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Truncated Karhunen–Loève (KL) representations are used to construct finite dimensional 
(FD) models for non-Gaussian functions with finite variances. The second moment 
specification of the random coefficients of these representations are enhanced to full 
probabilistic characterization by using translation, polynomial chaos, and translated 
polynomial chaos models, referred to as T, PC, and PCT models. Following theoretical 
considerations on KL representations and T, PC, and PCT models, three numerical examples 
are presented to illustrate the implementation and performance of these models. The PCT 
models inherit the desirable features of both T and PC models. It approximates accurately 
all quantities of interest considered in these examples.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The states of mechanical, economic, environmental, physical, and other systems satisfy equations with random coeffi-
cients and/or inputs and end conditions, referred to as stochastic equations. For example, consider the one-dimensional 
stochastic transport equation d

(
A(x) U ′(x)

)
/dx = Y (x), x ∈ D ⊂ R, accompanied by deterministic or random boundary con-

ditions, where the random field A(x) characterizes material properties and Y (x) denotes a source term. Its solution U (x) is 
a functional of the material properties A(x). Since A(x) is an uncountable family of random variables indexed by x ∈ D , its 
stochastic dimension is infinity. For numerical solutions of this equation, A(x) has to be approximated by a finite dimen-
sional (FD) model A(x) = h(x, Z), where h is a deterministic function of the spatial argument x ∈ D and a random vector Z . 
The stochastic dimension of A(x) is finite and equal to the dimension of Z . It is common to construct FD models of the 
input random fields to stochastic equations from truncated Karhunen–Loève (KL) series representations of these fields [3,5,
12,20,22,27,35,36]. The resulting FD models are linear forms of deterministic functions of space and/or time with random 
coefficients, e.g., the components of Z for the FD model A(x) = h(x, Z) of A(x) for the above transport equation. These 
coefficients are uncorrelated irrespective of the law of A(x). They are independent and Gaussian for Gaussian functions but 
dependent and non-Gaussian for non-Gaussian functions.

The probabilistic characterization of the solutions of stochastic equations and quantities of interest derived from these 
solutions requires full probabilistic characterization of the random coefficients in the definition of FD models, e.g., the joint 
distribution of Z is needed to characterize the extreme maxx∈D{U (x)} of the solution of the above transport equation 
with A(x, Z) in place of A(x). To simplify calculations, it is frequently assumed that the random coefficients of the FD 
models of non-Gaussian functions are independent [2–4,9,11,12,34]. This assumption, referred to as the finite dimensional 
noise assumption, can significantly affect the solution quality since the resulting FD models are approximately Gaussian 
irrespective of the law of the target non-Gaussian field [19].
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Our objective is to develop FD models A(x) which capture the essential features of the laws of target non-Gaussian 
functions A(x). A two-phase approach is proposed. First, truncated KL representations are constructed for A(x) such that 
they provide accurate representations of the second moment target properties. The random coefficients of these models, 
i.e., the components of the random vectors Z , are defined up to their first two moments. The construction of KL repre-
sentations can be based on the multigrid finite element method in [37] which provides efficient and accurate algorithms 
for solving Fredholm integral equations. Second, the probabilistic characterization of Z is completed. We represent Z by 
translation vectors Z̃ (T models), truncated polynomials chaos Zn (PC models), where n denotes the truncation level of the 
PC representation of Z , and translation of PC models Z̃n (PCT models), which are derived from PC models by memoryless 
transformations. The computation times to implement PC and PCT models are similar but much larger than the time to 
implement T models. The PC and PCT models are of great interest in applications since, in contrast to T models which 
cannot capture the dependence between the random coefficients of KL expansions, they quantify the dependence between 
these coefficients.

The available information consists of independent samples of Z which can be calculated from samples of the target 
random function A(x) and the expression of the FD model A(x) of this function. It can be argued that there is no need 
to develop models for Z since (1) the joint distribution of Z can be estimated from samples of this vector provided the 
sample size is sufficiently large and that (2) the Rosenblatt transformation [32] can be used to construct a mapping U �→ Z , 
where U is a random vector with independent U (0, 1) components and the same dimension of Z . Samples of U , which can 
be generated by elementary techniques, can be mapped into samples of Z and A(x) by the transformation U �→ Z and the 
definition of the FD model A(x). In principle, this is a valid argument. In practice, the implementation of the Rosenblatt 
transformation is computationally prohibitive when dealing with large dimensional random vectors since the construction 
of the mapping U �→ Z requires to (i) estimate the distribution F1 of the first component Z1 of Z , (ii) estimate the 
distributions Fi|i−1,...,1 of the conditional random variables Zi | Zi−1 . . . Z1, i ≥ 2, and (iii) invert the distributions F1 and 
Fi|i−1,...,1. Moreover, the accuracy of the resulting Rosenblatt mapping U �→ Z depends on the sample size and the law of Z .

The paper is organized as follows. Section 2 illustrates the construction of FD models for real- and vector-valued random 
functions from truncated KL representations (Sects. 2.1 and 2.2) and give formulas for calculating samples of the random 
coefficients of these models (Sect. 2.3). The T, PC, and PCT models and the corresponding FD-based models are constructed 
and examined in Sects. 3, 4, and 5. The relationships between T, PC, and PCT models are explored in Sect. 6. Applications 
are presented in Sect. 7. They include a two-dimensional vector for which the mapping U �→ Z is known, a real-valued 
non-Gaussian field, and Gaussian and Gamma diffusion processes. Conclusions are in Sect. 8.

2. Second-moment FD models

Let A(x), x ∈ D , be an Rd-valued random function defined on a subset D of Rq . The FD models of A(x) have the 
form A(x) = h(x, Z), where h is a deterministic function of x ∈ D and a random vector Z . The model has finite stochastic 
dimensions which is equal to the dimension of Z . If Z is defined on a probabilistic space (�, F , P ) and h is measurable, 
then A(x, Z) is a random element on this space. The law of A(x) is completely defined by h and the distribution of Z . In 
many applications, h is a linear function of Z .

We limit our discussion to random functions A(x) which are defined on bounded subsets D ⊂ R
q , have finite variances, 

and continuous correlation functions so that they admit KL series representations [23] (Theorem 6.2.1). Truncated versions 
of these series are examples of FD models of A(x) which are linear in the components of Z . This class of FD models 
is considered here. The function h is a sum of the top eigenfunctions of the correlation functions of A(x) multiplied by 
random coefficients which are collected in the random vector Z . The random vector Z of KL representations are partially 
specified by its first two moments unless A(x) is a Gaussian function in which case Z is a Gaussian vector.

The following two subsections define and summarize essential properties of KL-based FD models for real- and vector-
valued random functions. Additional information can be found in [15]. The subsequent subsection calculates samples of Z
from samples of A(x) by projection. These samples are then used to construct probabilistic models for the law of Z .

2.1. Real-valued random functions

Suppose A(x), x ∈ D , is a real-valued random function with mean E[A(x)] = 0, variance E[A(x)2] < ∞, and continuous 
correlation function r(x, y) = E[A(x) A(y)], x, y ∈ D , where D ⊂ R

q is a bounded subset. The KL representation of this 
function has the form

A(x) =
∞∑

k=1

Zk ϕk(x), x ∈ D, (1)

where Zk = λ
1/2
k ξk , {ξk} are uncorrelated random variables with zero means and unit variances so that {Zk} are un-

correlated variables with zero means and variances {λk}, and {λk} and {ϕk} are the eigenvalues and eigenfunctions of ∫
D r(x, y) ϕ(y) dy = λ ϕ(x), x ∈ D . The set of eigenvalues {λk} is at most countable, the eigenvalues {λk} are strictly positive, 

and the eigenfunctions corresponding to distinct eigenvalues are orthogonal, i.e., 
∫

D ϕk(x) ϕl(x) dx = 0 for λk 	= λl , k 	= l. The 
above series converges in the m.s. sense and its first two moments coincide with those of A(x) [23] (Chap. 6).
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Truncated versions,

A(m)(x) =
m∑

k=1

Zk ϕk(x), m = 1,2, . . . , (2)

of the KL series in Eq. (1) are FD models of A(x) which are used extensively in applications [5,19,26,28,34]. The number 
m ≥ 1 of terms retain from the representation in Eq. (1) is called truncation level and gives the stochastic dimension of 
A(m)(x). The implementation of these models is relatively simple and requires knowledge of only the first two moments of 
the target random function A(x).

We note that (1) the representations of Eqs. (1) and (2) hold for the infinite family of random functions which have 
the same mean and correlation functions of A(x), (2) the distribution of the Rm-valued random variable Z = (Z1, . . . , Zm)

is unknown and so is the law of A(m)(x), (3) the random variables {Zk} are independent {N(0, λk)} if A(x) is a Gaussian 
random function, and (4) the eigenfunctions {ϕk} provide a useful basis for the approximate representation of samples A(x). 
The following properties summarize essential features of the FD models in Eq. (2).

