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Abstract—The ages of terrains on other planetary bodies
are chiefly determined using crater size—frequency distributions.
However, primary impacts can generate numerous secondary
craters that can affect the crater population. Classifying impact
craters as primary or secondary is commonly done via time-
consuming manual inspection, which limits the areas that can
be analyzed at high resolution. We present a parametric model
for characterizing small (100-600 m diameter) impact craters,
where the model parameters have implications for describing the
physical processes involved in their formation and modification.
We infer these parameters from craters in images captured
by the high-resolution imaging science experiment (HiRISE)
camera onboard the Mars Reconnaissance Orbiter. For each
crater within the appropriate size range, our algorithm creates
a 3-D surface for a parametrically modeled crater and a
2-D rendering using illumination metadata, including emission,
phase, and solar incidence angles at the time when the image was
captured. A function describes the likelihood of each set of model
parameters in terms of the geometry of craters in a given HiRISE
image. These values are then optimized using a Metropolis—
Hasting Markov chain Monte Carlo sampler. We evaluated three
different prior probability distributions over the parameter space
and two different likelihoods: one for digital terrain models and
the other for images. We show that after applying t-distributed
stochastic neighbor embedding (t-SNE) over the inferred crater
parameters, t-SNE is able to project the multidimensional crater
parameters into a 2-D space where secondary craters cluster
together and are separable from primary craters.

Index Terms—Image analysis, image generation, image shape
analysis, rendering (computer graphics).

I. INTRODUCTION

LANETARY surfaces such as those on Mars have com-
plex geologic histories that are modified by impact
cratering, volcanism, tectonics, fluvial, aeolian, glacial, and
periglacial processes. These geological processes provide
insight into how the Martian surface has changed through
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time, as well as where and when environments on Mars may
have sustained liquid water. The size—frequency distributions
of impact crater populations are used to date planetary surfaces
and constrain resurfacing rates [1]. In general, higher crater
number densities imply older surface ages or slower crater
removal processes. Crater morphology also provides insight
into target material properties [2], including the distribution of
subsurface volatiles [3], [4], variations in the strength of geo-
logic material [5], and surface modification processes [6], [7].

The size—frequency distribution of craters can be approxi-
mated by a power law [1], [8], where larger craters are rare
and smaller craters are more abundant. Age is related to the
density of crater number and their size. On the Moon, absolute
age is independently known for a limited number of locations
through the analysis of samples returned by the Apollo mis-
sions [9]. These ages are compared to observed crater size—
frequency distributions to infer the impactor flux striking the
Moon through time [10]. Orbital dynamic models and scaling
relationships are then used to estimate the impactor flux,
impactor type, velocity, and expected crater size—frequency
distributions in other parts of the Solar System [1]. Isochron
diagrams can then be used to relate observed crater populations
to absolute model ages [1], and these relationships can be
directly evaluated using remote-sensing observations of current
impact cratering rates [11].

Extrapolation of lunar-calibrated models to Mars carries
large systematic uncertainties that affect the model ages of
Martian surfaces [1]. Additionally, statistical uncertainty in the
observed crater population can introduce random errors. These
random errors can be estimated using Poisson statistics, such
that the random uncertainty scales with the square root of
the crater number density [11]. Accurate dating of surfaces
thus requires measuring large numbers of craters. However,
terrains that are young, or geographically small, may not
include enough large craters to sufficiently reduce the influence
of random errors. Therefore, crater counts may need to be
extended to include small craters, which increase the risk of the
population being contaminated by secondaries. Using impact
craters to date planetary surfaces requires two fundamental
assumptions: the impact cratering rate must be known through
time, and the craters must be spatially random. Secondary
craters violate both of these assumptions.

Secondary craters form when debris from a primary crater
impacts the surface elsewhere, creating new craters [12].
On Mars, secondary crater diameters are typically less than
5% of their associated primary crater’s diameter [13] and can
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be an important component of an impact crater population at
small crater sizes [13]. However, secondary craters form at
an unsteady rate at clustered locations. For instance, Zunil
Crater—located in the Cerberus Plains region of Mars—
generated approximately 107 secondary craters, ranging
10-200 m in diameter [13], which are concentrated in the
surrounding area and formed almost simultaneously.

Debris ejected from a parent crater that lands nearby the
parent may impact with a low velocity, generating small, shal-
low, and irregularly shaped craters; however, distant secondary
craters may be generated by debris traveling at higher veloc-
ities and have morphologies resembling primary craters [14].
Distant (high-velocity) secondaries cannot be easily separated
from the primary crater population, even by trained geologists.
However, geologists can recognize most low-velocity sec-
ondary craters through several criteria: they are shallower than
primaries of the same diameter, they may have irregularly
shaped rims, and they may be arranged in clusters or rays
emanating from the primary impact site [14].

To date, most crater classification has been conducted by
labor-intensive manual inspection. While automated crater
detection algorithms (CDA) exist [15]-[21], they are not able
to reliably distinguish between primary and secondary craters,
and they count all craters as primary.

