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Interaction Screening by Partial Correlation

Yue Selena Niu, Ning Hao and Hao Helen Zhang*

Department of Mathematics, University of Arizona

Abstract

Interaction effects between genes, known as epistasis, play a crucial role in understand-
ing the functional relationship between genes and pathways. In literature, more and more
evidence suggests that some common complex diseases may be partially due to gene-gene
interactions (Moore et al., 2010). Modern high-throughput technologies make it possible
for us to study thousands of genes altogether. However, it is both statistically and com-
putationally challenging to identify epistasis effectively in large-scale association studies.
Variable screening methods using marginal information are popular for identifying impor-
tant effects from many predictors, yet they are mostly used for main-effect-only models.
In this paper, we consider interaction screening for high dimensional quadratic regression
models. First, we show that the direct generalization of existing screening methods to
interaction selection can be incorrect or inefficient, as they tend to overlook the intrinsic
relationship between main effects and interactions. Next, we propose a new main-effect-
adjusted interaction screening procedure which selects interactions while taking into ac-
count main effects. It is a unified framework and can be employed to Pearson correlation
coefficient, and as well as nonparametric rank-based measures such as Spearman’s and
Kendall’s correlation coefficients. Efficient algorithms are developed for each correlation
measure to make the screening procedure scalable to high dimensional data. Finally, we
illustrate the performance of the new screening procedure by simulation studies and an

application to a retinopathy study.

Keywords: High dimensional data; Interaction effects; Linear regression; Rank correlation;

Partial correlation; Variable screening.



1 Introduction

Interaction terms naturally appear in classical models for experimental design and polynomial
regression. In practice, models containing interaction effects are more flexible and powerful
than main-effects-only models in capturing complex data structures, as they can improve both
prediction accuracy and model interpretability. Recently, detecting interaction effects for high
dimensional data has received much attention in the literature, partially due to its impor-
tant applications in genetics; see Cordell (2009); Van Steen (2012) for overviews. Interaction
selection is challenging for high dimensional data. To facilitate implementation, computa-
tionally less intensive procedures are generally preferable in practice. For example, two-stage
approaches are popular choices (Wu et al., 2009; Wu et al., 2010), mainly due to their fast
computation and effective dimension reduction. However, these procedures rely on hierarchical
model assumptions (Hao and Zhang, 2017), which might be violated or are sometimes hard to
justify in real applications. Moreover, Bien et al. (2015) pointed out that it is often difficult to
determine the thresholding rule or the model size at the first stage, which is crucial to the suc-
cess of two-stage procedures. Another popular strategy is to fit a joint model containing both
main and interaction effects subject to penalty constraints; see Park and Hastie (2008); Zhao
et al. (2009); Choi et al. (2010); Bien et al. (2013), among others. However, these methods are

typically computational expensive or infeasible to analyze high dimensional data.

In this paper, we consider the problem of interaction screening via marginal statistics.
When the number of features is large, one common strategy to screen out noise features is
to rank features based on their marginal statistics, such as the marginal Pearson correlation
coefficient between each feature and the response variable. Marginal approaches to main effects
screening have gained much attention since the seminal paper Fan and Lv (2008). Other
relevant works include but are not limited to Zhu et al. (2011), Li et al. (2012), and Li et al.
(2012). However, the problem of interaction screening for high dimensional data has been
much less studied. This work aims to fill the gap. One simple and straightforward idea for
interaction screening is to treat main effects and interactions equally as separate features and
rank all the feature based on their marginal statistics. However, this naive method can be
problematic in practice, since it ignores the intrinsic relationship between main effects and
interactions. In fact, we find out that it is usually helpful to take into account parental main
effects when evaluating importance of interaction terms to the response. This in turn suggests

a new “marginal statistic” for interaction effects. Motivated by this, we propose a main-effect-



adjusted screening approach, called Interaction Screening by Partial Correlation (ISPC), for

ranking and screening interaction effects.

The proposed ISPC provides a general framework to enhance any standard correlation co-
efficient and make it suitable for assessing interaction effects. In the paper, we develop the
ISPC for three commonly used correlation measures, including Pearson correlation coefficient,
Spearman’s, and Kendall’s rank correlation coefficients. The advantage of the proposed inter-
action screening method is twofold. First, it is computationally scalable for big data sets with
many features. Although we need go over all the pairs, the marginal statistic is easy and fast
to calculate by using the proposed algorithms. Its implementation never requires to store the
whole design matrix of interaction effects. Therefore, the procedure contributes a convenient
and effective tool for high dimensional interaction screening. Second, by directly screening
interactions, the ISPC procedure does not require parental main effects to be strong in order
to detect important interactions. Compared to two-stage methods reviewed in Hao and Zhang
(2017), the ISPC approach does not rely on the hierarchical model assumption and is more
flexible. In particular, this feature makes it superior to two-stage methods when the signal

carried by main effects is weak.