Property 1. If the correlation function r(x, y) is square integrable and continuous in D × D, then (i) the series representation r(x, y) =∑∞
k=1 λk ϕk(x) ϕk(y) converges absolutely and uniformly in D × D and (ii) the sequence of random fields {A(m)(x), m = 1, 2, . . .}

converges in mean square (m.s.) to A(x), i.e., E
[(
A(x) − A(m)(x)

)2] → 0 as m → ∞. The truncation error is

E
[(
A(x) − A(m)(x)

)2] =
∞∑

k=m+1

λk ϕk(x)2. (3)

Proof. This property follows from the Mercer theorem ([1], Sect. 3.3, [8], Appendix 2 and Sect. 6-4, and [23], Sect. 6.2). 
Since E

[(
A(x) − A(m)(x)

)2] → 0, the truncation error can be made as small as desired. �
Property 2. Augmented versions of A(m)(x) obtained by assuming that the random variables {ξk} are independent and have known 
distributions [2–4,9,11,12,34] are Gaussian as n → ∞.

Proof. See [19]. This implies that the laws of A(m)(x) and A(x) may differ significantly for non-Gaussian random fields. If 
A(x) is a Gaussian function, then {Zk} are independent Gaussian variables so that A(m)(x) is a Gaussian function for any 
m ≥ 1. The FD model A(m)(x) matches the finite dimensional distributions of A(x) asymptotically as m → ∞. �
Property 3. Generally, FD models A(m)(x), m < ∞, of homogeneous target fields A(x) are inhomogeneous.

Proof. Suppose that A(x) is a weakly homogeneous random field and assume that A(m)(x) is also homogeneous for all 
m ≥ 1. Then

E
[(m+1∑

k=1

Zk ϕk(x)
)2] = E

[
A(m)(x)2] + λk ϕm+1(x)2

by Mercer’s theorem so that ϕm+1(x) must be invariant with x, which is a contradiction. If it is assumed that {Zk} are 
independent random variables, then the characteristic functions of A(m)(x) for the truncation levels m and m + 1 are related 
by

E
[

exp
(
i u

m+1∑
k=1

Zk ϕk(x)
)] = E

[
exp

(
i u A(m)(x)

)]
E
[

exp
(
i u Zm+1 ϕm+1(x)

)]
.

Since the characteristic function of A(m)(x) is x-invariant by assumption, then the expectation E
[

exp
(
i u Zm+1 ϕm+1(x)

)]
should not depend on x, a contradiction. Numerical illustrations can be found in [10]. �
Property 4. Almost all samples of A(m)(x) are in L2(D).

Proof. We have

E
[‖A(m)(·,ω)‖2

L2(D)

] = E

[∫
A(m)(x,ω)2 dx

]
=

m∑
k=1

λk ≤
∞∑

k=1

λk, m ≥ 1,
D
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and 
∑∞

k=1 λk < ∞ by properties of the eigenvalues. Since E
[‖A(m)(·, ω)‖2

L2(D)

]
is finite and P

(‖A(m)(·, ω)‖2
L2(D)

> a
) ≤

(1/a) 
∑m

k=1 λk → 0, a → ∞, by Markov’s inequality [31] (Sect. 5.2.3), we conclude that almost all samples of A(m)(x), m ≥ 1, 
are square integrable on D , i.e., are elements of L2(D). �

The truncation level m will be selected such that A(m)(x) approximates the target random function A(x) satisfactorily. 
Once selected, the truncation level m is kept fixed. For simplicity, we drop the superscript m and will refer to A(m)(x) as 
A(x).

2.2. Vector-valued random functions

Suppose A(x), x ∈ D , is an Rd-valued random function whose components Ai(x), i = 1, . . . , d, have means E[Ai(x)] = 0, 
variances E[Ai(x)2] < ∞, and continuous correlation functions ri j(x, y) = E[Ai(x) A j(y)], i, j, = 1, . . . , d, x, y ∈ D . We 
present two methods to construct FD models of A(x).

The standard method uses truncated KL series representations

A(m)(x) =
m∑

k=1

Zk ψk(x) ∈R
d, x ∈ D, (4)

of A(x), where m denotes the truncation level, {Zk = μ
1/2
k ηk ∈ R}, {ηk} are uncorrelated random variables with zero 

means and unit variances, {μk, ψk(x) ∈ R
d} are the eigenvalues and eigenfunctions of 

∫
D r(x, y) ψ(y) dy = μ ψ(x), x ∈ D , 

and r(x, y) = {ri j(x, y)}. Since the selection of the truncation level m is based on the m.s. error of A(m)(x) and the dominant 
components of A(x) control this error, the components of the resulting FD model may have different accuracies.

An alternative method can be used to construct FD models of A(x) whose components have prescribed accuracies. We 
develop FD models of A(x) component-by-component. Generally, they have different truncation levels to satisfy required 
accuracies, e.g., the FD model of Ai(x) for the truncation level mi has the form

A(mi)

i (x) =
mi∑

k=1

Zi,k ϕi,k(x), mi = 1,2, . . . , i = 1, . . . ,d, (5)

where Zi,k = λ
1/2
i,k ξi,k , {ξi,k}, k = 1, . . . , mi , are uncorrelated random variables with zero means and unit variances so that 

{Zi,k} are uncorrelated variables with zero means and variances {λi,k}, and {λi,k} and {ϕi,k} are the top eigenvalues and 
the eigenfunctions of the correlation function rii(x, y) = E

[
Ai(x) Ai(y)

]
, x, y ∈ D , of the real-valued random function Ai(x). 

The properties of the individual FD models A(mi)

i (x) follow directly from those of the real-valued random function in the 
previous subsection.

We now summarize properties of the FD model A(m1,...,md)(x) = (
A(m1)

1 (x), . . . , A(md)

d (x)
)

of the vector-valued random 
function A(x) which are relevant to our discussion.

Property 5. The set of functions {θi j,kl = ϕi,k ϕ j,l}, i, j = 1, 2, . . . , d, k, l = 1, 2, . . . is an orthonormal basis of L2(D × D).

Proof. See [15]. This shows that the basis functions for vector-valued random functions can be obtained from those of their 
components by elementary calculations. The resulting representations have components with prescribed accuracies. �
Property 6. The correlation functions of distinct components of A(x) admits the representation

ri j(x, y) =
∞∑

k,l=1

〈ri j, θi j,kl〉 θi j,kl(x, y), (x, y) ∈ D × D, (6)

where the series convergent in L2(D × D).

Proof. This holds since {θi j,kl} is an orthonormal system of the Hilbert space L2(D × D) and the sequence {r(mi ,m j)

i j } in 
Eq. (7) is Cauchy in L2(D × D) which is a complete space [14] (Theorem 11.2, p. 25). �
Property 7. The projection

r
(mi ,m j)

i j (x, y) =
mi∑

k=1

m j∑
l=1

〈ri j, θi j,kl〉 θi j,kl(x, y), (x, y) ∈ D × D, (7)

of ri j on the subspace spanned by {θi j,kl}, k = 1, . . . , mi , l = 1, . . . , m j, is the best m.s. approximation for the truncation levels.
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Proof. Direct calculations show that the projections 〈ri j − r
(mi ,m j)

i j , θi j,kl〉 of the truncation error are zero, which shows that 

r
(mi ,m j)

i j is the best m.s. approximation of ri j . �
Property 8. The Fourier coefficients 〈ri j, θi j,kl〉 of the representation in Eq. (7) can be calculated from

〈ri j, θi j,kl〉 = λi,k δi j + (1 − δi j)

∫
D×D

ri j(x, y)ϕi,k(x)ϕ j,l(y)dx dy. (8)

Proof. The term for i = j is that for real-valued functions in the previous section and the term for i 	= j is the expression 
of the Fourier coefficients for ri j . �

As for real-valued random function, we assume that the truncation levels {mi} of the FD models of the components of 
A(x) have been selected such that A(m1,...,md)(x) approximates satisfactorily the target random function A(x). Once selected, 
the truncation levels {mi} are kept fixed. For simplicity, we will denote A(m1,...,md)(x) by A(x).

2.3. Samples of random coefficients

Let m and {mi} denote the selected truncation levels for the KL representations of real- and vector-valued random 
function A(x) (see Eq. (2) and (5)). The corresponding dimensions of the vectors of random coefficients of the resulting 
FD models are m and m = ∑d

i=1 mi , respectively. Samples of these coefficients can be obtained from samples of A(x) by 
projection as indicated by the following property.

Property 9. Samples {Zk(ω)} and {Zi,k(ω)} of the random coefficients of A(x) are given by

〈A(·,ω),ϕp〉 =
∞∑

k=1

Zk(ω) 〈ϕk,ϕp〉 = Z p(ω), p = 1, . . . ,m, and

〈Ai(·,ω),ϕi,p〉 =
∞∑

k=1

Zi,k(ω) 〈ϕi,k,ϕi,p〉 = Zi,p(ω), p = 1, . . . ,mi, i = 1, . . . ,d (9)

for real- and vector-valued target random functions A(x).

