
Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

278

Infusing Computing: Analyzing Teacher Programming Products
in K-12 Computational Thinking Professional Development

Yihuan Dong, Veronica Cateté, Nicholas Lytle, Amy Isvik, Tiffany Barnes

Robin Jocius, Jennifer Albert, Deepti Joshi, Richard Robinson, Ashley Andrews
North Carolina State University, Raleigh, North Carolina

The Citadel, Charleston, South Carolina

{ydong2,vmcatete,nalytle,aaisvik,tmbarnes}@ncsu.edu,{rjocius,jalbert,djoshi,rjmr,ashley.andrews}@citadel.edu

ABSTRACT
In summer 2018, we conducted two week-long professional devel-

opment workshops for 116 middle and high school teachers inter-

ested in infusing computational thinking (CT) into their classrooms.

Teachers learned to program in Snap!, connect CT to their disci-

plines, and create infused CT learning segments for their classes.

This paper investigates the extent to which teachers were able to

successfully infuse CT skills of pattern recognition, abstraction,

decomposition, and algorithms into their learning products.

In this work, we analyzed 58 teacher-designed programming

products to look for common characteristics, such as project type,

intended coding requirements for their students, and code fea-

tures/functionality. Teacher-created products were classified into

five types: animation, interactive story, quiz, intended game, and

simulation/exploration tools. Coding requirements varied from

using and/or explaining provided code, modifying existing code,

programming with starter code, to building entire programs. Prod-

ucts were classified according to the extent to which they involved

sprite manipulation, questions/answers, event handling, drawing,

and control blocks. We found that teachers from different disci-

plines created products that vary in type, coding requirements,

and features to suit their specific needs. Moreover, we found rela-

tionships between discipline, project type, and the required coding

teachers expected students to do.

Our results inform future Infusing Computing Professional De-

velopment (PD) to provide more targeted training to support differ-

ent teacher needs.

CCS CONCEPTS
• Social and professional topics → Computational thinking;

K-12 education.

KEYWORDS
Professional Development; Computational Thinking; Programming;

K-12

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland Uk

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00

https://doi.org/10.1145/3304221.3319772

ACM Reference Format:
Yihuan Dong, Veronica Cateté, Nicholas Lytle, Amy Isvik, Tiffany Barnes

and Robin Jocius, Jennifer Albert, Deepti Joshi, Richard Robinson, Ash-

ley Andrews. 2019. Infusing Computing: Analyzing Teacher Programming

Products in K-12 Computational Thinking Professional Development. In

Innovation and Technology in Computer Science Education (ITiCSE ’19), July

15–17, 2019, Aberdeen, Scotland Uk. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3304221.3319772

1 INTRODUCTION
As computers have become an integral part of our life and work,

it is widely agreed that helping students master computer science

(CS) and computational thinking (CT) skills at an early age may

help them become more competitive in the future workforce [8].

One way to broaden participation in computer science is to infuse

computational thinking into daily K-12 classroom teaching [17].

However, since the majority of K-12 teachers have no prior training

in computer science or computational thinking practices and skills

[10], they need to be properly trained in order to design and teach

CT-rich curricula.

Researchers have designed a number of professional develop-

ment (PD) workshops and initiatives to equip teachers with the

skills and tools to teach their students computer science and com-

putational thinking [11, 13]. Programming has played an important

role in many of these professional development workshops, be-

cause even though computational thinking can be taught without

programming [4], learning to program can be a powerful tool to

help elaborate computational thinking concepts, such as abstrac-

tion and algorithms, in a situated context. Programming can also

enable teachers to create or modify existing programming artifacts

in order to design curricular materials that infuse computational

thinking with content-specific practices and skills.

To successfully infuse programming into K-12 classrooms, it is

important to help teachers align programming with their subject

learning goals [10]. This requires developing knowledge of what

types of projects the teachers could use to align CT-infused ac-

tivities with existing standards and curricula and to identify the

kinds of coding activities the teachers design to support student

learning. However, little is known about how teachers intend to

infuse programming activities into their existing curricula.

