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Predictions of the mechanical response of polycrystalline metals and underlying microstructure
evolution and deformation mechanisms are critically important for the manufacturing and design
of metallic components, especially those made of new advanced metals that aim to outperform
those in use today. In this review article, recent advancements in modeling deformation
processing-microstructure evolution and in microstructure—property relationships of polycrystal-
line metals are covered. While some notable examples will use standard crystal plasticity models,
such as self-consistent and Taylor-type models, the emphasis is placed on more advanced full-
field models such as crystal plasticity finite elements and Green’s function-based models. These
models allow for nonhomogeneity in the mechanical fields leading to greater insight and
predictive capability at the mesoscale. Despite the strides made, it still remains a mesoscale
modeling challenge to incorporate in the same model the role of influential microstructural
features and the dynamics of underlying mechanisms. The article ends with recommendations for

improvements in computational speed.

. INTRODUCTION

Many future engineering systems will rely on advanced
metals that substantially overcome the limitations of
metals commonly used today. Modeling of processing—
microstructure—property (PMP) relationships can aid in
the manufacturing of new and advanced structural poly-
crystalline metals. Mechanical deformation models, in
particular, can provide the microstructure—property re-
lationship portion of the PMP when the property of
interest involves evolution under mechanical strain, e.g.,
stress—strain response under monotonic loading, creep,
fatigue, and fracture. These models can also assist in
developing the processing—microstructure relationship
within the PMP when the manufacturing process also
involves mechanical deformation, such as in rolling or
extrusions.

The central fulcrum in the PMP is microstructure—
a strong suggestion that deformation models that benefit
advanced structural materials design ought to incorporate
the role of microstructure. During deformation process-
ing, the microstructure changes substantially and the final
microstructure is sensitive to the details of the processing,
from the boundary conditions, temperature, strain rates,
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and sequences of deformation paths taken. During sub-
sequent property evaluation, the microstructure signifi-
cantly influences the microscopic defects, whose
formation and motion accommodate deformation (dislo-
cation glide, deformation twinning). These strong rela-
tionships have stimulated the development of
microstructure-sensitive models for polycrystalline de-
formation over the past several decades.

Microstructure is a general term that includes a multi-
tude of features, all of which can affect structural
properties. Many of these can be considered mesoscale
features: phase sizes and shape; grain size, shape, and
orientation; and grain boundary and interface structure
and crystallography. It remains to this day a mesoscale
modeling challenge to quantitatively relate the role of so
many seemingly influential microstructural features,
existing at the scale of um, in the formation and motion
of the dislocations and deformation twins, operating at
the scale of nm.

In this article, recent advancements in the PMP
modeling of polycrystalline metals are covered. These
extensions include improved ways of accounting for
(i) processing boundary conditions, (ii) grain shape and
texture, and (iii) grain boundaries on the chief micro-
scopic mechanisms of deformation: slip and twinning.
The insight gained in PMP relationships as a result of
these modeling innovations is discussed.
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The paper is organized as follows. First, the main types
of mesoscale crystal plasticity-based computational tech-
niques used to date are presented. The next part focuses
on introducing various modeling advancements that lead
to improved understanding of processing—microstructure
relationships. These include nonhomogeneous boundary
conditions and effects of grain boundaries on deformation
mechanisms. The last piece of this review is dedicated to
the computational needs and presentation of some prom-
ising strategies.

Il. MESOSCALE METHODOLOGIES
A. Methodology overview

Structural metals are polycrystalline, or aggregates of
grains, wherein each grain has a distinct crystallographic
orientation with respect to all of its nearest neighboring
grains.' Many mechanics models for understanding and
calculating the deformation of metals employ a combina-
tion of crystal plasticity (CP) theory and one of the
various polycrystal homogenization schemes. CP theory
relates the distortion of a strained crystal to slip on
crystallographic slip systems.>® Polycrystal plasticity
models link individual grain response predicted by CP
theory to the overall mechanical response of a polycrys-
talline aggregate.

Polycrystal plasticity models appear in various levels
of sophistication and computational efficiency. Among
the more popular are polycrystal plasticity approaches,
such as the full constraint Taylor model, and self-
consistent schemes, such as viscoplastic self-consistent
(VPSC) and elastoplastic self-consistent (EPSC),*®
which homogenize the neighborhood of an individual
grain. Recently, self-consistent schemes have been in-
tegrated within implicit finite elements (FEs), called
FE-VPSC or FE-EPSC,” ' wherein the material at
integration points is modeled as polycrystalline aggre-
gates and the constitutive response is provided by the SC
scheme. Used less often are CP models that spatially
resolve the grain neighborhoods, which can be referred to
as 3D full field, spatially resolved mechanics techniques.
Two examples of models in this class are CPFE mod-
els'*!3 and Green’s function fast Fourier transform (FFT)
models.'®' These can be differentiated by their solution
technique.

The above CP-based models can (i) calculate and relate
the evolution in the crystallographic orientation of the
grains (called texture) to the overall polycrystal stress—
strain response, and apart from the Taylor model, (ii)
predict the evolution in the individual shape of the grains.
The crystal plasticity finite element (CPFE) and CP-FFT
methodologies have the ability to additionally provide
nonuniform deformation fields generated in the crystals
(intergranular) and between the constituent grains
(intragranular).

The remainder of this article will present examples that
utilize one or a combination of the mesoscale methods:
polycrystal modeling, CPFE, and CP-FFT. Additionally,
in one example the polycrystal models will be embedded
at FE integration points, where the intrinsic homogeni-
zation constrains are relaxed. An abbreviated review of
the formulation of the three CP techniques is provided in
turn below. Regarding notation, vector and tensors are
indicated by boldfaced characters and are not italicized.
For a second-order tensor A, the notation AT denotes its
transpose, i.e., AiTj = Aj; for i, j = 1, ..., 3. The notation
trA means its trace, while detA signifies its determinant.
The contracted product between two tensors, A and B, is
defined as: A-B. The dyadic product of any two vectors,
a and b, is a second-rank tensor given by a ® b = a;b;.
Scalars and tensor components are italicized and not
boldfaced.

B. Mean-field polycrystal models

The two polycrystal mean-field schemes that have
been used most often for modeling polycrystalline
deformation are VPSC and EPSC. In VPSC, the
formulation does not include deformation by elastic
deformation, but in EPSC, both elastic and plastic
deformation are taken into account. In these self-
consistent frameworks, the formulation relates the ef-
fective or polycrystal aggregate response with the re-
sponse of individual grains. The polycrystal is
represented as a collection of crystals, wherein each
crystal has a specific orientation, ellipsoidal shape, and
volume fraction. These model crystals do not necessar-
ily represent specific single crystals in a microstructure,
but rather as representative orientations (ROs) whose
response is an ensemble average over all similarly
oriented crystals in the polycrystal. In these mean-field
techniques, the polycrystal is treated as a 3D homoge-
neous continuum. Topologically, information of, say,
the specific grain neighbors or grain boundaries are not
included in the solution.

In both SC models, to calculate the stress and strain
response of each RO within the polycrystal, Eshelby’s
solution for a 3D inclusion embedded within a continuum
is used. As mentioned, the continuum is the polycrystal
and commonly referred to as the homogeneous equiva-
lent medium (HEM). An iterative scheme is used to
calculate the properties of the HEM, i.e., the polycrystal,
by enforcing that its properties equal the average prop-
erties of all its constituent crystals, which gives rise to the
name “‘self-consistent”. In VPSC, the constitutive re-
sponse of the ROs and HEM is “viscoplastic”. Elastic
deformation is not taken into account. Thus, grain
rotations result from plastic spins but not elastic spins.
In elastic—plastic self-consistent EPSC, the grains and
polycrystal deform by elastic deformation as well as by
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crystallographic slip. The plastic response in both
schemes is calculated using CP, wherein slip and twin-
ning occur on specified crystallographic systems. Grain
rotations are the result of elastic and plastic spins. With
this basic formulation, these SC models can predict the
relationships between crystallographic texture evolution,
effective stress—strain response, and the activity of the
various slip/twin systems used by each grain in the
polycrystal.

1. Viscoplastic self-consistent

In VPSC, both the polycrystal (medium) and each
grain (ellipsoidal inclusion) are viscoplastic. Lineariza-
tion of the viscoplastic constitutive response is needed to
guarantee that the stress and strain rates are uniform
within the Eshelby ellipsoidal domain. In linearized form,
the relationship between the grain strain rate and the grain
stress is given by

CHEY (1.1)

£ = Mijkl(GC)Gi] ij

ij
where M;;; and é?i are the viscoplastic compliance and the
back-extrapolated rate of the grain, respectively. The
plastic strain rate is defined as the sum of shear strain
rates, y*, from each slip system, s:

) m’ - ¢
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(12)

where ¥°, 1§, and m® are, respectively, the shear rate, the
critical resolved shear stress (CRSS), and the Schmid
tensor, for the slip system s. The Schmid tensor is given
by m’ = (b° ® n’ + n’ ® b*)/2, where b* and n® are the
orthonormal unit vectors for the slip direction and slip
plane normal. Parameter 7, is a reference strain rate and
n is the power-law exponent representing the inverse of
the material rate-sensitivity.

