2(κ‖ − κ⊥)|Bx/B|

)2
|vx + ∂xκxx + ∂yκxy|2

]
, (14)

∆ty = min

[
δy

80|vy + ∂yκyy + ∂xκxy|
,

(√
2κ⊥ +

√
2(κ‖ − κ⊥)|By/B|

)2
|vy + ∂yκyy + ∂xκxy|2

]
, (15)

∆t = min(∆tx,∆ty). (16)

3. RESULTS

3.1. Compression in a Reconnection Layer

As reconnection evolves, the current sheet becomes thinner and eventually unstable to the plasmoid

instability (Loureiro et al. 2007; Bhattacharjee et al. 2009; Comisso et al. 2016). Figure 1 shows the
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time evolution of the out-of-plane current density jz and plasma density ρ. At t = 2.5τA, where

τA is the Alfvén crossing time Ly/vA, the current sheet just starts to break into magnetic islands

(Figure 1 (a) and (d)). These magnetic islands tend to contract due to magnetic tension force and

merge with each other to form larger islands (t = 7.5τA and 10τA). Figure 1 (b) and (c) show that

new islands are continuously generated in the unstable current sheet. During these processes, the

maximum plasma density increases from 1.0 to 3.0 or higher (Figure 1 (e) and (f)). The regions with

enhanced density are concentrated in magnetic islands, reconnection exhausts, and inflow regions

around the top and bottom sides of the magnetic islands. Due to the mass conservation in the

simulation domain, density decreases in the inflow regions close to the reconnection layer and some

regions in the islands. Particles can be accelerated or decelerated when crossing these regions. We

expect that the net effect will be acceleration because on average, the density increases as particles

move from the inflow to the outflow regions.

The enhanced plasma density suggests that the plasma in reconnection layer is compressed. To

further examine the plasma compressibility, Figure 2 shows the time evolution of the density distri-

butions f(ρ) for different runs. Plasma density evolves to have a broad distribution from a nearly

uniform value ρ0 initially. The distributions constantly change as the simulation evolves, suggesting

that the reconnection layer is very dynamic. Take the run with Bg = 0 for example, ρ/ρ0 reaches

about 6 and then decreases to about 4, suggesting that the compressed plasma in the reconnection

layer can expand at late stage. Due to the mass conservation, Figure 2 shows significant distribution

with ρ/ρ0 < 1. The guide field plays an important role in controlling the plasma compressibility. As

Bg increases, the maximum density decreases from about 6 when Bg = 0.0 to 2.7 when Bg = 1.0.

This result is consistent with previous MHD simulations (Birn et al. 2012; Provornikova et al. 2016).

Note that f(ρ) for Bg = 0.2 is close to the case with Bg = 0, indicating that a weak guide field is not

dynamically important here. This is because the magnetic pressure from the guide field component

is only 0.04 times that of the reconnecting component. The broad f(ρ) and the nonuniform spatial

distribution of ρ indicate that not all particles can “see” the entire density transition and that par-
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(a) (b) (c)

(d) (e) (f)

Figure 1. The out-of-plane current density jz and plasma density ρ at t = 2.5τA, 7.5τA, and 10τA for half

of the simulation box (x = 1.0−2.0), where τA is the Alfvén crossing time Ly/vA. The initial plasma density

≈ 1.0.

ticle energy spectrum might not be a simple function of the compression ratio as that predicted by

diffusion-advection analysis in a planar current sheet (Drury 2012).

3.2. Particle Acceleration due to Compression: Constant Diffusion Coefficients

The onset time for fast reconnection varies with the guide field. Since we are mostly interested

in the phase when the plasmoid instability is developed, we start solving the acceleration of ener-

getic particles by injecting pseudo particles in the simulation when strong reconnection electric field

emerges. Figure 3 shows the time evolution of the maximum value of reconnection electric field |ηjz|,
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Figure 2. Time evolution of the density distributions for runs with different guide field. The plasma

density is normalized by their initial values in each simulation. Time t is normalized by the Alfvén crossing

time τA = Ly/vA.

where η is the resistivity. |ηjz|max starts growing at different time as the guide field varies. For runs

with Bg = 0 and 0.2, the rise time is almost the same. For runs with higher Bg, it takes longer for

|ηjz|max to grow. Based on this result, we inject particles at 2τA when Bg = 0 or 0.2, at 2.5τA when

Bg = 0.5, and at 5τA when Bg = 1.0. For all the simulation cases, we continue to run the simulation

for 10τA and solve the transport equation.