The rest of this paper is organized as follows. In Section 2, we first consider the naive
approach to interaction screening and discuss its drawbacks. Then we propose a new main-
effect-adjusted interaction screening framework based on a variety of correlation measures. In
Sections 3 and 4, we investigate the proposed screening procedures using numerical studies.

Section 5 contains final remarks. Technical details are presented in the Appendix.

2 Methods

2.1 Notations

Given data {(x;,y;)}I~;, which are independent and identically distributed (IID) copies of the
pair (X,Y), where X = (Xj, ..., Xp)—r is a p-dimensional predictor vector and Y is the response,

we consider a linear model with two-way interaction terms, or quadratic model, by assuming

Y =00+ b1 X1+ 4 BpXp + i X] + 712 X1 Xo + -+ Xy F € (1)



In model (1), Bo, B = (B1,-,Bp) ", ¥ = (11,712, -, Ypp) | are unknown parameters. And
{X5 V0, {XFY_,, and {X; X} }1<j<r<p are main effects, quadratic effects, and two-way in-
teraction effects, respectively. For convenience, we call X; and X, the parents of X;X;. Let
X = (x1,--,%,) andy = (y1,--- ,yn)' be the n x p design matrix of main effects and the
response vector, respectively. Here we assume y is centered and X is standardized to mean
zero and variance one column-wisely. For any subset A C {1,--- ,p}, X 4 is the submatrix of
X with columns indexed by A. In particular, X; is the jth column vector of X. Moreover,
define X°?2 = X 0 X as n x % matrix consisting of all pairwise products of column vectors
of X. That is, X°? = (X o X1,X; 0 Xo,...,X,, 0 X,)), where, for column vectors, o means

entry-wise product. Denote by Z the matrix obtained by standardizing X°? column-wisely.

We use |a] to denote the largest integer no greater than a.

2.2 Naive Approach to Interaction Screening

In literature, a variety of screening techniques have been recently developed, and the following is
a brief review. To start with, we first consider the Pearson correlation used in sure independence
screening (SIS) of Fan and Lv (2008). Recall that y is centered and X;’s are standardized
by our convention. So the marginal sample Pearson correlation @(K X) is proportional
to w; = XjTy. Denote w = X'y. The SIS procedure screens variables by ranking and

thresholding w. That is, a submodel
My ={J: |wj| > A}

is selected by SIS. The parameter A can be chosen by the order statistic |w|x) for a fixed
model size K, (e.g., K = |[n/logn]) or by other data-adaptive tuning criteria.

Similar to screening main effects, the goal of interaction screening is to screen out unim-
portant interaction terms in (1) while keeping important ones. A naive extension of the SIS
to interaction screening would be to screen interactions based on © = (Z)"y. Note that £
is a p(p + 1)/2 dimensional vector with entries Q;, = Z}—ky, 1 <j <k <p, where Zj;, is a
standardized vector from X; o Xj. A direct interaction screening (DIS) procedure selects a
model

I = {(j. k)« [Qx] > A}.



Although the naive approach seems natural and intuitive, it has some drawbacks. In
particular, this DIS approach totally ignores the intrinsic relationships between main effects
and interaction effects. In other words, when the effect of X; X, is evaluated, the effects of its
parents X; and X}, are not taken into account. As a result, the DIS tends to give suboptimal
screening results. For example, when the data are skewed and Corr(X;, X;Xy) # 0, the DIS

is barely effective for interaction screening. To elaborate, consider the following toy example.

A Motivating Example. Consider the model Y = X7 + X5 + aX1X2 + €, where € is an
independent noise. Furthermore, assume X, = I/Vj2 -1, j =1,2, where (W7, I/Vg)T are jointly
normal, and marginally standard normal with correlation p # 0. A simple calculation shows

that
Corr(Y, X1 Xs) = e1Cov(Y, X1 Xo) = 1 {16p + a(20p* + 32p> + 4)}, (2)

where ¢; = [Var(Xng)Var(Y)]_% > 0. Then there are two facts: (i) Corr(Y, X1Xs) =
c116p? # 0 when a = 0; (ii) Corr(Y, X1X5) = 0 when a = _WZQPQ#X' Fact (i) suggests that
X1X9 may be labeled as “important” by the naive approach, when it is actually not predictive
to the response. Fact (ii) suggests that X;Xs may be labeled as “unimportant” when it is
truly important. In either case, the naive correlation ranking for interactions does not work

even for this simple example.

