Session 5B: Professional Development

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

Infusing Computing: Analyzing Teacher Programming Products
in K-12 Computational Thinking Professional Development

Yihuan Dong, Veronica Cateté, Nicholas Lytle, Amy Isvik, Tiffany Barnes
Robin Jocius, Jennifer Albert, Deepti Joshi, Richard Robinson, Ashley Andrews
North Carolina State University, Raleigh, North Carolina
The Citadel, Charleston, South Carolina
{ydong2,vmcatete,nalytle,aaisvik,tmbarnes} @ncsu.edu, {rjocius,jalbert,djoshi,rjmr,ashley.andrews} @citadel.edu

ABSTRACT

In summer 2018, we conducted two week-long professional devel-
opment workshops for 116 middle and high school teachers inter-
ested in infusing computational thinking (CT) into their classrooms.
Teachers learned to program in Snap/, connect CT to their disci-
plines, and create infused CT learning segments for their classes.
This paper investigates the extent to which teachers were able to
successfully infuse CT skills of pattern recognition, abstraction,
decomposition, and algorithms into their learning products.

In this work, we analyzed 58 teacher-designed programming
products to look for common characteristics, such as project type,
intended coding requirements for their students, and code fea-
tures/functionality. Teacher-created products were classified into
five types: animation, interactive story, quiz, intended game, and
simulation/exploration tools. Coding requirements varied from
using and/or explaining provided code, modifying existing code,
programming with starter code, to building entire programs. Prod-
ucts were classified according to the extent to which they involved
sprite manipulation, questions/answers, event handling, drawing,
and control blocks. We found that teachers from different disci-
plines created products that vary in type, coding requirements,
and features to suit their specific needs. Moreover, we found rela-
tionships between discipline, project type, and the required coding
teachers expected students to do.

Our results inform future Infusing Computing Professional De-
velopment (PD) to provide more targeted training to support differ-
ent teacher needs.

CCS CONCEPTS

* Social and professional topics — Computational thinking;
K-12 education.

KEYWORDS

Professional Development; Computational Thinking; Programming;
K-12

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland Uk

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319772

278

ACM Reference Format:

Yihuan Dong, Veronica Cateté, Nicholas Lytle, Amy Isvik, Tiffany Barnes
and Robin Jocius, Jennifer Albert, Deepti Joshi, Richard Robinson, Ash-
ley Andrews. 2019. Infusing Computing: Analyzing Teacher Programming
Products in K-12 Computational Thinking Professional Development. In
Innovation and Technology in Computer Science Education (ITiCSE ’19), July
15-17, 2019, Aberdeen, Scotland Uk. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3304221.3319772

1 INTRODUCTION

As computers have become an integral part of our life and work,
it is widely agreed that helping students master computer science
(CS) and computational thinking (CT) skills at an early age may
help them become more competitive in the future workforce [8].
One way to broaden participation in computer science is to infuse
computational thinking into daily K-12 classroom teaching [17].
However, since the majority of K-12 teachers have no prior training
in computer science or computational thinking practices and skills
[10], they need to be properly trained in order to design and teach
CT-rich curricula.

Researchers have designed a number of professional develop-
ment (PD) workshops and initiatives to equip teachers with the
skills and tools to teach their students computer science and com-
putational thinking [11, 13]. Programming has played an important
role in many of these professional development workshops, be-
cause even though computational thinking can be taught without
programming [4], learning to program can be a powerful tool to
help elaborate computational thinking concepts, such as abstrac-
tion and algorithms, in a situated context. Programming can also
enable teachers to create or modify existing programming artifacts
in order to design curricular materials that infuse computational
thinking with content-specific practices and skills.

To successfully infuse programming into K-12 classrooms, itis
important to help teachers align programming with their subject
learning goals [10]. This requires developing knowledge of what
types of projects the teachers could use to align CT-infused ac-
tivities with existing standards and curricula and to identify the
kinds of coding activities the teachers design to support student
learning. However, little is known about how teachers intend to
infuse programming activities into their existing curricula.