We now discuss the results of energetic particle acceleration. Figure 4 shows the final particle energy

spectra when using constant diffusion coefficients. We show two sets of simulations, one for protons

with an initial energy 10 keV and κ‖ = κ⊥ = 0.003κ0 (Figure 4 (a)) and the other for electrons
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Figure 3. Time evolution of the maximum of |ηjz| for different runs, where η is the resistivity and jz is

the out-of-plane current density.

with an initial energy 1 keV and κ‖ = κ⊥ = 0.008κ0 (Figure 4 (b)). The eventual particle energy

spectra resemble power-law distributions. When the guide field is weak, the power-law distributions

extend several orders of magnitude in energy. As the guide field gets stronger, the power-law spectra

become steeper and shorter, indicating particle acceleration is more efficient in the reconnection with

a weaker guide field. The spectra are close to each other for cases with Bg = 0 and Bg = 0.2. This

is because the compressibility of the two cases are close to each other (Figure 2). When Bg increases

to 1.0, particle spectrum becomes very steep with f(ε) ∼ ε−8.45 for protons and f(ε) ∼ ε−12.1 for

electrons, and the maximum energy is less than 10 times of the initial particle energy. These results

show that the guide-field strength is critical for particle acceleration during magnetic reconnection.

When the guide field is weak, the plasma is strongly compressed in the reconnection layer, leading

to an energy spectrum harder than that of the strong guide field case. This trend for the relation

between the spectral index and the compressed plasma density is in agreement with Drury (2012),

except that the spectral index also has a weak dependence on the diffusion coefficient.

To examine the nature of particle acceleration in a reconnection layer, we then study how the particle

acceleration rate depends on the flow speed, which is about the Alfvén speed vA in a reconnection

layer. We add another three simulations with fixed κ‖ = κ⊥ = 1.5 × 1014cm2/s and L0 = 5000 km

but different vA from 300 km/s to 104 km/s for the MHD run with Bg = 0. The normalized κ‖ and
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Figure 4. Particle energy distributions for cases with constant diffusion coefficients. p is particle mo-

mentum. ε indicates particle energy and is normalized by the initial particle energy ε0. The dashed lines

indicate power-law fittings. For (a), we assume that the particles are protons with an initial energy 10 keV

and κ‖ = κ⊥ = 0.003κ0. For (b), we assume that the particles are electrons with an initial energy 1 keV and

κ‖ = κ⊥ = 0.008κ0.

κ⊥ then change from 0.01κ0 to 3 × 10−4κ0. For each pseudo-particle, we calculate the acceleration

rate dp/dt = ∆p/∆t for each short time interval ∆t = 0.0005τA. Then, we statistically calculate

the acceleration rate for all particles in the system. Figure 5 (a) shows the distributions of
〈
dp/dt̃

〉
,

averaged from t = 2τA to t = 12τA, where we have normalized the simulation time t with L0/vA0,

and vA0 is 300 km/s in our normalization. The measured acceleration rate is close to zero near the

injected momentum since most of injected pseudo-particles are outside of the reconnection layer in

the beginning. At higher energies, the acceleration rate becomes a power-law like distribution as

a function of momentum
〈
dp/dt̃

〉
= C(p/p0)

