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Interaction Screening by Partial Correlation

Yue Selena Niu, Ning Hao and Hao Helen Zhang*

Department of Mathematics, University of Arizona

Abstract

Interaction effects between genes, known as epistasis, play a crucial role in understand-

ing the functional relationship between genes and pathways. In literature, more and more

evidence suggests that some common complex diseases may be partially due to gene-gene

interactions (Moore et al., 2010). Modern high-throughput technologies make it possible

for us to study thousands of genes altogether. However, it is both statistically and com-

putationally challenging to identify epistasis effectively in large-scale association studies.

Variable screening methods using marginal information are popular for identifying impor-

tant effects from many predictors, yet they are mostly used for main-effect-only models.

In this paper, we consider interaction screening for high dimensional quadratic regression

models. First, we show that the direct generalization of existing screening methods to

interaction selection can be incorrect or inefficient, as they tend to overlook the intrinsic

relationship between main effects and interactions. Next, we propose a new main-effect-

adjusted interaction screening procedure which selects interactions while taking into ac-

count main effects. It is a unified framework and can be employed to Pearson correlation

coefficient, and as well as nonparametric rank-based measures such as Spearman’s and

Kendall’s correlation coefficients. Efficient algorithms are developed for each correlation

measure to make the screening procedure scalable to high dimensional data. Finally, we

illustrate the performance of the new screening procedure by simulation studies and an

application to a retinopathy study.

Keywords: High dimensional data; Interaction effects; Linear regression; Rank correlation;

Partial correlation; Variable screening.
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1 Introduction

Interaction terms naturally appear in classical models for experimental design and polynomial

regression. In practice, models containing interaction effects are more flexible and powerful

than main-effects-only models in capturing complex data structures, as they can improve both

prediction accuracy and model interpretability. Recently, detecting interaction effects for high

dimensional data has received much attention in the literature, partially due to its impor-

tant applications in genetics; see Cordell (2009); Van Steen (2012) for overviews. Interaction

selection is challenging for high dimensional data. To facilitate implementation, computa-

tionally less intensive procedures are generally preferable in practice. For example, two-stage

approaches are popular choices (Wu et al., 2009; Wu et al., 2010), mainly due to their fast

computation and effective dimension reduction. However, these procedures rely on hierarchical

model assumptions (Hao and Zhang, 2017), which might be violated or are sometimes hard to

justify in real applications. Moreover, Bien et al. (2015) pointed out that it is often difficult to

determine the thresholding rule or the model size at the first stage, which is crucial to the suc-

cess of two-stage procedures. Another popular strategy is to fit a joint model containing both

main and interaction effects subject to penalty constraints; see Park and Hastie (2008); Zhao

et al. (2009); Choi et al. (2010); Bien et al. (2013), among others. However, these methods are

typically computational expensive or infeasible to analyze high dimensional data.

In this paper, we consider the problem of interaction screening via marginal statistics.

When the number of features is large, one common strategy to screen out noise features is

to rank features based on their marginal statistics, such as the marginal Pearson correlation

coefficient between each feature and the response variable. Marginal approaches to main effects

screening have gained much attention since the seminal paper Fan and Lv (2008). Other

relevant works include but are not limited to Zhu et al. (2011), Li et al. (2012), and Li et al.

(2012). However, the problem of interaction screening for high dimensional data has been

much less studied. This work aims to fill the gap. One simple and straightforward idea for

interaction screening is to treat main effects and interactions equally as separate features and

rank all the feature based on their marginal statistics. However, this naive method can be

problematic in practice, since it ignores the intrinsic relationship between main effects and

interactions. In fact, we find out that it is usually helpful to take into account parental main

effects when evaluating importance of interaction terms to the response. This in turn suggests

a new “marginal statistic” for interaction effects. Motivated by this, we propose a main-effect-
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adjusted screening approach, called Interaction Screening by Partial Correlation (ISPC), for

ranking and screening interaction effects.

The proposed ISPC provides a general framework to enhance any standard correlation co-

efficient and make it suitable for assessing interaction effects. In the paper, we develop the

ISPC for three commonly used correlation measures, including Pearson correlation coefficient,

Spearman’s, and Kendall’s rank correlation coefficients. The advantage of the proposed inter-

action screening method is twofold. First, it is computationally scalable for big data sets with

many features. Although we need go over all the pairs, the marginal statistic is easy and fast

to calculate by using the proposed algorithms. Its implementation never requires to store the

whole design matrix of interaction effects. Therefore, the procedure contributes a convenient

and effective tool for high dimensional interaction screening. Second, by directly screening

interactions, the ISPC procedure does not require parental main effects to be strong in order

to detect important interactions. Compared to two-stage methods reviewed in Hao and Zhang

(2017), the ISPC approach does not rely on the hierarchical model assumption and is more

flexible. In particular, this feature makes it superior to two-stage methods when the signal

carried by main effects is weak.