Proof. Suppose A(x) is a real-valued random function. Consider its FD model A(x) := A(m)(x) and the increasing sequence 
of real-valued non-negative random variables

‖A(·,ω)‖2
L2(D)

=
∫
D

A(x,ω)2 dx =
m∑

k=1

Zk(ω)2 ≤
∞∑

k=1

Zk(ω)2, m = 1,2, . . . ,

which holds since {ϕk} is an orthonormal system in L2(D). The expectations

E
[‖A(·,ω)‖2

L2(D)

] =
m∑

k=1

λk ≤
∞∑

k=1

λk, m ≥ 1,

of these random variables are finite by properties of the eigenvalues of the correlation function of A(x). Markov’s inequality 
gives P

(‖A(·, ω)‖2
L2(D)

> a
) ≤ a−1 ∑m

k=1 λk → 0, a → ∞, so that almost all samples of A(x), m ≥ 1, are in L2(D) and can be 
expanded in any orthonormal basis of this space. �

The components {Zk, k = 1, . . . , m} of Z for real-valued random functions are uncorrelated. For vector-valued random 
functions, the components {Zi,k, k = 1, . . . , mi} of Z corresponding to individual components of A(x) are uncorrelated but 
the random vectors {Zi,k} and {Z j,l}, i 	= j, may be correlated, i.e., E[Zi,k Zi,l] = 0, k 	= l, and, generally, E[Zi,k Z j,l] 	= 0, i 	= j. 
Since E[A(x)] = E[A(x)] = 0 by assumption, the components of Z have zero means.

The FD models of A(x) of A(x) defined by Eqs. (2) and (5) have the form

A(x) = ϕ(x) Z , (10)

where ϕ(x) and Z are matrices whose entries are basis functions and random coefficients. For real-valued random functions, 
ϕ(x) is the row vector 

(
ϕ1(x), · · · , ϕm(x)

)
for each x ∈ D and Z = (Z1, · · · , Zm)′ . For vector-valued functions, ϕ(x) is an 

(d, m d)-matrix with non-zero entries 
(
ϕi,1(x), · · · , ϕi,m (x)

)
in row i = 1, . . . , d and columns (i d + 1, . . . , i d + mi) and Z is 
i
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a column vector with components (Z1,1, · · · , Z1,m1 , · · · , Zd,1, · · · , Z1,md ). The covariance matrix of Z in Eq. (10) is diagonal 
with entries {λk} for real-valued random functions A(x). This matrix has diagonal blocks along the main diagonal of size 
(mi, mi), i = 1, . . . , d, with entries {λi,k, k = 1, . . . , mi} and off-diagonal blocks of size (mi , m j), i, j = 1, . . . , d, i 	= j, with 
entries {(λi,k λ j,l)

1/2 k = 1, . . . , mi, l = 1, . . . , m j}.
Our objective is to develop FD models of A(x) of the type in Eq. (10). A two-step approach is used to achieve this 

objective. First, we develop probabilistic models of the random vector Z . Three models, referred to as T, PC, and PCT models, 
are defined and examined. The T and PC models are available in the literature and have been studied extensively [13,17]. 
The PCT models attempt to retain the desirable features of T and PC models and overcome their limitations. Second, the 
properties of the FD models A(x) of A(x) are inferred from those of the T, PC, and PCT models of Z and the definition of 
the FD models A(x) in Eq. (10).

3. T models

Let {Fi} denote the marginal distributions of the components {Zi}, i = 1, . . . , m, of Z . The components of Z are uncorre-
lated for real-valued functions. For vector-valued functions, the components of Z are uncorrelated if they correspond to the 
same component of A(x) and correlated otherwise. Denote by {ζi j} the correlation coefficients of Z . The distributions {Fi}
and the correlations {ζi j} can be estimated from samples of Z . Alternative correlations can be used to construct translation 
models, e.g., Spearman’s correlation [7]. It is assumed that the set of samples of Z is sufficiently large such that the statis-
tical uncertainty in these estimates can be disregarded. We construct translation models for the random vector Z and use 
these models to characterized A(x).

3.1. Random coefficients

The components of the translation model Z̃ of Z are defined by

Z̃ i = F −1
i ◦ �

(
Gi

) = h̃i
(
Gi

)
, i = 1, . . . ,m, (11)

where F −1
i is the inverse of Fi and � denotes the distribution of N(0, 1). For simplicity, it is assumed that the distributions 

Fi are continuous with no flat spots. The random variables { Z̃ i} are nonlinear functions of the components of a standard 
Gaussian vector G = (G1, . . . , Gm) with correlation matrix {ρi j = E[Gi G j]}. Generally, {ρi j} is selected such that the co-
variance matrix of Z̃ is as close as possible to that of Z [17] (Chap. 3). Optimization algorithms can be used to find the 
correlations {ρi j} of the Gaussian image G of Z̃ . The law of the random vector Z̃ is completely defined by the correlations 
{ρi j} and the marginal distributions {Fi}. The random vector Z̃ is defined on the same probability space as G and has the 
following properties.

(1) Z̃ i
d= Zi , i = 1, . . . , m, irrespective of the correlations {ρi j} of their Gaussian images by construction.

(2) The discrepancy between the joint distributions of Z̃ and its version with independent components can be bounded by

∣∣∣∣P
( ∩m

i=1 { Z̃ i ≤ xi}
) −

m∏
i=1

Fi(xi)

∣∣∣∣ ≤ c
∑

1≤i< j≤m

exp

(
− (u2

i + u2
j )/2

1 + |ρi j|
)

, (12)

where c > 0 is a constant and ui = h̃−1
i (xi), i = 1, . . . , m. The bound results from the normal comparison lemma by a 

change of variables [25] (Theorem 4.2.1).
(3) The components of Z̃ corresponding to uncorrelated components of Z are independent since, if Zi and Z j are uncor-

related, ρi j has to be zero [17] (Sect. 3.1.1) which means that the components Gi and G j are independent and so are 
their images Z̃ i and Z̃ j .

(4) The components of Z̃ have independent tails, i.e., P
(

Z̃ i > x | Z̃ j > x
) → 0 as x → ∞ for i 	= j, so that Z̃ i and Z̃ j are 

unlikely to be simultaneously large [30] (Sect. 5.2).

3.2. FD models for random functions

The translation models Ã(x) of A(x) are given by Eq. (10) with Z replaced by Z̃ in Eq. (11). Simplicity and computation 
efficiency are the main features of translation FD models. However, the random functions Ã(x) have some limitations.

(1) The random variable Ã(x) = ∑m
k=1 Zk ϕk(x) =: ∑m

k=1 Uk(x) for a fixed arbitrary x ∈ D is Gaussian as the KL truncation 
level m → ∞, if 

∫
|z|>α z2 dFUk (z) ∼ O (m−(1+α)), α > 0, and A(x) is real-valued. The proof uses the Lindeberg–Feller 

condition ([31], Theorem 9.8.1) and can be found in [19].
(2) Under the above conditions, Ã(x), x ∈ D , becomes a Gaussian function as m → ∞.

It is sufficient to show that 
∑R

r=1 Ã(x) = ∑R
r=1

∑m
k=1 βk Uk(xr) is asymptotically Gaussian as m → ∞ for any R ≥ 1 and 

x1, . . . , xR ∈ D [19].
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(3) If A(x) is a vector-valued random function and the conditions in the first item are satisfied for the components {Ai(x)}
of this function, the FD translation models { Ãi(x)} are asymptotically Gaussian as the KL truncation levels mi increase 
indefinitely. Under additional rather mild conditions, it can be shown that the vector-valued function Ã(x) become 
Gaussian as mi → ∞, i = 1, . . . , d.

These properties pose difficulties on the selection of the KL truncation level for T models. For real-valued random func-
tions A(x), the m.s. error of the translation model Ã(x) decreases with the KL truncation level m but its distribution 
approaches the Gaussian distribution as m increases. This means Ã(x) and A(x) have similar first two moments but differ-
ent distributions for sufficiently large truncation levels m. In addition, the weak tail dependence between the components 
of Z̃ can result in unsatisfactory approximations of quantities of interest involving extremes of A(x).

We note that the models Ã(x) in this section are not the standard translation models Ã0(x). For real-valued stationary 
functions A(x), these models are defined by

Ã0(x) = F −1
0 ◦ �

(
G(x)

)
, x ∈ D,

where G(x) is a zero-mean, unit-variance, stationary Gaussian function with correlation function ρ(·) and F0 denotes the 
marginal distribution of A(x). The correlation function of G(x) is selected to minimize differences between the correlation 
functions of Ã0(x) and A(x) [17] (Chap. 3). The random functions Ã0(x) and A(x) are stationary and have the same and 
similar marginal distributions and correlation functions. A notable limitation of Ã0(x) if used to model extremes of A(x) is 
the tail independence, i.e., P

(
Ã0(x) > u | Ã0(y) > u

) → 0, x 	= y, as u → ∞.

4. PC models

We outline the construction and essential properties of PC models for random vectors and derive properties of the 
resulting FD models of A(x). Most of the content of this section is available in the literature, an introduction on PC models 
can be found in [13].