In this work, we analyzed the teacher programming products

collected from two computational thinking themed professional

workshops for middle and high school teachers, guided by the

following research questions:

• What project types were found in the teacher products?

• How much coding was designed for the students to do?

mailto:permissions@acm.org
mailto:permissions@acm.org
https://doi.org/10.1145/3304221.3319772
https://doi.org/10.1145/3304221.3319772

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

279

What were the common features the teachers used to create

their programs?

How did the teachers connect coding activities to the CT

elements?

We wish to help researchers understand middle and high school

teachers’ needs regarding the use of programming to teach CT in

their domain. In addition, our findings can inform the improvement

of programming elements in professional development training to

become more targeted based on the teachers’ varied needs.

2 LITERATURE REVIEW
Research shows that teacher professional development is critical

to any successful change in educational practice [14], including

changes related to computational thinking integration into K-12

schools [2, 3, 18]. Specifically, Barr and Stevenson (2011) identified

two major areas of need in relation to teacher PD in CT: (1) a clear

definition of what CT is and how it applies to students and content,

and (2) explicit, ongoing training and support for K-12 teachers.

In order to realize CT as an essential component of the curricu-

lum across disciplinary areas, teachers must integrate “activities

that make visible the inherent overlap of CT ideas and practices with

subject area concepts" that allow students to engage in hands-on

concepts and learning [17]. However, teachers must first under-

stand what CT is, how it connects to their curricula, and how it

might support students’ understandings of content.

We used the simplified PRADA framework [9] to help teachers

understand computing concepts and recognize the CT elements

that already exist in their curriculum. In PRADA, the focus is on

Pattern Recognition, Abstraction, Decomposition, and Algorithms,

we use these keywords to connect key CT elements to teachers’

disciplines (e.g. a function in math is very similar to an algorithm).

Additionally, we engage teachers in hands-on coding sessions to

learn basic CT and programming skills, helping teachers to create

their own Snap! projects.

Based on this design, we seek to discover ways that teacher pro-

grams reflect their understanding of CT and how their students

might learn CT when doing the created activities. There have been

attempts to evaluate student block-based programming projects

to measure CT learning and programming outcomes for students.

These studies categorizes student programming projects into types

(e.g. games, music videos, storytelling, etc) and compare how these

types of projects motivate students to use desired programming

concepts, such as loops, conditionals, and variables [1, 5, 7]. Other

research connects programming concepts with CT elements to mea-

sure how much CT is present in student projects. For example, Dr.

Scratch[12] performs static analysis on Scratch projects to identify

the presence or absence of key CT competencies such as parallelism,

abstraction, and flow control.

Analyzing student programming artifacts helps identify what CT

and programming concepts students can demonstrate. While the

teachers participating in CT themed PD are similar to the students

in terms of programming skill and prior knowledge, teacher-created

projects may have a different focus than student projects, because

teachers have purposefully designed their projects to serve as a

and programming concepts the teachers value and how they relate

them to their disciplines.

3 METHOD
We collected data from two intensive, five-day Infusing Computing

PD workshops 1 in North and South Carolina in Summer 2018,

during which we engaged 116 middle and high school teachers in

designing plans to infuse computational thinking into their class-

rooms. According to our survey result prior to the PD, 48% of the

participating teachers never had any programming experience, 22%

had their students do hour of code activities, 28% had some but not

extensive prior programming experience(e.g. HTML, JavaScript,

Scratch, or code.org), and 2% claimed to be proficient in at least

one programming language. We designed a 3C (Code, Connect,

Create) model to structure the PD and designed each day to include

sessions for each of these three elements. The Code sessions intro-

duced basic concepts and operations in the Snap! programming

environment [6] (e.g. sprites, blocks, drag and drop operations), con-

trol structures (e.g. loops, conditionals, variables), and lists using

simple programming examples and finally culminating in practice

with a simulation developed to integrate CT into science classes. In

the discipline-specific Connect sessions, we introduced the PRADA

elements and helped teachers identify the CT concepts that already

exist or can be easily infused into their own content areas. The

Create session allowed the teachers to work individually or to col-

laborate in teams to develop their CT-infused learning segments

along with a Snap! program for use in their classrooms.