In this work, we analyzed the teacher programming products
collected from two computational thinking themed professional
workshops for middle and high school teachers, guided by the
following research questions:

* What project types were found in the teacher products?
* How much coding was designed for the students to do?

mailto:permissions@acm.org
mailto:permissions@acm.org
https://doi.org/10.1145/3304221.3319772
https://doi.org/10.1145/3304221.3319772

Session 5B: Professional Development

* What were the common features the teachers used to create
their programs?

* How did the teachers connect coding activities to the CT
elements?

We wish to help researchers understand middle and high school
teachers’ needs regarding the use of programming to teach CT in
theirdomain. Inaddition, our findings caninformtheimprovement
of programming elements in professional development training to
become more targeted based on the teachers’ varied needs.

2 LITERATURE REVIEW

Research shows that teacher professional development is critical
to any successful change in educational practice [14], including
changes related to computational thinking integration into K-12
schools [2, 3, 18]. Specifically, Barr and Stevenson (2011) identified
two major areas of need in relation to teacher PD in CT: (1) aclear
definition of what CT is and how it applies to students and content,
and (2) explicit, ongoing training and support for K-12 teachers.

In order to realize CT as an essential component of the curricu-
lum across disciplinary areas, teachers must integrate “activities
thatmakevisibletheinherentoverlap of CTideasand practices with
subject area concepts" that allow students to engage in hands-on
concepts and learning [17]. However, teachers must first under-
stand what CT is, how it connects to their curricula, and how it
might support students’ understandings of content.

We used the simplified PRADA framework [9] to help teachers
understand computing concepts and recognize the CT elements
that already exist in their curriculum. In PRADA, the focus is on
Pattern Recognition, Abstraction, Decomposition, and Algorithms,
we use these keywords to connect key CT elements to teachers’
disciplines (e.g. a function in math is very similar to an algorithm).
Additionally, we engage teachers in hands-on coding sessions to
learn basic CT and programming skills, helping teachers to create
their own Snap! projects.

Based on this design, we seek to discover ways that teacher pro-
grams reflect their understanding of CT and how their students
might learn CT when doing the created activities. There have been
attempts to evaluate student block-based programming projects
to measure CT learning and programming outcomes for students.
These studies categorizes student programming projects into types
(e.g. games, music videos, storytelling, etc) and compare how these
types of projects motivate students to use desired programming
concepts, such as loops, conditionals, and variables [1, 5, 7]. Other
research connects programming concepts with CT elements to mea-
sure how much CT is present in student projects. For example, Dr.
Scratch[12] performs static analysis on Scratch projects to identify
the presence or absence of key CT competencies such as parallelism,
abstraction, and flow control.

Analyzing student programming artifacts helps identify what CT
and programming concepts students can demonstrate. While the
teachers participating in CT themed PD are similar to the students
in terms of programming skill and prior knowledge, teacher-created
projects may have a different focus than student projects, because
teachers have purposefully designed their projects to serve as a
tool for teaching both the subject knowledge and the CT concepts.
Thus, analyzing teacher projects can provide insight into what CT

279

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

and programming concepts the teachers value and how they relate
them to their disciplines.

3 METHOD

We collected data from two intensive, five-day Infusing Computing
PD workshops !'in North and South Carolina in Summer 2018,
during which we engaged 116 middle and high school teachers in
designing plans to infuse computational thinking into their class-
rooms. According to our survey result prior to the PD, 48% of the
participating teachers never had any programming experience, 22%
had their students do hour of code activities, 28% had some but not
extensive prior programming experience(e.g. HTML, JavaScript,
Scratch, or code.org), and 2% claimed to be proficient in at least
one programming language. We designed a 3C (Code, Connect,
Create) model to structure the PD and designed each day to include
sessions for each of these three elements. The Code sessions intro-
duced basic concepts and operations in the Snap/ programming
environment [6] (e.g. sprites, blocks, drag and drop operations), con-
trol structures (e.g. loops, conditionals, variables), and lists using
simple programming examples and finally culminating in practice
with a simulation developed to integrate CT into science classes. In
the discipline-specific Connect sessions, we introduced the PRADA
clements and helped teachers identify the CT concepts that already
exist or can be easily infused into their own content areas. The
Create session allowed the teachers to work individually or to col-
laborate in teams to develop their CT-infused learning segments
along with a Snap/ program for use in their classrooms.