We present a new method to characterize impact crater
morphologies and distinguish between primary and secondary
craters using satellite imagery. We represent craters with a
parametric model defined by crater diameter, rim height, rim
eccentricity and orientation, angle of repose, and depth of
sedimentary infill. To infer the parameters that characterize
the crater, we take a Bayesian approach, which treats these
parameters as random variables (a random variable maps the
outcome of a random phenomenon to a number). A prior
distribution model expresses our prior knowledge about the
probability of various values of these unknown crater parame-
ters. We define three prior parameter distributions: one describ-
ing primary craters, another describing secondary craters,
and a uniform prior to assess the primary and secondary
priors. The primary and secondary priors are based on the
differences between primary and secondary craters’ shape,
size, and depth-to-height ratio [14], [22], [23]. We formulated
two different functions to assess the likelihood of the input
data, depending on the type of the data source: one for the
grayscale images acquired by the high-resolution imaging
science experiment (HiRISE) [24], onboard the Mars Recon-
naissance Orbiter (MRO), and stereoderived digital terrain
models (DTMs) generated from HiRISE imagery [25]. A DTM
is a 2-D array of elevation measurements representing the
height of the terrain. The grayscale image likelihood function
computes the probability density of the image pixels. Simi-
larly, the DTM likelihood function computes the probability
density for the crater’s surface shape. To derive the posterior
probability distribution for the crater model parameters, we use
Bayes’ formula to revise our prior knowledge

p(X|I) o p(I1X) p(X) (1

where X is a vector representing the crater parameters,
p(X) is the joint probability distribution from any of the

5803

three prior distributions, and p(/|X) is the likelihood for the
data, I, defined separately for grayscale and DTM data. The
posterior distribution p(X|I) cannot be optimized analytically
in closed form, so we develop a Metropolis—Hastings (MH)
Markov chain Monte Carlo (MCMC) sampler to estimate the
parameters that maximize the posterior, that is, the parameters
for a crater morphology that appear to best explain the
image or DTM data under the given prior. Finally, we eval-
uate how well this modeling approach distinguishes primary
from secondary craters by assessing how the parameters that
maximize the posterior probability cluster depending on the
type of crater. The parameters are high dimensional, so we
project them into a 2-D space using t-distributed stochastic
neighbor embedding (t-SNE) [26]. We find that the projection
forms linearly separable clusters distinguishing primary from
secondary craters. This paper offers several novel contribu-
tions: 1) we demonstrate that a single image can be used to
automatically and reliably model crater shapes; 2) we show
that the search over the parameter space can be guided by
using prior distributions informed by empirical analysis of
crater morphologies; and 3) we show that the inferred crater
parameters can be used to separate primary craters from
secondary craters in a small test set of images.

II. RELATED WORK

Jahn [15] was one of the first to implement a CDA for Mars.
Jahn [15] applied the Hough transform to edge maps obtained
by Canny edge detection applied to grayscale images from the
Viking orbiters. Jahn [15] achieved good results with synthetic
images but poor results with Viking images because of the high
number of false positives in the classification.

In 1999, improvements to the circular Hough transform
made it more resilient to noise, scale, and illumination varia-
tions [27], leading to a variety of new algorithms for automated
landform detection, including the identification of impact
craters [16], [28], [29]. For example, in the context of impact
crater detection on Mars, Kim et al. [16] improved upon
the modified Hough transform method by constructing an
algorithm that included three stages: “focusing” to identify
regions of interest within an image, “organization” using conic
section fitting to identify impact craters, and “refinement and
verification” using template matching combined with the
application of a neural network to remove false positives. The
algorithm achieved an accuracy between 70% and 90% and
a quality factor between 60% and 80%, where accuracy is
defined as TP/(TP 4 FN) and quality factor as TP/(TP +
FN + FP), where TP is the number of true positives (craters
detected by the algorithm that are in the location of a real
crater), FN is the number of false negatives (craters not
detected by the algorithm), and FP is the number of false
positives (features detected by the algorithm that are not
craters).

In an alternative approach to impact crater detection,
Bandeira er al. [18] used a method involving three steps:
“candidate selection” using image thresholding to enhance
shadows produced by the raised crater rim morphology and
reduce noise, “template matching” using a fast Fourier trans-
form (FFT) to develop correlations between the binary image
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TABLE I
CRATER LOCATIONS DEFINED USING THE “MARS 2000” PROJECTION

Crater Latitude Longitude DTM Grayscale Image

cratery | 173.026°E | 27.915°N | DTEEC_026461_2080_026738_2080_A01 | ESP_026461_2080_RED_C_01_ORTHO
cratery | 131.911°E | 15.065°S | DTEEC_037948_1645_038291_1645_A01 | ESP_037948_1645_RED_C_01_ORTHO
craters | 131.887°E | 14.953°S | DTEEC_037948_1645_038291_1645_A01 | ESP_037948_1645_RED_C_01_ORTHO
cratery | 169.675°E | 9.560°N | DTEED_025459_1895_026514_1895_A01 | ESP_037948_1645_RED_C_01_ORTHO
craters | 169.666°E | 9.565°N | DTEED_025459_1895_026514_1895_A01 | ESP_037948_1645_RED_C_01_ORTHO
craterg | 169.658°FE | 9.567°N | DTEED_025459_1895_026514_1895_A01 | ESP_037948_1645_RED_C_01_ORTHO

scenes as a series of impact crater templates, and “crater
detection” using an analysis of the probability volume gen-
erated by the FFT to identify the most likely locations and
dimensions of impact craters within the scene. The resulting
classifier had a true positive rate of 86.57% and a false positive
rate of 15.95%.