Assuming an analogous linear relation at the macro-
scopic polycrystal level and performing the homogeniza-
tion, the linearized relationship between the effective
medium (polycrystal) strain rate and the -effective
medium stress becomes

= = —\ = =0
gj = sz/‘kl(c)ckl + Sij R (13)

where 5,] and Gy, are the HEM strain rate and stress, and
M;j; and Gy are the HEM viscoplastic compliance and
back extrapolated rate, respectively. Solving the stress
equilibrium equation of an ellipsoidal inclusion,
described by Eq. (1.2), embedded in a homogeneous

medium, described by Eq. (1.3), leads to an interaction

equation relating the HEM and inclusion strain rates and
stress

(8,] — El]) = _Mijkl(le - C_Ykl) y (14)

where

-1
Miju = (I - S)ijmnsmnﬂqMMkl ) (1.5)

is the “interaction tensor” and S is the Eshelby tensor.
The macroscopic moduli are unknown a priori and need
to be adjusted self-consistently, by enforcing the condi-
tion that the average stress and strain rate over all
inclusions has to be equal to the HEM stress and strain
rate, i.e.,

Substituting Eqgs. (1.3)—(1.5) into Eq. (1.6) leads to an
expression for the viscoplastic moduli of the linearized
HEM, given by

M = (MB)(B)"' | (1.7)

¢ =Mb + & — (MB)(B) ' (b) , (1.8)

where the localization tensors are defined as

—1 _

Bju=(M+M), (M~+M) (1.9)

ijmn mnkl

by = (M +8),, (B +8) (1.10)

The plastic rotation rate, W”*“, of each crystal inclusion
(or grain) is related to the shear rates ¥* on the individual
slip systems via the following kinematic formula:

WP = Z qc,.\','yc,x ’ (1 1 1)
s

where ¢“° = 0.5(b° ® n“ — n“* ® b"’). The lattice
rotation rate W€, used to update the crystal orientation and
hence calculate texture evolution, is the difference between
the rotation rate due to slip and the macroscopically
applied rotation rate of the grain shape WP,

W= WP¢ 4 TIC — WP (1.12)

where I1° is the antisymmetric part of the Eshelby tensor
for grain ¢.*

With the above formulation, for each strain incre-
ment, VPSC calculates a homogeneous stress state in
each grain inclusion, o, which deviates from the
macroscopic stress state. The properties and response
of the HEM and of the individual grains are computed in
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an iterative manner. Numerical integration is implicit.
As is customary, the time step is selected such that the
stress—strain response is independent of time step. The
time step that satisfies this criterion is typically 1 x 107>
s. The stress o; will be strongly dependent on the
crystallographic orientation, grain shape, deformation
(hardening) history, and the interaction with the sur-
rounding HEM. Above is an abbreviated form and
a complete description of the VPSC framework can be
found in Refs. 4-6.

2. EPSC

The polycrystalline EPSC model formulation was
originally developed in Ref. 20 and in later exten-
sions.”'%?! As mentioned, unlike VPSC, the EPSC
polycrystal model accounts for elastic anisotropy in
addition to plastic slip according to CP theory.

The macroscopic (Jaumann) stress rate and strain rate
are linked through the following linear relationship:

6=Le , (1.13)
where L is the instantaneous elastoplastic stiffness tensor
of the polycrystal, which at the outset is unknown and
must be solved iteratively through the standard self-
consistent procedure?® until equilibrium and strain com-
patibility are satisfied.*?

The strain rate in the individual inclusions (denoted
by superscript c) is related to the macroscopic strain rate
via

&€ =A% (1.14)

where

A= (L4L19) (L9 + L) (1.15)
is the localization tensor for elasto-plastic ellipsoidal
inclusion, L is the instantaneous elasto-plastic stiffness
tensor, and

L :L(SC" —1) (1.16)
is the effective stiffness tensor for the inclusion and S¢ is
the symmetric Eshelby tensor for the inclusion ¢, and I is
the fourth rank identity matrix. This tensor L relates the
stress and total strain rate in a grain to the stress and total
strain rate in the HEM through an interaction equation,
given by

(6°—6) = —L° (& — &) (1.17)
Next, the following condition that the HEM stress and

strain rate is equal to the volume average of the stress and
strain rate in the inclusions is enforced, i.e.,

6 =(¢) |, (1.18)
and
§= (€9 , (1.19)
which provides an expression for L:
L = (L°A°)(A°)"! (1.20)

To calculate the macroscopic Cauchy stress, the
following relationship between the Cauchy stress rate
and Jaumann rate is used:

6 =6+ (Ws) —

(6°W) = Lg 4+ (W) — (6°W°) |

(1.21)

where W€ is the lattice spin given by Eq. (1.12).

The above relationship is integrated explicitly over
time, ie., 6,41 = 6, + L,£,Ar + <W20'Z>Al‘ - <62W;>At.
With the remaining field variables, such as the elastic spin and
strain rate at the current increment n, the HEM stress can be
updated for the next increment n + 1. The time step is selected
such that the stress—strain response becomes independent of the
time step. For most EPSC calculations reported in the literature,
the time step is 1 x 1077 s.

Finally, the constitutive relationship at the individual
inclusion level between the Jaumann stress rate, 6°, and
the strain rate, €°, is given by

6 = C (& — &) — 6“tr(¢°) (1.22)
where C° is the single crystal elastic stiffness tensor and
as defined before in Eq. (1.2), & => m“*y** is the
plastic strain rate. To account for change$ in b* and n“”,
the slip directions and slip planes, due to changes in
crystallographic orientation as the texture evolves, the
elastic stiffness is calculated at the beginning of each
deformation increment.

At this point, we have reviewed two self-consistent
formulations, EPSC and VPSC, and thus one question
that may arise is whether the results from these two
models would differ. We do not know of any formal
comparisons made between the results from stress—strain
and texture calculations of VPSC and EPSC. The key
difference between the two formulations is that EPSC
accounts for elastic deformation while VPSC does not.
However as is customary in elastic—plastic constitutive
models, EPSC assumes that the elastic and plastic defor-
mations are decoupled. As a result, when EPSC and VPSC
attempt to capture the same experimental plastic flow
stress—strain response, the hardening parameters in the
plastic part should, in principle, not be different. Any slight
differences could be observed due to finite kinematics of
VPSC versus small-strain kinematics of EPSC. Texture
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predictions should also not be appreciably different because
the same kinematics is involved. The elastic deformation
gradient in EPSC can be related to the kinematics used in
texture evolution calculations of VPSC and EPSC.

3. Deformation twinning in mean-field codes

During the processing of polycrystalline metals, another
stress-driven deformation mechanism that occurs often is
deformation twinning. Twins are microstructural hetero-
geneities that reorient and shear the lattice. As a result,
they form a boundary with the surrounding crystal and
introduce local stress fields. Twin domains initiate as
atomic-scale embryos and grow to the size of the grain,
becoming mesoscale heterogeneities.”> Grain boundaries
hinder but do not prevent the propagation of twins into
neighboring grains.24 Figure 1 shows examples of twins
that have formed in polycrystalline materials as a result of
deformation. As shown, most twins have their boundaries
intersecting with grain boundaries, and in many cases, the
twin is connected with another twin across the boundary.

The VPSC and EPSC models were originally de-
veloped to account only for the shear provided by

twinning. Later computationally efficient methods for
treating the reorientation that accompanies twinning were
developed for these self-consistent schemes. These in-
clude the predominant twin reorientation (PTR)
method,zs’26 volume fraction transfer scheme,26 total
Lagrangian approach,27 and composite-grain (CG)
method.?**

In these schemes, the twin phase replaces some
fraction of the matrix phase and as the volume of the
twin phase increases with strain, the volume of the matrix
phase shrinks accordingly. They generally involve split-
ting the original orientation (grain) into two parts, one
part is twinned and another part, i.e., the matrix, while
preserving the original volume fraction of the grain. As
an example, we describe the CG model, which is rising to
be the standard one used in VPSC and EPSC models. It
was first introduced in Refs. 28 and 30 and has an
advantage of accounting for both morphological changes
and crystallographic reorientation. In the CG model,
a twinned grain is assumed to contain n uniformly spaced
lamellae of equal thickness that are reoriented to twin
orientation. One can choose to treat the CG grain as a single
laminated inclusion in which continuity of stresses and

r.‘

=10 pm

FIG. 1. EBSD images of deformation twins in (a) o-uranium, (b) AZ31 Mg alloy, (c) Zr, and (d) commercially pure Ti. Reprinted with permission

from Ref. 139.
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strains at the matrix-twin boundary is enforced. Alterna-
tively, one can treat the twinned grain as two separate
inclusions that are decoupled mechanically. In this case, the
simulation keeps track of the shape and orientation of the
ellipsoids representing the twin and matrix and their
evolving volume fractions. This information ensures that
(i) as the twins thicken, the matrix regions narrow, (ii) the
number of twins 7 in the grain and grain diameter ¢® limit
the thickness that an individual twin can grow, and (iii)
a twin spacing can be obtained, as in the case of the fully
laminated grain. The newly formed twin inclusions are
treated as new ellipsoidal inclusions and added to the total
number of ROs in the polycrystal. As grains in these models
are represented as ellipsoidal inclusions, the new twin
inclusions can be initially assigned as flat ellipsoids with
their short axis perpendicular to the twinning plane, to
reflect the lamellar shape of newly formed twins (see
Fig. 1). The twinned inclusion adopts a mirror orientation
with respect to the orientation of the parent grain that is
characteristic of the type of twin.>"!

The volume fraction of the twin increases with twin
shear activity. The shear deformation provided by twin-
ning Ay" is localized into the twin inclusion. Because
twins provide a characteristic shear per unit volume, the
increment in twin volume fraction and increment in shear
are related following

Aytw

AtW:
=

(1.23)

where Ay™ is the shear strain contributed by the twinning
system in the grain and § is the characteristic twin shear
of the twin. Since the total volume fraction of the original
grain does not change, as the volume fraction of the twin
increases, the volume fraction of the corresponding
parent grain is reduced by the same amount. With such
sub-grain twinning models, mean-field polycrystal mod-
els have been successful in demonstrating many key
effects of twins on the macroscopic stress—strain response
and texture evolution, 28303233

Last, when the grain twins, twin boundaries will be
created, which in turn can represent barriers to slip.
When the CG model is implemented into either EPSC or
VPSC, the evolution of the mean-free-paths d**" for slip
in the matrix and twin domains are calculated based on
the current shape of the lamella in the CG model and
used in the hardening law via a directional Hall-Petch
term:

Huﬁubot
B sca, s € , 1.24
HP \/LF B ( )

where H*? is the Hall-Petch coefficient. The separation
distance d*° is defined along the slip plane of system s
between two adjacent boundaries of twin system s’.

Accordingly slip occurring in planes parallel to the
twin-matrix interface will not experience a barrier effect
posed by this boundary while slip occurring on planes
that intersect the interface will. Equation (1.24) repre-
sents a ‘“dynamic Hall-Petch effect”. As the twins
thicken, the matrix regions shrink and hence, the mean
free path for slip in the matrix becomes increasingly
confined, while that for slip in the twin becomes easier.
This concept has been implemented in a number of
polycrystal models.>*3¢

The coefficient H*? in Eq. (1.24) will be particular to
the hcp material and slip and twin system involved. For
some combinations, for instance, this effect is negligible
and H*P accordingly is zero. Generally, not much
significance can be placed in the fitted values of H*P,
as the underlying physics of slip—twin interactions has yet
to be clarified.