α. The acceleration rate index α is 1.06 – 1.10, which

is expected as particles gain energy through the compression term −p∇ · v/3 in Parker transport

equation. Figure 5 (a) also shows that the acceleration rate increases when the Alfvén speed gets

larger. To further study the scaling of the acceleration rate with respect to vA, we fit C as a

function of vA in Figure 5 (b). We find the acceleration rate normalization C ∝ (vA/vA0)
1.36, where

vA0 is 300 km/s in our normalization, suggesting that the acceleration mechanism is a mixture

of first-order Fermi mechanism (∝ V/c) (e.g. Blandford & Eichler 1987) and second-order Fermi
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mechanism (∝ (V/c)2) (Fermi 1949), where V is the fluid speed (∼ vA in reconnection) and is

typically much smaller than the light speed c. This is because particles can gain energy in compression

region and loss energy in expansion region in the reconnection layer. If the compression region

and expansion region are uniformly distributed in the reconnection layer, particles will experience

a second-order Fermi acceleration similar as the original idea of Fermi (Fermi 1949). Instead, on

average, particles experience a net compression as they move into the reconnection layer, where

plasma is strongly compressed as shown in Figure 1. Since the reconnection layer is dynamically

evolving, the acceleration rate is time-dependent as well. Figure 5 (c) and (d) show time evolution

of the acceleration rate index α and the acceleration rate normalization C. The α index fluctuates

throughout the simulation. For the three cases with stronger acceleration, the power-law index

fluctuates around 1.1. For the case with vA = 300 km/s, the index is larger, which is likely due

to statistical errors as only a small number of particles are accelerated to high energy. Figure 5

(d) shows the acceleration rate generally decreases as the simulation evolves, which is likely because

reconnection becomes saturated in the late stage.

3.3. Particle Acceleration due to Compression: Energy Dependent Diffusion Coefficients

The constant and isotropic diffusion coefficient is a simplified assumption. In reality, κ usually

depends on particle momentum. According to the quasi-linear theory (Equation 5), κ‖ ∼ p4/3 for

nonrelativistic particles propagating in magnetic turbulence with a Kolmogorov power spectrum.

The diffusion coefficient in directions parallel and perpendicular to the magnetic field can be quite

different and previous test-particle calculations give a perpendicular diffusion coefficient about a few

percent of the parallel diffusion. Figure 6 shows the final energy spectra when we use energy dependent

κ‖ = κ1(p/p0)
4/3 (κ1 = 0.008κ0 for electrons and 0.003κ0 for protons) with 3 different κ⊥/κ‖: κ⊥ = κ‖,

κ⊥ = 0.05κ‖, and κ⊥ = 0.01κ‖. The figure shows several trends. First, particles still develop power-

law energy spectra, but power-law energy range is shorter and the spectra roll over at certain energies

depending on the diffusion model. The maximum particle energies are lower compared with the case

with constant κ because high-energy particles can escape from the acceleration regions much easier

due to their larger diffusion coefficients. Second, as the ratio κ⊥/κ‖ decreases, the spectra become
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Figure 5. Diagnostics on particle acceleration rate for simulations with constant κ. We wary the value

of κ by changing the Alfvén speed vA and keeping the length scale L0 constant. Here, we use the MHD

run with Bg = 0. (a)
〈
dp/dt̃

〉
as a function of particle momentum. Note that we have normalized the

simulation time t in all runs with L0/vA0, which is 300 km/s in our normalization, so t̃ = tvA0/L0. We

accumulate dp/dt and particle number np in each momentum bin every 0.0005τA from 2τA to 12τA and

calculate
〈
dp/dt̃

〉
= (
∑
dp/dt)vA/(npvA0). The solid lines are simulation data and the dashed lines are the

power-law fittings Cpα, where C is the acceleration rate normalization and α is the acceleration rate index.

Note that the power-law fitting is shifted for better visualization. (b) The scaling of C and hence
〈
dp/dt̃

〉
with respect to the vA. The four dots correspond to the four runs in (a). The black solid line is the power-law

fitting. We normalize vA by vA0. (c) Time evolution of the accelerate rate index starting at t = 5τA, when

particles can be accelerated to fairly high energies. The black dashed line indicates an acceleration rate index

1.1. (d) Time evolution of the acceleration rate normalization C.
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harder and the maximum energy is higher. The spectra change dramatically for cases with Bg = 1.0.

The power-law index s changes from s ∼ 8.5 to s ∼ 4 for protons and from s ∼ 12 to s ∼ 4.5.