4.1. Random coefficients

The PC model Zn of Z ∈R
m for truncation level n has the form

Zn =
∑

k1,...,km≥0,
∑m

r=1 kr=1,...,n

ak1...km

m∏
r=1

Hkr (Nr), (13)

where {ak1...km } are Rm-valued coefficients, {Hkr } are Hermite, Legendre, or other polynomials, and N = (N1, . . . , Nm) ∈ R
m

has independent components with standard Gauss, uniform, or other distributions, respectively [38]. The PC model has the 
following asymptotic properties.

(1) Zn,i
L2−→ Zi , i = 1, . . . , m, which implies the convergence in probability and distribution by properties of PC models for 

real-valued random variables [24].

(2) Zn
L2−→ Z by the L2 convergence of the components of Zn to those of Z .

(3) Zn
d−→ Z since E

[‖Zn − Z‖]2 ≤ E
[‖Zn − Z‖2

] → 0 by the Cauchy–Schwarz inequality so that P
(‖Zn − Z‖ > ε

) ≤ E
[‖Zn −

Z‖]/ε by the Chebyshev inequality. This gives the convergence Zn
p−→ Z , n → ∞, which implies the convergence in 

distribution of Zn to Z .
(4) If the marginal distributions {Fi} of Z are continuous and have no flat spots, the marginal distributions {Fn,i} of Zn

converge uniformly to {Fi}, i.e., supx∈R |Fn,i(x) − Fi(x)| → 0, n → ∞.
This holds by properties of monotone functions. We have supx∈[a,b] |Fn,i(x) − Fi(x)| → 0, n → ∞, for arbitrary bounded 
intervals [a, b] [29] (Proposition 2.1) and the observation that a and b can be taken sufficiently small and large, respec-
tively, such that the differences |Fn,i(x) − Fi(x)| can be made as small as desired for x < a and x > b.

The above asymptotic properties are of limited value in many applications since (i) the truncation level n has to be kept 
relatively low to limit the computation demand, (ii) the rate of convergence of Zn to Z is slow, and (iii) the discrepancy 
between Z and Zn may not decrease monotonically with the truncation level n. These observations suggest that the dis-
tributions of Z and Zn are likely to differ significantly for large dimensional vectors Z since the truncation levels n must 
be low to assure that the implementation of Zn is feasible. A notable feature of the PC models Zn , n > 1, is that their 
components are dependent as functions of the random vector N = (N1, . . . , Nm) (see Eq. (13)).

The implementation of the PC models Zn requires to calculate the coefficients {ak1...km } in Eq. (13). The number of 
these coefficients increases rapidly with the dimension m of Z and the truncation level n. The coefficients {ak1...km } can be 
obtained efficiently by projection if Z is a known function of the random vector N in the definition of Zn . Otherwise, they 
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can be obtained by matching moments and/or other statistics of Z and Zn via optimization algorithms, e.g., MATLAB genetic 
algorithms. The algorithms can be supplemented with constraint involving the first two moments of Z and Zn . We have 
E[Zn] = 0 irrespective of the values of {ak1...km } since E

[∏m
r=1 Hkr (Nr)

] = ∏m
r=1 E

[
Hkr (Nr)

] = 0. The covariances of Zn with 
Hermite polynomials {Hkr } have the expressions

E
[

Zn,p Zn,q
] =

∑
k1,...,km

∑
l1,...,lm

a(p)

k1...km
a(q)

l1...lm
E

[ m∏
r=1

Hkr (Nr)

m∏
s=1

Hls (Ns)

]

=
∑

k1,...,km

∑
l1,...,lm

m∏
i=1

a(p)

k1...km
a(q)

l1...lm
E
[

Hki (Ni) Hli (Ni)
]

=
∑

k1,...,km

∑
l1,...,lm

m∏
i=1

a(p)

k1...km
a(q)

k1...km

m∏
i=1

ki !, p,q = 1, . . . ,m,

by properties of Hermite polynomials, i.e., E
[

Hα(X) Hβ(Y )
] = α! ρα δαβ for X, Y correlated standard Gaussian variables 

with correlation coefficient ρ . The indices of summations in the above expression of E
[

Zn,p Zn,q
]

have the range of those 
in Eq. (13) and a(p)

k1...km
denotes the component p = 1, . . . , m of ak1...km . The possible values of the coefficients {ak1 ...km }

can be constrained by limiting differences between the covariances of Z and the covariances of Zn , which depend on the 
coefficients {ak1...km }. The constraints define a subset of Rm which contains the optimal coefficients so that the search is 
performed in a subset of Rm rather than the entire Rm . We will specify the objective functions and the constraints used to 
implement Zn in the numerical examples of Sect. 7 on Applications.

4.2. FD models for random functions

The PC model An(x) of A(x) is the random function A(x) in Eq. (10) with Z replaced by Zn in Eq. (13), i.e.,

An(x) = ϕ(x) Zn, x ∈ D. (14)

The properties of An(x) follow directly from those of Zn and the functional form of A(x). For example, An(x) has the 
following properties for large truncation levels n.

(1) For arbitrary fixed x ∈ D , the sequence of random variables An(x) converges in m.s. to A(x) as n → ∞, and, therefore, 
in probability and distribution, since

E
[(

A(x) − An(x)
)2] = ϕ(x) E

[
(Z − Zn) (Z − Zn)

′]ϕ(x)′,

and

∣∣E
[
(Zi − Zn,i) (Z j − Zn, j)

∣∣ ≤ (
E
[
(Zi − Zn,i)

2] E
[
(Z j − Zn, j)

2])1/2

by the Cauchy–Schwarz inequality, and the m.s. convergence of Zn to Z as n → ∞.
(2) For arbitrary n̄ and x1, . . . , xn̄ ∈ D , the vector with components 

(
An(x1), · · · , An(xn̄)

)
converges in m.s. to 

(
A(x1), · · · ,

A(xn̄)
)

as n → ∞ by the previous property since these vectors are linear in Z . This implies the convergence in prob-
ability and distributions of these vectors, so that the finite dimensional distributions of An(x) converge to those of 
A(x).

As previously stated, the attractive asymptotic properties of Zn and An(x) are of limited value in many applications since, 
generally, the rate of convergence of Zn to Z is slow, the computational effort for using large truncation levels is excessive 
when dealing with large dimensional vectors, and the accuracy of Zn and, therefore An(x), does not increase monotonically 
with the truncation level n.

5. PCT models

We have seen that the translation models Z̃ match the marginal distributions of Z but cannot capture its dependence 
structure and that the PC models Zn have dependent components but their distributions differ from those of Z for finite 
truncation levels n. The PCT models are intended to retain the desirable features of T and PC models and overcome most of 
their limitations. The models have the functional form in Eq. (10) with Z replaced by PCT models Z̃n of Z .
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5.1. Random coefficients

The components of the PCT models for random vectors Z are defined by

Z̃n,i = F −1
i ◦ Fn,i

(
Zn,i

) = hn,i
(

Zn,i
)
, i = 1, . . . ,d, n = 0,1, . . . , (15)

where {F −1
i } are the inverses of the marginal distributions {Fi}, Zn = {Zn,i} denote the PC models in Eq. (13), and {Fn,i} are 

the marginal distributions of {Zn}. The distributions {Fn,i} depend on the coefficients {ak1...km } which, generally, differ for 
the PC and PCT models of Z . The PCT models have the following properties.

(1) Z̃n,i
d= Zi , i = 1, . . . , m, n = 1, 2, . . ., by construction since Fn,i

(
Zn,i

) ∼ U (0, 1) irrespective of the truncation level n and 
the values of the coefficients {ak1 ...km }.

(2) hn,i converges to the identity function uniformly for each i = 1, . . . , m.
This follows from (i) the uniform continuity of F −1

i as a continuous function on a bounded interval, i.e., for given ε > 0, 
there exists δ > 0 such that |u − v| < δ implies |F −1

i (u) − F −1
i (v)| < ε and (ii) the uniform convergence Fn,i → Fi , i.e., 

for any δ > 0 there is an index nδ such that |Fn,i(x) − Fi(x)| < δ for all x ∈ R and n ≥ nδ . In summary, for an arbitrary 
ε > 0, we can find δ > 0 and nδ such that |F −1

i

(
Fn,i(x)

) − F −1
i

(
Fi(x)

)| = |hn,i(x) − x| < ε for x ∈R and n ≥ nδ .

(3) Z̃n,i
L2−→ Zi , i = 1, . . . , m, as n → ∞ which implies the convergence in probability and distribution of Z̃n,i to Zi .

We have (Zi − Z̃n,i)
2 ≤ 2 (Zi − Zn,i)

2 + 2 (Zn,i − Z̃n,i)
2, E

[
(Zi − Zn,i)

2
] → 0 by the m.s. convergence of Zn,i to Zi , and 

E
[
(Zn,i − Z̃n,i)

2
] = ∫ (

x − hn,i(x)
)2

dFn,i(x) which converges to zero by the previous item.