The rest of this paper is organized as follows. In Section 2, we first consider the naive

approach to interaction screening and discuss its drawbacks. Then we propose a new main-

effect-adjusted interaction screening framework based on a variety of correlation measures. In

Sections 3 and 4, we investigate the proposed screening procedures using numerical studies.

Section 5 contains final remarks. Technical details are presented in the Appendix.

2 Methods

2.1 Notations

Given data {(xi, yi)}ni=1, which are independent and identically distributed (IID) copies of the

pair (X,Y ), where X = (X1, ..., Xp)
> is a p-dimensional predictor vector and Y is the response,

we consider a linear model with two-way interaction terms, or quadratic model, by assuming

Y = β0 + β1X1 + · · ·+ βpXp + γ11X
2
1 + γ12X1X2 + · · ·+ γppX

2
p + ε. (1)

3



In model (1), β0, β = (β1, ..., βp)
>, γ = (γ11, γ12, ..., γpp)

> are unknown parameters. And

{Xj}pj=1, {X2
j }
p
j=1, and {XjXk}1≤j<k≤p are main effects, quadratic effects, and two-way in-

teraction effects, respectively. For convenience, we call Xj and Xk the parents of XjXk. Let

X = (x1, · · · ,xn)> and y = (y1, · · · , yn)> be the n × p design matrix of main effects and the

response vector, respectively. Here we assume y is centered and X is standardized to mean

zero and variance one column-wisely. For any subset A ⊂ {1, · · · , p}, XA is the submatrix of

X with columns indexed by A. In particular, Xj is the jth column vector of X. Moreover,

define X◦2 = X ◦X as n× p(p+1)
2 matrix consisting of all pairwise products of column vectors

of X. That is, X◦2 = (X1 ◦ X1,X1 ◦ X2, ...,Xp ◦ Xp), where, for column vectors, ◦ means

entry-wise product. Denote by Z the matrix obtained by standardizing X◦2 column-wisely.

We use bac to denote the largest integer no greater than a.

2.2 Naive Approach to Interaction Screening

In literature, a variety of screening techniques have been recently developed, and the following is

a brief review. To start with, we first consider the Pearson correlation used in sure independence

screening (SIS) of Fan and Lv (2008). Recall that y is centered and Xj ’s are standardized

by our convention. So the marginal sample Pearson correlation Ĉorr(Y,Xj) is proportional

to ωj = X>j y. Denote ω = X>y. The SIS procedure screens variables by ranking and

thresholding ω. That is, a submodel

M̂λ = {j : |ωj | > λ}

is selected by SIS. The parameter λ can be chosen by the order statistic |ω|(K) for a fixed

model size K, (e.g., K = bn/ log nc) or by other data-adaptive tuning criteria.

Similar to screening main effects, the goal of interaction screening is to screen out unim-

portant interaction terms in (1) while keeping important ones. A naive extension of the SIS

to interaction screening would be to screen interactions based on Ω = (Z)>y. Note that Ω

is a p(p + 1)/2 dimensional vector with entries Ωjk = Z>jky, 1 ≤ j ≤ k ≤ p, where Zjk is a

standardized vector from Xj ◦ Xk. A direct interaction screening (DIS) procedure selects a

model

Îλ = {(j, k) : |Ωjk| > λ}.
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Although the naive approach seems natural and intuitive, it has some drawbacks. In

particular, this DIS approach totally ignores the intrinsic relationships between main effects

and interaction effects. In other words, when the effect of XjXk is evaluated, the effects of its

parents Xj and Xk are not taken into account. As a result, the DIS tends to give suboptimal

screening results. For example, when the data are skewed and Corr(Xj , XjXk) 6= 0, the DIS

is barely effective for interaction screening. To elaborate, consider the following toy example.

A Motivating Example. Consider the model Y = X1 + X2 + aX1X2 + ε, where ε is an

independent noise. Furthermore, assume Xj = W 2
j − 1, j = 1, 2, where (W1,W2)

> are jointly

normal, and marginally standard normal with correlation ρ 6= 0. A simple calculation shows

that

Corr(Y,X1X2) = c1Cov(Y,X1X2) = c1{16ρ2 + a(20ρ4 + 32ρ2 + 4)}, (2)

where c1 = [Var(X1X2)Var(Y )]−
1
2 > 0. Then there are two facts: (i) Corr(Y,X1X2) =

c116ρ2 6= 0 when a = 0; (ii) Corr(Y,X1X2) = 0 when a = − 16ρ2

20ρ4+32ρ2+4
. Fact (i) suggests that

X1X2 may be labeled as “important” by the naive approach, when it is actually not predictive

to the response. Fact (ii) suggests that X1X2 may be labeled as “unimportant” when it is

truly important. In either case, the naive correlation ranking for interactions does not work

even for this simple example.

In short, the naive screening procedure DIS fails to account for intrinsic correlations between

interaction terms and their parents. This motivates us to develop an alternative method which

takes into account main effects when evaluating interaction effects and can improve accuracy

for interaction screening.

