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a b s t r a c t

Delay coordinates are a widely used technique to pass from observations of a dynamical system to a
representation of the dynamical system as an embedding in Euclidean space. Current proofs show that
delay coordinates of a given dynamical system result in embeddings generically with respect to the
observation function (Sauer et al., 1991). Motivated by applications of the embedding theory, we consider
flow along a single periodic orbit where the observation function is fixed but the dynamics is perturbed.
For an observation function that is fixed (as a nonzero linear combination of coordinates) and for the
special case of periodic solutions, we prove that delay coordinates result in an embedding generically
over the space of vector fields in the C r−1 topology with r ≥ 2.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Suppose a physical system is described by the differential equa-
tion dx

dt = f (x), where f : Rd
→ Rd. Often the state vector x is

unobservable in its entirety, and that is especially true if d is large.
Thus, reconstructing the flow from observations is not straightfor-
ward. The technique of delay coordinates makes it possible to look
at a single scalar observation and reconstruct the dynamics. We
denote the scalar that is observed by πx. The observation function
π could be a projection to a single coordinate, for example, when
the velocity of a fluid flow is recorded at a single point and in a
single direction. It could be some other linear function of x. More
generally, the observation function πx could be nonlinear.

If φt (x) is the time-t flow map, the idea behind delay coordi-
nates [1–3] is to use the delay vector

ξ (x; τ , n) =
(
πx, πφ−τ (x), . . . , πφ−(n−1)τ (x)

)
,

which is observable, as a surrogate for the point x in phase space.
For a suitable choice of delay τ and embedding dimension n, delay
coordinates yield a faithful representation of the phase space in a
sense we will explain. Delay coordinates have been employed in
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many applications [4,5]. Current theory for delay coordinates [2]
applies perturbations to the observation function π . We consider
the situation where the observation function is fixed as a linear
projection and only the dynamical system dx

dt = f (x) is perturbed.
Packard et al. [1] demonstrated that coordinate vectors such as

(πφt (x), d
dt πφt (x)) give good representations of strange attractors.

They noted that delay coordinate vectors would be equivalent
to coordinate vectors formed using derivatives of the observed
quantity.

A mathematical analysis of delay coordinates was undertaken
in a famous paper by Takens [3] and independently by Aeyels [6].
In particular, Takens considered when x → ξ (x; τ , n) is an em-
bedding. Suppose M is a manifold of dimension m, A ⊂ M a
submanifold of M of dimension d, and f : M → N a continuous
map fromM to themanifoldN . The restriction f

⏐⏐
A is an embedding

of A in N if the tangent map df has full rank at every point of A,
f
⏐⏐
A is injective, and f

⏐⏐
A maps open sets in A to open sets in its

range in the subspace topology [7,8]. For the definition to make
sense, the manifolds and f must be at least C1. More generally, the
manifoldsM,N and themap f may be assumed to be C r with r ≥ 1
or with r = ∞. Takens concluded that delay coordinates yield an
embedding of compact manifolds without boundary if n ≥ 2m+1,
for generic observation functions π and generic vector fields f . A
property is generic in the C r topology if it holds for functions f or
π belonging to a countable intersection of open and dense sets [9].
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Because the C r spaces are Baire spaces [8], a countable intersection
of open and dense sets is dense as well as uncountable.

The paper by Sauer et al. [2] marked a major advance in the
theory of delay coordinates. The approach to embedding theorems
outlined by Takens relied on parametric transversality. Parametric
transversality arguments typically have a local part and a global
part, and the transition from local arguments to a global theorem
is made using partitions of unity [8].