Table 1: The number of teacher products and project files by
content area

Science | Math | . \ter- Humani- | . o)
disciplinary ties
Products 18 11 4 7 40
Proj. Files 25 13 7 13 58

The teacher product analyzed in this work includes a learning
segment document and a Snap! project file that teachers submitted
at the end of the PD. Analysis of the learning segments allows
us to understand teachers’ intentions for their CT-infused lessons.
Someoftheitemsinthelearning segments include: the disciplinary
learning goal, the CT learning goal, the PRADA elements involved,
the activities planned (with and/or without programming) for the
students, and the end-product and evaluation criteria for grading.
We required the teachers to do some programming and submit a
Snap!/ project file so that they had experience with the types of
programming concepts and practices their students could use in
their classrooms. The Snap!/ project can either be a model for the
type of project students would be expected to create themselves
or a project that teachers created for the students to play with and
explore. Teachers who worked in groups were asked to submit at
least one Snap! project file per group, but they could submit more
than one program if appropriate for their learning segment. Before
analysis, we removed one product from our analysis for failing
to submit their learning segment document, leaving us no way to

! For more information about the PD, visit https://www.infusingcomputing.com/

https://www.infusingcomputing.com/

Session 5B: Professional Development

know how the teachers planned to use their Snap! project file in
the class. In addition, we removed 4 project files for being starter
code (that was repetitive with the corresponding complete project)
and removed one duplicate project file. In total, we analyzed 40
teacher product submissions comprised of 40 learning segments
and 58 Snap! project files, as is shown in Table 1.

We analyzed the teacher products at two levels: a high-level
content analysis and a low-level automated programming concept
analysis. Four of the authors performed atwo-phase content analy-
sis to identify the type of products, the programming features in the
projectfiles, and the coding activities designed for students. These
raters were all CS education graduate students with experience
designing, implementing, and evaluating CT curriculum for middle
school classrooms. In the first phase, each rater looked through all
the learning segments and the Snap! project files and took notes
on the type, features, and the student coding requirements for each
teacher project. The raters were given instructions on what to look
for in general but were also encouraged to include anything that
seemed relevantand/or uncertain for later discussion. Inthe second
phase, the firstauthor formed an initial categorization of the teacher
products based on all the rater notes. Then, all four raters discussed
each category definition until they reached full agreement. Since
the type categories were more ambiguous, the four raters collabo-
ratively determined the final type category for each project. For the
other more straightforward characteristics, all the teacher projects
were re-coded by the first author based on the final definition. Due
to the design of our data collection instrument — it only provided
smalltextboxestoindicate which PRADA elementsrelated to their
products —many teachers did not explain the relationship between
their coding activity and their plans for teaching computational
thinking. Thus, to identify how the teachers related the coding
activities to their plans for teaching computational thinking, the
raters manually read through the learning segments and extracted
excerpts that suggest teachers’ understanding of the connection
between coding and CT.

The second analysis is a programming concept analysis. We
created an analysis program that takes in the Snap!/ project files
and counts if and how many times some blocks appeared, which
may indicate teachers’ level of understanding and ability to use
certain programming concepts. The output of the analysis program
includes the number of times each default or imported block is used,
the number of variables (both local and global) created and used,
and the number of custom (teacher-created) blocks created and used.
This analysis can give us a general glimpse of how well the teachers
were able to apply what they learned from the coding session to
their project. The statistics also shed light on some findings in the
content analysis as discussed below.