Table 1: The number of teacher products and project files by
content area

Science Math
Inter-

disciplinary

Humani-

ties
Total

Products 18 11 4 7 40

Proj. Files 25 13 7 13 58

The teacher product analyzed in this work includes a learning

segment document and a Snap! project file that teachers submitted

at the end of the PD. Analysis of the learning segments allows

us to understand teachers’ intentions for their CT-infused lessons.

Some of the items in the learning segments include: the disciplinary

learning goal, the CT learning goal, the PRADA elements involved,

the activities planned (with and/or without programming) for the

students, and the end-product and evaluation criteria for grading.

We required the teachers to do some programming and submit a

Snap! project file so that they had experience with the types of

programming concepts and practices their students could use in

their classrooms. The Snap! project can either be a model for the

type of project students would be expected to create themselves

or a project that teachers created for the students to play with and

explore. Teachers who worked in groups were asked to submit at

least one Snap! project file per group, but they could submit more

than one program if appropriate for their learning segment. Before

analysis, we removed one product from our analysis for failing

to submit their learning segment document, leaving us no way to tool for teaching both the subject knowledge and the CT concepts.

Thus, analyzing teacher projects can provide insight into what CT 1 For more information about the PD, visit https://www.infusingcomputing.com/

•

•

https://www.infusingcomputing.com/

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

280

know how the teachers planned to use their Snap! project file in

the class. In addition, we removed 4 project files for being starter

code (that was repetitive with the corresponding complete project)

and removed one duplicate project file. In total, we analyzed 40

teacher product submissions comprised of 40 learning segments

and 58 Snap! project files, as is shown in Table 1.

We analyzed the teacher products at two levels: a high-level

content analysis and a low-level automated programming concept

analysis. Four of the authors performed a two-phase content analy-

sis to identify the type of products, the programming features in the

project files, and the coding activities designed for students. These

raters were all CS education graduate students with experience

designing, implementing, and evaluating CT curriculum for middle

school classrooms. In the first phase, each rater looked through all

the learning segments and the Snap! project files and took notes

on the type, features, and the student coding requirements for each

teacher project. The raters were given instructions on what to look

for in general but were also encouraged to include anything that

seemed relevant and/or uncertain for later discussion. In the second

phase, the first author formed an initial categorization of the teacher

products based on all the rater notes. Then, all four raters discussed

each category definition until they reached full agreement. Since

the type categories were more ambiguous, the four raters collabo-

ratively determined the final type category for each project. For the

other more straightforward characteristics, all the teacher projects

were re-coded by the first author based on the final definition. Due

to the design of our data collection instrument – it only provided

small text boxes to indicate which PRADA elements related to their

products – many teachers did not explain the relationship between

their coding activity and their plans for teaching computational

thinking. Thus, to identify how the teachers related the coding

activities to their plans for teaching computational thinking, the

raters manually read through the learning segments and extracted

excerpts that suggest teachers’ understanding of the connection

between coding and CT.

The second analysis is a programming concept analysis. We

created an analysis program that takes in the Snap! project files

and counts if and how many times some blocks appeared, which

may indicate teachers’ level of understanding and ability to use

certain programming concepts. The output of the analysis program

includes the number of times each default or imported block is used,

the number of variables (both local and global) created and used,

and the number of custom (teacher-created) blocks created and used.

This analysis can give us a general glimpse of how well the teachers

were able to apply what they learned from the coding session to

their project. The statistics also shed light on some findings in the

content analysis as discussed below.