Sauer et al. [2] sidestepped transversality theory almost en-
tirely. Unlike in transversality theory, there is no explicitly local
part in the arguments of Sauer et al. [2]. The local part of the
argument comes down to a verification of Lifschitz continuity. The
set being embedded is only assumed to have finite box counting
dimension. The arguments are mostly probabilistic and the glob-
alization step relies only on the finiteness of the box counting
dimension. The only real analogy to differential topology appears
to be to the proof of Sard’s theorem [8], which is also proved using
probabilistic arguments. Sauer et al. prove prevalence [10], which
goes beyond genericity. A property is prevalent with respect to the
observation function π , if the property holds when any given π is
replaced by π +

∑
α∈Iα cαpα , with pα being monomials indexed by

the finite set Iα , for almost every choice of the coefficients cα .
The embedding theorem of Sauer et al. [2] fixes the dynamical

systemand allows only the observation functionπ to be perturbed.
The statements of genericity and prevalence are with regard to π ,
not the original dynamical system. If consideration is restricted to
subsets A of box counting dimension d, Sauer et al. only require
n > 2d. Thus, we could even have n < m.

As mentioned, we investigate embedding theorems in which
the observation function is fixed. For example,π could be fixed as a
linear projection that extracts some component of the state vector.
We allow perturbations of the dynamical system only.

The motivation for considering such embedding theorems is as
follows. First, on purely aesthetic grounds, it appears desirable to
have an embedding theory that depends upon the dynamics and
not the observation function. Second, in many applications the
observation function is fixed, whereas the dynamical system itself
is parametrized [4,5,11–13]. If π extracts a single component at
a single point in the velocity field of a fluid, it is more pertinent
to make the embedding theory depend upon the dynamics rather
than upon the observation function.

Aeyels [6] stated that delay coordinates are injective for generic
flows and a fixed observation function. In the context of applica-
tions, stronger theorems would be desirable as argued by Sauer
et al. [2]. First, an open and dense set can have arbitrarily small
measure implying that prevalence, which is stronger than gener-
icity, is a more appropriate concept. Second, the dynamics may be
confined to an attractor of dimension much smaller than that of
the state vector of the flow. In such a situation, we would like the
embedding dimension to be determined by the dimension of the
attractor and not the dimension of the state vector of the flow.

In this article, we consider the second of these two directions.
Obtaining an embedding dimension that depends on the dimen-
sion of the attractor and not the flow introduces new difficulties
when the observation is fixed and the flow is parametrized. Cur-
rent proofs [2,3] rely on perturbing the observation function to
produce an embedding. When the observation function is fixed,
the additional step of propagating perturbations to the flow to the
observed delay coordinates will need to be handled. We need to
understand how perturbing the flow perturbs the invariant set or
attractor, which is assumed to persist, and how the perturbations
to the invariant set or attractor propagate to delay coordinates.
When the flow is fixed and the observation function is perturbed,
the attractor to be embedded,which depends only upon the flow, is
unchanged by the perturbations. In contrast, when the observation
function is fixed and the flow is perturbed, the set to be embedded
is altered by the perturbations.

To get a handle on such difficulties, we limit ourselves to hyper-
bolic periodic orbits and prove that they embed generically in R3.
The techniques we use are those of transversality theory. Although
periodic orbits are only a special case, they are an important special
case and arise frequently in applications, for example [14,15].

To conclude this introduction, we mention some other exten-
sions of delay coordinate embedding theory. Embedding theory
has been considered for endomorphisms [16] as well as delay dif-
ferential equations [17], for continuous but not necessarily smooth
observation functions [18,19], and in concert with Kalman filter-
ing [20]. The concept of determining modes and points in fluid
mechanics and PDEs is related to embedding theory [13,21,22].
Delay coordinates have been used for noise reduction [23,24]. The
embedding theory of Sauer et al. [2] has been generalized to PDEs
by Robinson [13,22]. The current embedding theory for PDEs also
relies on perturbing the observation function.

2. Embedding periodic signals in R3

In the next section,we consider periodic solutions of differential
equations. In this section, we begin by considering periodic signals.
A periodic signal is any function o : R → R with a period T > 0.
Fig. 2.1 shows a periodic signal and its delay embedding in R3.