Urbach and Stepinski [17] developed a more robust algo-
rithm that uses techniques from facial recognition, such
as Hu’s seven moments of invariance [30] and mor-
phological operations [31] to detect subkilometer craters.
Urbach and Stepinski [17] assumed that craters always appear
in the image as a pair of crescent-like highlight and shadow
regions. They defined the highlight image as the input image
and the shadow image as the negative input image. For the
highlight and shadow images, they performed background
removal followed by a power and area filter using morpholog-
ical closing operations. They applied a shape filter, using Hu’s
moments, matched shadow regions with highlighted regions to
create a crater candidate list, and then trained a decision tree
to identify craters. They reported that in some cases, the false
negatives exceeded the number of true positives. Consequently,
more recent research has targeted improvement of the machine
learning step that classifies craters [19], [32].

Martins et al. [33] hypothesized that craters are similar to
human faces in the sense that they have many regional features.
Martins et al. [33] used several weak classifiers, each having
a simple threshold on a single image feature, which were
combined in an iterative procedure to create a strong classifier.
Martins et al. [33] argued that they are able to detect craters
that have a diameter of seven pixels or greater.

Ding et al. [34], using the framework from [17] and insights
from [33], created a classifier to distinguish between craters
and noncraters. Ding er al. [34] extended the prior research
by using a least absolute shrinkage and selection operator and
a Bayesian classifier with an L1 regularizer [20] to classify
craters with features from the Urbach and Stepinski [17]
step. Later, one of Ding’s students, Cohen et al. [21] pro-
posed crater detection via convolutional neural networks.
Wang et al. [35] implemented Urbach and Stepinski’s [17]
pipeline and modified the classification stage with sparse
boosting and a reduced set density estimator. Even though
Wang et al. [35] achieved an 85% accuracy (compared to 89%
by Cohen et al. [21]), the stated contribution was being able to
detect craters fast enough for automated descent and landing
of planetary probes.

III. TEST DATA

To evaluate our modeling approach, we used MRO HiRISE
images [24] and stereoderived DTMs [25]. We chose

EYE wees Sediment

. L - = = Crater wall
—— Crater rim
--------- Crater ejecta

Fig. 1. Crater parametric model is formed by four curves stitched together,
which are labeled as yj, yp, y3, and y4. The crater center is located at the
bottom of the crater and serves as the origin for the x and y coordinates
relative to the crater center; x increases outward from the center and y
increases upward. This view shows the major-axis cross section, where the
crater radius is r.

three DTMs: 1) DTEEC_026461_2080_026737_2028_AO01,
which contains one primary crater greater than 600 m in
diameter, named cratery; 2) DTEEC_037948_1645_038291_
1645_A01, which includes two primary craters greater than
400 m in diameter, with the northern crater named crater;
and southern crater named craters; and 3) DTEED_025459_
1895_026514_1895_A01, which contains clusters of sec-
ondary craters (most likely sourced from Zunil Crater), named
cratery, craters, and craterg. Each of these DTMs also
includes an orthorectified stereopair of images. Image iden-
tification numbers and coordinate locations for each crater are
shown in Table I, and all original data are available through
the NASA Planetary Data System (https://pds.nasa.gov).
Although DTMs are not necessary for inferring craters using
our image grayscale likelihood, we used the DTMs as a
baseline for assessing the crater shapes developed by our
algorithm.

IV. PARAMETRIC MODEL

A. Overview of the Parametric Model

We define a parametric crater surface with nine random vari-
ables: center latitude and longitude; the crater rim is defined
by an elliptical shape, which is described by its semimajor
axis length, r, semiminor axis length, ripor> and the angle
of rotation for the ellipse, ¢; height of the sedimentary infill
within the crater, hg; angle of repose of the sediment, a; height
of the crater rim, h,; and crater depth, s. These parameters
combine to form a crater with the geometry shown in Fig. 1,
where the composite crater profile curve, y(x), is formed by
seamlessly stitching together four curves, as shown in

y1(x) 0 <x=< x
y2(x) Xs <X=r—15
= 2
y&) ) r—f3 <x=r+1 &
va(x) r+ﬁ <x < 2r
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Fig. 1 and (2) apply to points lying along the major axis of
the crater.