This is because when cross-field diffusion gets smaller, particles could stay in the acceleration regions

for a longer time. Third, the maximum energies get close for cases with weak or moderate guide

field (Bg ≤ 0.5) even though the power-law part is steeper for cases with higher guide field. Finally,

in all the cases, protons can be accelerated to hundreds of keV and electrons can be accelerated to

tens of keV. For the case with κ⊥ = 0.01κ‖, protons are accelerated to a few MeV and electrons are

accelerated to 100 keV, which are consistent with solar flare observations.

The accelerated particles are not uniformly distributed in simulations. Figure 7 shows the spatial

distributions of high-energy electrons (9 − 36 keV) for the simulation using the MHD run with

Bg = 0, κ‖ = 0.008κ0, and κ⊥ = 0.01κ‖. At an earlier time (t = 7.5τA), high-energy electrons

are mostly in the island at y ∼ 1.4, the top side of the large island at y ∼ 0.5, and the island

merging region at y ∼ 1.65, suggesting that these regions are efficient at accelerating particles. As

the simulation evolves, high-energy particles are advected with reconnection outflow and also diffuse

to broader regions. Close to the end of the simulation (t = 10τA), high-energy particles become

more uniform but their distribution still peaks at the two ends of the large magnetic island and in

the reconnection exhausts. This geometry is similar to the above-the-loop-top hard X-ray sources

observed in solar flares (Krucker et al. 2010; Oka et al. 2015). The confinement of high-energy

electrons could potentially explain hard X-ray emission observed by RHESSI.

3.4. Trajectories of Pseudo-Particles

To further illustrate how particles are accelerated, Figure 8 shows a representative pseudo-particle

trajectory in the case with a constant κ = 0.003κ0 and without a guide field. We mark three red

dots to indicate the three major acceleration phases, including reconnection exhaust, contracting

islands, and island-merging regions. Initially, the particle slowly gets advected into the reconnection

layer. It gains energy in a short period of time (7τA < t < 8τA) when the particle diffuses across

the reconnection current sheet, where the background plasma is highly compressed. This indicates

the particle acceleration in reconnection exhaust is dominated by a first-order Fermi process. The
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Figure 6. Particle energy distributions when κ ∝ p4/3 for cases with different κ⊥/κ‖. For (a)–(c), we

assume that the particles are protons with an initial energy 10 keV and an initial κ‖ = 0.003κ0. For (d)–(f),

we assume that the particles are electrons with an initial energy 1 keV and an initial κ‖ = 0.008κ0.

particle is then trapped in a magnetic island and gains more energy but the rate of energy increase

becomes lower. This is because particles can lose energy when they cross expanding regions of the

magnetic island (Figure 1). In the late phase, the small island merges with the large island and

the particle gets accelerated and decelerated multiple times but still gains more energy on average.

These results indicate that particle acceleration in contracting islands and island-merging regions is
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Figure 7. Spatial distributions of high-energetic particles for the MHD run without a guide field at

t = 7.5τA, 8.8τA and 10.0τA. Here, we assume that the particles are electrons with an initial energy ε0 =1

keV, κ‖ = 0.008κ0, and κ⊥/κ‖ = 0.01. We choose particles with energy 9.0 ≤ ε/ε0 < 36.0.

a mixture of first-order and second-order Fermi processes but is dominated by the first-order process.

This is due to the multiple compression and expansion layers in these regions and also the oscillations

caused by merging magnetic islands. Note that the contracting island is a favorable region for the

first-order Fermi acceleration but the pseudo particle trajectory shows that the contracting island

(Figure 8 (b) and the middle red dot in (d) and (e)) is the not the dominant mechanism. Some other

trajectories do show that the contracting island can be the dominant acceleration process (not shown

here).