4 RESULTS

4.1 Content Analysis
4.1.1 Project Type. The raters identified five different project types

in the teacher created project files:

(1) Animation: A non-interactive instructive, introductive, or

model video

(2) Interactive Storyboard: A linear or non-linear animation

with non-consequential interactions and a connected series

of scenes

(3) Quiz: A project that asks students a series of questions with

the sole intent to test students’ knowledge about a subject

(4) Intended Game: A project intended to be made into a game

by the teachers, even though the project may be non-game-

like on submission

(5) Exploration/Simulation Tools: A project that provides a

tool for the students to interactively explore and experiment

with a concept

Figure 1 shows the number of teacher products of each type.

Looking at the total number, we can see that more than a third

of the products are Simulation/Exploration Tools. Animation and

Interactive Storyboards together make up half of the teacher prod-

ucts. There are fewer Quizzes and Intended Games than the other

types. Looking at the content area of each type, we find that the

humanities and interdisciplinary projects are mostly Animation

and Interactive Stories, whereas the Math products are mostly In-

tended Game and Simulation Tools. Science has about half of its

projects in Simulation/Exploration Tools category while the rest

of its projects were distributed roughly evenly among Animation,

Interactive Storyboard, and Quiz, suggesting that science teachers

may have more diverse uses for programs in their lessons.

Figure 1: Number of projects in each project type

4.1.2 Student Coding Requirements. Many learning segments de-

scribed the coding students would do to complete the activity. Some

learning segments did not describe the coding requirement explic-

itly, but it could be inferred from the description of the activities.

For example, a team of middle school science teachers first said “the

students will be required to write their own code..." and then said

“once they have created an account [in Netsblox], we will share

the program with them... for themselves and their partners to ma-

nipulate", indicating the students need to write a program using a

starter code. Six learning segments did not mention student coding

activities at all, thus were given the ‘unspecified’ tag.

Raters identified four categories of student coding requirements

from the teacher products. These coding requirements varied from

using and/or explaining provided code, modifying existing code,

programming with starter code, to building entire programs. For

using and/or explaining provided code, the teachers planned to give

the students a completed program for them to play and explore,

sometimes accompanied by activities that require explaining the

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

281

code in the program, without hands-on coding. Modifying existing

code requires the students to play and make changes to the program

to adapt to new information. For programming with starter code,

the teachers would provide students with a starter project file that

already has some code created and require students to either finish

it or extend its functionalities. Building entire programs would

require students to learn the requirements of the full project, usually

through playing with a completed program, and then creating their

own project from scratch.

The coding requirements discovered seem consistent with the

popular Use-Modify-Create practice for teaching youth CT concepts

[10], indicating that the teachers are familiar with the practice of

having students use a working program to become familiar with

an idea, then modify one, and then create their own.

Figure 2: Number of projects with each coding requirement

Figure 2 shows the number of projects with each coding require-

ment. The result shows that more than half of the teacher projects

tasked students with making the whole project from scratch.

4.1.3 Feature Analysis. The raters identified five common features

(Sprite manipulation, QA, Event handling, Control, and Drawing) in

the teacher projects. Figure 3 shows the percentage of the projects

having each feature by project type. As expected, all 58 projects

had some sort of Sprite Manipulation feature, which is the core

mechanic and a major strength of the Snap! environment. Twenty-

seven projects used Questions/Answers (QA), asking a question

and checking answers. While QA was not present in the (non-

interactive) animations, it was identified in all 6 of the quiz projects,

and in over 50% of the interactive stories, games, and simulations,

indicating that QA serves as an important type of interaction in the

teacher-created Snap! projects. Two-thirds (40/58) of the projects

involve Event Handling to synchronize behaviors between sprites.

The most popular synchronization method (28/40) was by broadcast-

ing a message to signal the next event. Three-quarters of projects

(44/58) included basic programming control structures, such as if-

then conditions, game loops, and randomized events. Animation

having the lowest proportion using control structures, which makes

sense given that most of the animations have a single, chronological

plot that does not repeat or deviate based off of input conditions.