4 RESULTS
4.1 Content Analysis
411 Project Type. Theraters identified five different project types

in the teacher created project files:

(1) Animation: A non-interactive instructive, introductive, or
model video

280

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

(2) Interactive Storyboard: A linear or non-linear animation
with non-consequential interactions and a connected series
of scenes

(3) Quiz: A project that asks students a series of questions with
the sole intent to test students’ knowledge about a subject

(4) Intended Game: A project intended to be made into a game
by the teachers, even though the project may be non-game-
like on submission

(5) Exploration/Simulation Tools: A project that provides a
tool for the students to interactively explore and experiment
with a concept

Figure 1 shows the number of teacher products of each type.

Looking at the total number, we can see that more than a third
of the products are Simulation/Exploration Tools. Animation and
Interactive Storyboards together make up half of the teacher prod-
ucts. There are fewer Quizzes and Intended Games than the other
types. Looking at the content area of each type, we find that the
humanities and interdisciplinary projects are mostly Animation
and Interactive Stories, whereas the Math products are mostly In-
tended Game and Simulation Tools. Science has about half of its
projects in Simulation/Exploration Tools category while the rest
ofits projects were distributed roughly evenly among Animation,
Interactive Storyboard, and Quiz, suggesting that science teachers
may have more diverse uses for programs in their lessons.

B Humanities nterdisciplinary @ Math B Science

22

Animation Game Simulation Tool

Storyboard

Quiz

Figure 1: Number of projects in each project type

412 Student Coding Requirements. Many learning segments de-
scribed the coding students would do to complete the activity. Some
learning segments did not describe the coding requirement explic-
itly, but it could be inferred from the description of the activities.
For example, a team of middle school science teachers first said “the
students will be required to write their own code..." and then said
“once they have created an account [in Netsblox], we will share
the program with them... for themselves and their partners to ma-
nipulate”, indicating the students need to write a program using a
starter code. Six learning segments did not mention student coding
activities at all, thus were given the “unspecified’ tag.

Raters identified four categories of student coding requirements
from the teacher products. These coding requirements varied from
using and/or explaining provided code, modifying existing code,
programming with starter code, to building entire programs. For
usingand/orexplaining provided code, theteachers plannedto give
the students a completed program for them to play and explore,
sometimes accompanied by activities that require explaining the

Session 5B: Professional Development

codeinthe program, withouthands-on coding. Modifying existing
coderequires the students to play and make changes to the program
to adapt to new information. For programming with starter code,
the teachers would provide students with a starter project file that
already has some code created and require students to either finish
it or extend its functionalities. Building entire programs would
requirestudentsto learn therequirements of the full project, usually
through playing with a completed program, and then creating their
own project from scratch.

The coding requirements discovered seem consistent with the
popular Use-Modify-Create practice for teaching youth CT concepts
[10], indicating that the teachers are familiar with the practice of
having students use a working program to become familiar with
an idea, then modify one, and then create their own.

B Humanities Interdisciplinary B Math W Science
40
33

) -
20

10 6 6

3
0
Unspecified Use/explain Modify Starter Whole

Figure 2: Number of projects with each coding requirement

Figure 2 shows the number of projects with each coding require-
ment. The result shows that more than half of the teacher projects
tasked students with making the whole project from scratch.

413 Feature Analysis. The raters identified five common features
(Sprite manipulation, QA, Event handling, Control, and Drawing) in
the teacher projects. Figure 3 shows the percentage of the projects
having each feature by project type. As expected, all 58 projects
had some sort of Sprite Manipulation feature, which is the core
mechanic and a major strength of the Snap!/ environment. Twenty-
seven projects used Questions/Answers (QA), asking a question
and checking answers. While QA was not present in the (non-
interactive) animations, itwasidentified inall 6 of the quizprojects,
and in over 50% of'the interactive stories, games, and simulations,
indicating that QA serves as an important type of interaction in the
teacher-created Snap! projects. Two-thirds (40/58) of the projects
involve Event Handling to synchronize behaviors between sprites.
The most popular synchronization method (28/40) was by broadcast-
ing a message to signal the next event. Three-quarters of projects
(44/58) included basic programming control structures, such as if-
then conditions, game loops, and randomized events. Animation
having the lowestproportion using control structures, which makes
sense giventhatmostoftheanimationshaveasingle, chronological
plot that does not repeat or deviate based off of input conditions.
Those animations with control structures usually used loops to
draw shapes, corresponding to the DrawSquare and RowOfHouses
programs introduced inthe PD’s Code session. Finally, 20 ofthe 58
projects used Drawing features.