4. DISCUSSION AND CONCLUSION

In this work, we have studied particle acceleration in a large-scale reconnection site through solv-

ing the Parker energetic particle transport equation using velocity and magnetic fields from high-

Lundquist number MHD simulations of magnetic reconnection. We found that compression in the

reconnection layer leads to significant particle acceleration and the formation of power-law energy

distributions for both electrons and ions. As the guide field becomes stronger, the power-law distri-

bution gets steeper, and the energy rollover of the power-law distribution and the maximum particle

energy decrease. The power-law index for electrons is about 2.4− 13.1, depending on the guide field
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(a) (b) (c) (d) (e)

Figure 8. Pseudo particle trajectory in the case with a constant κ = 0.003κ0 and in the MHD simulation

without a guide field. (a)–(c) show the trajectory with plasma density ρ as background at three different

time frames. The initial plasma density ≈ 1.0. The red dots indicate the particle positions at each time

frame. (d) particle momentum versus x position. (e) particle momentum versus time. The three red dots

indicate the three time frames shown in (a)–(c). The initial particle momentum is 0.1. Since we use periodic

boundary conditions, We have shifted the background and particle trajectory when the particle crossed the

boundary at y = 2.0 for better visualization.

strength, which is close to the range found in solar flare observations (Effenberger et al. 2017; Oka

et al. 2018) and the observations of electron SEP events (Krucker et al. 2007, 2009). The strong

dependence of particle acceleration on the guide field may be tested in observations (e.g., Qiu et al.

(2010)). When the perpendicular spatial diffusion is much smaller than the parallel diffusion, we

found the maximum electron energy reaches ∼ 100 keV and the maximum proton energy reaches a

few MeV. Detailed analysis shows that the acceleration rate ∝ v1.36A , indicating a mixture of first-

order Fermi and second-order Fermi processes. Pseudo particle trajectories show that the particle

acceleration in reconnection exhaust is dominated by first-order Fermi processes and that the ac-

celeration in contracting and merging magnetic islands is a mixture of first-order and second-order

Fermi processes but is still dominated by the first-order Fermi processes.
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Our simulations also generate 2D spatial distributions of energetic particles. We found the energetic

particles are concentrated in reconnection exhausts and magnetic islands. If combined with a radia-

tion model, the 2D distributions could be used to make predicted radiation map that is comparable

with hard X-ray observation by RHESSI and FOXSI and microwave imaging by radio observatories

such as Very Large Array (VLA) and Expanded Owens Valley Solar Array (EOVSA) (Gary et al.

2018).

Our results are consistent with Drury (2012), which shows that the spectral index depends on

compressibility of the reconnection layer. But we found that the spectral index is not just a simple

expression of the compression ratio between the outflow and inflow regions. This is likely due to the

complex structures (e.g. magnetic islands) and multiple compression and expansion regions formed

in the reconnection layer. We found in our simulations that the particle energy spectra depend on

the diffusion model, especially the ratio of perpendicular diffusion coefficient and parallel diffusion

coefficient. Particle diffusion processes depend on the properties of turbulence in the reconnection

region such as turbulence spectrum, the turbulence amplitude, the correlation length, and the tur-

bulence anisotropy, which are still under active research (Huang & Bhattacharjee 2016; Beresnyak

2017; Kowal et al. 2017; Loureiro & Boldyrev 2017a,b; Mallet et al. 2017; Boldyrev & Loureiro 2017;

Comisso et al. 2018; Walker et al. 2018; Dong et al. 2018). We expect a better understanding of these

turbulence properties and hence the particle diffusion processes in a reconnection layer in the near

future.

Our results are also consistent with in-situ observations in Earth’s magnetotail. Specifically, using

the spacecraft measurements, Fu et al. (2013b) found that the reconnection layer is compressible

and plasmoids are easily formed in this compressible layer; Fu et al. (2013a) pointed out that the

compressibility of the reconnection layer can affect the contraction of magnetic islands and hence the

electron acceleration efficiency.

While fluid compression is the only acceleration mechanism considered in this study, incompressible

effects (e.g. fluid shear) could also accelerate particles (Drake et al. 2006; Zank et al. 2014; le

Roux et al. 2015; Li et al. 2018), potentially leading to stronger particle acceleration than that in
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observations. Quantifying how other mechanisms change the particle spectral shape and maximum

energies may be important for future studies.

The developed numerical tools are not limited to study particle acceleration in large solar flares.