C. CPFE

As mentioned, one 3D spatially resolved scheme used
frequently in mechanical deformation modeling is the
CPFE method. This technique can provide predictions of
not only texture evolution but also evolution of intragrain
and intergrain misorientations, grain shape, and grain
boundary character distribution. Recent years have seen
a rapid increase in the 3D CPFE formulation for the study
of a wide variety of problems,'®74¢

Figure 2 displays a multiscale CPFE model and the
submodel components that it links. Going from left to the
right side, the material length increases and each frame
represents a specific instance at which the material
response is being evaluated. At the coarsest level is the
material response of a polycrystal, which is in the form of
a granular microstructural model, by the use of the FE
homogenization method. As a full-field model, this
method fulfills both stress equilibrium and strain com-
patibility conditions making it a suitable modeling tool
for capturing the interactions between the constituent
grains. Each grain in the polycrystal is represented by an
element set, which discretizes a given grain into FEs. At
this length scale, at each FE integration point, the
material constitutive response is being estimated utilizing
CP theory. The FE integration point can embed a single
crystal or a polycrystal. The later requires a homogeniza-
tion like Taylor-type or self-consistent. In application of
CP, the model usually allows the strain to be accommo-
dated by the simultaneous action of crystallographic slip
and deformation twinning. In CPFE, the shear accom-
modated by the latter mechanism is most often modeled
as slip and is referred to as the pseudo slip model for
twinning.*>*’

To determine the single crystal response at each
integration point, a User MATerial subroutine based on
CP constitutive formulation is used in Abaqus Standard.
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FIG. 2. A multiscale modeling framework for the plastic deformation of polycrystals. Reprinted with permission from Ref. 40.

The framework facilitates various loading conditions
from low to high level of complexity that can be applied
in the form of suitable boundary conditions. This applied
load is divided into time/strain increments, where for
each and every a global stress equilibrium solution is
found using a numerically iterative procedure of the FE
method. This end is achieved by solving the nonlinear FE
governing equation in its linearized form given by

( / BTJBdV>AU:R— / B'edV . (1.25)
Vv Vv

In this relation, the listed quantities are, respectively,
B—FE strain-displacement matrix, J—material Jacobian
matrix, AU—displacement increment solution, R—applied
force vector, and 6—Cauchy stress tensor.”**4°

An essential part of CPFE is the CP constitutive law
that relates the material stress to material distortion
(stretch plus rotation) at each integration point within
each FE in the model.”®>' The description of the law that
follows adopts standard continuum mechanics notation,
where tensors are denoted using roman boldface symbols,
while scalars are italicized and not boldfaced. To denote
a time derivative, a dot is placed over a particular
quantity.

The total velocity gradient tensor, L, can be additively
decomposed as follows:

L=L+L" |, (1.26)

where L° and LP represent elastic and plastic velocity
gradients, respectively. The plastic part of the velocity
gradient contains the contributions from both slip and
twinning via

LP =L +LY . (1.27)

The corresponding contributions to the velocity gra-
dients, due to slip and twinning, are further expressed as

NS N3l
LY =) "y"ml=> "{"blen |
o o

N(W NlW
LY =3 fsPmf =Y ' sPbfonf |, (1.28)
p p

where ¥* stands for the shearing rate on the slip system o,
m® and mP are the Schmid tensors associated with slip
system o and twin system P, respectively, and SP is the
characteristic twin shear for the twin system . Finally,
N and N*Y represent the total number of available slip
and twinning systems, respectively. The Schmid tensors
represent the unit slip or twin system tensor, defined as
the dyadic product (®) between the unit Burgers di-
rection (b,) and unit plane normal (n,) vectors of slip
system o or twin system [}, respectively, in the un-
deformed configuration indicated by subscript ‘o’. The
rate of change of the twin volume fraction per twin

system (fB) is related to the shear rate on the twin

system (yﬁ) according to Refs. 25 and 47:

s 1
fF= § (1.29)

In the finite deformation formulation, an assumption is
made that the deformation gradient (F) can be multipli-
catively decomposed into its elastic (F°) and plastic (FP)

contributions according to

F=FF (1.30)
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where the elastic component contains contributions from
both elastic stretching and lattice rotation, while the
plastic component embodies contributions due to plastic
deformation. The constitutive relationship between
F° and stress in the crystal is given by the
two expressions for the second Piola—Kirchhoff stress
tensor T¢,

T® = CES, T = F° ' {(detF*)c}F° ', (1.31)
where C is the fourth-rank elasticity tensor and o is the
Cauchy stress in the crystal.

E°, the Lagrangian finite strain tensor, is related to F°
via

1 T

ES = E{FC Fe - 1} (1.32)

Finally to compute stress, the evolution of F” needs to

be evaluated. It is determined by crystallographic slip and

twinning (micro-shear rates) and it can be expressed in

the rate form using the following flow-rule relationship:

F’ = LPFP (1.33)

Integrating Eq. (1.33) from ¢ to T = ¢ + At yields

FP(1) = exp(LPA?)FP(1) (1.34)
For convenience, the exponential is approximated by
a Taylor series expansion to first order, yielding

FP(1) = {I+ AfLP}FP(1) = {I+ At(L¥ + L") }FP(z)
(1.35)

where the right hand side used Eq. (1.27). again, I is the
identity matrix.
Moreover, the previous equation can be rewritten as

FP (1) = FP () {1 — Ar(L + L™)) (1.36)

D. Crystal plasticity fast Fourier transform

Another 3D spatially resolved scheme is the CP FFT
approach (CP-FFT). The FFT-based approach is an
image-based approach to mechanical modeling that is
able to directly use a three-dimensional voxel represen-
tation of microstructure as input. This type of model was
first developed early in Refs. 52-55. Much more recently,
it was advanced by Lebensohn and collaborators for
polycrystals.’® While the earlier studies used FFT to
solve the field equations, the more recent studies
exploited the FFT method to represent and quickly obtain
the single crystal solutions. Below, the current and often
used version of the technique, the elasto-viscoplastic
formulation in Ref. 57, is briefly reviewed.

For the elasto-viscoplastic regime considered in CP-
FFT, Hooke’s law can be written as a function of the
elastic and plastic strain tensors:

GHN(X) _ C(x)se,tJrAt(x)
_ C(X) (£r+At(x) _ spj(x) _ ép‘H—At (X, Gt+At>At)

(1.37)

where o(x) is the Cauchy stress tensor, C(x) is the elastic
stiffness tensor, £(x), £°(x), and £P(x) are the total, elastic,
and plastic strain tensors, respectively. In the CP framework,
Eq. (1.2) provides the viscoplastic strain rate, £°(x), and its
relationship to the stress ¢(x) at a single-crystal material
point x through a sum over the N active slip systems.”®
From Egq. (1.37), the total strain tensor is expressed as

SH—N(X) — C—l (X)O’H_AI(X) 4 8p,t(x) + ép.I+At (X, o_t+At)At

(1.38)

The FFT method is based on the principle that the
mechanical response of a heterogeneous nonlinear me-
dium can be calculated as a convolution between a linear
reference material and a polarization field. Let C° be the
stiffness of the linear reference material. Adding and
subtracting from the stress tensor, a stress measure given
by the product of u; (x), the displacement gradient tensor,
and CY, results in

6i(X) = 04(xX) + Clttes(X) — Cohtirs(X) (1.39)
Rewriting Eq. (1.39) by
cji(x) = C?jkluk,g(x) +dy(x) (1.40)
introduces the polarization field, defined as
b;(x) = oy(x) — Cgkluk,l(x) (1.41)

Combining Eq. (1.40) with the equilibrium condition,
6,;/(x) = 0 gives

Chattei(x) + by (x) = 0 (1.42)

The Green’s function approach is then used to solve
Eq. (1.42) for the displacement field u(x). Let the
Green’s function Gy,,(x) be defined by

CorGrmij(x = X') + 8im(x —X') =0 (1.43)
It provides a solution for the field u#;(x), which is given
by

u j(x) = /R Guij(x = X)dy(x) (1.44)

The “FFT” name comes from the fact that the resulting
stress equilibrium equations take a computationally

3718 J. Mater. Res., Vol. 33, No. 22, Nov 28, 2018


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1557/jmr.2018.333

Downloaded from https://www.cambridge.org/core. University of New Hampshire Library, on 29 Nov 2018 at 19:12:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/jmr.2018.333

I.J. Beyerlein et al.: Review of microstructure and micromechanism-based constitutive modeling of polycrystals

convenient form when cast in terms of Fourier trans-
forms. Solving Eq. (1.44) in Fourier space gives the
following relation for the strain tensor:

£5(x) = E;+ FT' ((sym(£9,(00) ) u())
(1.45)

where the symbols “A” and FT' indicate direct and
inverse Fourier transforms, respectively, and k is a point
(frequency) in Fourier space. The fourth-order tensor
r 3kl(k) can be expressed as

19(k) = —kkiGu(K); Gu(K) = [Cirkiky] "

(1.46)

Since the polarization field in Eq. (1.41) is precisely
a function of strain field &(x), the solution of Eq. (1.42)
necessitates an iterative procedure. Once solved, then the
stress state and plastic strain can be updated.

E. Representing grain structure and grain
boundaries

It is widely recognized that modeling both grain and
grain boundary evolution during deformation is critical for
understanding material response. Capturing important
neighboring-grain interactions on deformation is one of
the primary reasons for choosing a full field, spatially
resolved over the less computationally expensive mean-
field approaches. However, common methods for gener-
ating 3D microstructures were limited in how well they
can represent grain morphologies and grain bound-
aries.” 159793 Tn most studies, the grains were blocks or
polygons, such as cuboids, thombic dodecahedrons, and
truncated octahedrons.®*~® Such inaccurate representa-
tions of grain structure and grain boundaries can create
numerical artifacts in mechanics calculations of stress and
strain states near microstructural boundaries and interfa-
ces.%” To elucidate the effect, individual grains have been
modeled by not one but many FEs.®*"® These studies
confirmed that the grain morphology plays a significant
role in determining stress—strain heterogeneities.

Since then, many techniques have been used to better
represent microstructures than cuboid grains. One widely
used technique for generating 3D microstructures for these
codes is the Voronoi tessellation method.*®’%7!-74=7¢ The
technique does well in creating a set of near-equiaxed
grains. The Voronoi tessellation starts with random grain
seeds and creates polyhedral-shaped grains. This method,
however, still has its limitations. Polyhedral-shaped non-
uniform grain shapes created by the Voronoi tessellation
methods are often unrealistic because rules for the orga-
nization and geometrical constraints of the grains produced
are not unique. In addition, the grain boundaries appear as

coarse disordered polygons. To produce say elongated
grains, it is possible to place these seeds far apart from
each other along one dimension to get elongated grains,
but generally it is difficult to control the grain aspect
ratios. Furthermore, since the grain boundary between
the two neighboring domains (grains) is created half-
way between the seed points, it proves to be challeng-
ing to acquire neighboring grains of dissimilar sizes.
Grains often do not look realistic and grain boundaries
that appear as very coarse polygons and as a result, the
grain boundaries are not continuous surfaces. Finally,
a characteristic of Voronoi tessellation is perfectly
planar grain boundaries, which generally are notably
different from real boundaries inferred from micro-
structure characterization experiments.