In short, the naive screening procedure DIS fails to account for intrinsic correlations between
interaction terms and their parents. This motivates us to develop an alternative method which
takes into account main effects when evaluating interaction effects and can improve accuracy

for interaction screening.

2.3 Main-effect-adjusted Interaction Screening

To improve the naive correlation ranking method, we consider the partial correlation between Y
and X; X}, conditional on X; and X}, denoted by pCorr(Y, X;X;|X;, X), or pCorr(Y, X]2|Xj)
for a quadratic term. Formally speaking, the partial correlation between two random variables
X and Y given a set of ¢ controlling variables Z = (Z1, Zs, ..., Zy), denoted by pCorr(X,Y|Z),
is the correlation between the residuals Ry and Ry resulting from the linear regression of X
with Z and of Y with Z, respectively. When ¢ = 1, it is called the first-order partial correlation.

When g = 2, it is called the second-order partial correlation.
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Figure 1: Plots of absolute correlation (AC) and absolute partial correlation (APC) with
respect to the coefficient a for the toy example. Left, p = 0.2 and 0.5; Right, p = 0.

To see advantages of the partial correlation approach, let us revisit the example in Section

2.2. It is easy to calculate the partial correlation as

a

pCorr(Y, X1X2\X1, XQ) = \/TT7
2

(3)
where ¢y is a positive constant. (We refer to the appendix for the calculation of equations (2)
and (3).) In particular, pCorr(Y, X7 X5| X1, X2) = 0 when a = 0 and ‘pCorr(Y, X1 X9| X1, Xg)} —
1 as |a| — oo. This suggests that we can eliminate the influence of parental main effects using

partial correlation when conducting interaction screening.

To make a better illustration, we compare in Figure 1 the absolute correlation (AC) and
the absolute partial correlation (APC) with respect to the coefficient a in the toy example for
p=0.2,0.5 (left) and p = 0 (right), respectively. We observe that the APC score is not zero
as long as a # 0, but this does not hold for the AC score if p # 0. Moreover, the APC score is
typically larger than the AC score when «a is away from zero, as shown in the right plot when
p = 0. This means that partial correlation is more powerful than correlation for detecting

signals in interaction screening. Similar patterns also hold for quadratic effects {X ]2};‘:1

In practice, the sample partial correlation can be calculated easily. In the following, we



propose a new procedure called interaction screening by partial correlation (ISPC). Here we
conduct screening for both interaction and quadratic effects together, but one can certainly

screen them separately.

Interaction Screening by Partial Correlation (ISPC):

1. Calculate the standardized interaction effects Z. In other words, standardize the columns

of X, calculate interaction effects X o X, and standardize X o X to obtain Z.

2. Calculate the sample partial correlation P as

» pCorr(Y, X; X4/ X;, X3), 1< <k<p;
) pCorr
’ pCorr (Y, X?|X;), 1<j<

3. Determine a threshold A and obtain a model

Tn={(. k) [Pl > A}

Theoretically speaking, one main advantage of the ISPC procedure is that it conducts
interaction screening by taking into account main effects, which overcomes drawbacks of the
naive approach. Furthermore, compared to two-stage methods, the ISPC does not require
the underlying model to obey the hierarchical structure, therefore it is more flexible and can
be applied even when the model hierarchy is violated. Computationally, the ISPC is easy to
implement and the algorithm is scalable to very high dimensional data. As shown in Section
2.4, the ISPC does not require storage of the matrix Z, which makes the computation fast and

feasible.

Invariance Property of ISPC. For the DIS procedure, it is crucial to center to main
effects first before calculating the marginal correlation of interactions. The reason is that
Corr(Y, X;X;) is not invariant with respect to translations. That is, in general, Corr(Y, X; X},) #
Corr(Y, (X;+a;)(Xk+ag)) when Corr(Y, X;)-Corr(Y, Xj;) # 0. On the other hand, the partial
correlation employed by ISPC is invariant of arbitrary coding transformation X; — b;X; +a;,

bj > 0. It is another reason why ISPC is preferable.