The 3-D surface of the crater model is constructed by
rotating the profile in Fig. 1 around the center axis, scaling
parametric curve in (2) by the radius r according to the
boundary of the crater rim ellipse. For other crater points,
the independent variable x is computed as a scaled version of
the radial distance, p, from the crater center. Let (p, 8) be the
polar coordinates of an arbitrary point within the crater. The
crater radius at angle 6 is given by the well-known equation

3)

I T minor
B \/[’"minor cos(0) — ¢)]2 + [rsin(@ — ¢)]2 .

For point (p, #) within the crater, we compute x by scal-
ing p according to the crater radius at angle 6

x(p,0) = pr/rg. 4)

ro

Thus, we obtain

V[Fm cos(@ — ¢)12 + sin(@ — ¢)2

m
To simplify the derivation of parametric curves for use in (2),
we normalize all craters so that the semimajor axis length is 1;
the semiminor axis length is scaled accordingly to be r,.

A fresh secondary crater could be shallow and still have a
well-preserved rim; this is modeled by relatively large values
of hg, a, and h,. On the other hand, an old primary crater
might exhibit a rim that has slumped into the interior of
the crater, thus also having larger iy and o but smaller A,.
Craters are not necessarily rotationally symmetric, and sec-
ondary craters tend to be elliptical [14]. Because our goal is
to differentiate between primary and secondary craters, it is
important to have parameters that model the eccentricity of a
crater.

x(p,0)=p ®)

B. Parametric Curves

Curve y; describes sediment that has accumulated over time
on the crater floor. This sediment can be rim material falling
into the crater, or aeolian sediment settling into the crater.
Curve y; is defined as a third-order polynomial

yi = hy 4 cox? 4 dax?. (6)

The constants ¢» and d» were found by solving a system of
equations representing the following constraints: 1) curve y;
passes through (x;, ys) and 2) at the point (xg, ys), the slope
of curve y, equals the tangent of the angle of repose.

Curve y; describes the shape of a fresh bowl-shaped impact
crater [36], and it is defined as a quadratic function

v2 = (h+hs+h) (%) %)

where £ is the crater depth measured from ground level to the
lowest point of the crater, A is the depth of the sedimentary
infill within the crater, and &, is the height of the crater rim
measured from ground level to the highest point of the rim.
The crater depth is constrained by the semimajor axis, , where
h = 0.1624(2r) + 0.0065 [23].

The angle of repose a describes the maximum surface
slope angle for which a granular material is stable; if the
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surface angle inclines beyond this point, additional sediment
will slide down and accumulate at the bottom of the crater.
The point (xg, ys), where the slope of y, equals the tangent
of the angle of repose, is given by the following equation:

. tan (o) r>
T 2(h+hg+hy)

Curve y3 describes the shape of the crater rim and is defined
as a third-order polynomial

®)

Xs

y3 = ys + bax + c3x? + d3x3. )

We empirically sampled 30 small craters in the DTMs and
determined that the shape was adequately fit by a third-order
polynomial. The constants b3, c3, and d3 are found by solving
a system of equations to ensure that the slope of the curve
matches the slopes of the adjacent curve segments.

Curve y4 describes the crater ejecta and uplifted terrain
outside the crater rim [36] and is defined by

i =hy (§)3+h+hs. (10)

Curve ys4 connects with y3 and projects to a rim crest that
would meet the projection of y; at the point (v, hy + h + h;).
However, to realistically model the crater rim, the projected
rim crest is replaced by curve y3. Curve y4 also follows the
decay described in [36]. In our implementation, we extend
curve y4 outward to a distance of twice the crater radius (2r)
from the crater center. To fit craters on a slope, plane rotation
is removed by detrending the surface [37].

C. DTM Likelihood

The likelihood of the DTM data given the model parameters
is approximated as being proportional to e~£4, where E; is
the mean squared error between our parametric crater model
and the relevant portion of the corresponding HiRISE DTM

Y0 Clx, y)ldtm(xy, yi) — y(p, O)1

> Clxiy i) '
The function dtm(x;, y;) returns the height value of the DTM
at point (x;, y;), and y(p, @) is the height of the parametric
crater evaluated at polar coordinates (p, #). Let (x, y.) be
the center of the parametric crater. The values of p and @ are
computed from the crater-relative rectangular coordinates as
follows:

Eq Y

p = ||(xia )’1) - (-x6‘9 )’c)” (12)
6 = arctan (u) . (13)
X — X¢

Let C(x;, y;) be an indicator variable defined as 1 in regions
where the parametric model is a crater, and O otherwise.