In recent years, explicit meshing of the grain structure
and grain boundary surfaces and capturing their evolution
with plastic strain have notably advanced the predictive
capabilities of these 3D full-field approaches. Creation of
realistic grain structures has been largely addressed
with the introduction of techniques for explicit grain
structure. An excellent example is DREAM.3D, a soft-
ware that generates the 3D synthetic voxelized micro-
structure and the surface meshes for the grain
boundaries.””-”® It overcomes many of the limitations
with the commonly used Voronoi tessellation method.
The digital microstructure generated in DREAM.3D
appears far more realistic in terms of grain morphology
and grain size distribution than that generated by
Voronoi tessellation scheme in 3D.

The output from DREAM.3D can be used directly in
the voxel-based CP-FFT codes but, since meshing of
grain structures is not a capability of DREAM.3D
software, additional processing is needed to use the
output to create a 3D mesh for grains and grain
boundaries to be used in CPFE. In recent work by
Knezevic et al.,41’79’8° an integrated toolset that takes
grain boundary surface mesh from DREAM.3D and
provides a volume mesh for each 3D grain and its grain
boundary surfaces. The final polycrystalline aggregate is
comprised of element sets representing individual grains
[Fig. 3(a)] and grains with conformal grain boundaries
between neighboring 3D grains [Fig. 3(b)]. The confor-
mal conditions between constituent grains means that
neighboring grains share triangular elements at grain
boundaries.

With the above technique, a 3D grain structure model
in the shape of a cuboid is formed. However, sample
geometries commonly encountered in testing take on
other shapes, such as cylinders or tubes. Later, an
advanced procedure for subtracting geometry from the
cuboidal grain structure for modeling more complex
shapes was developed.®' Figure 3(c) shows two examples
using this model: one of a micropillar for compression
and another of a microtube for microforming.
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»

(d) ()

(f)

FIG. 3. An explicit grain structure model consisting of 784 equiaxed grains generated synthetically using DREAM.3D: (a) voxel-based model with
highlighted edges, (b) triangular surface mesh. The triangular surface mesh in (b) describes grain boundaries. (c and d) The mid-section along half
x-axis showing the internal structure. The edge length of the cube is 1000 um, average grain size is 135 pum, and the total number of tetrahedral
elements (type C3D4 or C3D10 in ABAQUYS) in (c) is approximately 1,000,000. (e and f) FE explicit grain structure models of (a) a micropillar
compression specimen consisting of 435 grains and 428,000 elements and (b) a microtube consisting of 366 grains and 276,000 elements. The outer
and inner diameters are 700 and 500 um, respectively, while the height is 1000 pm. The far-right images show the corresponding mid-sections
along half x-axis to expose the internal structure. Reprinted with permission from Refs. 41, 79, and 81.

F. Kinetics of the slip and twinning mechanism in
CP models

Predicting slip activity is fundamental to predicting the
evolution of microstructure, textures (the reorientations of
the crystals), and material flow stress with strain. Through
Eq. (1.2), the theory of CP can relate slip activity on
crystallographic slip and twinning systems to the distortion
of a crystal. It does not, however, include criteria for the
threshold of slip. Nearly all CP-based constitutive models,
including the three methods presented above, mean-field,
CPFE, and CP-FFT, require choosing a criterion or criteria
for activating a slip system to predict slip activity.

According to the thermodynamic theory of slip, in the
regime of strain rates, roughly from 1075/s to 10%s,
dislocation motion is thermally activated and dislocations
must overcome energetic barriers to move. For this
regime, the commonly used flow rule of viscoplasticity
relating slip rate to resolved stress has a power-law form:

. (147
0 if <0

where V* is the shear strain rate for a slip system s. The
resolved shear stress is given by ° = ¢ - mj, which is the
tensor product of the stress ¢ and Schmid tensor mj, and

Yo is a reference slip rate (taken here as 0.001 s~ 1. In the
exponent, m denotes the strain rate sensitivity factor. This
power-law form is desirable because it provides unique-
ness of solution for the active slip systems that accom-
modate an imposed strain rate.

The flow rule introduces a threshold value Tl to
activate slip. It is commonly called the the critical
resolved shear stress (CRSS). Nearly all CRSS models
introduced over the past several decades are phenome-
nological. The simplest model for the CRSS is a constant
value, which does not evolve with strain. However, for
calculations of deformation behavior beyond the elastic—
plastic yield transition, it is desirable that the CRSS
represent the resistance to move dislocations, and this
value can evolve consistent with changes in subcrystal-
line and granular microstructure.

Many CRSS hardening models have been developed
for coarse-grained polycrystals, where in the large grains,
dislocations tend to accumulate in amounts that increase
with strain and depend on strain rate and temperature.
These stored dislocations can hinder the motion of other
dislocations. This concept is used to build models for the
CRSS values 77 that vary as a function of strain rate and
temperature.

To reflect the changes in CRSS with increasing
dislocation storage, many earlier studies have adopted
an extended Voce hardening law.®? This law evolves the
threshold stress for each slip system in each grain with
accumulated shear strain I according to
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S

; I
=15+ (1] + 6iT) (1 —exp <— r?0>> , (1.48)

1

where I' = Y~ Ay* is the accumulated shear in the grain.
The Voce pdrameters tq, 0y, 6;, and (1o + T1;) are the
initial threshold stress, the initial hardening rate, the
asymptotic hardening rate, and the back-extrapolated
CRSS, respectively. In addition, the possibility of ‘self’
and ‘latent’ hardening are included by defining coupling
coefficients #**', which empirically accounts for resis-
tance against shear activity by system s associated with
shear activity on system s’. The increase in the threshold
stress of a system due to shear activity Ay* in the grain
systems is then calculated as follows:
s _ dt’ 55" A n,S
At _drz;h Ay . (1.49)

In the Voce law, temperature and rate effects are
implicit in the choice of the parameters 1o, 69, 0, and
(to + 7).

To explicitly incorporate effects of temperature and
strain rate, dislocation-density (DD) based CRSS hard-
ening models can be implemented in the place of
empirical forms such as the Voce law.**> In DD models,
the threshold stresses for slip are partly based on
dislocation storage on each slip system, which evolve
according to thermally activated rate laws. A general
form follows, wherein the CRSS for slip on a particular
slip system o is the sum of many terms: a friction stress
Tor, a forest dislocation interaction stress 1%, and
a dislocation substructure interaction stress T2

Tg = Tg,f + T?or + Tgub . (1 50)

where 1% and 13 are resistances related to the forest DD
pf,. and substructure DD pZ,, respectively. The relation-
ship is given by the extended Taylor law as follows:

Tior = XDV PR (1.51)

Tgub = ksubp’abav Psub log( (1 52)

1
b* vV psub)

Here y is a dislocation interaction parameter set to 0.9
and kg, = 0.086.%*

The value of stored forest density pf  changes accord-
ing to a competition between the rate of storage/gener-
ation and the rate of dynamic recovery/removal:

o o
ap?m 8pgenfor 8prem,for _

ops
8= Ior Ay 1.53
Pror 8,Ym | Y | ( )

In Eq. (1.53), k{ is a coefficient for the rate of
dislocation storage due to statistical trapping of gliding
dislocations and k3 is the coefficient for the rate of
dynamic recovery by thermally activated mechanisms
(e.g., cross slip, climb). The second coefficient can be
determined by

K(ET)  yb* KT ([
BETD (KT (EY) (1.54)
k2 g DB \&

where k, &y, g%, and D are, respectively, the Boltzmann
constant, a reference strain rate (taken here to be 107 s~ 1),
an effective activation enthalpy, and a drag stress. Last,
the increment in substructure density can be related to the
rate of dynamic recovery of all active dislocations as

apgem. or
Apsub :quan‘A’Yﬂ ’ (155)

o

where ¢ is a rate parameter that determines the fraction of
an o-type dislocations that do not annihilate, but become
part of the substructure DD.

The resistance for twin activation evolves considering
a temperature-independent friction term rg and a latent
hardening term that couples hardening between the active
and inactive slip and twin systems. Accounting for both
effects, the resistance for twinning is expressed as

=+ cPePprpy (1.56)
o

In this relationship, pB, bB, and C*P represent, re-
spectively, the elastic shear modulus, Burgers vector on
the given twin system, and the latent hardening matrix
used for coupling.

Last, these laws have considered the effects of the
microstructure, most often grain size D, according to
a Hall-Petch law. The Hall-Petch-like term follows the
equation83

« _ H'PVD*
Youp = 7 /=
\/ Dot

where, H*, b*, dygp» and u* are the Hall-Petch coefficient
per slip mode, the mean free path is defined as the
distance along the slip plane of slip system o from one
boundary to the next. Thus, #* depends on the orienta-

(1.57)

— o o o . . .
v oy - oy ki Pl — k3 (8, T)Phe tion of the crystal with respect to the interface normal and
the layer thickness A.
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G. Advantages and disadvantages of mesoscale
methodologies

Having reviewed the elements involved in these
mesoscale methodologies, it is worth remarking on their
advantages and disadvantages when it comes to modeling
PMP relationships.

One of the first and to this day commonly used CP
polycrystal models is the full constraint Taylor model. It
solves for the stress in each grain assuming that the strain
and strain rate in each grain equals the macroscopic strain
and strain rate. The two mean-field codes we reviewed,
VPSC and EPSC, are effective tools for estimating the
uniform grain stress and strain (and strain rate) in each
grain within a polycrystal.®> Unlike the Taylor model, the
grain stress, strain rate, and shape in the self-consistent
formulations will deviate from the average or macroscale
stress, strain rate, and applied deformation, respectively.
Bulk texture and grain shape distributions are predicted
well, comparable to the full field, spatially resolved
techniques. They are computationally efficient and can
be executed with minimal computational cost on a stan-
dard desktop (laptop) computer. They are ideal for
multiple simulations for different loading conditions,
involving changes in strain path, rates, and temperatures,
and for the large strain deformation characteristic of
metal forming processes.