2.4 Extension of ISPC to Nonparametric Rank Correlation

In the above, we proposed the ISPC based on the standard Pearson correlation coefficient,
which measures the strength of linear relationship between variables. In this section, we will

extend the ISPC idea to nonparametric correlation coefficients.

Besides Pearson product-moment correlation, there are two classical measures of associ-
ation between variables, Spearman’s and Kendall’s rank correlation coefficients. These two
nonparametric versions of correlation can achieve about 91% efficiency of their parametric
counterpart to test whether the correlation coefficient p = 0 when a normal assumption is sat-
isfied (Hotelling and Pabst, 1936), and they are more robust against heavy tailed distributions.
Moreover, they are invariant of monotonic transformation and therefore useful to reveal com-
plex relationship between the response and covariates. For example, Li et al. (2012) studied
Kendall’s rank correlation for screening main effects, based on the model Y = f( 5-’:1 BpXp+e)
with an arbitrary monotonic function f. Therefore, it is desirable to generalize the ISPC pro-

cedure to these nonparametric correlation coefficients.

For Spearman’s correlation, there is no direct nonparametric interpretation for partial
correlation. Since Spearman’s rank correlation is equivalent to Pearson’s correlation computed
with ranks of the data points (Wackerly et al., 2007), it is a convention to compute the sample
Spearman’s partial correlation by calculating the sample Pearson’s partial correlation of ranks.

Following this convention, we can conduct ISPC easily with Spearman’s partial correlation.

For Kendall’s correlation, Kendall (1942) defined the first-order partial rank correlation
in the nonparametric context and showed a surprising result that the well-known formula for
Pearson’s partial correlation still holds. That is, for three random variables Uy, Us, Us, the

following holds

Tio.3 = T12 — T13723 (4)
. - )
\/1_7123\/1_7223

where 7;; is the Kendall’s rank correlation between U; and Uj;, and 72.3 is the Kendall’s

partial correlation between U; and Us conditioning on Us. Therefore, this formula can be

iteratively used to calculate higher-order partial rank correlation coefficients. For example, for



four random variables Uy, ..., Uy, a second-order partial correlation can be calculated by

T12-3 — T14-3724-3 (5)

T12.34 = )
2 2
\/1 — Ti4.3 \/1 — To4.3

where 712.34 is the Kendall’s partial correlation between U; and Us conditioning on Us and Uy.

4
j:17

If I is the inverse of correlation matrix of {U;} an equivalent formula is

T12.34 = - Te (6)
VI

To summarize, all three versions of correlation coefficients considered here satisfy formulas
(4-6), which can be used to calculate sample partial correlation. We employ the ISPC by
using Spearman’s and Kendall’s partial correlation coefficients, and call the procedures as
ISPC-S and ISPC-K respectively. Also, it is straightforward to implement DIS with these rank
correlations, which are denoted as DIS-S and DIS-K.

3 Computation Algorithms for High Dimensional Data

Though it is straightforward to implement the DIS and ISPC, it is necessary to accelerate
the computation by some techniques when the number of covariates is overwhelmingly large.
When p is really large, it may not be possible to store the entire matrix Z due to limited
computer memory, which is a bottleneck of many interaction selection algorithms. For the DIS
or ISPC, we do not need to store Z or even the p(p+ 1)/2 vector of all marginal statistics, say
P, as it targets only on the top elements. Therefore, in the screening process, we only need to
identify and update the top K elements or those elements above a pre-specified threshold for
the marginal statistic. For example, when p is 10° or larger, it might not be possible to store
all p(p+ 1)/2 marginal statistics for a desktop. But our algorithms still work. Given the data
{X,y}, the following is the computational algorithm to implement DIS, when a model size K

is specified.

Computational Algorithm for DIS.

1. Let j =1 and MS be a NULL vector to store the absolute marginal correlation, and the
threshold t= 0.



2. Calculate the absolute sample correlation between X; o Xy;.1 and y, where {j : p}
denotes the set {j,7 + 1, ...,p}. If none of the absolute marginal correlation is above the

threshold t, go to step 4.

3. Combine MS with the absolute marginal correlation coefficients larger than t. Rank MS
to identify the top K elements, which are stored as the new MS. Set t as the minimal

element of MS.