D. Grayscale Likelihood

The likelihood of the grayscale HiRISE image data given
the model parameters is approximated as being proportional
to e~ Ei | where E; is the mean squared error between our 2-D
rendering of the parametric crater model and the corresponding
portion of the HiRISE image

_ 2 O,y (xis yi) — I (p, 0)]2

E.
' Ei C()Ci, yl)

(14)
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Let I(x;, y;) be the grayscale image at point (x;, y;), and let
I1.(p,0) be the image rendered from the parametric crater
model. We use Lambertian shading, which models diffuse
reflection, as on Mars diffuse reflection dominates [38]. The
intensity of a diffuse point is calculated as the cosine of
the angle between the direction to the sun (derived from the
HiRISE metadata), L, and the surface normal, N (equivalently,
the dot product between the two vectors)

Each surface normal, N, is determined by calculating the
surface gradient of the parametric crater model. We use a
graphics processing unit to efficiently calculate the surface
normals.

E. Priors

From the work of McEwen and Bierhaus [14], we know
some prior information about craters: 1) primary craters are
generally circular, while low-velocity secondary craters tend
to be more elliptical; 2) the semimajor axis of a secondary
crater ellipse is aligned with a ray extending from its parent
primary crater; 3) secondary crater diameters are typically less
than 5% of their primary crater’s diameter; and 4) secondary
craters are shallower when compared with the primary craters
of similar size. We incorporated these differences in shape,
diameter, and crater depth into our model by specifying three
different sets of prior distributions over r, r,,, and h: one
for primary craters, one for secondary craters, and a third that
assumed uniform priors over r, r,,, and hg. In all three cases,
all other parameters (h,, ¢, o, longitude, and latitude) were
given uniform priors.

We used normal distributions as the form of the prior
over r, rp, and hg. For primary craters, the Gaussian means
(ur, Wr,, and pp,) and the standard deviations (o,, o,,
and op,) were estimated based on craters with diameters
between 1000 and 1350 m from the Robbins and Hynek [22]
crater database. For secondary craters, we estimated the means
and standard deviations based on empirical measurements
of 30 small (50 m < diameter < 350 m) craters observed
within DTEED_025459_1895_026514_1895_A01, which are
interpreted to be secondary craters from Zunil.

V. CRATER PARAMETER INFERENCE

Given a data source, either a DTM or grayscale image,
with the appropriate likelihood function and a prior distrib-
ution set (either primary, secondary, or all-uniform), we then
computed the posterior distribution according to (1). As the
posterior is a nonconvex function and likely to have many
local optima, we developed an MCMC sampler to search for
the best parameter values. In particular, we used the MH
algorithm [39], using a normal distribution as the proposal
distribution. According to the MH algorithm, a new proposed
set of parameter values is sampled from the proposal distribu-
tion centered on the current set of parameter values; this new
proposed sample is evaluated against the current parameters
and, if accepted, becomes the new parameter set, otherwise
another proposed sample is drawn. This process repeats with
the MH algorithm acceptance test guaranteeing that after
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sufficient samples, all future samples are drawn from the
true posterior distribution. We select the maximum posterior
sample, known as the maximum a posteriori (MAP) estimate,
as the estimate for the best fit of the crater parameters.

A. Crater Profile Evaluation

Each MAP estimate of model parameters determines a 3-D
surface that is hypothesized to estimate a best fit to the
evidence (DTM or grayscale image) of the crater. In order to
evaluate how well the model fits, we compute a crater profile
by averaging 360 2-D profiles generated by slicing the 3-D sur-
face by a perpendicular plane that passes through the center of
the crater model, and rotating the plane at 1° intervals. Because
craters are not rotationally symmetric, we cannot compute a
crater profile by simply averaging all 360 profiles of a given
crater; instead, we average the profiles after transforming them
to have the same crater rim distance to the center. For each
crater, we compare the DTM crater profile to the inferred crater
profile to evaluate the quality of the inferred crater model.
After computing the crater profiles, several error measures are
derived. First, efoor » is the difference between the modeled
height of the crater floor and the observed height of the
DTM crater profile, measured at the center of each crater.
Additionally, erim x and erm j are the differences between
the x location and the height of the crater rim, respectively,
measured between the modeled and observed crater profiles.
Finally, esap is the sum of absolute height differences between
each point from the inferred crater and the DTM crater.

B. Normalization of Parameters and Error Measures

In our set of evaluation craters, primary crater diameters
are about twice as large as the secondary crater diameters.
Therefore, to facilitate comparisons, we normalized each crater
parameter and error measure by scaling the crater by a
factor that would make the semimajor axis length equal one.
Additionally, the value of esap is normalized by the total
number of points summed in the error calculation.