In VPSC and EPSC, iterations are required at both the
single crystal level and the self-consistent level. In
practice, the number of iterations is subject to a prescribed
value of tolerance and the chosen convergence criterion.
Usually, 10 iterations are needed at the single crystal
level and 46 iterations at the polycrystal level. The first
time increment and the increments at the elastoplastic
transition in EPSC typically require more iterations than
these common values. Furthermore, these numbers vary
with crystal orientations and imposed deformation state.
For the same problem, the self-consistent schemes can be
up to one order of magnitude slower than the full
constraint Taylor model for the same time increment. In
the authors’ experience, 4—6 self-consistent iterations are
typically observed, and as a result, self-consistent models
are 4-6 times slower than Taylor-type models.

Compared to mean-field approaches, CPFE and FFT
can yield additional information on the effects of grain—
grain interactions, intragranular stress and strain evolu-
tion, and heterogeneous onset of localization, all of
which are important for understanding and designing
metal processes, as will be demonstrated shortly. They
also account for local neighborhoods and spatial reso-
lution in the mechanical fields below the grain scale,
such as stress concentrations at boundaries and inter-
sections of many boundaries (e.g., triple points, twin/
grain boundary intersections). These capabilities are
important for modeling many boundary driven

mechanisms that are sensitive to a combination of
interface morphology, character, and crystal orientation,
as will be shown later as well. However these capa-
bilities make them more computationally expensive and
reliant on realistic representations of 3D microstructures
(as described earlier in Sec. IL.E).

lll. MESOSCALE INSIGHTS INTO PMP
RELATIONSHIPS

Processing alters many mesoscale aspects of the
material microstructure, and among them, the main
mesoscale microstructural features are texture, grain size,
twin volume fraction, and dislocation density. These
microstructural features impact the deformation response,
including yield strength and ultimate strength, and
perhaps more importantly, the anisotropy in strength.
Advantageously, the standard versions of the aforemen-
tioned models can relate processing to evolution in these
important mesoscale quantities as well as the microstruc-
ture after processing to the deformation response
measured in mechanical testing.

Many high performance materials are inherently or
microstructurally complex, warranting advancements in
these methods beyond the standard versions. While the
basic rigorous mechanics formulations are preserved, the
extensions and their applications have varied in recent
years, and therefore, a good representation of the state-of-
the-art in mesoscale modeling requires presenting many
examples.

The examples in this section cover studies that have
used and extended mesoscale 3D, full field spatial
resolved computational models to investigate processing—
microstructure relationships in polycrystalline materials.
These include examining the influence of strain and stress
fluctuations at grain boundaries on the onset of deforma-
tion twinning or on shear banding. The need for discrete
modeling in this area arose since no theory or continuum
counterpart could address the problem.

A. Implementing grain boundary stress
fluctuations and role in the evolution of
deformation twinning into mesoscale polycrystal
models

Over the years, a series of studies have been performed
to develop a multiscale polycrystal model for metals with
low-symmetry crystal structures that deform easily by
slip and twinning. Many of these models couple a SC
scheme, either VPSC or EPSC, with a twin reorientation
scheme, such as PTR or CG, as described in Sec. II.B. As
mentioned, the model produces calculations of grain
average stresses as a function of its orientation and shape.
These conventional polycrystal SC-TW models can use
these grain-level stresses to determine if the grain will
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form a twin. The threshold to activate twinning is usually
a constant value, assigned a priori.

Mesoscale models are still faced with the problem of
how to capture twinning and its evolution in a polycrys-
talline microstructure for two reasons. First, twin initiation
occurs in the vicinity of internal boundaries and at certain
exceptional points in the boundaries. In a deforming
polycrystal, apart from large defects such as cracks,
experimental observations suggest that grain boundaries
are the most likely areas for twin formation,>>-2486-88
Second, it is well known that twin nucleation is a statisti-
cally rare event, for which activation is largely controlled
by a combination of probabilistic events. In the case of
formation of twins from grain boundaries, twinning
depends sensitively on the likelihood of having the right
local atomistic configurations combined with highly lo-
calized stress concentrations. Thus, the mesoscale chal-
lenge is predicting the evolution of twins, occurring
stochastically in time and spatially when the governing
factors involve local aspects of internal boundaries.

In a few recent studies,*®® a probabilistic approach
was developed to include grain-boundary-induced twin
nucleation into mean-field CP models, like VPSC with
a twin reorientation scheme. Unlike conventional poly-
crystal models to date, the model they used for twin
nucleation is not deterministic but dictated by twin
formation from points in grain boundaries, where high
stresses and weak defect sources simultaneously happen.

The approach involved incorporating two aspects of
the grain boundaries in a bulk average probabilistic sense.
One aspect was a probability model for the nucleation of
twins when some numbers of grain boundary defects
undergo stress-driven transformations, forming several
small nuclei which then coalesce into a single stable
nucleus.® It assumes that the timescale of the trans-
formation and subsequent coalescence is instantaneous
compared to the applied deformation and introduces
a characteristic length scale, within which a critical
number of transformations occur to produce a propagating
twin. The stochastic model gives an explicit form for the
probability distribution for the critical stress values
required for twin nucleation that could be used in the
VPSC model for activating twinning.

The other issue concerned the stresses that activate
twinning. These stresses are those that are generated at
grain boundaries and these tend to deviate significantly
from the average stresses calculated in VPSC for each
grain. To tackle this, distributions of grain boundary
stresses were obtained from separate full-field CP calcu-
lations. Taken together, the VPSC model simulations of
deformation were advanced to activate twinning when
a randomly sampled critical twin stress was exceeded by
a randomly sampled grain boundary stress.

As an example, Figs. 4(a) and 4(b) show the initial
texture and flow response of the polycrystalline Zr sheet

material when tested in simple compression at three
different temperatures: 76, 150, and 300 K. The initial
texture is a strong basal texture resulting from the clock
rolling procedure.®® As can be seen in Fig. 4(b), most of
the c-axes of the hexagonal close packed (HCP) crystals
of Zr are highly aligned in the through-thickness direction
of the sheet. The loading direction in the tests shown in
Fig. 4 is intentionally perpendicular to the plate normal
so that deformation twinning would be favored, see
Fig. 4(c). The drastic differences in the shapes of the
curves, yield stress, and hardening behavior are a conse-
quence of the underlying interplay of slip and the
formation and propagation of deformation twins.

Unlike slip, deformation twinning accommodates
deformation in one sense of the direction but not the
other, and therefore twinning is one source of plastic
anisotropy, particularly in highly textured materials, with
low-symmetry crystal structure (such as Mg, Ti, Be, and
their alloys). The mechanisms that are responsible for the
onset of twinning, and its propagation, are currently
subjects of intense study. Numerous experimental studies
find that in most cases, twinning is more likely to occur
as the grain size increases and in suitably oriented grains,
where the resolved stresses on the twin plane and twin
direction are high.?*-%-88:9091

As mentioned, 3D full field CP-FFT simulations were
used to calculate the stress fluctuations that would
develop in the grain boundaries in the initial loading
stages during the compression of the Zr sample. The
FFT-based algorithm computes a compatible strain-rate
field that minimizes the average work rate under the
constraints of the constitutive relation and stress equilib-
rium. Consequently, variation in grain boundary charac-
ter will introduce a randomness into the stress field.

For this particular calculation, the 3D RVEs were
created using the DREAM.3D digital microstructure
analysis environment. Figure 5(a) shows simulations for
one representative volume, comprised of approximately
500 grains with an initial rolling (basal) texture, similar to
the one in the material tested experimentally in Fig. 5(b).
The inhomogeneous stress distribution is shown in
Fig. 5(a), and the stress fluctuations as a selected strain
level are shown in Fig. 5(b). The latter was obtained by
calculating the grain average stresses and subtracting it
from the total stress. We observe significant deviation
from the average grain stress at the grain boundaries and
that the highest stress deviations occur at the boundaries.
Many grains have both compressive (“cold”) and tensile
(“hot”) deviations from the grain average. Figure 5(b)
shows the locations of hot spots in red and cold spots in
blue. Interestingly, hot and cold spots corresponded to
regions where three or more grains meet and not within
the interiors of grains. A similar outcome was reported
previously in a study of deformed FCC polycrystals,
using another 3D full-field CP model based on a Green’s
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FIG. 4. Deformation of rolled high purity Zr: (a) comparison of the experimental and calculated stress—strain curves at three different temperatures,
76 K (red), 150 K (blue), and 300 K (black). (b) The basal pole figure of the initial texture and (c) EBSD image of the Zr after 10% deformation

showing the extension twins. Reprinted with permission from Ref. 36.
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FIG. 5. CP-FFT calculation of polycrystalline Zr in deformation showing the (a) von Mises stress and (b) stress fluctuations for 550 grains. (c)
Distribution of the stress fluctuations after different strain levels ranging from 0.5% strain to 2% strain. Reprinted with permission from Ref. 36.

function homogenization scheme.”” For twin nucleation,
the interest lies in the “hot spots”.

For use in VPSC simulations, the CP-FFT calculations
were repeated for an ensemble of 100 representative Zr
material volumes to produce a statistically significant
probability distribution for the components of the stress
fluctuations generated at the grain boundaries in a deform-
ing polycrystal. The stress fluctuation tensor is made up
of six components, and all six are subjected to the VPSC
simulations. Figure 5(c) shows the observed deviation of
the o, component from the grain stress, G at selected
strain levels. Due to the averaging over multiple loading
conditions, the fluctuations on all three normal compo-
nents had approximately the same near-Gaussian distri-
bution, as did the three shear stress components. The
extreme tails of the distributions extend significantly
farther than would be expected from a perfect Gaussian.

The VPSC model incorporating the stochastic ap-
proach to twinning was used to calculate the deforma-
tion of Zr and the underlying twinning microstructure
(distribution of twin variants, twinned grains, and twin
thickness). Figure 4(a), shown earlier, also compares
the VPSC calculated stress—strain curves at 76 K, 150
K, and room temperature (300 K) with the experimen-
tal curves. Incorporation of the new twin nucleation
model leads to flow stresses and hardening rates in
excellent agreement with measurement across the full

temperature spectrum, an achievment not possible with
the conventional (deterministic approach) to twin
activation.