To make the definition of periodic signals more precise, let Or

be the set of C r functions o : [0, T ] → R with period T > 0.
Periodicity requires r derivatives of o(t) to match at t = 0 and
t = T . The domain of functions in Or , which we will write as
[0, T ) for signals o of period T , is compact and homeomorphic to
S1. More precisely, the domain is the identification space obtained
by identifying 0 and T in [0, T ]. For convenience, we shall refer to it
as [0, T ), with the understanding that when we refer to an interval
(α, β) it can wrap around. The elements of Or will be referred to
as periodic signals. Even if o ∈ Or is constant, it must be equipped
with a period T > 0, and if T is chosen differently,we get a different
element of Or .

For the periodic signal shown in Fig. 2.1, the map t → (o(t),
o(t − τ ), o(t − 2τ )) for 0 ≤ t < T results in an embedding of the
circle. Each point of the circle [0, T )maps to a distinct point inR3 so
that the delaymap is injective. The delay is also immersive because
a small movement along the periodic signal maps to a small and
nonzero movement in the embedding space R3. Because the delay
map is both injective and immersive, it is an embedding.

Fig. 2.2 shows a situation inwhich the delaymap is not injective.
This example is in fact the same as in Fig. 2.1 but the period is
taken to be double of what it is in Fig. 2.1. As a result, points which
are separated by the fundamental period map to the same point
in R3. As shown in Fig. 2.2, the signal may be modified so that the
fundamental interval is not repeated and the delaymap still fails to
be injective. Later in this section, we will prove that signals whose
delay maps embed the circle in R3 are more typical.

2.1. Local argument for periodic signals

If r ∈ Z+ and o, o′
∈ Or are two periodic signals, define

dr (o, o′) = sup
k=0,...,r

sup
0≤s<1

|o(k)(sT ) − o′(k)(sT ′)| + |T − T ′
|. (2.1)

The C r topology on Or is defined by this metric. The Or norm of
a periodic signal is

or = supk=0,...,r sup0≤t<T

⏐⏐o(k)(t)⏐⏐ . By our
definition, Or is not a vector space because signals with different
periods cannot be added. However, signals of a fixed period are
a vector space and

 ·

r is a norm over it. The C∞ topology is

the union of C r topologies over r ∈ Z+ as explained in [8]. For
concepts and results of differentiable topology, such as critical
points, regular values, and Sard’s theorem, our main reference is
Hirsch [8]. The same topics are discussed from a dynamical point
of view in [9,25].
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Fig. 2.1. A periodic signal (only a single period is shown) and its delay embedding in R3 with delay τ . The points a, b, c map to A, B, C with delay coordinates.

Fig. 2.2. The points a1 and a2 , and likewise b1, b2 and c1, c2 , map to the same point
inR3 under delay embeddingwith the delay shown. The fundamental period of this
signal is half of what is shown. However, by modifying the signal in the box shown,
its fundamental period becomes equal to the interval shown and the delaymap still
fails to be injective because c1 and c2 map to the same point in R3 .

Fig. 2.2 shows a signal which does not embed the circle in R3

under delay mapping. However, it is clear from observation that
points that are nearby such as a1 and b1 map to distinct points in
R3. In fact, quite generally, if the number of critical points in [0, T )
is finite, nearby points in the signalwillmap to distinct points inR3,
as we later prove. We begin by considering whether any periodic
signal may be perturbed slightly so that it has only finitely many
critical points.

Lemma 1. Let o ∈ Or , r ≥ 2, be a periodic signal of period T > 0. If
0 is a regular value of do/dt, then the periodic signal o(t) has finitely
many critical points in [0, T ).

Proof. Suppose do/dt = 0 at infinitely many points on the
compact circle [0, T ). Let p ∈ [0, T ) be an accumulation point of
the set of zeros. Then d2o(p)/dt2 = 0 and do(p)/dt = 0 implying
that 0 is not a regular value of do/dt . □

The following lemma generates a periodic signal of period T
whose derivative is do

dt = ϵ everywhere except over a given interval
(α, β). Any functionwhose derivative is do

dt = ϵ, ϵ ̸= 0, everywhere
cannot be periodic. Therefore, the proof of the lemma comes down
to modifying the derivative carefully in the interval (α, β).