C. Results

Tables II and III show the error measures after inferring
the parametric crater model using the DTM and grayscale
likelihoods, respectively. In each table, each row corresponds
to a different crater, where cratersi;_3 are assumed to be
primary and craterss¢ are assumed to be secondary crater
types. The two major columns are labeled uniform prior and
appropriate prior. Uniform prior indicates the model included
the set of priors that are all uniformly distributed, while appro-
priate prior means the set of priors was used that matches the
assumed crater type (e.g., priors for primary craters were used
for the assumed primary type). Within each major column,
the four subcolumns correspond to the error measures: efioor i,
erim_x» €rim_y, and esap, with mean errors and their standard
deviations calculated based on 100 runs of the MH sampler,
where each run involves changing the random seed and using
different initial parameter values. The final column for each
table, labeled dsap, shows the change in percent difference of
the esap error measures between the uniform prior and the
appropriate prior for each crater.
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TABLE II
CRATER MODEL ERRORS, INFERRED USING DTM LIKELIHOOD
Uniform prior Appropriate prior dsAD
Crater €floor_h Crim_x €rim_h €SAD €floor_h Crim_x Crim_h €SAD (%)
cratery 0.00 £ 0.00 0.134+0.01 0.03 = 0.00 2.60 £0.10 0.01 = 0.00 0.124+0.01 0.03 £ 0.00 2.33 £0.09 10.38
craters 0.01 4+ 0.00 0.11 +0.07 0.04 £0.01 4.67+0.23 0.01 + 0.00 0.10 £ 0.00 0.04 +0.00 4.31 £0.05 7.71
craters 0.01 £ 0.00 0.12+£0.13 0.04 £0.01 4.65 £ 0.55 0.01 +£0.00 0.09 £0.04 0.04 +0.00 4.054+0.20 12.90
cratery 0.00 £ 0.00 0.10 £ 0.01 0.02 +0.00 3.81+0.05 0.00 = 0.00 0.12+£0.01 0.02 £ 0.00 4.00 £0.04 —4.98
craters 0.01 +0.00 0.14 £ 0.06 0.07 £0.01 5.46 £ 0.55 0.01 + 0.00 0.16 +0.02 0.07 £0.01 5.31£0.16 2.75
cratere 0.03 £ 0.00 0.22 £0.03 0.04 £0.01 5.42 +0.16 0.02 £ 0.00 0.26 +0.03 0.04 +£0.01 5.53 +0.09 —2.03
TABLE III
CRATER MODEL ERRORS, INFERRED USING GRAYSCALE LIKELIHOOD
Uniform prior Appropriate prior dsAD
Crater € floor_h Crim_x €rim_h €SAD €floor_h Erim_x €rim_h €SAD (%)
crater; | 0.09+0.00 | 0.06+0.01 | 0.08£+0.01 4.88 £0.23 0.07+0.00 | 0.02+£0.01 | 0.16 +0.01 5.92+0.23 —21.31
craterg | 0.144+0.01 | 0.08+0.01 | 0.04 +£0.01 10.27 £ 0.43 0.10£0.00 | 0.01 £0.01 | 0.054 0.00 8.15+0.20 20.64
craters | 0.19£0.01 | 0.02+£0.00 | 0.10+0.01 10.08 £ 0.62 0.224+0.00 | 0.00+0.00 | 0.10£0.00 | 11.00+0.17 —9.13
craters | 0.07+0.01 | 0.04+0.02 | 0.06 +£0.01 7.14£0.72 0.04 £0.02 | 0.07+£0.15 | 0.04 +0.04 5.51 £+ 1.88 22.82
craters | 0.424+0.39 | 1.10+1.47 | 0.06 £0.14 | 23.54 +52.15 | 0.09 +0.03 | 0.16 =0.04 | 0.05+ 0.02 9.23+0.93 60.79
craterg | 0.13+0.04 | 0.09+0.07 | 0.03+0.01 11.57 £1.93 0.06 +£0.01 | 0.144+0.04 | 0.03+0.01 8.93 + 0.92 22.81
Comparing columns efoor 4 and ey , from Table II with  [A
Table III, we see a trend that the DTM likelihood outperforms
the grayscale likelihood, but when we examine the ey x error
measure, we observe the opposite trend. This indicates that
the DTM likelihood does best when fitting the crater center,
sediment infill, and rim height but performs poorly in fitting
the rim location. This occurs because the DTM likelihood A
only considers the height of the points and ignores the crater Pixel Difference
surface normals and their effect on the reflected light. When

the surface normal changes in the crater model, the rim region
does not exhibit great change in height, but does exhibit
an abrupt change in illumination intensity. The grayscale
likelihood uses the surface normal information, resulting in
a better inference for the crater rim location.

D. Limitations of the Likelihood Models

It can be advantageous to convert intensities (i.e., ener-
gies measured by the remote sensing system) to scaled
intensities that maximize the contrast (or stretch) within an
image. However, clipping can occur when the intensity of
a certain pixel falls outside the minimum and the maxi-
mum value that can be represented. Clipping is particularly
problematic for impact craters that can include deeply shad-
owed or brightly illuminated faces. For example, craters,
imaged within HiRISE image ESP_037948_1645_RED_
C_01_ORTHO, includes sun-facing craters walls that result in
clipping, where surface normals approach the orientation of the
sun directional vector. craters fits are good near the rim and
the crater ejecta region, which results in an accurate location
for the crater rim (em_, is almost zero). However, MCMC
failed to find an accurate geometry in the center region, and
in most cases inferred a deeper crater (efoor 4 is three times
bigger in this crater than in the other craters). This poor fit is
interpreted due to clipping in the grayscale image because the
crater geometry is correctly inferred using the DTM likelihood.
Additionally, crater,, which is south of craters in the same
image, has a better fit overall using the grayscale likelihood
because it was not affected by clipping.