Those animations with control structures usually used loops to

draw shapes, corresponding to the DrawSquare and RowOfHouses

programs introduced in the PD’s Code session. Finally, 20 of the 58

projects used Drawing features.

Interestingly, we found that some teachers used the doWait

block instead of message broadcasting for synchronization pur-

poses. These teachers asked a sprite to wait a pre-set number of

seconds for other sprites to complete their actions before contin-

uing to the next action. This discovery is consistent with another

research that studied creative products from elementary school

students [16]. While using doWait block is one way to achieve syn-

chronization, it is not a preferred method in many cases because

of its static nature – one has to manually adjust the wait time for

every sprite in the program to adapt to new information. This find-

ing is one of the many examples that suggests problems that the

Code session could easily address to help the teachers make certain

features more efficiently.

Figure 3: The percentage of the projects that have each fea-
ture by project type

4.1.4 CT in Coding Activities. We analyzed how teachers con-

nected the coding activities to each element in PRADA by dis-

cussing what connection the teachers made with an excerpt from

the learning segment that demonstrates the connection.

Pattern recognition does not seem to be a difficult element for the

teachers to understand and relate to, as the teachers who identified

pattern recognition in the coding activity generally made the correct

connection. Teachers were able to recognize patterns in the code

from two aspects. One aspect is having repeated code in a piece of

script, linking it to a repeat block ("Using a repeat in the code to

be able to use the 4 nitrogenous bases of DNA limitlessly"). The

other aspect is having duplicate code between sprites ("6 regions

that have the same code, and repetition within the code itself").

Decomposition in coding activities happens mostly when ex-

plaining and understanding existing code, often accompanied by

making abstractions of decomposed code chunks (“Break down plot

diagram into subcategories and look further into what blocks go

into a specific abstraction"). Some teachers discussed decomposition

in a more subtle way by considering the conditionals and loops as

means to decompose an algorithm (“if’ and ‘repeat’ blocks are used

in the code to show a breakdown of the parts of the algorithm").

Many science and math teachers were able to identify different

kinds of abstraction in the code. Many teachers were able to link the

definition of custom blocks to abstraction (e.g. “Name these repeated

steps [of calculating the roots and the vertex of a binary equation]

by calling the process Find Roots and Find Vertex"). Some teachers

recognized that the use of variables is also a kind of abstraction

(“Variables have been created for specific [geological] values"). In

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

282

contrast, abstraction seemed to be a more challenging concept

for the interdisciplinary groups and humanities teachers to apply

to their projects, as none of them mentioned abstraction in their

coding activities. This finding suggests that more support is needed

for the non-STEM teachers to conceptualize and apply abstraction

in programming to their subject-specific context.

Similar to abstraction, algorithms were discussed only by science

and math teachers. Some science and math teachers were able to

relate algorithms to the “the code used in the script". These learning

segments would require the students to “use an algorithm to create a

block of code that will ask a question and respond to the answer as to

whether correct or incorrect". A group of math teachers took a step

further and noted the generalizability of an algorithm, stating that

“Transcription is a step by step process and the code that is created

demonstrating transcription can be used with any sequence of

DNA nitrogenous bases to create an mRNA transcript." None of the

interdisciplinary/humanities teachers mentioned how algorithms

connect to coding in their learning segments.

4.2 Programming Concept Analysis
Table 2 shows the results of the programming concept analysis. In

general, around two-thirds of the projects used loops and condition-

als (If), but the percentage of projects having loops and conditionals

varies greatly by type. This corroborates the finding in the content

analysis where few Animation projects have Control features. Both

Custom blocks and Variables appeared in about half of the projects,

suggesting that these concepts are still hard for many teachers to

apply. In addition, even though being a very useful data structure,

lists may be difficult for the teachers to learn as it only appeared in

1/3 of the projects. Even fewer projects (13.79%) used advanced list

operations like insertion or deletion.