4. Let j = j+ 1. Go to step 2 if j < p; otherwise, stop.

It is slightly more time-consuming to find partial correlation than correlation. To further
accelerate the computation of ISPC, we can avoid calculating all second order partial correla-
tions. To elaborate, we first introduce a lemma, which shows how to control the magnitude of
higher-order partial correlations by correlation. For a set of random variables Uy, Us, ..., Uy,
let 7j;, be the correlation (of possibly all the three types considered in this paper) between U;
and Uy, and 7;.x be the partial correlation between U; and Uy, conditional on {U,|l € K}.

Lemma 1. For a set of random variables Uy, Us, ..., Uy, if |75, = Corr(Uj,Uy)| < 6 for
all 1 < j <k < N, then all the absolute mth order partial correlation can be controlled by
%ma when (m + 1)6 < 1. That is, for j, k£ and index set K, where || = m and j,k ¢ K,

)
ITjkic] < s

We are particularly interested in the second-order partial correlation pCorr(Y, X; Xy| X, Xi)
whose absolute value is bounded by ﬁ when the absolute correlation between every pair is
bounded by §. To implement ISPC, we can first re-rank the features by their absolute marginal
correlation coefficients with the response. The following is the computational algorithm for

implementing the ISPC procedure.

Computational Algorithm for ISPC.

0. Index the features based on their absolute marginal correlation coefficients with the
response so that |60;(Y, X;) > C/O;(}/, X)| when j > k.

1. Let j =1 and MS be a NULL vector to store the marginal statistics, and the threshold
t=0.

2. If the absolute marginal correlation between X; and y is smaller than then go to

_t
T+2t°
2a; otherwise, go to 2b.

10



2a. Calculate the absolute sample correlation between X joXy;.1 and y and find the index set
of interactions whose marginal correlation is above 1:—2,6 Calculate the partial correlation

for interactions in the index set. Go to step 4 directly if the index set is empty.
2b. Calculate the partial correlation for all interactions X; o X1

3 Combine MS with the absolute marginal correlation coefficients larger than t. Rank MS to
obtain the top K elements, which are stored as the new MS. Set t as the minimal element

of MS.

4 Let j =j4 1. Go to step 2 if j < p; otherwise, stop.

Along the computation, the threshold t gets larger and the marginal correlation between
X; and y gets smaller. Once the condition in 2 holds, we can avoid calculating all the partial
correlations and save a lot of time. In many scenarios, this trick makes the computation time
of ISPC comparable to that of DIS. By using these techniques, we can implement DIS and
ISPC with R program and handle quite large data sets with a desktop. If a target threshold

instead of the model size K is given, we can set t to the threshold directly in these algorithms.

As a final remark, the whole procedure replies only on the marginal statistics, so parallel
computing can be further used to accelerate the computation for extremely large data sets,

which many other screening methods may not be able to handle.

4 Simulation Studies

We demonstrate the finite sample performance of the proposed ISPC procedures under a variety
of settings. Furthermore, they are compared with the naive DIS methods, which does not take
into account main effects during interaction screening. In all the tables, we denote Pearson
correlation screening methods by DIS and ISPC, Kendall’s correlation screening methods by
DIS-K and ISPC-K, and Spearman’s correlation screening methods by DIS-S and ISPC-S,
respectively. Three examples are designed. In each example, we implement all the methods

with 100 replicates and report the average performance on identifying important interactions.

Example 1 (Gaussian design). Generate n IID pairs {(x;,;)};_; based on the model

Y =X —2Xo+2X4+ X1 X0 — X3X4 + ¢, (7)

11



where x; ~ N(0,%), & = (o) with ojx = p*, and ¢ ~ N(0,1) is independent of all
covariates. Let n = 300, p = 0.5, and two dimension settings with p = 600,p = 2000. The
index of important interaction effects is Z* = {(1,2),(3,4)}.

Example 2 (Non-Gaussian design). Consider the same model (7). Let X = (X1, ..., X,) "
be a random vector with X; = (W7 — 1)/v/2 when 1 < j < 10 and X;’s IID from N(0, 1) when
11 < j < p, where W = (W1, ..., Wio) T ~ N(0,%) and 3 = (03,) with oj = p+ (1 — p)d(j—p)-
Let n =300, p = 0.5, and two dimension settings with p = 600, p = 2000.

Table 1: Sure screening probabilities for important interactions in Examples 1 and 2.