(4) Z̃n
L2−→ Z as n → ∞ by the convergence Z̃n,i

L2−→ Zi , i = 1, . . . , m. This implies the convergence Zn → Z in probability 
and distribution so that the joint distributions of Z̃n converge to the joint distribution F of Z .

These properties show that the PCT model { Z̃n} in Eq. (15) preserves the desirable properties of T and PC models, 
Z̃ and Zn . Like Z̃ , it matches the marginal distributions of Z exactly for any n and {ak1...km }. In contrast to Z̃ whose 
components have independent tails, the components of Z̃n , n > 1, are dependent as functions of the same random vector 
N = (N1, . . . , Nd). The latter features is inherited from PC models.

We reiterate that the coefficients {ak1...km } of the PC models Zn in Eq. (13) and those of the PCT model Z̃n in Eq. (15), 
generally, differ. These coefficients are obtained by optimization algorithms if the mapping N �→ Z is not known. The objec-
tive functions and the constraints used to implement Zn and Z̃n will be specified in the numerical examples of Sect. 7 on 
Applications.

5.2. FD models for random functions

The random function A(x) in Eq. (10) with Z̃n given by Eq. (15) in place of Z yields the associated PCT model Ãn(x) of 
A(x), i.e.,

Ãn(x) = ϕ(x) Z̃n, x ∈ D. (16)

The properties of Ãn(x) result from those of Z̃n and the above expression of Ãn(x). They parallel the properties of the PC 
model An(x).

(1) For arbitrary fixed x ∈ D , the sequence of random variables Ãn(x) converges in m.s. to A(x) as n → ∞, and, therefore, 
in probability and distribution since

E
[(

A(x) − Ãn(x)
)2] = ϕ(x) E

[
(Z − Z̃n) (Z − Z̃n)

′]ϕ(x)′,

and Z̃n converged in the m.s. to Z as n → ∞.
(2) For arbitrary n̄ and x1, . . . , xn̄ ∈ D , the vector with components 

(
Ãn(x1), · · · , Ãn(xn̄)

)
converges in m.s. to 

(
A(x1), · · · ,

A(xn̄)]) as n → ∞ by the previous property. This implies the convergence of in probability and distribution so that the 
finite dimensional distributions of Ãn(x) converge to those of A(x).

6. Relations between T, PC, and PCT models

The models proposed for A(x) have the form of A(x) in Eq. (10), i.e.,

An(x) = ϕ(x) Zn,

Ã(x) = ϕ(x) Z̃ , and

Ãn(x) = ϕ(x) Z̃n, (17)
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where Zn , Z̃ , and Z̃n are the random vectors in Eqs. (13), (11), and (15). The samples of the models in Eq. (17) are elements 
of the vector space spanned by the deterministic basis functions ϕ(x), which are common to all models. The differences 
between these models relate to differences between the random coefficients Zn , Z̃ , and Z̃n . We now assess these differences 
and their implications on the models of A(x) for given truncation level n < ∞ of the PC series representation of Z .

6.1. T and PCT models

The random vectors Z̃n and Z̃ match exactly the marginal distributions of Z by construction. For Z̃n , this holds irrespec-
tive of the truncation level n and the values of the coefficients {ak1 ...km } of the underlying PC model of Z .

The components of Z̃n are dependent/independent if the components of Z are dependent/independent. The accuracy of 
the joint distribution of Z̃n depends on the truncation level n and the values of {ak1...km }. In contrast, Z̃ cannot capture the 
dependence structure of Z . For example, if A(x) is a real-valued random function, the components of Z̃ are independent 
since the components of Z are uncorrelated.

The properties of Z̃ imply that Ã(x) = ϕ(x) Z̃ is approximately Gaussian so that its law may differ significantly from 
that of A(x). Approximations of, e.g., extremes maxx∈D |A(x)| of A(x) based on Ã(x) are likely to be unsatisfactory. On the 
other hand, essential features of the dependence structure of Z are captured by Z̃n provided that the coefficients {ak1...km }
minimize the discrepancy between joint statistics of Z and Z̃n .

6.2. PC and PCT models

There are notable similarities between PC and PCT models and some differences which may affect their performance 
significantly. The properties of Z̃n and Zn are transferred to the FD models Ãn(x) and An(x) of A(x).

The similarities of Z̃n and Zn result from their definitions in Eqs. (13) and (15) which show that the PCT models are 
constructed component-by-component by translating the components of PC models. Following are similarities between these 
models.

– For given truncation level, PC and PCT models depend on the same number of parameters, the coefficients {ak1,...,km }.
– Optimization algorithms are used to select the coefficients {ak1,...,km }. The algorithms have similar complexity and they 

require similar computation time to find the values of these coefficients.
– The random vectors Z̃n and Zn have similar asymptotic properties. They converge to Z in L2, probability, and distribu-

tion as the truncation level n increases indefinitely.
– The dependence structures of Zn and Z̃n are closely related in the sense that the probabilities that two or more com-

ponents of these vectors are simultaneously large are similar, provided they have the same truncation level n and 
coefficients {ak1...km }. For example, for a two-dimensional vector Z with identically distributed components, this means 
that the probabilities P

(
Zn,1 > z, Zn,2 > z

)
and P

(
Z̃n,1 > z̃, Z̃n,2 > z̃

)
are similar, where z and z̃ are large thresholds at 

the scales of the distributions of Zn,1 and Z̃n,1. Generally, P
(

Zn,1 > z, Zn,2 > z
)

is an unsatisfactory approximation of 
P
(

Z1 > z, Z2 > z
)

since the distributions of Zn and Z differ for relatively low truncation levels.

The differences between Z̃n and Zn relate to the construction of PCT models which retain the essential property of T 
models. For example,

– The coefficients {ak1,...,km } define completely the law of Zn . The law of Z̃n is defined by these coefficients and the 
marginal distributions of Z .

– PCT models capture exactly the marginal distributions of Z irrespective of the truncation level n and the values of the 
coefficients {ak1,...,km }. In contrast, the marginal distributions of Zn and Z differ for n < ∞ unless, e.g., the components 
of Z are polynomials of N = (N1, . . . , Nm) in Eq. (13) and n is larger than the degrees of these polynomials.

– The optimal coefficients {ak1,...,km } of Z̃n and Zn differ. Generally, the objective functions for PC models quantify dif-
ferences between moments, distributions, and other properties of Zn and Z . If the objective functions include only 
differences between statistics of some quantities of interest, e.g., maxx∈D{A(x)} for real-valued random functions, the 
properties of resulting random vectors Zn may differ significantly from those of Z . PCT models do not exhibit this be-
havior since they match the marginal distributions of Z exactly. The coefficients {ak1...km } can be tuned to best capture 
the dependence structure of Z and/or various quantities of interest.

7. Applications

The construction of T, PC, and PCT based FD models for random functions involves optimization algorithms which require 
various information on the target random vector Z , e.g., marginal distributions and correlations for T models and joint 
moments and/or histograms for PC and PCT models.

The optimization algorithm to construct T models identifies the correlation coefficients {ρi j} in the Gaussian space which 
minimize the discrepancy between the target correlations {ξi j} and the correlations {ξ̃i j} induced by {ρi j} (see Eq. (11)). We 
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measure the discrepancy between these correlations by the norm of {ρi j − ξi j}. The selection of the optimal {ρi j} is efficient 
since, generally, ρi j � ξi j [17] (Chap. 3).

The optimization algorithms to construct the PC and PCT models, Zn and Z̃n , of Z identify the coefficients {ak1...km } of the 
expansions in Eq. (13) and (15). The algorithms are computationally more intensive that for T models since (1) the number 
of coefficients {ak1...km } increases rapidly with the dimension of Z and the truncation level n and (2) the objective functions 
involve model statistics which need to be recalculated for each proposed values of the coefficients {ak1 ...km }. For example, 
let μ(r1, . . . , rm) = E

[∏m
j=1 Z

r j

j

]
and μn(r1, . . . , rm; {ak1...km }) = E

[∏m
j=1 Z

r j

n, j | {ak1...km }] be moments of order (r1, . . . , rm) of 
Z and Zn or Z̃n and {hij} and {hn,i j({ak1...km })}, i, j = 1, . . . , m, i ≤ j, be histograms of pairs of target and model components 
of Z and Zn or Z̃n . We select the coefficients {ak1...km } to minimize objective functions which quantify differences between 
target and model moments and/or two-dimensional histograms, e.g., the metrics

α ‖μ(r1, . . . , rm) − μn(r1, . . . , rm; {ak1...km })‖ + β ‖{hij} − {hn,i j({ak1...km })}‖, (18)

where α, β > 0 are weights. The moments {μn(r1, . . . , rm; {ak1...km })} and the histograms {hn,i j({ak1...km })} have to be recal-
culated for every new proposed values of the coefficients {ak1...km } which slows computation. The computation times to 
calculate these statistics of PC and PCT models are similar.

The following subsections implement T, PC, and PCT models for a two-dimensional non-Gaussian vector and two types 
of random functions and assess their performance and relative accuracy.