281

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

Interestingly, we found that some teachers used the doWait
block instead of message broadcasting for synchronization pur-
poses. These teachers asked a sprite to wait a pre-set number of
seconds for other sprites to complete their actions before contin-
uing to the next action. This discovery is consistent with another
research that studied creative products from elementary school
students [16]. While using doWaitblock is one way to achieve syn-
chronization, it is not a preferred method in many cases because
of its static nature — one has to manually adjust the wait time for
every sprite in the program to adapt to new information. This find-
ing is one of the many examples that suggests problems that the
Codesession could easily address to help the teachers make certain
features more efficiently.

B Interactive Storyboard Quiz M Intended Game
B simulation/Exploration Tool

B Animation

100.00%
75.00%
50.00%
25.00%

0.00%

Sprite Manipulation QA Event Handling Control Drawing

Figure 3: The percentage of the projects that have each fea-
ture by project type

414 CT in Coding Activities. We analyzed how teachers con-
nected the coding activities to each element in PRADA by dis-
cussing what connection the teachers made with an excerpt from
the learning segment that demonstrates the connection.

Pattern recognition does not seem to be a difficult element for the
teachers to understand and relate to, as the teachers who identified
pattern recognition in the coding activity generally made the correct
connection. Teachers were able to recognize patterns in the code
from two aspects. One aspect is having repeated code in a piece of
script, linking it to a repeat block ("Using a repeat in the code to
be able to use the 4 nitrogenous bases of DNA limitlessly"). The
other aspect is having duplicate code between sprites ("6 regions
that have the same code, and repetition within the code itself").

Decomposition in coding activities happens mostly when ex-
plaining and understanding existing code, often accompanied by
making abstractions of decomposed code chunks (“Break down plot
diagram into subcategories and look further into what blocks go
into a specific abstraction"). Some teachers discussed decomposition
in a more subtle way by considering the conditionals and loops as
means to decompose an algorithm (“if” and ‘repeat’ blocks areused
in the code to show a breakdown of the parts of the algorithm").

Many science and math teachers were able to identify different
kinds of abstraction in the code. Many teachers were able to link the
definition of custom blocks to abstraction (e.g. “Name these repeated
steps [of calculating the roots and the vertex of a binary equation]
by calling the process Find Roots and Find Vertex"). Some teachers
recognized that the use of variables is also a kind of abstraction
(“Variables have been created for specific [geological] values"). In

Session 5B: Professional Development

contrast, abstraction seemed to be a more challenging concept
for the interdisciplinary groups and humanities teachers to apply
to their projects, as none of them mentioned abstraction in their
codingactivities. This finding suggests that more supportisneeded
forthe non-STEM teachers to conceptualize and apply abstraction
in programming to their subject-specificcontext.

Similar to abstraction, algorithms were discussed only by science
and math teachers. Some science and math teachers were able to
relate algorithms to the “the code used in the script”. These learning
segments wouldrequire the students to “use analgorithmto createa
block ofcodethatwillask aquestion and respondto theanswerasto
whether correct or incorrect”. A group of math teachers took a step
further and noted the generalizability of an algorithm, stating that
“Transcription is a step by step process and the code that is created
demonstrating transcription can be used with any sequence of
DNAnitrogenousbases to createan mRNA transcript." Noneofthe
interdisciplinary/humanities teachers mentioned how algorithms
connect to coding in their learning segments.

4.2 Programming Concept Analysis

Table 2 shows the results of the programming concept analysis. In
general, around two-thirds of the projects used loops and condition-
als (If), but the percentage of projects having loops and conditionals
varies greatly by type. This corroborates the finding in the content
analysis where few Animation projects have Control features. Both
Custom blocks and Variables appeared in about half of the projects,
suggesting that these concepts are still hard for many teachers to
apply. In addition, even though being a very useful data structure,
lists may be difficult for the teachers to learn as it only appeared in
1/3 of the projects. Even fewer projects (13.79%) used advanced list
operations like insertion or deletion.