» =600 » = 2000
X1X2 X3X4 X1X2 X3X4 Average
DIS 96% 97% 96% 91% 95.0%
ISPC 99% 100% 100% 100% 99.8%
Example 1 DIS-K 85% 76% 75% 53% 72.3%
K = |n/logn] ISPC-K | 89% 87% 83% 70% 82.3%
DIS-S 85% 74% 72% 48% 69.8%
ISPC-S 94% 98% 92% 80% 91.0%
DIS 98% 97% 98% 92% 96.3%
ISPC 99% 100% 100% 100% 99.8%
Example 1 DIS-K 89% 78% 80% 60% 76.8%
K=2[n/logn| | ISPC-K | 92% | 92% | 88% | 74% | 86.5%
DIS-S 88% 78% 7% 53% 74%
ISPC-S 95% 98% 94% 86% 93.3%
DIS 99% 98% 99% 93% 97.3%
ISPC 100% 100% 100% 100% 100%
Example 1 DIS-K 92% 84% 83% 64% 80.8%
K =3|n/logn| | ISPCK | 94% | 94% | 91% | 7% | 89%
DIS-S 90% 80% 81% 59% 77.5%
ISPC-S 97% 99% 94% 88% 94.5%
DIS 1% 28% 57% 33% 47.3%
ISPC 88% 78% 81% 74% 80.3%
Example 2 DIS-K 63% 95% 33% 87% 69.5%
K =|n/logn| | ISPCK | 58% | 56% | 32% | 44% | 47.5%
DIS-S 46% 90% 26% 33% 61.3%
ISPC-S 58% 57% 33% 42% 47.5%
DIS 76% 37% 61% 36% 52.5%
ISPC 90% 80% 84% 80% 83.5%
Example 2 DIS-K 67% 96% 40% 90% 73.3%
K =2|n/logn] ISPC-K 63% 67% 40% 46% 54%
DIS-S 55% 94% 28% 86% 65.8%
ISPC-S 68% 68% 45% 48% 57.3%
DIS 78% 38% 66% 39% 55.3%
ISPC 93% 82% 85% 84% 86%
Example 2 DIS-K 1% 97% 42% 95% 76.3%
K =3|n/logn| | ISPC-K | 68% | 73% | 43% | 48% | 58%
DIS-S 61% 95% 33% 7% 69%
ISPC-S 73% 74% 49% 48% 61%

In both examples and all methods, we select K interactions with largest marginal statistics.
In particular, we have tried three different values of K = C'|n/logn| for C =1, 2, and 3. The

sure screening probabilities for the interaction terms (X;X2) and (X3X4) by all the procedures
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are summarized in Table 1. It is observed that, as the value of K increases, the sure screening
probabilities for important interactions for all the methods increase a little bit, but at the cost
of an increasing false positive rate. This pattern is expected since more terms are identified in
the screening process when a larger K is used. Since the gain in sure screening probabilities
is not that substantial when C' increases from 1 to 3, we recommend to use a small value, say,

C =1, in order to control the false positive rate in these examples.

In Table 1, the last column “Average” is the average of the first four columns, which is a
summary of the overall screening accuracy. Let us focus on C' = 1 from now on. In Example
1, the ISPC-type procedure show consistent improvement over the corresponding DIS-type
procedures in terms of the average sure screening probability, and the improvement is quite
substantial for Kendall’s and Spearman’s correlation coefficients. The ISPC works the best
by achieving as high as 99.8% sure screening probability in average. In Example 2, Pearson
correlation works better than the nonparametric rank correlation methods. Again, the ISPC
is the best among all by achieving in average 80.3% sure screening probability. In Example 2,
DIS is better than ISPC for rank correlation methods in identifying X3.X4. This is the only
case that DIS is better than ISPC in our entire numerical studies, which might be due to the
underlying data generating process. Overall speaking, that partial correlation based screening

methods are effective in identifying interactions.

Example 3 (A Challenging Example) Consider a complex data generation process where
the number of important interaction terms is not fixed, but instead, it varies from one data
set to another. The purpose of this example is to evaluate the performance of the proposed
procedures throughout different scenarios. The design matrix is the same as in Example 2.
Let S ={1,2,3,11,12,13}. Consider the model

Y:Zﬁij-i- Z Vi X XE + €, (8)
jeS j<keS

where all the coefficients {3;]j € S} and {vy;s|j < k € S} are independently chosen from
{=1,0,1} with equal probability. That is, there are up to 21 nontrivial interaction effects
in the data generating process. Let n = 1000, p = 600 or 2000. We fix the model size
K = |n/logn] for all methods.