Lemma 2. Given (α, β) ⊂ [0, T ) and δ > 0, for all sufficiently small
ϵ there exists an infinitely differentiable periodic signal o of period
T such that do(t)/dt = ϵ for t /∈ (α, β) and |do(t)/dt| < δ for
t ∈ (α, β). In addition, for r ∈ Z+,

or → 0 as ϵ → 0.

Proof. Let λ(x) be an infinitely differentiable bump function with
λ(x) ∈ [0, 1] for x ∈ [0, 1], λ(x) = 1 for x ∈ [1/4, 3/4], and
λ(x) = 0 for x ∈ [0, 1/8] and x ∈ [7/8, 1]. If

∫ 1
0 λ(x) dx = c then

1/2 < c < 1. The bump function λ(x) is used to modify do/dt in
the interval (α, β).

Define do(t)/dt = ϵ for t /∈ (α, β) and more generally

do(t)
dt

= ϵ − kλ((t − α)/(β − α))

for t ∈ [0, T ). The idea behind the construction is shown in
Fig. 2.3: if the bump function is shifted to the interval (α, β) and a
suitablemultiple is subtracted, do

dt may then be integrated to obtain
a periodic function.

More precisely, it follows that
∫ T
0 (do(t)/dt) dt = ϵT−k(β−α)c.

The integral is zero if k = ϵT/(β−α)c. For ϵ small, k is small aswell.
Wemay obtain o(t) by integrating do(t)/dt , with

or proportional
to ϵ. Thus, for any given δ > 0, the lemma will hold for 0 < ϵ < ϵ0
and ϵ0 small enough. □

The following lemma proves that any sufficiently smooth pe-
riodic signal can be perturbed to a nearby periodic signal with
finitely many critical points.

Lemma 3. If o′
∈ Or , r ≥ 2, is a periodic signal, there exists another

periodic signal o of the same period with dr (o, o′) arbitrarily small
and such that o has only finitely many critical points (including local
maxima and minima) and 0 is a regular value of do/dt.

Proof. If o′(t) is constant we can perturb to ϵ sin(tT/2π ) for
arbitrarily small ϵ and verify the theorem. We will assume that o′

is not constant.
Consider do′

dt (t) as a map from the circle [0, T ) to R. If 0 is a
regular value of this map, we are done by Lemma 1.

If not, there exists a regular value ϵ of do′/dt arbitrarily close to
0 by Sard’s theorem (here r ≥ 2 is needed). Suppose we look at
do′(t)/dt − ϵ. This function has a regular value at 0. However, the
corresponding perturbation of o′ is o′(t) − tϵ and is not periodic.

Because o′(t) is not constant, there exists an interval (α, β) in
the circle [0, T ) over which do′(t)/dt is nonzero. Without loss of
generality, we assume do′(t)/dt > δ > 0 in the interval (α, β)
(consider −o′(t) for the case where the derivative is negative).
Using Lemma 2, we may find a periodic signal p(t) such that
dp/dt = ϵ for t /∈ (α, β) and |dp/dt| < δ for t ∈ (α, β). Set
o(t) = o′(t)−p(t) to obtain a periodic signal with 0 being a regular
value of do/dt to complete the proof. □

Remark. Lemma 1 is evidently true if we only assume the second
derivative of the periodic signal o(t) to exist and not necessarily
continuous. In fact, Lemma 3 is also true under the same weaker
assumption because, in one dimension, Sard’s theorem requires
only the existence of the derivative (see Exercise 1 of Section 3.1
of [8]).