Table 2: The number of projects that have each program-
ming concepts by project type

Loop If Custom | Var List
Anim (13) | 751%) | 2(15%) | 5(38%) | 5(38%) | 6(46%)
Story (11) | 7(64%) | 1001%) | 7(64%) | 4(36%) | 0(0%)
Quiz (6) | 6(100%) | 5(83%) | 2(33%) | 3(50%) | 2(33%)
Game (6) | 3(50%) | 4(67%) | 3(50%) | 4(67%) | 0(0%)
Sim (22) | 15(68%) | 2091%) | 14(64%) | 18(82%) | 11(50%)
Total | 38(66%) | 41(71%) | 31(53%) | 34(59%) | 19(33%)

The programming conceptanalysis helps expose some potential
issues in the teachers’ understanding of programming concepts.
For example, as experienced programmers we can see that the QA
feature could be easily abstracted into a custom block thatuses lists
to manage questions and their corresponding solutions. However,
only two out of six Quiz projects used custom blocks and lists. This
could suggest that the teachers may have failed to recognize this
abstraction or that they’re simply not comfortable with using cus-
tom blocks and/or lists. Moreover, programming concept analysis
helped identify the nature of the types. Animation and Interactive
Storyboard projects had lower percentages of variable usage, which
is most likely due to the fact that neither project type typically
requires storing information for later use.

282

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

The Intended Game type scored a relatively low percentage on
all programming concepts. This is also consistent with the resultin
the Feature analysis shown in Figure 3. Upon close inspection, we
find that this could be due to the different mechanics of the games.
The games that rely on mouse click-and-drag events tend to use
fewer desired CT/programming concepts than others since their
logic is often simply responding to cursor events. This suggests
that teachers who want to make games should think about how
their game mechanics relate to the programming/CT concepts they
want students to learn.

5 DISCUSSION

To further investigate the coding activities in the teacher projects,
we plotted the project type vs. coding requirements as shown in Fig-
ure 4. We arranged the project types according to CT/programming
difficulty and the coding requirements according to how much
coding students would do. Project types are arranged from left to
right from least difficult to most difficult to infuse CT/programming
concepts into if implemented correctly. Coding requirements range
from the least (no coding) at the bottom to the most (whole project)
at the top. Figure 4 shows the distribution of project types versus
coding requirements for each content area with the size of the dot
mapping to the number of projects at that spot.

Humanities Interdisciplinary
Whole &P ¢ Whole .
Starter Starter
Modify Modify .
Use Use
Unspec Unspec . . .
Anim Story Quiz Game Sim Anim Story Quiz Game Sim
Math Science
Whole . Whole
Starter Starter . .
Modify Moty 5
Use . . Use .
Unspec ‘ Unspec . .

Anim Story Quiz Game Sim Anim Story Quiz Game Sim

Figure 4: The relationship between project type and coding
requirement by content area

These plots reveal tendencies for the teacher-created projects
affiliated with each discipline. Specifically, the humanities projects
lean more towards building animations and require students to do
more coding. We think this is possibly due to the fact that humani-
ties classrooms often require students to write or create content.
In addition, as suggested by our product analysis, animations and
interactive storyboards tend to have less complex logic and are
relatively easy to make, so these teachers may feel more confident
in their students’ ability to make the whole project.

Session 5B: Professional Development

Math projects tend to be simulation/exploration based and ex-
pect students to do more coding. This could be because that many
mathematical concepts, norms, practices, and vocabulary terms are
inparallel with programming concepts [15]. Forinstance, the steps
taken to solve a math problem can be easily transformed into an
algorithm. By turning math problems like finding the best rates
and exploring transformations into making simulation/exploration
tools, students gain the opportunity to develop a deeper under-
standing of the concepts through hands-on programming.