Calculations of the twinning microstructure are com-
pared with reported statistical electron backscatter dif-
fraction (EBSD) characterization in the same deformed
zirconium at multiple temperatures. One signature that
indicates that twinning is not deterministic is the report of
“non-Schmid twins”. Twins that form in grains are
expected to be the variant that has the highest Schmid
factor (among the six possible) and surprisingly many of
the twins formed in deformed materials are twin variants
of lesser rank, or not those with the highest Schmid
factor. Figure 6 compares the calculated and measured
number distribution after 10% strain and at 76 K. Both
the model and measurement are in agreement in several
factors. The frequency of twins with a given Schmid
factor m increases with m, which means that most of the
twins (and most of the twin volume fraction) are
concentrated in grains that are well oriented for twinning
(i.e., those with high Schmid factors). Also, the distribu-
tions are broad, with the frequency of twins with low
Schmid factors being non-negligible. Thus, a significant
fraction of twins have formed in grains less favorably
oriented. The analysis confirms that the observation of
non-Schmid twins arises because twin variant selection is
a stochastic process.
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The VPSC model with the stochastic twinning ap-
proach demonstrates a viable method for introducing
local, lower length scale, boundary-driven deformation in
mesoscale modeling. Specifically, this combined, serial
application of CP-FFT and VPSC work showcases in-
clusion of multiscale effects via the introduction of
stochasticity. The general idea is that the lower length
scale features are not explicitly captured in higher length
scale models. Rather, the distribution of possible states at
the lower length scale associated with a state at the higher
length scale is introduced through a probability model. In
doing so, important effects that the shorter length scales
can exert on the higher length scales can be taken into
account without the need to explicitly carry the lower
scale structural details through the simulation.

B. A combined full-field/mean-field model for
texture gradients and twinning during the rolling
of low-symmetry materials

Most often, the rolling process is modeled as plane
strain compression, which represents best the deforma-
tion of the center of a rolled sheet. In the actual rolling
process, the deformation state at the sheet surfaces where
the material meets the rolls can differ from the center.
Such gradients in deformation have been shown to result
in gradients in texture and other microstructural aspects,
usually for cubic materials, such as Cu and Al and steel.”
However, their severity and extent will be more pro-
nounced the greater the inherent elastic and plastic
anisotropy of the material. For highly elastically and
plastically anisotropic materials (such as hep Ti, Mg, and
Zr, and orthorhombic uranium, U), calculation of
deformation-induced texture gradients would be better
predicted with a mesoscale technique that strongly
couples the evolution of texture, local anisotropic crys-
talline response, and nonuniform boundary conditions.

Recent work used a multiscale FE-VPSC model to
simulate the development of texture in o-uranium.”*°°

0.2

-Model Prediction
0.15 |[_]JEBSD

0.1}

Frequency

0.05;

0 0.1 0.2 0.3 04 0.5
Schmid Factor
FIG. 6. Comparison of the Schmid factors for the twins that have

formed in Zr after 10% strain according to the measured (EBSD) and
calculations. Reprinted with permission from Ref. 87.

Uranium is a prime example of a metal that is highly
anisotropic. Pure U at ambient pressures and temper-
atures (up to 623 K) has an orthorhombic crystal
structure.”®®” Tt deforms by multiple slip and twinning
modes differing in their activation stresses, and, like most
metals possessing a low-symmetry crystal structure,
plastic deformation is highly anisotropic and sensitive
to texture.

The preferred slip and twinning modes for U have been
identified pre:viously.5’97’105 The easiest slip mode is
(010)[100], possessing only one slip system. Another
easy slip mode is called floor slip (001)[100], again
possessing one slip system, which serves as a secondary
slip mode, enabled by cross slip from (010)[100] up to
623 K but becomes the primary slip mode above 623 K.
The next easiest slip mode is the 1/2 {110}(110) slip
mode, which has two slip systems. The chimney 1/2
{112}(021) slip mode is more difficult but is necessary to
accommodate plastic strain in the [001] direction. The
observed twinning modes are {130}(310), and
{172}(312) and its reciprocal twin {112}(372). The
former is considered the easiest one. The twin shear §
of the {130}(310) twin is 0.299 and it reorients the lattice
by 69.3° about [001]. For the {172}(312) twin, S =
0.227, and it reorients the lattice by 92.6° about {(10)70).

In their approach, FE and VPSC are combined
concurrently, wherein the deformation of the sample as
it is rolled is calculated using FE and the constitutive
response at each integration point is supplied by VPSC.
The kinetics of slip are modeled using a rate-sensitive
flow rule and lattice reorientation due to deformation
twinning by the CG model (see Sec. IL.B.3). At the
subgrain scale, the threshold stresses for activating slip
are governed by the evolution of stored dislocation
density on the slip system according to thermally
activated rate laws and hence are explicit functions of
temperature and strain rate (see Sec. ILF).

Figure 7 shows calculated equivalent plastic strain
contours after each rolling pass for five rolling passes. As
shown, the FE simulation forecasts that strains develop
nonuniformly in the sheet, varying both from end to end
and through the thickness of the sheet. The impact on
texture development through the thickness of the sheet
can be seen in Fig. 8. These textures from both the
measurement and the model are presented using pole
figures for the top and bottom surfaces and the center.
Overall, the texture is very strong; two pronounced
maxima are observed in the {001} pole figures, both in
the experiment and model prediction, at all points
through the thickness.

One valuable output from CP models is slip activity
within the grains, which is hard to assess experimentally
(Fig. 9). The predominant slip modes operative during
rolling are floor slip (001)[100], and chimney slip 1/2
{110}(110). Twinning via the {130}(310) mode is
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FIG. 7. Fields of PEEQ after each subsequent rolling pass of pure alpha uranium. Reprinted with permission from Ref. 94.
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FIG. 8. Pole figures comparing the (a and c) measured and (b and d) calculated texture in pure uranium after 60% accumulated strain at a point in
(a and b) center and (c and d) near the surface of the sheet. Texture was measured and taken from simulations approximately 10 mm from the exit.
Reprinted with permission from Ref. 94.

activated in rolling and, in agreement with experiments, = domains, the model predicts that chimney and floor slip
achieves a significant twin volume fraction (calculated to  modes are active. The model finds that the grain
be 25% by the end of the rollig pass). Within the twin  orientations associated with the two distinct maxima on
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FIG. 9. Relative activities of deformation modes and a comparison between measured and predicted twin volume fraction during plane strain

compression of a-U at 573 K. Reprinted with permission from Ref. 94.

the (001) pole figure deformed predominantly by floor
(001)[100] slip and are strengthen by {130}(310) twins.

In the model, the surface textures are observed to
develop differently than those in the center. Comparisons
with prior calculations with stand-alone VPSC shows that
the center texture is similar to that predicted from the
ideal plane strain compression assumption, whereas the
surface textures are not. For validation, particular points
through the thickness of the sheet are compared with
EBSD measurements, as described in Sec. 1I.B.3, Fig. 1.
The notable difference in the surface and center textures
is an asymmetry in the two predominant peaks in the
{001} pole figure. Moreover, the bottom and top surface
textures are different. While the texture component with
the peak intensity in the bottom texture lies in the lower
maxima, the peak in the texture at the top surface lies at
the upper maxima. The difference is a result of the shear
stress state imposed by the rolls at the surface.

The ability of this mesoscale numerical tool to predict
these gradients, in spite of the computational expense,
can lead to better understanding and predictions of
recrystallization kinetics and finally recrystallized micro-
structures (grain size, texture) during post-rolling heat
treatments. Gradients in texture will influence many
microstructural features believed to affect recrystalliza-
tion, such as crystallographic orientation, gradients in
orientation, gradients in stored energy in the grains, and
near the grain boundaries, and the distributions in the
properties of grain boundaries.

C. A 3D full-field, spatially resolved CP model for
shear banding during the rolling of two-phase
laminates

An important issue encountered in fabricating two-
phase system laminate structures via metal forming
techniques, such as rolling, is plastic instabilities. The
onset of instabilities, such as (noncrystallographic) shear
bands that cut across many grains, during the rolling
process can prevent continuity in layers and detrimentally
affect subsequent properties, as will be shown
later.*!196:197 For processing, it is best to use a model

to guide on where and when such instabilities are likely.
Very recently, CPFE has been applied to simulate the
rolling of two-phase lamellar FCC/FCC and FCC/BCC
composites'®'"* and HCP/BCC composites.*' In the
rolling simulations, localized areas of stress or strain
concentrations developed, which could provide a source
for shear banding. Simulating the transition from such
localized stress or strain to shear banding, however,
requires incorporating an additional, noncrystallographic
shear band system' 13 or a local softening criterion*' into
the CPFE model.

Recently, Ardeljan et al developed a 3D
microstructure-based, full-field CPFE to study the onset
of shear banding during the rolling of a two-phase HCP-
Zr body centered cubic (BCC) Nb composite. For both
the Zr and Nb phases, the constitutive model used
anisotropic elasticity and a thermally activated DD-
based model for activating slip. Figure 10(a) shows the
starting microstructure. This microstructure models was
created using a synthetic grain structure builder
(DREAM.3D) and a meshing toolset for the 3D network
of grains, grain boundaries, and bimetal interfaces (see
Sec. ILE). The crystal orientations, grain shapes, and
grain sizes for each phase were initialized based on the
measured data.

Using this multiscale model, simulations of plane
strain compression are carried out to investigate the
connection between microstructural evolution and the
onset of strain localizations in 3D. Figure 10(b) shows
a typical slice of the 3D microstructure after a relatively
moderate amount of strain (10%). Hot spots were
assigned regions with strain concentrations greater than
1.5 and cold spots regions with concentrations lower than
0.5. Analysis of the entire polycrystals reveals that local
areas of relatively high (and relatively very low) strain
concentration occur at triple junctions or quadruple
points, as in the prior CP-FFT studies for FCC and
HCP polycrystals. It was found that the hot spots connect
via straining to create a banded configuration that extends
across many grains in the polycrystalline layer. This
event starts in the Zr phase and not in the Nb phase, and
the triggering hot spots in strain occur at junctions that

41
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FIG. 10. (a) Numerical setup of the 127 mm layered microstructure of the model synthetic polycrystalline aggregate with 1200 mm in RD,
480 mm in TD, and 1320 mm in ND. The FE mesh of 3D grains consisted of 1.5 million C3D4 (continuum 3D 4-node) tetrahedral elements.
(b) Distributions of the normalized value of equivalent plastic strain (PEEQ) at true strains of 0.1 and 0.2 showing strain heterogeneities developing
at grain boundaries and triple/quadruple junctions. Red circles indicate hot spots forming a band. Black circles indicate hot spots disappearing and
not forming a band. Blue circles indicate cold spots. (c) Shear banding after softening elements experiencing hot spots: deformed grain structure
(top) and distributions of equivalent strain normalized by the applied equivalent plastic strain (bottom) after subsequent straining of 0.2. Reprinted

with permission from Ref. 41.

join grains with very dissimilar reorientation propensities
and vice versa for cold spots. When an additional
softening mechanism (by lowering the dislocation density
at this points) is introduced into the model,
these localized strain concentration areas in the Zr phase
can lead to shear bands, as shown in Figs. 11(c) and
11(d).