2.3 Main-effect-adjusted Interaction Screening

To improve the naive correlation ranking method, we consider the partial correlation between Y

and XjXk conditional on Xj and Xk, denoted by pCorr(Y,XjXk|Xj , Xk), or pCorr(Y,X2
j |Xj)

for a quadratic term. Formally speaking, the partial correlation between two random variables

X and Y given a set of q controlling variables Z = (Z1, Z2, ..., Zq), denoted by pCorr(X,Y |Z),

is the correlation between the residuals RX and RY resulting from the linear regression of X

with Z and of Y with Z, respectively. When q = 1, it is called the first-order partial correlation.

When q = 2, it is called the second-order partial correlation.
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Figure 1: Plots of absolute correlation (AC) and absolute partial correlation (APC) with
respect to the coefficient a for the toy example. Left, ρ = 0.2 and 0.5; Right, ρ = 0.

To see advantages of the partial correlation approach, let us revisit the example in Section

2.2. It is easy to calculate the partial correlation as

pCorr(Y,X1X2|X1, X2) =
a√

a2 + c2
, (3)

where c2 is a positive constant. (We refer to the appendix for the calculation of equations (2)

and (3).) In particular, pCorr(Y,X1X2|X1, X2) = 0 when a = 0 and
∣∣pCorr(Y,X1X2|X1, X2)

∣∣ →
1 as |a| → ∞. This suggests that we can eliminate the influence of parental main effects using

partial correlation when conducting interaction screening.

To make a better illustration, we compare in Figure 1 the absolute correlation (AC) and

the absolute partial correlation (APC) with respect to the coefficient a in the toy example for

ρ = 0.2, 0.5 (left) and ρ = 0 (right), respectively. We observe that the APC score is not zero

as long as a �= 0, but this does not hold for the AC score if ρ �= 0. Moreover, the APC score is

typically larger than the AC score when a is away from zero, as shown in the right plot when

ρ = 0. This means that partial correlation is more powerful than correlation for detecting

signals in interaction screening. Similar patterns also hold for quadratic effects {X2
j }nj=1.

In practice, the sample partial correlation can be calculated easily. In the following, we
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propose a new procedure called interaction screening by partial correlation (ISPC). Here we

conduct screening for both interaction and quadratic effects together, but one can certainly

screen them separately.

Interaction Screening by Partial Correlation (ISPC):

1. Calculate the standardized interaction effects Z. In other words, standardize the columns

of X, calculate interaction effects X ◦X, and standardize X ◦X to obtain Z.

2. Calculate the sample partial correlation P as

Pjk =

{
p̂Corr(Y,XjXk|Xj , Xk), 1 ≤ j ≤ k ≤ p;
p̂Corr(Y,X2

j |Xj), 1 ≤ j ≤ p.
.

3. Determine a threshold λ and obtain a model

Îλ = {(j, k) : |Pjk| > λ}.

Theoretically speaking, one main advantage of the ISPC procedure is that it conducts

interaction screening by taking into account main effects, which overcomes drawbacks of the

naive approach. Furthermore, compared to two-stage methods, the ISPC does not require

the underlying model to obey the hierarchical structure, therefore it is more flexible and can

be applied even when the model hierarchy is violated. Computationally, the ISPC is easy to

implement and the algorithm is scalable to very high dimensional data. As shown in Section

2.4, the ISPC does not require storage of the matrix Z, which makes the computation fast and

feasible.

Invariance Property of ISPC. For the DIS procedure, it is crucial to center to main

effects first before calculating the marginal correlation of interactions. The reason is that

Corr(Y,XiXj) is not invariant with respect to translations. That is, in general, Corr(Y,XjXk) 6=
Corr(Y, (Xj+aj)(Xk+ak)) when Corr(Y,Xj) ·Corr(Y,Xk) 6= 0. On the other hand, the partial

correlation employed by ISPC is invariant of arbitrary coding transformation Xj → bjXj + aj ,

bj > 0. It is another reason why ISPC is preferable.
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2.4 Extension of ISPC to Nonparametric Rank Correlation

In the above, we proposed the ISPC based on the standard Pearson correlation coefficient,

which measures the strength of linear relationship between variables. In this section, we will

extend the ISPC idea to nonparametric correlation coefficients.

Besides Pearson product-moment correlation, there are two classical measures of associ-

ation between variables, Spearman’s and Kendall’s rank correlation coefficients. These two

nonparametric versions of correlation can achieve about 91% efficiency of their parametric

counterpart to test whether the correlation coefficient ρ = 0 when a normal assumption is sat-

isfied (Hotelling and Pabst, 1936), and they are more robust against heavy tailed distributions.

Moreover, they are invariant of monotonic transformation and therefore useful to reveal com-

plex relationship between the response and covariates. For example, Li et al. (2012) studied

Kendall’s rank correlation for screening main effects, based on the model Y = f(
∑p

j=1 βpXp+ε)

with an arbitrary monotonic function f . Therefore, it is desirable to generalize the ISPC pro-

cedure to these nonparametric correlation coefficients.