Table 2: The number of projects that have each program-
ming concepts by project type

 Loop If Custom Var List
Anim (13) 7(51%) 2(15%) 5(38%) 5(38%) 6(46%)

Story (11) 7(64%) 10(91%) 7(64%) 4(36%) 0(0%)

Quiz (6) 6(100%) 5(83%) 2(33%) 3(50%) 2(33%)

Game (6) 3(50%) 4(67%) 3(50%) 4(67%) 0(0%)

Sim (22) 15(68%) 20(91%) 14(64%) 18(82%) 11(50%)

Total 38(66%) 41(71%) 31(53%) 34(59%) 19(33%)

The programming concept analysis helps expose some potential

issues in the teachers’ understanding of programming concepts.

For example, as experienced programmers we can see that the QA

feature could be easily abstracted into a custom block that uses lists

to manage questions and their corresponding solutions. However,

only two out of six Quiz projects used custom blocks and lists. This

could suggest that the teachers may have failed to recognize this

abstraction or that they’re simply not comfortable with using cus-

tom blocks and/or lists. Moreover, programming concept analysis

helped identify the nature of the types. Animation and Interactive

Storyboard projects had lower percentages of variable usage, which

is most likely due to the fact that neither project type typically

requires storing information for later use.

The Intended Game type scored a relatively low percentage on

all programming concepts. This is also consistent with the result in

the Feature analysis shown in Figure 3. Upon close inspection, we

find that this could be due to the different mechanics of the games.

The games that rely on mouse click-and-drag events tend to use

fewer desired CT/programming concepts than others since their

logic is often simply responding to cursor events. This suggests

that teachers who want to make games should think about how

their game mechanics relate to the programming/CT concepts they

want students to learn.

5 DISCUSSION
To further investigate the coding activities in the teacher projects,

we plotted the project type vs. coding requirements as shown in Fig-

ure 4. We arranged the project types according to CT/programming

difficulty and the coding requirements according to how much

coding students would do. Project types are arranged from left to

right from least difficult to most difficult to infuse CT/programming

concepts into if implemented correctly. Coding requirements range

from the least (no coding) at the bottom to the most (whole project)

at the top. Figure 4 shows the distribution of project types versus

coding requirements for each content area with the size of the dot

mapping to the number of projects at that spot.

Figure 4: The relationship between project type and coding
requirement by content area

These plots reveal tendencies for the teacher-created projects

affiliated with each discipline. Specifically, the humanities projects

lean more towards building animations and require students to do

more coding. We think this is possibly due to the fact that humani-

ties classrooms often require students to write or create content.

In addition, as suggested by our product analysis, animations and

interactive storyboards tend to have less complex logic and are

relatively easy to make, so these teachers may feel more confident

in their students’ ability to make the whole project.

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

283

Math projects tend to be simulation/exploration based and ex-

pect students to do more coding. This could be because that many

mathematical concepts, norms, practices, and vocabulary terms are

in parallel with programming concepts [15]. For instance, the steps

taken to solve a math problem can be easily transformed into an

algorithm. By turning math problems like finding the best rates

and exploring transformations into making simulation/exploration

tools, students gain the opportunity to develop a deeper under-

standing of the concepts through hands-on programming.

Science projects are more varied in terms of project type and

coding requirement, which may indicate that the science teachers

have a larger variety of needs for their projects. For example, a

group of science teachers created a curriculum to teach the Energy

Pyramid. Their product included four project files: one project file is

an interactive storyboard that introduces the food chain, one project

file is a simulation that explores the population dynamics between

the predator and the prey, and the other two project files are quizzes,

one testing students’ knowledge of the energy transformation in

the energy pyramid, and one testing on the food chain. These

varied needs are also reflected in the coding activities designed for

students. For simpler concepts or phenomena, the teacher may want

the students to create the whole program to increase understanding

of the underlying mechanic. However, for more complex concepts,

the teacher may simply want the students to use the project as a

tool for the students to explore the pattern behind the phenomena.