Science projects are more varied in terms of project type and
coding requirement, which may indicate that the science teachers
have a larger variety of needs for their projects. For example, a
group of science teachers created a curriculum to teach the Energy
Pyramid. Their product included four project files: one project file is
an interactive storyboard that introduces the food chain, one project
file is a simulation that explores the population dynamics between
the predator and the prey, and the other two project files are quizzes,
one testing students’ knowledge of the energy transformation in

the energy pyramid, and one testing on the food chain. These
varied needs are also reflected in the coding activities designed for
students. For simpler concepts or phenomena, the teacher may want
the students to create the whole program to increase understanding
of the underlying mechanic. However, for more complex concepts,
the teacher may simply want the students to use the project as a
tool for the students to explore the pattern behind the phenomena.

By showing the disciplinary differences in terms of project type
and coding requirements, we’re not trying to argue which type
or how much coding is good or bad. Rather, using the findings
from the teacher product analysis, we hope to better understand
the needs of the teachers from different disciplines in order to help
them find better, more tailored ways to infuse programming and
computational thinking into their curricula. For example, our find-
ings show that humanities teachers are fond of using animation
and interactive storyboards in their lessons but are having trouble
identifying and infusing some CT elements and programming con-
cepts into their products. A potential solution would be introducing
simple modeling concepts to the teachers that transform their ani-
mations from heavily relying on the wait blocks to using variables

and event handling to govern the chronological progression of the
story. Other solutions may include showing the teachers diverse
examples and types of coding activities that could potentially be
used to teach the same knowledge.

In addition, the feature analysis and programming concept anal-
ysis not only tell us how much programming the teachers have
learned, but also suggest places where we can provide more scaffold-
ingto help the teachers be more successful in project development.
For example, by better understanding what features teachers often
need in their projects, we can provide more targeted scaffolding by
creating pre-made features and example projects that the teachers
can easily adapt and use in their projects, such as a QA block. It’s
important to understand and remember that these teachers are
not learning programming to become professional programmers.
Rather, they only need to concentrate on the elements of program-
ming that afford CT and connect to their domain, standards, and
curriculum. Thus, by giving the teachers pre-made features and
examples during the Codesessions, we are notonly giving themthe
chanceto practice explaining code and examining how the features

283

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

are made in the desired ways, but also relieving the teachers from
the struggle of creating certain features so they can spend time on
designing learning experiences for their lessons.

One limitation of this work is that the project files submitted
weren’t necessarily refined products ready to be used, but were
mostly prototypes to showcase what the teachers intended for their
students to do in their classrooms. Thus, certain features that could
demonstrate teachers’ understanding of programming concepts and
CT elements may not have been completed. However, while the
prototype characteristics were a limitation, they also afford insight
into what the teachers were able to learn and make in a week of
training, which might shed light on how much programming they
feel comfortable teaching after a short-term training and how much
they believe their students are able to learn in these lessons. Another
limitation might be the fact that the coding sessions were taught
mostly with create activities, which might affect the choice of the
coding requirement teachers designed in their learning segments.

6 CONCLUSION

In this paper, we analyzed 58 middle and high school teacher-
designed programming projects from two computational thinking
PD workshops to help us understand how the K-12 teachers intend
to use programming to teach CT in their classrooms.

From our analysis, we identified five project types in the teacher
programming projects: animation, interactive storyboard, quiz, in-
tended game, and simulation/exploration tool. The teachers gener-
ally have four kinds of coding requirements in their lesson plans:
using and/or explaining provided code, modifying existing code,
programming with starter code, and building entire programs. The
common features in the teacher programming projects can be clas-
sified into five categories: sprite manipulation, QA, event handling,
control, and drawing. Humanities and interdisciplinary products
were mostly animations and interactive storyboards and required
the students to code the whole project. The majority of the math
projects were simulation/exploration tools and intended games that
required students to either code the whole project from scratch or
with starter code. The classification of the science products varied
in project type and coding requirements, depending on the purpose
of the project. Regarding connecting coding activities to compu-
tational thinking, many science and math teachers were able to
make reasonable connections. However, humanities and interdisci-
plinary teachers appeared to have trouble identifying abstraction
and algorithms in their planned coding activities.