For Spearman’s correlation, there is no direct nonparametric interpretation for partial

correlation. Since Spearman’s rank correlation is equivalent to Pearson’s correlation computed

with ranks of the data points (Wackerly et al., 2007), it is a convention to compute the sample

Spearman’s partial correlation by calculating the sample Pearson’s partial correlation of ranks.

Following this convention, we can conduct ISPC easily with Spearman’s partial correlation.

For Kendall’s correlation, Kendall (1942) defined the first-order partial rank correlation

in the nonparametric context and showed a surprising result that the well-known formula for

Pearson’s partial correlation still holds. That is, for three random variables U1, U2, U3, the

following holds

τ12·3 =
τ12 − τ13τ23√

1− τ213
√

1− τ223
, (4)

where τij is the Kendall’s rank correlation between Ui and Uj , and τ12·3 is the Kendall’s

partial correlation between U1 and U2 conditioning on U3. Therefore, this formula can be

iteratively used to calculate higher-order partial rank correlation coefficients. For example, for
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four random variables U1, ..., U4, a second-order partial correlation can be calculated by

τ12·34 =
τ12·3 − τ14·3τ24·3√
1− τ214·3

√
1− τ224·3

, (5)

where τ12·34 is the Kendall’s partial correlation between U1 and U2 conditioning on U3 and U4.

If Γ is the inverse of correlation matrix of {Uj}4j=1, an equivalent formula is

τ12·34 = − Γ12√
Γ11Γ22

. (6)

To summarize, all three versions of correlation coefficients considered here satisfy formulas

(4-6), which can be used to calculate sample partial correlation. We employ the ISPC by

using Spearman’s and Kendall’s partial correlation coefficients, and call the procedures as

ISPC-S and ISPC-K respectively. Also, it is straightforward to implement DIS with these rank

correlations, which are denoted as DIS-S and DIS-K.

3 Computation Algorithms for High Dimensional Data

Though it is straightforward to implement the DIS and ISPC, it is necessary to accelerate

the computation by some techniques when the number of covariates is overwhelmingly large.

When p is really large, it may not be possible to store the entire matrix Z due to limited

computer memory, which is a bottleneck of many interaction selection algorithms. For the DIS

or ISPC, we do not need to store Z or even the p(p+ 1)/2 vector of all marginal statistics, say

P, as it targets only on the top elements. Therefore, in the screening process, we only need to

identify and update the top K elements or those elements above a pre-specified threshold for

the marginal statistic. For example, when p is 105 or larger, it might not be possible to store

all p(p+ 1)/2 marginal statistics for a desktop. But our algorithms still work. Given the data

{X,y}, the following is the computational algorithm to implement DIS, when a model size K

is specified.

Computational Algorithm for DIS.

1. Let j = 1 and MS be a NULL vector to store the absolute marginal correlation, and the

threshold t= 0.
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2. Calculate the absolute sample correlation between Xj ◦ X{j:p} and y, where {j : p}
denotes the set {j, j + 1, ..., p}. If none of the absolute marginal correlation is above the

threshold t, go to step 4.

3. Combine MS with the absolute marginal correlation coefficients larger than t. Rank MS

to identify the top K elements, which are stored as the new MS. Set t as the minimal

element of MS.

4. Let j = j + 1. Go to step 2 if j ≤ p; otherwise, stop.

It is slightly more time-consuming to find partial correlation than correlation. To further

accelerate the computation of ISPC, we can avoid calculating all second order partial correla-

tions. To elaborate, we first introduce a lemma, which shows how to control the magnitude of

higher-order partial correlations by correlation. For a set of random variables U1, U2, ..., UN ,

let τjk be the correlation (of possibly all the three types considered in this paper) between Uj

and Uk, and τjk·K be the partial correlation between Uj and Uk, conditional on {U`|` ∈ K}.

Lemma 1. For a set of random variables U1, U2, ..., UN , if |τjk = Corr(Uj , Uk)| < δ for

all 1 ≤ j ≤ k ≤ N , then all the absolute mth order partial correlation can be controlled by
δ

1−mδ when (m + 1)δ < 1. That is, for j, k and index set K, where |K| = m and j, k /∈ K,

|τjk·K| < δ
1−mδ .

We are particularly interested in the second-order partial correlation pCorr(Y,XjXk|Xj , Xk)

whose absolute value is bounded by δ
1−2δ when the absolute correlation between every pair is

bounded by δ. To implement ISPC, we can first re-rank the features by their absolute marginal

correlation coefficients with the response. The following is the computational algorithm for

implementing the ISPC procedure.

Computational Algorithm for ISPC.

0. Index the features based on their absolute marginal correlation coefficients with the

response so that |Ĉorr(Y,Xj) ≥ Ĉorr(Y,Xk)| when j > k.

1. Let j = 1 and MS be a NULL vector to store the marginal statistics, and the threshold

t= 0.

2. If the absolute marginal correlation between Xj and y is smaller than t
1+2t , then go to

2a; otherwise, go to 2b.