The proof of Lemma 3 may be illustrated using Fig. 2.4. The
figure shows a part of the graph of f (x) = x3 sin(1/x) and its
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Fig. 2.3. An infinitely differentiable (bump) function (dashed line), which is zero outside (α, β) and 1 near the middle of that interval, subtracted from a constant value of
do
dt . If the amount subtracted is adjusted, the integral of do

dt over one full period becomes zero as shown.

Fig. 2.4. The function f (x) = x3 sin
( 1
x

)
and its derivative.

derivative ḟ (x). It is evident that the critical points of ḟ , where
f̈ (x) = 0, accumulate at the origin. In fact, a small perturba-
tion cannot eliminate the accumulation of critical points because
f (x) does not have a second derivative at x = 0. However, if
f (x) = x5 sin(1/x), a function whose second derivative looks like
the derivative shown in Fig. 2.4, Sard’s theorem may be used to
obtain a small perturbation such that 0 is a regular value of the
derivative of the perturbed function.

If o is a periodic signal with finitely many critical points, then
its circular domain [0, T ) may be decomposed into finitely many
intervals with local minima, maxima, or a critical point that is
neither at either end. Letµdenote theminimumwidth among such
intervals. Because o(t) is monotonic in each interval, we refer to
each such interval as an interval of strict monotonicity. If the delay
is τ , we denote the point (o(t), o(t − τ ), o(t − 2τ )) by o(t; τ ).

Lemma 4. If 0 < |t1 − t2| ≤ µ/3, where µ is the minimum
length of an interval of strict monotonicity, and if the delay τ satisfies
0 < τ ≤ µ/3, then o(t1; τ ) ̸= o(t2; τ ). If 0 is a regular value of do(t)

dt ,
we also have do(t;τ )

dt ̸= 0 for all t ∈ [0, T ).

Proof. Because |t1 − t2| ≤ µ/3, t1 and t2 lie in either the same
interval of strict monotonicity of the periodic signal o(t) or in
neighboring intervals. If they lie in the same interval, wemust have
either o(t1) < o(t2) or o(t2) < o(t1) proving the lemma.

If t1 and t2 lie in neighboring intervals, we may assume t1 < t2
without loss of generality. If o(t1) ̸= o(t2), there is nothing to prove.
So we assume o(t1) = o(t2) in addition. Again without loss of
generality, we assume that o(t) first increases and then decreases
as t increases from t1 to t2.

With these assumptions, t1 and t1 − τ must lie in the same
interval of monotonicity because τ ≤ µ/3, and therefore o(t1 −

τ ) < o(t1). Further t2 − τ ∈ (t1 − τ , t2) and the unique minimum
of o(t) for t ∈ [t1 − τ , t2] is attained when t = t1 − τ . Therefore
o(t1 − τ ) < o(t2 − τ ), and we once again have o(t1; τ ) ̸= o(t2; τ ).

For the claim about do(t;τ )
dt ̸= 0, we note that do

dt cannot equal
zero at both t and t − τ , because τ < µ. □

With Lemma 4, the local argument for embedding periodic
signals is partly complete. Globalizing the argument will involve
additional perturbations, which we now define.

Let λ be a C∞ bump function with λ(x) = 1 for |x| ≤ 1/2,
λ(x) = 0 for |x| ≥ 1, and λ(x) ∈ [0, 1] for all x ∈ R. Let h = τ/2
and j ∈ Z. Define

λj(t) = λ

(
t − jh

h

)
for j = 0, 1, . . . , n and n = ⌊T/h⌋. We interpret t modulo T and
regard λj(t) as a periodic signal with the circular domain [0, T ): a
pulse of period T and width h centered at jhwhich is equal to 1 for
|t − jh| ≤ h/2. We now consider the perturbation

oϵ(t) = o(t) + ϵ0λ0(t) + ϵ1λ1(t) + · · · + ϵnλn(t), (2.2)

where ϵ = (ϵ0, . . . , ϵn) ∈ Rn+1. For any t0 ∈ [0, T ), there exists
a bump function λj(t) with 0 ≤ j ≤ n such that λj(t0) = 1 and
therefore λj(t) = 0 if |t − t0| ≥ τ = 2h.