By showing the disciplinary differences in terms of project type

and coding requirements, we’re not trying to argue which type

or how much coding is good or bad. Rather, using the findings

from the teacher product analysis, we hope to better understand

the needs of the teachers from different disciplines in order to help

them find better, more tailored ways to infuse programming and

computational thinking into their curricula. For example, our find-

ings show that humanities teachers are fond of using animation

and interactive storyboards in their lessons but are having trouble

identifying and infusing some CT elements and programming con-

cepts into their products. A potential solution would be introducing

simple modeling concepts to the teachers that transform their ani-

mations from heavily relying on the wait blocks to using variables

and event handling to govern the chronological progression of the

story. Other solutions may include showing the teachers diverse

examples and types of coding activities that could potentially be

used to teach the same knowledge.

In addition, the feature analysis and programming concept anal-

ysis not only tell us how much programming the teachers have

learned, but also suggest places where we can provide more scaffold-

ing to help the teachers be more successful in project development.

For example, by better understanding what features teachers often

need in their projects, we can provide more targeted scaffolding by

creating pre-made features and example projects that the teachers

can easily adapt and use in their projects, such as a QA block. It’s

important to understand and remember that these teachers are

not learning programming to become professional programmers.

Rather, they only need to concentrate on the elements of program-

ming that afford CT and connect to their domain, standards, and

curriculum. Thus, by giving the teachers pre-made features and

examples during the Code sessions, we are not only giving them the

chance to practice explaining code and examining how the features

are made in the desired ways, but also relieving the teachers from

the struggle of creating certain features so they can spend time on

designing learning experiences for their lessons.

One limitation of this work is that the project files submitted

weren’t necessarily refined products ready to be used, but were

mostly prototypes to showcase what the teachers intended for their

students to do in their classrooms. Thus, certain features that could

demonstrate teachers’ understanding of programming concepts and

CT elements may not have been completed. However, while the

prototype characteristics were a limitation, they also afford insight

into what the teachers were able to learn and make in a week of

training, which might shed light on how much programming they

feel comfortable teaching after a short-term training and how much

they believe their students are able to learn in these lessons. Another

limitation might be the fact that the coding sessions were taught

mostly with create activities, which might affect the choice of the

coding requirement teachers designed in their learning segments.

6 CONCLUSION
In this paper, we analyzed 58 middle and high school teacher-

designed programming projects from two computational thinking

PD workshops to help us understand how the K-12 teachers intend

to use programming to teach CT in their classrooms.

From our analysis, we identified five project types in the teacher

programming projects: animation, interactive storyboard, quiz, in-

tended game, and simulation/exploration tool. The teachers gener-

ally have four kinds of coding requirements in their lesson plans:

using and/or explaining provided code, modifying existing code,

programming with starter code, and building entire programs. The

common features in the teacher programming projects can be clas-

sified into five categories: sprite manipulation, QA, event handling,

control, and drawing. Humanities and interdisciplinary products

were mostly animations and interactive storyboards and required

the students to code the whole project. The majority of the math

projects were simulation/exploration tools and intended games that

required students to either code the whole project from scratch or

with starter code. The classification of the science products varied

in project type and coding requirements, depending on the purpose

of the project. Regarding connecting coding activities to compu-

tational thinking, many science and math teachers were able to

make reasonable connections. However, humanities and interdisci-

plinary teachers appeared to have trouble identifying abstraction

and algorithms in their planned coding activities.

Our work provides insights on how the teachers intend to use

programming to teach computational thinking in their own content

area lessons. These insights can help us provide more scaffolding

for the teachers by making relevant example programs and pre-

made custom blocks to help the teachers develop their projects

more efficiently. We will use these pre-made examples in the Code

sessions, modeling content that suits teachers’ needs while also

better conveying CT concepts that can be integrated and learned

by students in their classrooms.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under grant numbers 1742351 and 1742332.