10



2a. Calculate the absolute sample correlation between Xj◦X{j:p} and y and find the index set

of interactions whose marginal correlation is above t
1+2t . Calculate the partial correlation

for interactions in the index set. Go to step 4 directly if the index set is empty.

2b. Calculate the partial correlation for all interactions Xj ◦X{j:p}.

3 Combine MS with the absolute marginal correlation coefficients larger than t. Rank MS to

obtain the top K elements, which are stored as the new MS. Set t as the minimal element

of MS.

4 Let j = j + 1. Go to step 2 if j ≤ p; otherwise, stop.

Along the computation, the threshold t gets larger and the marginal correlation between

Xj and y gets smaller. Once the condition in 2 holds, we can avoid calculating all the partial

correlations and save a lot of time. In many scenarios, this trick makes the computation time

of ISPC comparable to that of DIS. By using these techniques, we can implement DIS and

ISPC with R program and handle quite large data sets with a desktop. If a target threshold

instead of the model size K is given, we can set t to the threshold directly in these algorithms.

As a final remark, the whole procedure replies only on the marginal statistics, so parallel

computing can be further used to accelerate the computation for extremely large data sets,

which many other screening methods may not be able to handle.

4 Simulation Studies

We demonstrate the finite sample performance of the proposed ISPC procedures under a variety

of settings. Furthermore, they are compared with the naive DIS methods, which does not take

into account main effects during interaction screening. In all the tables, we denote Pearson

correlation screening methods by DIS and ISPC, Kendall’s correlation screening methods by

DIS-K and ISPC-K, and Spearman’s correlation screening methods by DIS-S and ISPC-S,

respectively. Three examples are designed. In each example, we implement all the methods

with 100 replicates and report the average performance on identifying important interactions.

Example 1 (Gaussian design). Generate n IID pairs {(xi, yi)}ni=1 based on the model

Y = X1 − 2X2 + 2X4 +X1X2 −X3X4 + ε, (7)
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where xi ∼ N (0,Σ), Σ = (σjk) with σjk = ρ|j−k|, and ε ∼ N (0, 1) is independent of all

covariates. Let n = 300, ρ = 0.5, and two dimension settings with p = 600, p = 2000. The

index of important interaction effects is I∗ = {(1, 2), (3, 4)}.

Example 2 (Non-Gaussian design). Consider the same model (7). Let X = (X1, ..., Xp)
>

be a random vector with Xj = (W 2
j −1)/

√
2 when 1 ≤ j ≤ 10 and Xj ’s IID from N (0, 1) when

11 ≤ j ≤ p, where W = (W1, ...,W10)
> ∼ N (0,Σ) and Σ = (σjk) with σjk = ρ+ (1− ρ)δ(j=k).

Let n = 300, ρ = 0.5, and two dimension settings with p = 600, p = 2000.

Table 1: Sure screening probabilities for important interactions in Examples 1 and 2.

p = 600 p = 2000
X1X2 X3X4 X1X2 X3X4 Average

DIS 96% 97% 96% 91% 95.0%
ISPC 99% 100% 100% 100% 99.8%

Example 1 DIS-K 85% 76% 75% 53% 72.3%
K = bn/ lognc ISPC-K 89% 87% 83% 70% 82.3%

DIS-S 85% 74% 72% 48% 69.8%
ISPC-S 94% 98% 92% 80% 91.0%
DIS 98% 97% 98% 92% 96.3%
ISPC 99% 100% 100% 100% 99.8%

Example 1 DIS-K 89% 78% 80% 60% 76.8%
K = 2 bn/ lognc ISPC-K 92% 92% 88% 74% 86.5%

DIS-S 88% 78% 77% 53% 74%
ISPC-S 95% 98% 94% 86% 93.3%
DIS 99% 98% 99% 93% 97.3%
ISPC 100% 100% 100% 100% 100%

Example 1 DIS-K 92% 84% 83% 64% 80.8%
K = 3 bn/ lognc ISPC-K 94% 94% 91% 77% 89%

DIS-S 90% 80% 81% 59% 77.5%
ISPC-S 97% 99% 94% 88% 94.5%

DIS 71% 28% 57% 33% 47.3%
ISPC 88% 78% 81% 74% 80.3%

Example 2 DIS-K 63% 95% 33% 87% 69.5%
K = bn/ lognc ISPC-K 58% 56% 32% 44% 47.5%

DIS-S 46% 90% 26% 83% 61.3%
ISPC-S 58% 57% 33% 42% 47.5%
DIS 76% 37% 61% 36% 52.5%
ISPC 90% 80% 84% 80% 83.5%

Example 2 DIS-K 67% 96% 40% 90% 73.3%
K = 2 bn/ lognc ISPC-K 63% 67% 40% 46% 54%

DIS-S 55% 94% 28% 86% 65.8%
ISPC-S 68% 68% 45% 48% 57.3%
DIS 78% 38% 66% 39% 55.3%
ISPC 93% 82% 85% 84% 86%

Example 2 DIS-K 71% 97% 42% 95% 76.3%
K = 3 bn/ lognc ISPC-K 68% 73% 43% 48% 58%

DIS-S 61% 95% 33% 87% 69%
ISPC-S 73% 74% 49% 48% 61%

In both examples and all methods, we select K interactions with largest marginal statistics.