Often, intermediate annealing steps between rolling
steps are used to soften the material. Using this multiscale
model, simulations of plane strain compression are
carried out to investigate the connection between the
microstructural changes associated with annealing and
the onset of strain localizations in 3D. Three annealing-
induced changes were investigated systematically: re-
duction in the accumulated DD, alterations in the
crystallographic texture, changes from an elongated to
equiaxed grain shape. It was shown that while it is
difficult to avoid strain localizations at grain junctions,
when provided a microstructure containing a few large
grains spanning the thickness (less junctions), elongated
grain shapes (consistent with rolling deformation), and
reduced DD (lower plastic anisotropy), the formation and
subsequent linkage of hot spots in the form of a band can
be postponed.

With insight from the model, a second attempt in-
volving periodic annealing treatments (575 °C for one
hour) between ARB rolling passes was introduced in the
laboratory. These extra steps enabled refinement to the
same thickness without shear band formation (Fig. 11).
Due to the successful suppression of shear band forma-
tion, material with individual layer thicknesses of
~90 nm was achieved through further processing.''*!'!3
The 4 um layer thickness micrograph is provided before
annealing to show the shear bands.

D. Additively manufactured materials

An exciting and swiftly emerging manufacturing pro-
cess for metallic materials is additive manufacturing
(AM). Over the period of its growth, the focus of AM
has shifted from prototyping to manufacturing fully
functional end-use parts. Direct metal laser sintering
(DMLS), as an AM technology, is increasingly being
evaluated to complement production of complex shaped
parts in the aerospace industry. DMLS, like other AM
technologies, has the advantage of eliminating the need
for extensive machining and expensive tooling over
traditional manufacturing techniques, such as forging. It
remains to be confirmed whether the parts produced
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using this novel manufacturing technology perform at the
same level as wrought or cast counterparts under various
monotonic or cyclic loading conditions and temperatures
typical for their expected applications.

In the AM process, the grain shapes can take on unusual
morphologies, differing from the equiaxed or ideally
layered shapes of the materials addressed thus far. Figure 12
shows EBSD maps of two different materials processed by
AM, the IN718 Ni-based superalloy and MarM509 Co-
based superalloy, demonstrating the elongated and rough
appearance of grains that can form from this process.

The microstructure and texture produced from this
process tend to depend strongly on the direction in which

the sample was built (BD). The samples of IN718 were
“printed” by the DMLS process in the form of bars and
rods and then subsequently machined into the mechanical
test samples. The heat treatment needed to produce the
final superalloy structure containing a high fraction of vy’
and y” phases and a lower fraction of the & phase''®'!”
was applied after printing and directly to the machined
test samples.

The EBSD image in Fig. 12(a) of the mesoscale
microstructure after all these processing steps displays
many columnar grains with an average aspect ratio of 5
(major axis a = 65.93 pm and minor axis b = 13.16 pm)
along the BD. The corresponding pole figures shown in

FIG. 11. Optical micrographs showing lamellar microstructures in the Zr/Nb composite produced by the ARB process with an annealing step after
every other ARB pass. For (a—c), strain levels/number of layers/average layer thicknesses in mm are as follows: 2.7/16/127, 3.5/32/58, and 4.1/64/30.
The micrographs at 127 and at 30 mm layer thicknesses are shown after the annealing step. (d) 4 pum layer thickness micrograph before annealing
showing the shear bands. (¢) TEM micrograph of nanolayered Zt/Nb with an average layer thickness of 88 nm. Reprinted with permission from Refs.
115 and 114 (Ref. 114 covered Creative Commons license CC BY 3.0—http://creativecommons.org/licenses/by/3.0).
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FIG. 12. EBSD maps showing the initial microstructure in the samples of AM (a) Inconel 718 and (b) MarM509. The colors in the maps indicate the
orientation of the built direction (aligned with the axis of vertically built samples) with respect to the crystal reference frame according to the IPF
triangle. Below the EBSD image are the pole figures showing the corresponding texture. Reprinted with permission from Ref. 118.
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Fig. 12(a) indicate that the material possessed a moder-
ately strong (001) texture component again along the
BD, with an m.r.d. of nearly 3. The directional columnar
grain structure and preferred texture are a consequence of
the heat flow roughly perpendicular to the surface of the
substrate during AM.

The anisotropic grain morphology and texture are
expected to give rise to plastic anisotropy, with proper-
ties depending on the test direction with respect to the
BD. Figure 13 shows the deformation response in
uniaxial tension or uniaxial compression in different
directions with respect to the BD: Vertical-V (aligned
with the BD), diagonal-D, and horizontal-H (normal to
the BD). All curves exhibit a classical decreasing
hardening rate, a signature of the slip-dominated plastic
deformation. In both tension and compression, the flow
stress is found to depend on the loading direction with
respect to the build direction. The anisotropy was
similar in both tension and compression. The strongest
direction was D, the second H, and the weakest V. The
difference was non-negligible, being, for instance, 7%
between the D- and V-direction tensile strengths. An-
other important anisotropic factor to extract from these
tests is tension-compression asymmetry. All build
directions (V, D, and H) exhibited significant 7-C
asymmetry, wherein the tensile flow stresses are lower
than the compression flow stresses.

Very recently the EPSC model was applied to relate
the deformation response of a Ni-based superalloy with
the build direction.''"® EPSC is well suited for under-
standing the influence of grain shapes and texture on the
elastic and plastic deformation of polycrystalline materi-
als, even in these extreme grain morphology cases. EPSC
directly accounts for the constraint effects that extreme
grain shapes can impose on the deformation of grains in
a polycrystal. In this case, the stress and strain rate and
lattice reorientation and slip activity in every grain are
direct outcomes of the direction of loading with respect to
the grain axes. The standard EPSC does not, however,

account for the directional hardening that odd grain
shapes can impose. In the EPSC model in Ref. 118, the
directional hardening caused by the grain shape was
implemented.

The added anisotropic effect posed by grain shape is
a microscopic one and concerns the restriction that grain
boundaries can have on the distance traveled by dis-
locations (the dislocation mean free path). Specifically,
dislocation travel distance depends on the orientation of
the slip plane of system s with the grain boundaries, d; .
For instance, when grains are equiaxed, the nearly
spherical grain shape would pose no anisotropic resis-
triction on the dislocation mean free path and all slip
systems have equal d‘r‘;qu. By contrast, for grains with
extreme shapes, bearing large aspect ratios, some slip
systems will be oriented with shorter travel distances than
others and hence will be relatively harder. The shape
effects on d . were represented microscopically using
the Hall-Petch law in Eq. (1.57). The dﬁlfp for any slip
system s in a grain with an instantaneous major axis a and
minor axes b and c¢ can be estimated by

) 2
&gy = . , (1.58)

where E;, 13;, E; are the components of a unit vector in
the slip direction expressed in a frame of the ellipsoid.
Equation (1.58) finds the longest possible distance in the
slip direction with respect to the ellipsoid. A minor effect
for local crystallography enters through the use of the
slip-system shear modulus projected on the slip plane and
slip direction.

The EPSC model was used to simulate uniaxial tests in
different build directions (vertical-V, diagonal-D, and
horizontal-H) and as shown in Fig. 13, produce good
agreement in yield stress, ultimate stress, and hardening
with all measured responses. Since these were room
temperature tests, the model presumed that the active slip
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FIG. 13. Comparison of measured and predicted true stress—true strain responses in tension and compression of IN718 as a function of build
direction as indicated in the figure. The compressive curves went to large strains, while the tensile curves terminated at much smaller strains (<0.2).

Reprinted with permission from Ref. 118.
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mode was the common one for FCC metals: {111}(110).
Most importantly, the anisotropy in yield was captured,
leading to a higher stress in the D sample and second in
the H sample in either compression or tension, a result
that can be attributed to the active slip systems in the
elongated grains having a shorter mean free path in D
than in V. To summarize, the model finds that the plastic
anisotropy, e.g., the percentage differences and ordering,
is due to the combined result of texture and grain shape,
resulting from the AM process.

IV. MAKING 3D MULTISCALE PROCESSING-
MICROSTRUCTURE MODELING FASTER

Thus far, this review paper has discussed the latest
development in 3D, mesoscale CP-based modeling tech-
niques and some recent advancements in the ability to
model the role that mesoscale microstructural features,
such as grain (orientation, size, and shape) and grain
boundaries, play in the development of local stress states
and deformation mechanisms during mechanical process-
ing or straining. In many of the processing—microstructural
studies reviewed here, it is clear that great computational
expense is required to account for phenomena across
mesoscale length scales. At present, it would be too
computationally intensive to consider concurrently the
macroscopic boundary conditions across a part and the
evolution of texture down to the dynamics of slip at one of
the interfaces. Methods for boosting computational speed
are needed if the field wishes to exploit the ability of
a fully 3D mesoscale model to probe a wide range of
extensive and intensive variables across a broad range
length and time scales. In this section, we discuss some
new and upcoming strategies for improving computational
speed of mesoscopic, microstructure-based modeling.

Many boundary-affected deformation phenomena de-
pend strongly on local intra- and intergranular stresses
and strain rate states. As the examples in this review have
demonstrated, to include in simulation their role in driving
deformation mechanisms, the mesoscale computational
models need to take into account the effects of microstruc-
ture, e.g., grain and boundary crystallography, shape, and
size, in the calculation of the mechanical fields. However,
implementation of the CP theories in the explicit full-field
analysis of an entire structure during processing and/or
deformation test modeling demands substantial computa-
tional resources or is computationally prohibitive. To over-
come the computational speed issue, the basic strategies
being pursued can be classified into (i) efficient computa-
tional schemes and (ii) high performance computer hard-
ware. Below these three methods are briefly presented.

A. Efficient computational schemes

In CP-based models, to evaluate the overall behavior
of a polycrystalline metal, the single crystal constitutive

response, e.g., the value of the individual crystal stress
given an applied strain rate tensor, needs to be solved.
These are highly nonlinear equations and the major
difficulty in solving the single crystal constitutive equa-
tions stems from the numerical stiffness associated with
this set of equations. Thus the key to improving the
computational speed lies in efficient computational
schemes to solve the single crystal constitutive equations.