7.1. Two-dimensional non-Gaussian vector

Let Z = (Z1, Z2) be a random vector with the joint density

f (z1, z2) = 6 z2 1
(
z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 1

)
, z = (z1, z2) ∈R

2, (19)

and marginal distributions

F1(z1) = 1 − (1 − z1)
3, z1 ∈ [0,1],

F2(z2) = 3 z2
2 − 2 z3

2, z2 ∈ [0,1]. (20)

It can be shown that

Z1
d= 1 − U 1/3

1

Z2
d= U 1/3

1 U 1/2
2 (21)

where U1 and U2 are independent U (0, 1) variables [33] (Sect. 3.5.1).
Suppose that the quantity of interest is the joint distribution of Z . We construct approximations of these quantities 

based on T, PC, and PCT models, Z̃ , Zn , and Z̃n , of Z . Since the target vector Z is given as a function of the U (0, 1) random 
variables {Ui}, Legendre rather Hermite polynomials are used to construct PC models.

T models: The vector Z̃ is the image of a standard Gaussian vector G = (G1, G2) with correlated components. Simple cal-
culations show that ρ12 = −0.5900 yields the correlation coefficient −0.5674 of Z̃ , which is very close to the correlation 
coefficient −0.5713 of Z . The model Z̃ is completely defined by the correlation coefficients ρ12 and the marginal distribu-
tions in Eq. (20). The components of these models are

Z̃1 = F −1
1 ◦ �(G1)

Z̃2 = F −1
2 ◦ �(G2). (22)

PC and PCT models: The general form of the PC models of Z is

Zn =
∑

k1,k2≥0; ≤k1+k2≤n

ak1k2 Lk1(U1) lk2(U2) (23)

where {Lki } are Legendre polynomials and {Ui}, i = 1, 2, denote independent U (0, 1) variables. The coefficients {ak1k2 ∈ R
2}

can be obtained by projecting Z on the Legendre basis {Lk1 (U1) Lk2 (U2)} and using properties of the Legendre polynomials 
(see Eq. (9)), and have the expressions

ak1k2 = 1

(2 k1 + 1) (2 k2 + 1)
E
[

Z Lk1(U1) lk2(U2)
]
. (24)

The expectations in their expressions can be calculated or estimated from samples of (U1, U2, Z) since Z is a known 
function of (U1, U2).
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Fig. 1. Scatter plots of Z (top left panel), Z̃ (top right panel), Zn (bottom left panel), and Z̃n (bottom right panel).

The components of the PCT models Z̃n result from Eq. (22) with Zn in Eq. (23) in place of G = (G1, G2) and the distri-
butions of Zn in place of �. The coefficients {ak1k2 } in the expression of Zn can be selected to minimize specified objective 
functions of the type in Eq. (18). Generally, the coefficients {ak1k2 } of PC and PCT coefficients differ.

Two approaches have been considered to implement PC and PCT models. The first constructs the mapping U �→ Zn in 
Eq. (23) by using Eq. (24). The second uses the structure of this problem to reduce calculations, i.e., the fact Z1 depends 
only on U1 and Z2 is a product of the functions U 1/3

1 and U 1/2
2 of U1 and U2. We construct two independent PC models, 

one for U 1/3
1 and one for U 1/2

2 and use them to define a PC model of Z = (Z1, Z2). The PC models of U 1/3
1 and U 1/2

2 have 
the form

Yni ,i =
ni∑

r=0

αi,r Lr(Ui), i = 1,2, (25)

where {ni} denote truncation levels. The corresponding PC models of the components of Z are Zn1,1 = 1 − ∑n1
r=0 α1,r Lr(U1)

and Zn1,n2,2 = (∑n1
r=0 α1,r Lr(U1)

) (∑n2
r=0 α2,r Lr(U2)

)
. The coefficients of these PC models can be obtained by projec-

tions since the components of Z are known functions of U = (U1, U2). We continue to call Zn the resulting PC model 
(Zn1,1, Zn1,n2,2) by abuse of notations.

The following results are for n1 = n2 = 4. The scatter plots in Fig. 1 have been obtained from 10,000 independent samples 
of Z (top left panel), Z̃ (top right panel), Zn (bottom left panel), and Z̃n (bottom right panel). The PCT model Z̃n in this 
figure has been obtained from the PC model Zn by translation so that it has the same coefficients {ak1k2 } as Zn . The scatter 
plot of Z̃ and of the target random vector Z differs significantly although these two random vectors have the same marginal 
distributions. As expected, the scatter plot of Z̃ resembles that of negatively correlated Gaussian variables. The scatter plot 
of the PC model Zn is qualitatively similar to the scatter plot of Z . However, the range of values of Zn and their probabilities 
differ from those of Z significantly. The scatter plot of Z̃n (bottom right panel) is rather similar to that of Z although its 
coefficients {ak1k2 } are those of the PC model. This PCT model is just a translation of the PC model.

The left panel of Fig. 2 is the scatter plots of Z in the top left panel of Fig. 1. The right panel is the scatter of the 
PCT model Z̃n in Eq. (7) whose coefficients have been selected to minimize the discrepancy between its two-dimensional 
histogram and the histogram of Z , which can be quantified by the objective function in Eq. (18) with α = 0 and β = 1. 
The support and the distribution of samples of Z and Z̃n nearly coincide. The PCT model Z̃n with its optimal coefficients 
provides an accurate representation of Z and is a significant improvement over the T and PC models.
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Fig. 2. Scatter plots of Z and the PCT model Z̃n (left and right panels).

7.2. Non-Gaussian random field

Consider the real-valued FD random field

A(x) = (
G1 cos(ν x) + G2 sin(ν x))

)r
, x ∈ [0, l], (26)

where r > 1 and ν > 0 are a specified integer and real and (G1, G2) denote independent N(0, 1) variables. The random field 
A(x) is non-Gaussian as a power of the Gaussian field G1 cos(ν x) + G2 sin(ν x). It has the expression

A(x) =
∑

r1,r2≥0; r1+r2=r

r!
r1! r2! Gr1

1 Gr2
2 cosr1(ν x) sinr2(ν x), x ∈ [0, l], (27)

which, for r = 4, takes the form

A(x) =
5∑

k=1

Zk ϕk(x), x ∈ [0, l], (28)

where the components of the 5-dimensional random vector Z are Z1 = G4
1, Z2 = 4 G3

1 G2, Z3 = 6 G2
1 G2

2, Z4 = 4 G1 G3
2, and 

Z5 = G4
2 and the deterministic functions {ϕk(x)} have the expressions ϕ1(x) = cos4(ν x), ϕ2(x) = cos3(ν x) sin(ν x), ϕ3(x) =

cos2(ν x) sin2(ν x), ϕ4(x) = cos(ν x) sin3(ν x), and ϕ5(x) = sin4(ν x).
The quantity of interest is the probability P

(
max0≤x≤l{A(x)} > a

)
. Approximations of this probability are constructed by 

replacing Z in Eq. (28) with T, PC, and PCT models, Z̃ , Zn , and Z̃n , of this random vector. We note that the PC models of Z
are exact for truncation levels n ≥ 4 and approximate for n < 4 and that the components of Z are correlated. The following 
numerical results are for r = 4, n = 3, ν = 2 π/l, and l = 1.

T model: Samples of Z can be obtained by elementary calculations from samples of the standard Gaussian vector (G1, G2)

with independent components and the mapping G = (G1, G2) �→ Z = (Z1, . . . , Z5). Estimates of the correlation coefficients 
{ζi j} of the components (Zi, Z j), , i, j = 1, . . . , 5, of Z are ζ12 = −0.0595, ζ13 = 0.4317, ζ14 = −0.0177, ζ15 = 0.0018, 
ζ23 = −0.0566, ζ24 = 0.6043, ζ25 = −0076, ζ34 = −0.0293, ζ35 = 0.4233, and ζ45 = −0.0046. The Gaussian image of Z
is a standard 5-dimensional Gaussian vector whose correlations {ρi j} are very close to the target correlations {ζi j}. We have 
set {ρi j = ζi j}. These correlations and estimates of the marginal distributions of Z define completely the T model of Z (see 
Eq. (11)).

PC and PCT models: The PC model of Z has the form

Zn = E[Z ] +
∑

k1,k2≥0; 1≤k1+k2≤n

ak1k2 Hk1(G1) Hk2(G2) (29)

for truncation level n (see Eq. (13)). The coefficients {ak1k2 ∈ R
5} of these representations can be calculated from

ak1k2 = 1

k1!k2! E
[(

Z − E[Z ]) Hk1(G1) Hk2(G2)
]
, (30)

which results by projecting Z on the Hermite basis {Hk1 (G1) Hk2 (G2)} (see Eq. (9)). The expectations in Eq. (30) can be 
calculated directly by using properties of Gaussian variables since the components of Z are polynomials of G . We estimated 
these expectations from independent samples 

(
G(ω), Z(ω)

)
of (G, Z). The PC model of A(x) results by replacing Z in 

Eq. (28) with Zn in Eq. (29) with coefficients {ak1k } obtained from Eq. (30).
2
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Fig. 3. Estimates of P (max0≤x≤l{A(x)} > a): target (thin solid line) and T, PC, and PCT models (heavy dash-dotted, dotted, and solid lines).