Given any data set, for each screening procedure, define its true positive rate (TPR) as

the ratio of the number of selected important interactions over the total number of important
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interactions. Table 2 presents the average TPR over 100 datasets and the corresponding
standard error, for three DIS-type and three ISPC-type procedures. It is observed that each
ISPC procedure performs better than its DIS counterpart by achieving a higher TPR. In this
case, nonparametric rank partial correlation works significantly better than Pearson partial

correlations. And the ISPC-S and ISPC-K appear to be equally best among all the procedures.

Table 2: Average true positive rate (TPR) and standard errors for Example 3.

p = 600 p = 2000
TPR | SE | TPR | SE
DIS 0.51 | 0.21 | 0.36 | 0.17
ISPC 0.59 | 0.22 | 0.44 | 0.21

DIS-K 0.78 | 0.11 | 0.73 | 0.11
ISPC-K | 0.84 | 0.10 | 0.77 | 0.11

DIS-S 0.77 1 0.10 | 0.71 | 0.11
ISPC-S | 0.84 | 0.10 | 0.76 | 0.11

5 Real Data Example

It is very challenging to identify predictive interaction effects for modern high dimensional and
complex data. To illustrate our proposed methods, we analyze a rat microarray expression
data set (Scheetz et al., 2006), which has been analyzed by Huang et al. (2010); Fan et al.
(2011). For this data set, 120 12-week-old male rat offsprings were selected for tissue harvesting
and microarray analysis. The microarrays used to analyze the RNA from the eyes of these
animals contain more than 31,000 different probes. For each probe set, the intensity values
were normalized to obtain summary expression values. Following Scheetz et al. (2006) and Fan
et al. (2011), we focused on only the 18,976 probes that are expressed in the eye tissue. In
Huang et al. (2010); Fan et al. (2011), they were interested in identifying the genes that are
relevant to the gene TRIM32, which has been found to cause BardetBiedl syndrome (Chiang
et al., 2006).

In general, the underlying important interaction effects are unknown, so we analyze this
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data set in the following two ways. First, we simulate a response Y using a known model. Since
the true model and important interaction terms are known, we can compare the ISPC and the
DIS performance in terms of their interaction screening accuracy. Generate the response Y
using the real data and by a quadratic model, so that we can test the sure screening property.
To be more precise, we first standardize the data set and obtain a 120 x 18,976 matrix. Then
we randomly choose p = 400, or 2,000 probe sets from 18,976 ones for each replicate, and
generate response Y by the same quadratic model considered in Example 1. We repeat 100
times and report the sure screening probabilities for important interaction terms in Table 3.
We use K = [n/logn] =25 and K =n = 120 for all methods.

Table 3: Sure screening probabilities of interaction effects.

p = 400 p = 2000

X1 Xo | X3Xy | X1 X5 | X3Xy | Average
DIS 33% 25% 13% 16% 21.8%
ISPC 44% | 47% | 38% | 28% | 39.3%
Analysis 1 | DIS-K 39% | 40 % | 13% | 24% | 29.0%
(K =25) | ISPC-K | 41% 49% 27% 23% 35.0%
DIS-S 32% | 39% | 13% | 20% | 26.0%
ISPC-S 51% 57% 28% 31% 41.8%
DIS 40% 42% 21% 23% 31.5%
ISPC 52% 55% 49% 40% 49.0%
Analysis 2 | DIS-K 54% 55% 26% 32% 41.8%
(K =120) | ISPC-K || 64% | 69% | 38% | 39% | 52.5%
DIS-S 48% | 55% | 21% | 30% | 38.5%
ISPC-S 68% 76% 49% 46% 59.8%

Overall speaking, the ISPC-type procedures consistently give better performance than the
DIS-type procedures, for both Pearson correlation and nonparametric correlations. Though the
sure screening probabilities are not so high as in simulations, the performance is still reasonable
given that the sample size n = 120 is very small. In order to improve the coverage probability

further, we may lower the threshold or use iterative screening method etc. One limitation is
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that there are so many spurious interactions on the top, which is not surprising given the huge

number of total interactions versus the small sample size.

Second, we analyze the raw data where the truth is unknown. We report the interaction
terms selected by the screening procedures, which provide a short list for scientists to conduct
further validations. We treat gene TRIM32 as the response variable and try to identify top
interactions associated with it by all six screening procedures. The analysis is based on the
entire data set, which contains p = 18,976 genes of n = 120 samples. The total number of
gene interaction pairs is p(p + 1)/2 = 180,053,776 ~ 1.8 x 108, therefore the total dimension
is ultra-high.