It can also be used to study particle acceleration at the reconnection sites of nano flares, which have

been proposed as a candidate for explaining the power-law energy spectrum of superhalo electrons

in solar wind at quite times (Wang et al. 2012, 2015). We defer this to a future work.

Our 2D simulations have a few limitations. First, the periodic boundary conditions allows the large

island to grows the system size, while in a solar flare, the largest island is likely to be ejected out

of the reconnection layer and cannot grow to the system size, thus the current boundary conditions

might lead to stronger particle acceleration. Second, the 2D configuration prevents the field variation

along the out-of-plane direction, which might affect compression energization that depends on the

divergence of fluid velocity. Third, we use a plasma β = 0.1 instead of a lower plasma beta which may

be present for solar flares, due to technical difficulties when doing high-Lundquist-number simulations.

Lower plasma β might lead to stronger compression and hence stronger particle acceleration.

To conclude, we find that fluid compression in a reconnection layer leads to significant particle

acceleration and the formation of power-law energy distributions for both electrons and ions. The

compressibility of the reconnection region, which depends on the guide field, determines the spectral

index and cutoff energy of the power-law distribution, and the maximum particle energy. The diffu-

sion coefficient and its anisotropy also influence the key features of the nonthermal particle spectra.

Our analysis shows that the acceleration in the reconnection layer is a mixture of first-order Fermi

and second-order Fermi processes. Our model includes the acceleration mechanism derived from fully

kinetic PIC simulations (Li et al. 2018), and also applies to a macroscopic reconnection layer like in

a solar flare. The resulting time-dependent spatial and energy distributions of energetic particles can

provide explanations for observed energetic particle emissions in solar flares and other astrophysical

regimes.



AASTEX Compression Acceleration in Magnetic Reconnection 25

This work was supported by NASA grant NNH16AC60I. F.G. acknowledges the support in part

from the National Science Foundation under grant No. 1735414 and support from by the U.S.

Department of Energy, Office of Science, Office of Fusion Energy Science, under Award Number DE-

SC0018240. We also acknowledge the support by the DOE through the LDRD program at LANL.

Simulations were performed with LANL institutional computing.

REFERENCES

Beresnyak, A. 2017, ApJ, 834, 47

Bhattacharjee, A., Huang, Y.-M., Yang, H., &

Rogers, B. 2009, Physics of Plasmas, 16, 112102

Birn, J., Battaglia, M., Fletcher, L., Hesse, M., &

Neukirch, T. 2017, ApJ, 848, 116

Birn, J., Borovsky, J. E., & Hesse, M. 2012,

Physics of Plasmas, 19, 082109

Blandford, R., & Eichler, D. 1987, PhR, 154, 1

Boldyrev, S., & Loureiro, N. F. 2017, ApJ, 844,

125

Burrage, K., Burrage, P. M., & Tian, T. 2004,

Proceedings of the Royal Society of London

Series A, 460, 373

Comisso, L., Huang, Y.-M., Lingam, M., Hirvijoki,

E., & Bhattacharjee, A. 2018, ApJ, 854, 103

Comisso, L., Lingam, M., Huang, Y.-M., &

Bhattacharjee, A. 2016, Physics of Plasmas, 23,

100702

Dahlin, J. T., Drake, J. F., & Swisdak, M. 2014,

PhPl, 21, 092304

Daughton, W., Roytershteyn, V., Albright, B. J.,

et al. 2009, PhRvL, 103, 065004

Dong, C., Wang, L., Huang, Y.-M., Comisso, L., &

Bhattacharjee, A. 2018, ArXiv e-prints,

arXiv:1804.07361

Drake, J. F., Shay, M. A., Thongthai, W., &

Swisdak, M. 2005, Physical Review Letters, 94,

095001

Drake, J. F., Swisdak, M., Che, H., & Shay, M. A.

2006, Natur, 443, 553

Drake, J. F., Swisdak, M., & Fermo, R. 2013,

ApJL, 763, L5

Drury, L. O. 2012, MNRAS, 422, 2474

Dwyer, J. R., Mason, G. M., Mazur, J. E., et al.