In particular, we have tried three different values of K = C bn/ log nc for C =1, 2, and 3. The

sure screening probabilities for the interaction terms (X1X2) and (X3X4) by all the procedures
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are summarized in Table 1. It is observed that, as the value of K increases, the sure screening

probabilities for important interactions for all the methods increase a little bit, but at the cost

of an increasing false positive rate. This pattern is expected since more terms are identified in

the screening process when a larger K is used. Since the gain in sure screening probabilities

is not that substantial when C increases from 1 to 3, we recommend to use a small value, say,

C = 1, in order to control the false positive rate in these examples.

In Table 1, the last column “Average” is the average of the first four columns, which is a

summary of the overall screening accuracy. Let us focus on C = 1 from now on. In Example

1, the ISPC-type procedure show consistent improvement over the corresponding DIS-type

procedures in terms of the average sure screening probability, and the improvement is quite

substantial for Kendall’s and Spearman’s correlation coefficients. The ISPC works the best

by achieving as high as 99.8% sure screening probability in average. In Example 2, Pearson

correlation works better than the nonparametric rank correlation methods. Again, the ISPC

is the best among all by achieving in average 80.3% sure screening probability. In Example 2,

DIS is better than ISPC for rank correlation methods in identifying X3X4. This is the only

case that DIS is better than ISPC in our entire numerical studies, which might be due to the

underlying data generating process. Overall speaking, that partial correlation based screening

methods are effective in identifying interactions.

Example 3 (A Challenging Example) Consider a complex data generation process where

the number of important interaction terms is not fixed, but instead, it varies from one data

set to another. The purpose of this example is to evaluate the performance of the proposed

procedures throughout different scenarios. The design matrix is the same as in Example 2.

Let S = {1, 2, 3, 11, 12, 13}. Consider the model

Y =
∑
j∈S

βjXj +
∑
j≤k∈S

γjkXjXk + ε, (8)

where all the coefficients {βj |j ∈ S} and {γjk|j ≤ k ∈ S} are independently chosen from

{−1, 0, 1} with equal probability. That is, there are up to 21 nontrivial interaction effects

in the data generating process. Let n = 1000, p = 600 or 2000. We fix the model size

K = bn/ log nc for all methods.

Given any data set, for each screening procedure, define its true positive rate (TPR) as

the ratio of the number of selected important interactions over the total number of important
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interactions. Table 2 presents the average TPR over 100 datasets and the corresponding

standard error, for three DIS-type and three ISPC-type procedures. It is observed that each

ISPC procedure performs better than its DIS counterpart by achieving a higher TPR. In this

case, nonparametric rank partial correlation works significantly better than Pearson partial

correlations. And the ISPC-S and ISPC-K appear to be equally best among all the procedures.

Table 2: Average true positive rate (TPR) and standard errors for Example 3.

p = 600 p = 2000

TPR SE TPR SE

DIS 0.51 0.21 0.36 0.17

ISPC 0.59 0.22 0.44 0.21

DIS-K 0.78 0.11 0.73 0.11

ISPC-K 0.84 0.10 0.77 0.11

DIS-S 0.77 0.10 0.71 0.11

ISPC-S 0.84 0.10 0.76 0.11

5 Real Data Example

It is very challenging to identify predictive interaction effects for modern high dimensional and

complex data. To illustrate our proposed methods, we analyze a rat microarray expression

data set (Scheetz et al., 2006), which has been analyzed by Huang et al. (2010); Fan et al.

(2011). For this data set, 120 12-week-old male rat offsprings were selected for tissue harvesting

and microarray analysis. The microarrays used to analyze the RNA from the eyes of these

animals contain more than 31,000 different probes. For each probe set, the intensity values

were normalized to obtain summary expression values. Following Scheetz et al. (2006) and Fan

et al. (2011), we focused on only the 18,976 probes that are expressed in the eye tissue. In

Huang et al. (2010); Fan et al. (2011), they were interested in identifying the genes that are

relevant to the gene TRIM32, which has been found to cause BardetBiedl syndrome (Chiang

et al., 2006).

In general, the underlying important interaction effects are unknown, so we analyze this
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data set in the following two ways. First, we simulate a response Y using a known model. Since

the true model and important interaction terms are known, we can compare the ISPC and the

DIS performance in terms of their interaction screening accuracy. Generate the response Y

using the real data and by a quadratic model, so that we can test the sure screening property.

To be more precise, we first standardize the data set and obtain a 120× 18, 976 matrix. Then

we randomly choose p = 400, or 2, 000 probe sets from 18,976 ones for each replicate, and

generate response Y by the same quadratic model considered in Example 1. We repeat 100

times and report the sure screening probabilities for important interaction terms in Table 3.

We use K = bn/ log nc = 25 and K = n = 120 for all methods.