Efficient computational schemes aim to obtain the
solutions in a noniterative way through the use of
databases of precomputed solutions. In recent years, the
data have come either in the form of Fourier (spectral)
coefficients of the generalized spherical harmonics
(GSHY 197123 ¢ discrete  Fourier  transforms
(DFTs)"?*'2® or the solutions are calculated during the
run time of the current simulation, based on the compu-
tationally efficient adaptive sampling methods.'?+13¢

As an example, the basic formulation of the spectral
crystal plasticity (SCP) method is reviewed, which is
based on databases established using Fourier (spectral)
representations. The basic task is to provide a database of
solutions for the viscoplastic single crystal plasticity for
the deviatoric stress ¢’'(x) for any crystal lattice orienta-
tion [which are usually defined using the three Bunge—
Euler angles,”*!' ¢ = (&1, @, ¢,)] subjected to any
isochoric applied strain rate tensor, D,,. Thus, the variable
domain of interest for ¢’'(g, D,) is the product of
orientation space and the strain rate tensor space. The
first step is to parameterize D, in terms of its magnitude
£ = ’Dp| = /Dy - D, and an angular variable, 0, in the
principal frame of the strain rate, D,, so that the essential
functions can be rewritten in the principal frame.'*? Let
Q be the transformation matrix from the reference frame
to the principal frame. Then Dy, in the principal frame can
be obtained using the following relation:

Dprincipal _ QTDpQ ) (159)

For 0, ranging within [0, 27m), the two variables are
defined as

Dprincipal 3
_ _ - principal principal
== = E m;€; X e
—

j
n = \/gcos(e —g), M, = \/2005(94-2),
iy = = 2eos(0)

In Eq. (1.60), the norm of the stretching tensor is
denoted by the scalar quantity &, the symbol ~~
represents unity since & = }Dp| = |Dp““Cipal|, and m;
represents the principal values of the strain rate, Dy,

~principal
€

(1.60)
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The next step calls for representation of the essential
functions for ¢’ (gp“mpal, 0, g) In the original formula-
tion, a GSH basis was used but later advanced using
DFTs. The DFT representation for the principal devia-
toric stress is given by

ieival L 1 e g 2rim
crlstrémpa =T E E E g Fiumc ™t eMo e g™ |
N¢1N¢N¢2N9 x 1 m

where Ny, , No, Ng,, and Ny represent the numbers of
total grid points in the Bunge—Euler space (indexed by r,
s, and ) and the deformation space (indexed by ¢) used
during discrete sampling of the function values. Since the
magnitude of the transforms decreases exponentially,
only a small fraction of the dominant Fourier transforms
are needed to calculate the functions over the entire space
typically of interest in CP simulations (e.g., the total
number of transforms is typically 1024). Equation (1.61)
reproduces the function values for ¢'P""P* on the grid
originally used in evaluating the Fourier transforms.

Within the same CP calculation, the above spectral
representation can be applied straightforwardly for any of
the field variables that depend on g = (¢4, @, ¢») and Dy,
such as the accumulated strain in the grain )~ [7%|(g, D)
needed for strain hardening or the plastic spin rate W (g,
D,) needed for texture evolution. The SCP approach was
able to accelerate the CP calculations by approximately
two orders of magnitude compared to the conventional
NR-based approach.'?*!%3

B. High performance computer hardware

Gains in computational efficiency in CP modeling
have been demonstrated via exploiting the latest advance-
ments in high performance computer hardware.'?3713°
Recent examples include adopting a computing architec-
ture based on graphic processing unit cards (GPUs).'®
While modern central processing units (CPUs) utilize
more cores and wider SIMD (single instruction multiple
data) units, running high performance super computers
made up of merely CPUs is power intensive. Over the
past decade, physical and engineering practicalities in-
volved in microprocessor design have resulted in flat
performance growth for traditional single-core CPUs.
Additional performance gain has been primarily achieved
through multicore designs and increased use of data
parallelism. At the forefront of parallel computing are
GPUs, originally developed for 3D visualizations and
optimized for parallel processing of millions of polygons
with very large datasets. Graphic workloads contain
tremendous amounts of inherent parallelism. GPUs are

considerably faster in comparison to CPUs for reading
a large dataset. For example, the memory bandwidth on
a Nvidia Tesla K80 GPU is up to 480 GB/s, while it is no
more than 68 GB/s for systems with PC3-17000 DDR3
modules and quad-channel architecture. In terms of

2mikr  opls 2mmt  2ming

(1.61)

n

computational power, Tesla K80 is capable of achieving
up to 2.91 and 8.74 TFLOPS for double precision and
single precision, respectively, while it is no more than
900 GFLOPS for an Intel Xeon CPU E5-2699 v4 @
2.20 GHz with 22 cores when using AVX2 and FMA3
instructions with the turbo boost enabled. Furthermore,
GPUs are cost effective in comparison to CPUs, and
a simple “off-the-shelf” GPU can significantly enhance
the computational capabilities of desktop workstations.
More importantly, GPU-ported software applications are
growing at a rapid pace to address industrial and
academic demands for massively parallel computing in
quantum calculations (e.g., NWChem software), molec-
ular dynamics (NAMD, GROMACS, AMBER soft-
ware), FE calculations (Abaqus), and polycrystal
plasticity simulation tools. Moreover, GPUs are
uniquely suited for high-resolution visualization and
analysis of large computational datasets (e.g., VMD
software).

C. Hybrid methods

The aforementioned three basic ways for speeding up
computation are not mutually exclusive, and thus,
exploiting two or all three is a viable option. For instance,
the multilevel toolset can be still computationally in-
tensive and possible speed up could be realized by
employing the SCP approach and a computing architec-
ture based on GPUs. In this final section, a strategy of
embedding SCP within implicit FE is first demonstrated
with two case studies and afterward, a possible method
for performing future computationally efficient PMP
evolution simulations is motivated.

1. FE-SCP examples

Recently in Refs. 11, 49, and 137, the SCP model was
incorporated into the implicit FE framework. In one
study, the FE-SCP model was applied to calculate texture
gradients that develop during the equal channel angular
extrusion (ECAE) of Cu. ECAE is a severe plastic
deformation technique that imposes large and
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FIG. 14. (a) Initial mesh of the billet and analytical rigid rounded die geometry for the ECAE simulation per experiments reported in Beyerlein
et al. 2005."*® (b) Initial mesh of the plate and analytical rigid top roll curvature for the rolling to a reduction of 50%. The cylindrical billet was
meshed using 1040 C3D8 (continuum 3D eight nodal) elements. The plate was meshed using 396 CPE4 (continuum plane strain four-node
elements). (c) Equivalent plastic strain contours predicted by the FE-SCP model. {111} pole figures showing predicted texture after ECAE at the
three material points in the top, middle, and bottom of the die channel. (d) Equivalent plastic strain contours as predicted by the FE-SCP model on
the left and the FE-VPSC model on the right. Corresponding {111} pole figures showing predicted texture after rolling at two polycrystalline
material points as described in the figure. Reprinted with permission from Ref. 49.

nonmonotonic strains, resulting in texture gradients from
the surface to the center of the billet. Figure 14(a) shows
the setup for the FE-SCP simulation of ECAE. The
deformed mesh after ECAE displaying the equivalent
plastic strain contours (PEEQ) is shown in Fig. 14(c).
The nonuniformity in the strain contours between the top
and bottom of the extruded billet is a direct consequence
of heterogeneous deformation history. The figure also
shows the predicted textures at three different locations in
the billet: top, middle, and bottom, in good agreement
with experimental measurements reported in Ref. 138.
In another study, the utility and computational speed
up of the FE-SCP model is demonstrated for predicting
texture gradients in the rolling of a BCC Haynes 25
alloy [Fig. 14(b)]. Figure 14(d) shows the PEEQ
contours on the deformed mesh after rolling to 50%
reduction. To highlight the quality and speed of the FE-
SCP model, the texture predicted by the FE-SCP model
and those predicted by an FE-VPSC model are com-
pared in the figure. Both models capture the consequen-
ces of friction between the contacting rolls and plate
surfaces, such as the localized shearing near the surface
when exiting the rolls, and both produce similar textures
after rolling. On the same workstation, the FE-VPSC
model required 32.2 h, whereas the FE-SCP model

J. Mater. Res., Vol. 33, No. 22, Nov 28, 2018

required 1.2 h, indicating the outstanding speed up via
the FE-SCP method.

2. Three-prong approach

It is envisioned that increased computational efficiency
can be gained by implementing the foregoing FE-SCP
framework onto graphics hardware. Figure 15 presents
one possible hybrid CPU-GPU computational platform
for FE-SCP intended for performing a microstructure-
sensitive metal processing simulation, such as rolling. The
platform shown considers a computer cluster, consisting of
Linux nodes that individually integrate GPUs and CPUs.
Starting from the bottom of the figure, the calculations are
distributed such that the grain-level computing is per-
formed on GPUs since GPU cards have thousands of cores
achieving teraflop performance. In scaling up to the next
level of the polycrystalline aggregate, the mesoscale
homogenization is performed on the CPUs of individual
slave Linux nodes. For a multiphase case, the polycrys-
talline aggregates may represent different domains in the
FE model. Last, at the highest level, the master Linux node
calculates the macroscopic component level response.
Parallelization using only CPUs without GPUs is also
possible; however, a cluster integrating many CPUs is
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FIG. 15. Possible multilevel CP FE calculations distributed on a hybrid CPU-GPU computer architecture.

significantly more computationally expensive than a com-
puter workstation integrating GPUs.

V. CONCLUSIONS

Over the years, mesoscale materials modeling approaches
have been built to elucidate the role played by the
microstructure, e.g., grain shape, grain orientation, grain
size, internal grain boundaries, and interfaces, in PMP
relationships of polycrystalline materials. Many high-
performance polycrystalline materials of intense interest
for future engineering applications are inherently or
microstructurally complex, warranting advancements in
such mesoscale deformation models beyond the standard
versions. This article aims to highlight the latest develop-
ments in three-dimensional, mesoscale CP-based model-
ing techniques and the challenges they have overcome. In
particular, some recent advancements in the ability to
model the role that mesoscale microstructural features,
such as grain (orientation, size, and shape), grain bound-
ary, and interface properties, play in the development of
local stresses states and deformation mechanisms during

mechanical processing or straining are described and
discussed. Examples cover studies that have used and
extended mesoscale 3D, full-field spatial resolved com-
putational models to investigate processing—microstruc-
ture relationships in boundary-dominant materials. These
include examining the influence of strain and stress
fluctuations at grain boundaries on the onset of de-
formation twinning or shear banding, and influence of
bimetal interfaces on microstructural evolution.
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