1997, ApJL, 490, L115

Earl, J. A., Jokipii, J. R., & Morfill, G. 1988,

ApJL, 331, L91

Effenberger, F., Rubio da Costa, F., Oka, M.,

et al. 2017, ApJ, 835, 124

Egedal, J., Daughton, W., & Le, A. 2012, Nature

Physics, 8, 321

Egedal, J., Daughton, W., Le, A., & Borg, A. L.

2015, Physics of Plasmas, 22, 101208

Egedal, J., Le, A., & Daughton, W. 2013, Physics

of Plasmas, 20, 061201

Fermi, E. 1949, PhRv, 75, 1169



26 Li et al.

Florinski, V., & Pogorelov, N. V. 2009, ApJ, 701,

642

Fu, H. S., Khotyaintsev, Y. V., André, M., &

Vaivads, A. 2011, Geophys. Res. Lett., 38,

L16104

Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., et al.

2012, Journal of Geophysical Research (Space

Physics), 117, A12221

Fu, H. S., Khotyaintsev, Y. V., Vaivads, A.,

Retinò, A., & André, M. 2013a, Nature Physics,

9, 426

Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., et al.

2017, Geophys. Res. Lett., 44, 37

Fu, H. S., Cao, J. B., Khotyaintsev, Y. V., et al.

2013b, Geophys. Res. Lett., 40, 6023

Fu, X. R., Lu, Q. M., & Wang, S. 2006, PhPl, 13,

012309

Gary, D. E., Chen, B., Dennis, B. R., et al. 2018,

ArXiv e-prints, arXiv:1807.02498

Giacalone, J., & Jokipii, J. R. 1999, ApJ, 520, 204

Gordovskyy, M., Browning, P. K., & Vekstein,

G. E. 2010a, A&A, 519, A21

—. 2010b, ApJ, 720, 1603

Guo, F., Li, H., Daughton, W., & Liu, Y.-H. 2014,

PhRvL, 113, 155005

Guo, F., Liu, Y.-H., Daughton, W., & Li, H. 2015,

ApJ, 806, 167

Hoshino, M., Mukai, T., Terasawa, T., &

Shinohara, I. 2001, JGR, 106, 25979

Huang, Y.-M., & Bhattacharjee, A. 2010, Physics

of Plasmas, 17, 062104

—. 2016, ApJ, 818, 20

Ji, H., & Daughton, W. 2011, Physics of Plasmas,

18, 111207

Jokipii, J. R. 1971, Reviews of Geophysics and

Space Physics, 9, 27

Jones, F. C. 1990, ApJ, 361, 162

Kong, X., Guo, F., Giacalone, J., Li, H., & Chen,

Y. 2017, ApJ, 851, 38

Kowal, G., Falceta-Gonçalves, D. A., Lazarian, A.,

& Vishniac, E. T. 2017, ApJ, 838, 91

Krucker, S., Hudson, H. S., Glesener, L., et al.