Session 5B: Professional Development ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

284

REFERENCES
[1] Joel C Adams and Andrew R Webster. 2012. What do students learn about

programming from game, music video, and storytelling projects?. In Proceedings

of the 43rd ACM technical symposium on Computer Science Education. ACM, 643–

648.

[2] Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce

Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curricu-

lum framework: Implications for teacher knowledge. Journal of Educational

Technology & Society 19, 3 (2016).

[3] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to

K-12: what is Involved and what is the role of the computer science education

community? Acm Inroads 2, 1 (2011), 48–54.

[4] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer

science unplugged: School students doing real computing without computers.

The New Zealand Journal of Applied Computing and Information Technology 13, 1

(2009), 20–29.

[5] Alexandra Funke, Katharina Geldreich, and Peter Hubwieser. 2017. Analysis

of scratch projects of an introductory programming course for primary school

students. In Global Engineering Education Conference (EDUCON), 2017 IEEE. IEEE,

1229–1236.

[6] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of

computing. ACM Inroads 6, 4 (2015), 71–79.

[7] Shuchi Grover, Satabdi Basu, and Patricia Schank. 2018. What We Can Learn

About Student Learning From Open-Ended Programming Projects in Middle

School Computer Science. In Proceedings of the 49th ACM Technical Symposium

on Computer Science Education. ACM, 999–1004.

[8] Shuchi Grover and Roy Pea. 2013. Computational thinking in K–12: A review of

the state of the field. Educational Researcher 42, 1 (2013), 38–43.

[9] Author Hidden. XXXX. Hidden Paper. In Anonymous.

[10] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce

Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in

practice. Acm Inroads 2, 1 (2011), 32–37.

[11] María Cecilia Martinez, Marcos J. Gomez, Marco Moresi, and Luciana Benotti.

2016. Lessons Learned on Computer Science Teachers Professional Development.

In Proceedings of the 2016 ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 77–82. https:

//doi.org/10.1145/2899415.2899460

[12] Jesús Moreno-León and Gregorio Robles. 2015. Dr. Scratch: A web tool to auto-

matically evaluate Scratch projects. In Proceedings of the workshop in primary

and secondary computing education. ACM, 132–133.

[13] Jennifer Rosato, Chery Lucarelli, Cassandra Beckworth, and Ralph Morelli. 2017.

A Comparison of Online and Hybrid Professional Development for CS Principles

Teachers. In Proceedings of the 2017 ACM Conference on Innovation and Technology

in Computer Science Education (ITiCSE ’17). ACM, New York, NY, USA, 140–145.

https://doi.org/10.1145/3059009.3059060

[14] Lee S Shulman and Judith H Shulman. 2004. How and what teachers learn: A

shifting perspective. Journal of curriculum studies 36, 2 (2004), 257–271.

[15] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura

Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-

matics and science classrooms. Journal of Science Education and Technology 25, 1

(2016), 127–147.

[16] David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin.

2018. Starting from Scratch: Outcomes of early computer science learning expe-

riences and implications for what comes next. In Proceedings of the 2018 ACM

Conference on International Computing Education Research. ACM, 142–150.

[17] Aman Yadav, Hai Hong, and Chris Stephenson. 2016. Computational thinking

for all: pedagogical approaches to embedding 21st century problem solving in

K-12 classrooms. TechTrends 60, 6 (2016), 565–568.

[18] Aman Yadav, Chris Mayfield, Ninger Zhou, Susanne Hambrusch, and John T Korb.

2014. Computational thinking in elementary and secondary teacher education.

ACM Transactions on Computing Education (TOCE) 14, 1 (2014), 5.

https://doi.org/10.1145/2899415.2899460
https://doi.org/10.1145/2899415.2899460
https://doi.org/10.1145/3059009.3059060