Fig. 2. Analysis of the rendered inferred crater model for craterg using the
grayscale likelihood. (A) Error function between (B) craterg from HiRISE
image ESP_037948_1645_RED_C_01_ORTHO and (D) rendered inferred
crater. In (A), black is the maximal pixel difference and white is none.
(C) craterg from DTM DTEED_025459_1895_026514_1895_A01 overlap-
ping with the 3-D geometry of the inferred crater.

The crater; model was complicated by its crater rim height
asymmetry. The appropriate (i.e., primary crater) prior has
yielded better results in estimating the center (lower efoor )
and rim location (lower ey ) for this crater, but had trouble
explaining its irregular rim height, which resulted in a higher
erim_h using the appropriate prior, relative to the uniform prior.

Secondary craters, craters, craters, and craterg, lie in
a region with almost no image clipping, yielding a better
fit overall for these craters. Fig. 2 shows a rendering of
the inferred crater model for craters using the grayscale
likelihood. The fit is good, except for the bottom-left segment,
where the crater wall casts a shadow that we do not include
in our modeling.
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E. Influence of Priors

Fitting craters was challenging because it partially overlaps
with another crater. Using a uniform prior allowed the parame-
ters to vary widely, which resulted in the algorithm attempting
to fit landforms within the grayscale image that were not
craters. However, using the DTM data, the algorithm resulted
in a bimodal parametrization, alternatively fitting one of the
two overlapping craters. Consequently, standard deviation for
the esap value for craters MCMC inference is two orders
of magnitude higher than for the rest of the fitted craters.
Changing to the secondary crater prior for craters resulted
in an improvement by more reliably finding the location of
the crater rim by constraining the search to elliptical craters.

When comparing Table II (DTM input) uniform prior
column, eqoor », With the appropriate prior column, egoor 4,
we see almost no change in error; however, comparing
Table III (grayscale input) uniform prior column, efoor i,
with the appropriate prior column, efoor 1, there is a decrease
in efigor 4. Using the DTM likelihood, the error function is
sensitive to height differences, and thus the priors based on
height values are not as informative, but when using the
grayscale likelihood, the error function is more sensitive to
changes in surface normals rather than height, resulting on
an informative prior, and overall better fit. Our primary crater
prior has been extrapolated from characteristics of primary
craters of 1000-1350 m diameter, and this extrapolation
caused some of our priors to be detrimental to the grayscale
crater fit. For instance, going from the uniform prior to the
informed prior for crateri_3 resulted in an increase in error
for erim_n, even though there was a decrease in error for erim_x.
However, the primary crater prior did not significantly affect
the inference when using the DTM likelihood because the
likelihood for the DTM focuses on the difference in heights
between the inferred and observed crater heights. Therefore,
in calculating the posterior probability distribution, which is
equal to the prior times the likelihood, the fit was insensitive
to the primary crater prior because it was outweighed by the
likelihood. The behavior is different for a grayscale likelihood
because the error function is sensitive to changes in surface
normals, relying on the priors to be informative of the shape
of the crater. This resulted in higher overall errors for two
out of the three primary craters, relative to the fits obtained
using uniform priors, as evidenced by negative dsap values
for craters cratery and craters. This is due mainly to an
increase in erim_j, in turn due to the usage of a poor £, prior for
primary craters. However, usage of the informed prior lead to
a reduction in ey _x by improving the crater shape parameter
prior, r,,. In contrast, using informed secondary crater priors,
error measures increased for rim location, ey r, leading to
slightly higher errors when using the DTM likelihood, but
substantial improvements to all error measures when fitting
the grayscale likelihood. This suggests that the r, prior is
poor, but the priors for 4, and h are highly informative.

VI. CRATER PARAMETERS PROJECTION
The parametric crater model involves a number of parame-
ters, which can be grouped to form a high-dimensional crater
parameter vector. The t-SNE [26] is a nonlinear dimensionality
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reduction technique that reduces high-dimensional data into a
lower dimensional space and is often used to project data to
two dimensions to facilitate visualization. In t-SNE, similar
vectors are modeled by nearby points in the lower dimensional
projection. t-SNE constructs a probability distribution [defined
in (16)] over pairs of high-dimensional vectors, in our case
the crater model parameters. The more similar vectors are,
the higher the probability of being chosen to be embedded as
a neighbor, while dissimilar vectors have smaller probability.
Next, t-SNE defines a similar probability distribution [defined
in (17)] over the points in the 2-D embedding map by
minimizing the Kullback—Leibler divergence [40], which mea-
sures how one probability distribution diverges from another.
We define X; as the high-dimensional crater parameter vector
that describes the crater geometry. Maaten and Hinton [26]
state that the similarity of data point X; to data point X is
the conditional probability, p;;, that X; would pick X as its
neighbor, if they were picked in proportion to their Gaussian
probability density having mean X;. p;|; is computed by
—I1X; =X/
e 257

pi|j = X=Xl (16)

Sipie

We use the Maaten and Hinton [26] method to calculate o;,
in which smaller values of ¢; are used in denser parts of the
data space. They also define ¢;|; as the similarity measure
between two points, X; and X j» in the projected 2-D space
(141X = X117
Ek;ﬁi(llXi - Xi1?)!
The algorithm then proceeds to minimize the Kullback—Leibler
divergence between both distributions, p;|; and ¢;;.