The PCT models Z̃n of Z are translations of PC models Zn of the type in Eq. (29) such that the marginal distributions 
of the resulting vectors match the marginal distributions of Z irrespective of the values of the coefficients {ak1k2 } and the 
truncation level n (see Eq. (15)). The coefficients {ak1k2 } are selected to minimize specified objective functions which may 
or may not depend on quantities of interest. Similar optimization algorithms, rather than projection as commonly used in 
applications, can be used to calculate the coefficients {ak1k2 } of PC models. We use the discrepancy between all pairs of 2D 
histograms of Z̃n of Z to find the optimal PCT coefficients {ak1k2 }, i.e., the objective function in Eq. (18) with α = 0 and 
β = 1.

The probability P
(

max0≤x≤l{A(x)} > a
)

is illustrated by the thin solid line in Fig. 3. It is based on 100,000 independent 
samples of Z and the expression of A(x) in Eq. (28). The heavy dash-dotted, dotted, and solid lines in the figure are esti-
mates of this probability obtained from 100,000 independent samples of the T, PC, and PCT models, Ã(x), An(x), and Ãn(x), 
of A(x) which are obtained from Eq. (28) with Z̃ , Zn , and Z̃n in place of Z . The PC based estimate of P

(
max0≤x≤l{A(x)} > a

)
is inaccurate at moderate and large thresholds. The estimate of P

(
max0≤x≤l{A(x)} > a

)
improves significantly if based on 

the T model Z̃ of Z . If Z is approximated by a PCT model Z̃n , the resulting approximation of P
(

max0≤x≤l{A(x)} > a
)

traces 
closely this distribution. This is rather impressive since the PCT model has been constructed by translating the PC model Zn

to have the target marginal distributions, i.e., the coefficients {ak1k2 } of Z̃n are those of Zn .
There is a close relationship between the T and PCT models. The models are images of Gaussian and non-Gaussian ran-

dom vectors via the inverses of the marginal distributions {F −1
i } of Z . Moreover, Zn is Gaussian for n = 1. If the dimension 

of the Gaussian vector G in the definition of Zn is larger than or equal to that of Z , the T model is a special case of the 
PCT model Z̃n , n > 1, so that Z̃n is at least as accurate as Z̃ . The relative performance of T and PCT models is difficult to 
quantify in general since it is problem-dependent.

7.3. Gaussian & non-Gaussian diffusion processes

Let X (t) be a real-valued process defined by the stochastic differential equation

dX (t) = −λX (t)dt + b
(
X (t)

)
dB(t), t ≥ 0, (31)

with drift and diffusion coefficients −λ X (t), λ > 0, and b
(
X (t)

)
, where dB(t) denotes the increment of the standard Brow-

nian motion process B(t), t ≥ 0, during an infinitesimal time interval dt .
The stationary solution of Eq. (31) exists [18] (Sect. 4.7). Its mean and correlation functions are E[X (t)] = 0 and r(s, t) =

E[X (s) X (t)] = σ 2 exp(−λ |s −t|) irrespective of the form of the diffusion coefficient, where σ 2 = r(t, t) denotes the variance 
of X (t). The diffusion coefficient b

(
X (t)

)
can be chosen such that the marginal distribution of the stationary state X (t) has 

a specified form [6,16]. For example, the stationary marginal distribution f (x) of X (t) is the standard Gaussian and shifted 
Gamma with shape, scale, and shift k > 0, θ > 0, and −k θ , i.e.,

f (x) = φ(x) = exp(−x2/2)/
√

2π and

f (x) = (x + k θ)k−1 exp
( − (x/θ + k)

)
θk �(x)

, x > −k θ, (32)

for the diffusion coefficients b(x)2 = 2 λ and b(x)2 = 2 λ θ2 (x/θ + k), k, θ > 0.
The following numerical results are for λ = 0.3, a time interval [0, τ ], τ = 5, k = 2, and θ = 3 and stationary Gaussian 

and shifted Gamma diffusion processes X (t) in Eq. (31). The processes X (t) are scaled by their standard deviations so that 
they have unit variances and exponential correlations with decay parameter λ. For simplicity, the stationary solutions of 
Eq. (31) continued to be denoted by X (t).
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Fig. 4. Covariance functions of X (t) and X(t) (left and right panels).

We construct FD models for these diffusion processes by using the methodology in Sect. 2, in which A(x) is replaced 
with X (t). First, the top eigenfunctions of the correlation functions of X (t) are used to define the functional form of the FD 
models X(t) of X (t) (see Eq. (2)). Second, T, PC, and PCT models, Z̃ , Zn , and Z̃n , are developed for the random coefficients 
Z = (Z1, . . . , Zm) in the expression of X(t), where n is the truncation level of the PC model. Third, T, PC, and PCT models, 
X̃(t), Xn(t), and X̃n(t), are constructed from Z̃ , Zn , and Z̃n and the functional form of X(t).

7.3.1. Functional form of X(t)
Since the Gaussian and Gamma diffusion processes X (t) have zero means and scaled correlation functions r(s, t) =

exp(−λ |s − t|), their KL series representations have the same form. The truncated versions of the common KL series of X (t)
is

X(t) =
m∑

k=1

Zk ϕk(t), t ∈ [0, τ ], (33)

where the basis functions {ϕk} are the top m eigenfunctions of the exponential correlation function r(s, t) (see Eqs. (2) and 
(10)), i.e., the eigenfunctions associated with the m largest eigenvalues of this correlation function.

The FD model X(t) with m = 10 is approximately equal to X (t) in the second moment sense. Its mean and standard 
deviation are E[X(t)] � 0 and Std[X(t)] = 0.99. The correlation functions of X (t) and X(t) are similar, see the left and right 
panels of Fig. 4. These observations suggest that the truncation level m = 10 is sufficiently large to capture accurately the 
first two moments of the target process. The following subsection compares sample properties of X (t), X(t), and Z for this 
truncation level.

7.3.2. Samples of X (t), X(t), and Z
The Euler method was used to generate samples of X (t), i.e., the iteration formula

X (t + �t) � (
1 − λ�t

)
X (t) + b

(
X (t)

)
�B(t), (34)

where �t > 0 is the integration time step and �B(t) = B(t + �t) − B(t) denotes the increment of the Brownian motion 
in the time interval (t, t + �t). Since X (t + �t) | X (t) is a Gaussian variable with mean 

(
1 − λ �t

)
X (t) and variance 

b
(
X (t)

)2
�t , then X (t + �t) takes values outside the support of f (x) for the Gamma diffusion processes with non-zero 

probability. To mitigate the occurrence of these events, the integration time step �t is reduced when X (t) enters a small 
vicinity of the ends of the support of f (x) and/or the process is restarted at an interior point of the support of f (x) close 
to its boundary.

Samples of the FD model X(t) are constructed from samples of Z and its expression in Eq. (33). The left and right 
panels of Fig. 5 show with dashed and solid lines five samples of the Gauss and Gamma diffusion process X (t) and the 
corresponding samples of X(t) for m = 10. The samples of X(t) capture the essential features of the samples of X (t) but 
miss high frequency fluctuations of these samples since they are not included in the basis functions {ϕk}, k = 1, . . . , m. The 
sample of X(t) can capture additional high frequency details of the samples of X (t) for higher truncation levels [21].

The top and bottom panels of Fig. 6 show target densities f (x) and marginal histograms of X (t) and X(t) for the Gauss 
and Gamma diffusion processes (left and right panels). The histograms are based on 10,000 independent samples and match 
the marginal densities of the Gaussian and Gamma processes X (t). The plots of the bottom panels show that X(t) and X (t)
have similar marginal distributions. We also note that the estimates of the marginal skewness and kurtosis coefficients of 
X (t) and X(t) are similar. They are approximately 0 and 3 for Gauss and 1.43 and 6.23 for Gamma diffusion processes. 
Since X(t) and X (t) have similar first two moments, the samples of X(t) capture essential features of the samples of X (t), 
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Fig. 5. Five samples of the Gauss and Gamma diffusion process X (t) and the corresponding samples of X(t) (left and right panels) for m = 10.

Fig. 6. Stationary marginal distributions and histograms of X (t) and X(t), m = 10, (top and bottom panels) for Gauss and Gamma diffusion processes (left 
and right panels).

and the marginal histograms of X(t) match the target densities f (x), it is concluded that the truncation level m = 10 is 
adequate. The FD process X(t) with m = 10 is taken as target for our subsequent developments.

Samples of the m-dimensional random vector Z result from samples of X (t) by projection via Eq. (9). The components 
of Z are uncorrelated for both processes X (t) (see Sect. 2.3). If X (t) Gaussian, the components {Zk} of Z are independent 
and Gaussian so that the law of Z is completely defined by the means and variances of its components.