Table 3: Sure screening probabilities of interaction effects.

p = 400 p = 2000

X1X2 X3X4 X1X2 X3X4 Average

DIS 33% 25% 13% 16% 21.8%

ISPC 44% 47% 38% 28% 39.3%

Analysis 1 DIS-K 39% 40 % 13% 24% 29.0%

(K = 25) ISPC-K 41% 49% 27% 23% 35.0%

DIS-S 32% 39% 13% 20% 26.0%

ISPC-S 51% 57% 28% 31% 41.8%

DIS 40% 42% 21% 23% 31.5%

ISPC 52% 55% 49% 40% 49.0%

Analysis 2 DIS-K 54% 55% 26% 32% 41.8%

(K = 120) ISPC-K 64% 69% 38% 39% 52.5%

DIS-S 48% 55% 21% 30% 38.5%

ISPC-S 68% 76% 49% 46% 59.8%

Overall speaking, the ISPC-type procedures consistently give better performance than the

DIS-type procedures, for both Pearson correlation and nonparametric correlations. Though the

sure screening probabilities are not so high as in simulations, the performance is still reasonable

given that the sample size n = 120 is very small. In order to improve the coverage probability

further, we may lower the threshold or use iterative screening method etc. One limitation is
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that there are so many spurious interactions on the top, which is not surprising given the huge

number of total interactions versus the small sample size.

Second, we analyze the raw data where the truth is unknown. We report the interaction

terms selected by the screening procedures, which provide a short list for scientists to conduct

further validations. We treat gene TRIM32 as the response variable and try to identify top

interactions associated with it by all six screening procedures. The analysis is based on the

entire data set, which contains p = 18, 976 genes of n = 120 samples. The total number of

gene interaction pairs is p(p + 1)/2 = 180, 053, 776 ≈ 1.8 × 108, therefore the total dimension

is ultra-high.

In Table 4 we list top 5 pairs of gene interactions by six screening procedures. We ob-

serve that there are some variations in the top lists, which is not surprising considering an

extremely large number of interactions and high correlations among genes. Among all the

identified interactions, some pairs are selected frequently by multiple procedures, so they are

deemed more “interesting”. For example, two pairs of interactions, 1373599 at*1374388 at

and 1370952 at*1373599 at, are both identified by four screening procedures out of six. Fur-

thermore, we notice that gene 1373599 at is very active in working with other genes, as it

is involved with many interactions in the top lists. We point out that these findings are just

based on statistical analysis, and they need to be further validated by scientists in labs. On the

other hand, the screening procedure is helpful to narrow down the number of research targets

to a few top ranked pairs from 1.8 × 108 candidates.
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Table 4: Top interactions associated with gene TRIM32.

DIS DIS-K DIS-S

1371995 at*1387793 at 1372260 at*1373599 at 1373599 at*1374388 at

Top Selected 1371995 at*1384708 at 1373599 at*1374388 at 1372260 at*1373599 at

interactions 1372369 at*1386344 at 1370952 at*1373599 at 1370952 at*1373599 at

1377455 at*1383417 at 1371578 at*1377887 at 1369583 at*1373599 at

1371995 at*1398873 at 1369583 at*1373599 at 1371578 at*1377887 at

ISPC ISPC-K ISPC-S

1367746 at*1370303 at 1377455 at*1391190 at 1377455 at*1391190 at

Top Selected 1371995 at*1391643 at 1370952 at*1373599 at 1370952 at*1373599 at

interactions 1372318 at*1391628 at 1387393 at*1391932 at 1375233 at*1381886 at

1370266 at*1372318 at 1372260 at*1373599 at 1373599 at*1374388 at

1398859 at*1384620 at 1373599 at*1374388 at 1373599 at*1388145 at

6 Discussion

Marginal screening is a powerful and computationally efficient technique for variable screening

in high dimensional data analysis. Effectiveness of a marginal screening method depends many

factors including distribution tails of the covariates and the noise, the correlation structure

among covariates, sparsity of the true model. In this paper, we discuss how to use the model

structure to enhance effectiveness of interaction screening. We find that it is helpful to utilize

the hierarchical structure when conducting interaction screening, and the screening procedure

based on partial correlation outperforms simple correlation ranking. The proposed strategy

is generally applicable to more complex models. As a conclusion, we suggest that one take

parental effects into account when calculating a marginal statistic of an interaction effect for

the screening purpose.
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8 Appendix

8.1 Calculation of (2) and (3)

Simple calculation shows that

E(Xm) = 0, E(X2
m) = 2, m = 1, 2; E(X1X2) = 2ρ2,

E(X2
1X2) = E(X1X

2
2 ) = 8ρ2, E(X2

1X
2
2 ) = 4 + 32ρ2 + 24ρ4.

It follows that

Cov(Y,X1X2) = Cov(X1, X1X2) + Cov(X2, X1X2) + aVar(X1X2)

= 8ρ2 + 8ρ2 + a(4 + 32ρ2 + 24ρ4 − (2ρ2)2)

= 16ρ2 + a(20ρ4 + 32ρ2 + 4),

which leads to (2).