2010, ApJ, 714, 1108

Krucker, S., Kontar, E. P., Christe, S., & Lin,

R. P. 2007, ApJL, 663, L109

Krucker, S., Oakley, P. H., & Lin, R. P. 2009,

ApJ, 691, 806

Le, A., Daughton, W., Ohia, O., et al. 2018,

Physics of Plasmas, 25, 062103

le Roux, J. A., & Webb, G. M. 2009, ApJ, 693, 534

le Roux, J. A., Zank, G. P., Webb, G. M., &

Khabarova, O. 2015, ApJ, 801, 112

Li, X., Guo, F., Li, H., & Birn, J. 2018, The

Astrophysical Journal, 855, 80

Li, X., Guo, F., Li, H., & Li, G. 2015, ApJL, 811,

L24

—. 2017, ApJ, 843, 21

Lin, R. P. 2011, SSRv, 159, 421

Lin, R. P., & Hudson, H. S. 1976, SoPh, 50, 153

Liu, C. M., Fu, H. S., Cao, J. B., et al. 2017a,

Geophys. Res. Lett., 44, 10

Liu, C. M., Fu, H. S., Xu, Y., Cao, J. B., & Liu,

W. L. 2017b, Geophys. Res. Lett., 44, 6492



AASTEX Compression Acceleration in Magnetic Reconnection 27

Liu, W., Li, H., Yin, L., et al. 2011, Physics of

Plasmas, 18, 052105

Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H.,

& Roytershteyn, V. 2013, PhRvL, 110, 265004

Loureiro, N. F., & Boldyrev, S. 2017a, ApJ, 850,

182

—. 2017b, Physical Review Letters, 118, 245101

Loureiro, N. F., Schekochihin, A. A., & Cowley,

S. C. 2007, Physics of Plasmas, 14, 100703

Mallet, A., Schekochihin, A. A., & Chandran,

B. D. G. 2017, Journal of Plasma Physics, 83,

905830609

Mason, G. M., Li, G., Cohen, C. M. S., et al. 2012,

ApJ, 761, 104

Montag, P., Egedal, J., Lichko, E., & Wetherton,

B. 2017, Physics of Plasmas, 24, 062906

Nalewajko, K., Uzdensky, D. A., Cerutti, B.,

Werner, G. R., & Begelman, M. C. 2015, ApJ,

815, 101

Oka, M., Ishikawa, S., Saint-Hilaire, P., Krucker,

S., & Lin, R. P. 2013, ApJ, 764, 6

Oka, M., Krucker, S., Hudson, H. S., &

Saint-Hilaire, P. 2015, ApJ, 799, 129

Oka, M., Phan, T.-D., Krucker, S., Fujimoto, M.,

& Shinohara, I. 2010, ApJ, 714, 915

Oka, M., Birn, J., Battaglia, M., et al. 2018,

ArXiv e-prints, arXiv:1805.09278

Onofri, M., Isliker, H., & Vlahos, L. 2006, PhRvL,

96, 151102

Parker, E. N. 1965, Planet. Space Sci., 13, 9

Pei, C., Bieber, J. W., Burger, R. A., & Clem, J.

2010, Journal of Geophysical Research (Space

Physics), 115, A12107

Provornikova, E., Laming, J. M., & Lukin, V. S.

2016, ApJ, 825, 55

Qiu, J., Liu, W., Hill, N., & Kazachenko, M. 2010,

ApJ, 725, 319

Roytershteyn, V., Daughton, W., Karimabadi, H.,

& Mozer, F. S. 2012, Physical Review Letters,

108, 185001

Shibata, K., & Tanuma, S. 2001, Earth, Planets,

and Space, 53, 473

Shih, A. Y., Lin, R. P., & Smith, D. M. 2009,

ApJL, 698, L152

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley,

J. F., & Simon, J. B. 2008, ApJS, 178, 137

Strauss, R. D. T., & Effenberger, F. 2017, SSRv,

212, 151

Walker, J., Boldyrev, S., & Loureiro, N. 2018,

ArXiv e-prints, arXiv:1804.02754

Wang, H., Lu, Q., Huang, C., & Wang, S. 2016,

ApJ, 821, 84

Wang, L., Lin, R. P., Salem, C., et al. 2012, ApJL,

753, L23

Wang, L., Yang, L., He, J., et al. 2015, ApJL, 803,

L2

Xu, Y., Fu, H. S., Liu, C. M., & Wang, T. Y.

2018, ApJ, 853, 11

Zank, G. P., ed. 2014, Lecture Notes in Physics,

Berlin Springer Verlag, Vol. 877, Transport

Processes in Space Physics and Astrophysics

(Springer), doi:10.1007/978-1-4614-8480-6



28 Li et al.

Zank, G. P., le Roux, J. A., Webb, G. M., Dosch,

A., & Khabarova, O. 2014, ApJ, 797, 28

Zhang, M. 1999, ApJ, 513, 409

Zhang, M., Jokipii, J. R., & McKibben, R. B.

2003, ApJ, 595, 493

Zhou, X., Büchner, J., Bárta, M., Gan, W., & Liu,

S. 2015, ApJ, 815, 6

—. 2016, ApJ, 827, 94

Zweibel, E. G., & Yamada, M. 2009, ARA&A, 47,

291