If X (t) is the Gamma diffusion process, the components of Z are dependent and non-Gaussian so that the joint distri-
bution of this vector is needed to characterize the FD model X(t). Properties of samples of Z can and should be used to 
simplify the implementation of its PC and PCT models, a comment similar to that in the first example. The left and right 
panels of Fig. 7 show scatter plots of the components (Z1, Z2) and (Z1, Z4) of Z obtained from 10,000 samples of this 
vector. They show that these random variables are strongly dependent. Similar scatter plots are for all pairs {Z1, Zk}, k ≥ 2, 
of components of Z . The left and right panels of Fig. 8 show scatter plots of (Z2, Z4) obtained from 10,000 samples of Z
and from 10,000 samples of Z2 and Z4 assumed to be independent variable following the marginal distributions of the 
second and fourth components of Z . Since the scatter plots are similar, we conclude that the dependence between these 
component of Z is weak. Similar scatter plots have been obtained for the other pair (Zk, Zl), k, l ≥ 2, k 	= l of Z .
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Fig. 7. Scatter plots of (Z1, Z2) and (Z1, Z4) (left and right panels).

Fig. 8. Scatter plots of (Z2, Z4) and of (Z2, Z4) under the independence assumption (left and right panels).

7.3.3. T, PC, and PCT models of Z
Samples of Z are used to construct T, PC, and PCT models, Z̃ , Zn , and Z̃n , for this random vector. These models are 

defined by Eqs. (13), (11), and (15).
T model: The implementation of the model Z̃ of Z in Eq. (11) requires to specify the marginal distributions {Fi} of Z and 

the correlation coefficients {ρi j} of the Gaussian image of this vector. Estimates of {Fi} are obtained from samples of Z . The 
correlations coefficients {ρi j}, i 	= j, are zero since and the components of Z are uncorrelated. Samples of the FD model X(t)
result from its definition in Eq. (33) and samples of Z̃ which can be generated by standard algorithms for random variables 
since Z̃ has independent components.

PC and PCT models: The general formulation in Eqs. (13) and (15) can be applied to find the optimal coefficients {ak1 ...km ∈
R

m} of the PC and PCT models, Zn and Z̃n , of Z , i.e., the coefficients which minimize objective functions quantifying 
discrepancies between target and model statistics (see the objective function in Eq. (18)).

We consider a simplified version of this general formulation which uses the properties of Z illustrated in Figs. 7 and 8
to reduce calculations. First, PC and PCT models, Zn,1 and Z̃n,1 are constructed for Z1. The PC model has the form

Zn,1 =
n1∑

k=1

ak Hk(G1), (35)

where the coefficients {ak} can be obtained by minimizing the discrepancy between moments of Zn,1 and Z1, which is 
measured by objective functions of the type in Eq. (18) with (α, β) = (1, 0). The PCT model Z̃n,1 has the same distribution as 
Z1 irrespective of the truncation level n1 and the values of the coefficients {ak}. Second, to capture the dependences between 
the pairs (Z1, Zk), k ≥ 2, we construct PC and PCT models for the conditional random variables {Zk | Z1}, k = 2, . . . , m, an 
idea which was proposed previously [7]. The PC model of the conditional random variables Zk | Z1 has the form

Zk | Z1 � Zmk,k = E[Zk | Z1] +
mk∑
s=1

βk,s Hs(Gk), k = 2, . . . ,m, (36)

where mk denotes the truncation level. For mk = 1, Zmk,k is a Gaussian variable with mean μk(Z1) = E[Zk | Z1] and standard 
deviation σk(Z1) = Std[Zk | Z1].
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Fig. 9. Distributions of ∫ τ
0 X(t) dt/τ and max0≤t≤τ {X(t)} (left and right panels); the solid lines are target distributions and the dashed, and dash-dotted are 

T based and PCT based approximations.

The following numerical results are for truncation levels mk = 1 so that the PC models {Zmk,k} are the Gaussian variables 

N
(
μk(Z1), σk(Z1)

2
)
. We have Z̃n,1

d= Z1 irrespective of the truncation level n of the underlying PC model Zn,1 of Z1. The 
generation of samples of this model of Z is sequential. First, generate a sample of Z1. Second, generate the corresponding 
samples of the conditional PC models {Zmk,k} corresponding to this sample of Z1. Third, use the resulting sample of Z to 
calculate the corresponding sample of the FD model X(t) in Eq. (33).

Two quantities of interest are considered, the temporal average 
∫ τ

0 X(t) dt/τ and the extreme max0≤t≤τ {X(t)}. The left 
and right panels in Fig. 9 show the distributions of 

∫ τ
0 X(t) dt/τ and max0≤t≤τ {X(t)}. The solid lines in the figure are the 

target probabilities P
( ∫ τ

0 X(t) dt/τ > x
)

and P
(

max0≤t≤τ {X(t)} > x
)
. The dashed and dash-dotted lines are approximations 

of these distributions based on T and PCT models. Both models approximate the distribution of 
∫ τ

0 X(t) dt/τ satisfactorily. 
Since this quantity of interest is the sum 

∑m
k=1 Zk

∫ τ
0 ϕk(t) dt/τ of the random variables {Zk} weighted by the deterministic 

coefficients {∫ τ
0 ϕk(t) dt/τ }, detail features of the joint distributions of Z̃ and Z̃n have a minor influence.

This is not the case with the quantity of interest max0≤t≤τ {X(t)}. The T based approximation underestimates the right 
tail of the distribution of this quantity of interest. This unsatisfactory performance is likely to be caused by the fact marginal 
distribution of the T-based FD model X(t) is approximately Gaussian as a sum of independent random variables, the com-
ponents of Z̃ weighted by the deterministic functions {ϕk(t)} (see Eq. (33)). The PCT model approximates accurately the 
distribution of max0≤t≤τ {X(t)} although it is based on a simplified representation of Z . In contrast to the T model which 
ignores the dependence between the components of Z , the PCT model accounts explicitly for this dependence via the 
underlying PC model.

The PC model nearly coincides with the PCT model in this example since the PC model Zn,1 in Eq. (35) with n =
4 matches closely the distribution of Z1. The coefficients {ak} of this representation have been obtained by minimizing 
discrepancies between moments of Zn and Z which can be quantified by the objective function in Eq. (18) with (α, β) =
(1, 0). The PC-based approximations of P

( ∫ τ
0 X(t) dt/τ > x

)
and P

(
max0≤t≤τ {X(t)} > x

)
are indistinguishable from those of 

PCT models at the scale of Fig. 9.
Results are not show for the Gaussian diffusion process X (t) since the components of Z are independent Gaussian vari-

ables so that Z̃
d= Zn

d= Z̃n
d= Z . Accordingly, the distributions of the quantities of interest 

∫ τ
0 X(t) dt/τ and max0≤t≤τ {X(t)}

based on the T, PC, and PCT models coincide and match exactly the target distributions.

8. Conclusions

The random entries of stochastic equations, i.e., equations with random coefficients, source terms, and/or end conditions, 
are random functions, i.e., uncountable families of random variables indexed by space and/or time arguments. Numerical 
solutions of these equations require to approximate these random functions by finite dimensional (FD) models, i.e., deter-
ministic functions of space/time arguments which depend on random vectors Z .

Three models, referred to as T, PC, and PCT models, Z̃ , Zn and Z̃n , have been developed for Z . The implementation 
of T models involves the least calculations. The models match exactly the marginal distributions of Z but cannot capture 
the dependence between its components. The implementation of PC and PCT models is computationally more demanding. 
Optimization algorithms in spaces which, generally, have relatively large dimensions are used to find the unspecified pa-
rameters of these models. The PC models Zn capture the dependence structure of Z but provide less satisfactory for the 
joint distributions of this vector. The PCT models Z̃n inherit the desired features of T and PC models. Like T models, they 
match exactly the marginal distributions of Z and, like PC models, capture essential features of the dependence between 
the components of this vector.



M. Grigoriu / Journal of Computational Physics 376 (2019) 1253–1272 1271
Following the construction of FD models in Sect. 2, the presentation of properties of T, PC, and PCT models (Sects. 3, 
4 and 5) and the discussion on the relationships between these models (Sect. 6), three numerical examples have been 
presented to illustrate the implementation and the relative performance of T, PC, and PCT models. The examples include 
a two-dimensional vector Z whose components are known functions of two independent U (0, 1) variables, a real-valued 
non-Gaussian random field, and Gaussian and Gamma diffusion processes. The T model Z̃ was found to be accurate for 
quantities of interest which are controlled by the marginal distributions of Z rather than its dependence structure. The 
PC model Zn was capable to capture the essential features of the dependence structure of Z but delivered unsatisfactory 
approximations of the distributions of Z in some cases.

The PCT model Z̃n approximated accurately all quantities of interest considered in this study. Their satisfactory perfor-
mance is attributed to the fact that the coefficients {ak1...km } of the underlying PC model Zn are only used to minimize 
discrepancies between the dependences of Z̃n and Z since Z̃n matches exactly the marginal distributions of Z irrespective 
of the truncation level n and the values of {ak1...km }. In contrast, the optimal coefficients {ak1...km } of PC models are required 
to minimize differences between all statistics of Zn and Z .
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