To calculate (3), we first write

X1X2 = b1X1 + b2X2 + T,

where Cov(Xm, T ) = 0, m = 1, 2. So Y = (1 + ab1)X1 + (1 + ab2)X2 + aT + ε, and the partial

correlation

pCorr(Y,X1X2|X1, X2) =
Cov(T, aT + ε)√

Var(T )Var(aT + ε)
=

aVar(T )√
Var(T )(a2Var(T ) + Var(ε))

=
a√

a2 + Var(ε)
Var(T )

,
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which leads to (3). In particular,

Var(T ) = 20ρ4 + 32ρ2 + 4− 64ρ4

1 + ρ2
.

8.2 Proof of Lemma 1

For the first-order partial correlation,

|τjk·`| =

∣∣∣∣∣∣∣
τjk − τj`τk`√

1− τ2j`
√

1− τ2k`

∣∣∣∣∣∣∣
≤ δ + δ2

1− δ2

=
δ

1− δ
= δ1.

By the same technique, all second-order partial correlation is no more than δ1
1−δ1 = δ

1−2δ . And

Lemma 1 holds by induction.

References

Bien, J., Simon, N., Tibshirani, R., et al. (2015). Convex hierarchical testing of interactions.

The Annals of Applied Statistics 9, 27–42.

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical interactions. The Annals

of Statistics 41, 1111–1141.

Chiang, A. P., Beck, J. S., Yen, H.-J., Tayeh, M. K., Scheetz, T. E., Swiderski, R. E., Nishimura,

D. Y., Braun, T. A., Kim, K.-Y. A., Huang, J., et al. (2006). Homozygosity mapping with

snp arrays identifies trim32, an e3 ubiquitin ligase, as a bardet–biedl syndrome gene (bbs11).

Proceedings of the National Academy of Sciences 103, 6287–6292.

Choi, N. H., Li, W., and Zhu, J. (2010). Variable selection with the strong heredity constraint

and its oracle property. Journal of the American Statistical Association 105, 354–364.

19



Cordell, H. J. (2009). Detecting genegene interactions that underlie human diseases. Nature

Reviews Genetics 10, 392–404.

Fan, J., Feng, Y., and Song, R. (2011). Nonparametric independence screening in sparse ultra-

high-dimensional additive models. Journal of the American Statistical Association 106,

544–557.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 849–911.

Hao, N. and Zhang, H. H. (2017). A note on high dimensional linear regression with interac-

tions. The American Statistician .

Hotelling, H. and Pabst, M. R. (1936). Rank correlation and tests of significance involving no

assumption of normality. The Annals of Mathematical Statistics 7, 29–43.

Huang, J., Horowitz, J. L., and Wei, F. (2010). Variable selection in nonparametric additive

models. Annals of statistics 38, 2282–2313.

Kendall, M. G. (1942). Partial rank correlation. Biometrika 32, 277–283.

Li, G., Peng, H., Zhang, J., Zhu, L., et al. (2012). Robust rank correlation based screening.

The Annals of Statistics 40, 1846–1877.

Li, R., Zhong, W., and Zhu, L. (2012). Feature screening via distance correlation learning.

Journal of the American Statistical Association 107, 1129–1139.

Moore, J., Asselberg, F., and William, S. (2010). Bioinformatics challenges for genome-wide

association studies. Bioinfomatics 26, 445–455.

Park, M. Y. and Hastie, T. (2008). Penalized logistic regression for detecting gene interactions.

Biostatistics 9, 30–50.

Scheetz, T. E., Kim, K.-Y. A., Swiderski, R. E., Philp, A. R., Braun, T. A., Knudtson, K. L.,

Dorrance, A. M., DiBona, G. F., Huang, J., Casavant, T. L., et al. (2006). Regulation of

gene expression in the mammalian eye and its relevance to eye disease. Proceedings of the

National Academy of Sciences 103, 14429–14434.

Van Steen, K. (2012). Travelling the world of gene–gene interactions. Briefings in bioinfor-

matics 13, 1–19.

20



Wackerly, D., Mendenhall, W., and Scheaffer, R. (2007). Mathematical statistics with applica-

tions. Cengage Learning.

Wu, J., Devlin, B., Ringquist, S., Trucco, M., and Roeder, K. (2010). Screen and clean: A

tool for identifying interactions in genome-wide association studies. Genetic Epidemiology

34, 275–285.

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., and Lange, K. (2009). Genome-wide association

analysis by lasso penalized logistic regression. Bioinformatics 25, 714–721.

Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for grouped

and hierarchical variable selection. Annals of Statistics pages 3468–3497.

Zhu, L.-P., Li, L., Li, R., and Zhu, L.-X. (2011). Model-free feature screening for ultrahigh-

dimensional data. Journal of the American Statistical Association 106, 1464–1475.

21

View publication statsView publication stats

https://www.researchgate.net/publication/323624002