The t-SNE transformation does not transform the data to
physical units. Instead, it is represented by abstract units
defined by a probability measure. The physical interpretation
for two crater parameter vectors that are similar is that their
Euclidean distance is small. For example, after parameter
normalization, two craters that have similar hg, ry;,, and A,
would be close to one another, while if any of these parameters
is widely different, the Euclidean distance between the crater
parameter vectors would be large.

We normalize all crater parameters as explained in
Section V-B. Fig. 3 shows six plots of t-SNE embedding of
inferred crater parameter vectors. Within each plot, each row
uses a different prior: uniform, primary, and secondary crater
priors. Each column uses a different likelihood: DTM and
grayscale likelihood. Each data point is a 2D t-SNE projection
of the inferred crater parameter vector, and parameterizations
are inferred 100 times for each crater, resulting in each plot
containing 600 data points for all six craters.

As mentioned in Section V-C, craters partially overlaps
another crater. Using the DTM likelihood with a uniform prior
resulted in craters parameters forming two clusters, which
each clustering corresponds to the properties of one of the
two overlapping craters. In contrast, when applying a grayscale
likelihood with a uniform prior to craters, 63 of 100 para-
meterizations cluster near the other secondary craters, craterg

dilj = A7)
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Fig. 3. t-SNE embedding of crater parameters, where each data point is a 2-D projection of the crater parameter vector, and each plot contains 100 inferred
vectors for each of six craters. (A), (C), and (E) DTM likelihood. (B), (D), and (F) Grayscale likelihood. (A) and (B) Uniform prior. (C) and (D) Primary crater
prior. (E) and (F) Secondary crater prior. Within each plot, each cluster has a number indicating the crater it was inferred from. Triangle: craters interpreted
as primary. Circles: craters interpreted as secondary. Numbers that correspond to the crater names are shown in Table I.
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and craters. The remaining points are spread out, as shown
in Fig. 3. This suggests that some of the parameters inferred
for craters are widely different and the algorithm may be
attempting to parameterize some landforms that are not impact
craters. Using a primary or secondary prior causes craters to
be restricted to geometries that resemble secondary craters,
guiding the parameter search to fit the crater.

In our crater model, the rim height is assumed to be constant
for all values of #. When fitting craters using a uniform prior
and a DTM likelihood, the irregular heights of rim of craters
resulted in some MCMC runs inferring different parameters for
the crater rim geometry, leading to some parameterizations to
diverge into separate clusters. Using a primary or secondary
crater prior caused the parametrization between craters to be
consistent, eliminating the cluster divergence. Additionally,
this does not seem to pose an issue for the grayscale likelihood,
and we attribute the better performance of the algorithm in
this case to the continuous visual appearance of the rim
due to a smoother change in the orientation of the surface
normal.

In general, t-SNE assigns each primary crater
(i.e., cratersi—3) to a widely separable clusters, whereas
the secondary craters (i.e., cratersi—_g) concentrate within
a single cluster. We interpret this to represent differences
in the morphologies of the three primary craters, which
formed at different times and have experienced different
modification histories, whereas all three secondary craters are
of similar size, would have formed at the same time, and
have undergone similar postemplacement modification, which
resulted in similar crater geometries and parameterizations.

VII. CONCLUSION

Subkilometer craters, interpreted as secondary craters, share
common features that allow their inferred crater parameters to
cluster together under the t-SNE projection. Primary and sec-
ondary craters are also separable within the t-SNE projection
using either a DTM or grayscale likelihood. Informed priors
did not consistently improve crater fits for both primary and
secondary craters, but they substantially reduce the variability
in the parameterized fits of both crater types, thereby improv-
ing their separability using t-SNE.

Our model can be improved in a number of ways:
1) empirically measuring the geometry of a large num-
ber of subkilometer-scale primary craters to inform the pri-
mary priors, rather than extrapolating priors from the
characteristics of 1000-1350-m-diameter craters within the
Robbins and Hynek [22] database; 2) using a larger num-
ber of secondary craters to improve secondary priors; and
3) modifying the parameterization of crater rim heights for
both primary and secondary craters to vary with 6 to better
represent the irregular shapes of impact crater rims. While
our model can be improved with better informed priors, our
results here support our proposal that the Bayesian framework
provides a useful method to model and differentiate primary
and secondary craters, making it feasible to accurately date
newer surfaces on Mars, where only small (<1 km diameter)
impact craters are available.
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