Our work provides insights on how the teachers intend to use
programming to teach computational thinking in their own content
area lessons. These insights can help us provide more scaffolding
for the teachers by making relevant example programs and pre-
made custom blocks to help the teachers develop their projects
more efficiently. We will use these pre-made examples in the Code
sessions, modeling content that suits teachers’ needs while also
better conveying CT concepts that can be integrated and learned
by students in their classrooms.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grant numbers 1742351 and 1742332.

Session 5B: Professional Development

REFERENCES

(1]

2

=

3

=

[4

finar}

Joel C Adams and Andrew R Webster. 2012. What do students learn about
programming from game, music video, and storytelling projects?. In Proceedings
of the 43rd ACM technical symposium on Computer Science Education. ACM, 643—
648.

Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce
Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curricu-
lum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016).

Valerie Barr and Chris Stephenson. 201 1. Bringing computational thinking to
K-12: what is Involved and what is the role of the computer science education
community? Acm Inroads 2, 1 (2011),48-54.

Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer
science unplugged: School students doing real computing without computers.
The New Zealand Journal of Applied Computing and Information Technology 13, 1
(2009), 20-29.

Alexandra Funke, Katharina Geldreich, and Peter Hubwieser. 2017. Analysis
of scratch projects of an introductory programming course for primary school
students. In Global Engineering Education Conference (EDUCON), 2017 IEEE. IEEE,
1229-1236.

Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Shuchi Grover, Satabdi Basu, and Patricia Schank. 2018. What We Can Learn
About Student Learning From Open-Ended Programming Projects in Middle
School Computer Science. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. ACM, 999-1004.

Shuchi Grover and Roy Pea. 2013. Computational thinking in K—12: A review of
the state of the field. Educational Researcher 42, 1 (2013),38-43.

Author Hidden. XXXX. Hidden Paper. In Anonymous.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in

284

[11]

[12]

[13]

[14]

[15]

[1e]

[17]

[18]

ITICSE '19, July 15-17, 2019, Aberdeen, Scotland, UK

practice. Acm Inroads 2, 1 (2011), 32-37.

Maria Cecilia Martinez, Marcos J. Gomez, Marco Moresi, and Luciana Benotti.
2016. Lessons Learned on Computer Science Teachers Professional Development.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 77-82. https:
//doi.org/10.1145/2899415.2899460

Jesus Moreno-Leon and Gregorio Robles. 2015. Dr. Scratch: A web tool to auto-
matically evaluate Scratch projects. In Proceedings of the workshop in primary
and secondary computing education. ACM, 132-133.

Jennifer Rosato, Chery Lucarelli, Cassandra Beckworth, and Ralph Morelli. 2017.
A Comparison of Online and Hybrid Professional Development for CS Principles
Teachers. In Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE '17). ACM, New York, NY, USA, 140-145.
https://doi.org/10.1145/3059009.3059060

Lee S Shulman and Judith H Shulman. 2004. How and what teachers learn: A
shifting perspective. Journal of curriculum studies 36, 2 (2004), 257-271.

David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-
matics and science classrooms. Journal of Science Education and Technology 25, 1
(2016), 127-147.

David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin.
2018. Starting from Scratch: Outcomes of early computer science learning expe-
riences and implications for what comes next. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, 142—-150.
Aman Yadav, Hai Hong, and Chris Stephenson. 2016. Computational thinking
for all: pedagogical approaches to embedding 21st century problem solving in
K-12 classrooms. TechTrends 60, 6 (2016), 565-568.

Aman Yadav, Chris Mayfield, Ninger Zhou, Susanne Hambrusch, and John T Korb.
2014. Computational thinking in elementary and secondary teacher education.
ACM Transactions on Computing Education (TOCE) 14, 1 (2014), 5.

https://doi.org/10.1145/2899415.2899460
https://doi.org/10.1145/2899415.2899460
https://doi.org/10.1145/3059009.3059060