In Table 4 we list top 5 pairs of gene interactions by six screening procedures. We ob-
serve that there are some variations in the top lists, which is not surprising considering an
extremely large number of interactions and high correlations among genes. Among all the
identified interactions, some pairs are selected frequently by multiple procedures, so they are
deemed more “interesting”. For example, two pairs of interactions, 1373599 _at*1374388_at
and 1370952_at*1373599_at, are both identified by four screening procedures out of six. Fur-
thermore, we notice that gene 1373599 _at is very active in working with other genes, as it
is involved with many interactions in the top lists. We point out that these findings are just
based on statistical analysis, and they need to be further validated by scientists in labs. On the
other hand, the screening procedure is helpful to narrow down the number of research targets

to a few top ranked pairs from 1.8 x 108 candidates.
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Table 4: Top interactions associated with gene TRIM32.

DIS

DIS-K

DIS-S

Top Selected

interactions

1371995_at*1387793_at
1371995 _at*1384708_at
1372369_at*1386344 _at
1377455 at*1383417_at
1371995 _at*1398873_at

1372260_at*1373599_at
1373599 _at*1374388_at
1370952 _at*1373599_at
1371578_at*1377887_at
1369583_at*1373599_at

1373599_at*1374388_at
1372260_at*1373599_at
1370952 _at*1373599_at
1369583_at*1373599_at
1371578_at*1377887_at

ISPC

ISPC-K

ISPC-S

Top Selected

interactions

1367746_at*1370303_at
1371995_at*1391643_at
1372318_at*1391628_at
1370266_at*1372318_at
1398859_at*1384620_at

1377455_at*1391190_at
1370952_at*1373599_at
1387393_at*1391932_at
1372260_at*1373599_at
1373599_at*1374388_at

1377455_at*1391190_at
1370952_at*1373599_at
1375233_at*1381886_at
1373599 _at*1374388_at
1373599_at*1388145_at

6 Discussion

Marginal screening is a powerful and computationally efficient technique for variable screening
in high dimensional data analysis. Effectiveness of a marginal screening method depends many
factors including distribution tails of the covariates and the noise, the correlation structure
among covariates, sparsity of the true model. In this paper, we discuss how to use the model
structure to enhance effectiveness of interaction screening. We find that it is helpful to utilize
the hierarchical structure when conducting interaction screening, and the screening procedure
based on partial correlation outperforms simple correlation ranking. The proposed strategy
is generally applicable to more complex models. As a conclusion, we suggest that one take
parental effects into account when calculating a marginal statistic of an interaction effect for

the screening purpose.

17



7 Acknowledgment

This research is supported in part by National Science Foundations DMS-1309507, DMS-
1418172, DMS-1722691, and NSFC-11571009. The authors thank the editors, the associate

editor, and the reviewers for their helpful comments and suggestions.

8 Appendix

8.1 Calculation of (2) and (3)

Simple calculation shows that
E(X,) =0, E(X2)=2 m=12 E(X;1X;3)=2p%

E(X%Xs) = B(X1X3) =8p?, E(X?X3) =4+ 32p% + 24p".

It follows that

COV(Yv7 X1X2) = COV(Xl, X1X2) + COV(XQ, X1X2) + aVar(Xng)
= 89" +8p” +a(4+32p° +24p" — (2p%)*)
= 16p% + a(20p* + 32p% + 4),

which leads to (2).

To calculate (3), we first write
X1Xo =01 Xy + b2 Xo + T,

where Cov(X,,,T) =0, m=1,2. So Y = (14 ab1) X1 + (1 + abz) X2 + aT + ¢, and the partial

correlation

Cov(T,aT +¢) aVar(T) B a

V/Var(T)Var(aT +€)  /Var(T)(a?Var(T) + Var(e)) w2+ VVar(%’

pCorr(Y, X1X2|X1, XQ) =
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which leads to (3). In particular,

6
Var(T) = 20p* + 320> + 4 — .
ar(T) B2 s

8.2 Proof of Lemma 1

For the first-order partial correlation,

i Tik — TjtTke
|Tjkel = - -
\/1 —Tjg\/l—Tkz
2
< d+96
R Y
B )
1=
= 0.

By the same technique, all second-order partial correlation is no more than 1251 = 1%25' And

Lemma 1 holds by induction.
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