Before we turn to the global argument, we must prove that
the local structure asserted by Lemma 4 is preserved when o is
perturbed to oϵ as in (2.2). The lemmabelowguarantees oϵ(t1; τ ) ̸=

oϵ(t2; τ ) for |t1 − t2| ≤ 3τ . The bound 3τ ensures that oϵ(t1; τ ) =

oϵ(t2; τ ) can happen only when the intervals [t1 − 2τ , t1] and
[t2 − 2τ , t2] do not overlap.

Lemma 5. Let o ∈ Or , r ≥ 2, be a periodic signal defined over the
domain [0, T ) andwithminimum interval of strictmonotonicity equal
to µ. Assume that 0 is a regular value of do/dt. There exists ϵ0 such
that if ∥ϵ∥ ≤ ϵ0, then for the perturbation defined by (2.2) and delay
τ satisfying 0 < τ < µ/12, we have oϵ(t1; τ ) ̸= oϵ(t2; τ ) for all
(t1, t2) with |t1 − t2| ≤ 3τ . In addition, 0 remains a regular value of
doϵ

dt .

Proof. By assumption the periodic signal o(t) has finitely many
critical points. Let t1 < t2 < · · · < tk be the critical points in the
circular interval [0, T ); at these points and only at these, we have
do/dt = 0. Since 0 is a regular value of do/dt , we have d2o(tj)

dt2
̸= 0

for j = 1, . . . , k.
In the circle [0, T ), choose compact intervals Ki = [ti −δ, ti +δ],

i = 1, . . . , k, such that δ < µ/4 and d2o(t)
dt2

̸= 0 for any t ∈ Ki. By
continuity in the perturbing parameters ϵi, for sufficiently small
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∥ϵ∥ the perturbed periodic signal (2.2) also has nonzero second
derivative on ∪Ki.

Define the interval K ′

i to be [ti + δ/2, ti+1 − δ/2] (K ′

k wraps
around the circle). Each K ′

k is an interval of strict monotonicity.
By compactness, |do/dt| attains a minimum strictly greater than
0 over ∪K ′

i . Again by continuity, any perturbation of the form (2.2)
with ∥ϵ∥ sufficiently small also has nonzero derivative over ∪K ′

i .
Thus, for ∥ϵ∥ sufficiently small, K ′

i remain intervals of strict
monotonicity for the perturbed periodic signal, and each Ki can
contain at most one critical point of the perturbed periodic signal.
The minimum interval of strict monotonicity is at least µ − δ ≥

3µ/4. We now apply Lemma 4 to infer that 0 < τ ≤ µ/4 implies
oϵ(t1; τ ) ̸= oϵ(t2; τ ) for 0 < |t1 − t2| ≤ µ/4. We limit τ to the
interval (0, µ/12) to complete the proof. □

2.2. Global argument for periodic signals

The global argument relies on the parametric transversality
theorem [8,9].

Lemma 6. Let o ∈ Or , r ≥ 2, be a periodic signal defined over
the circle [0, T ). There exists an arbitrarily small perturbation of the
periodic signal o to o′, with the same period, and a delay τ > 0, such
that t → o′(t; τ ) is an embedding, with 0 a regular value of do′/dt.

Proof. By Lemma 3, we may make an initial perturbation to o if
necessary and assume that o has finitely many critical points, that
0 is a regular value of do/dt , and that µ > 0 is the minimumwidth
of an interval of strict monotonicity.

Now consider perturbations of o to oϵ of the form (2.2). By
Lemma 5, we may assume oϵ(t1; τ ) ̸= oϵ(t2; τ ) for t1 ̸= t2 and
|t1 − t2| ≤ 3τ for τ < µ/12, provided ∥ϵ∥ is sufficiently small.

Consider the set

T =

{
(t1, t2)

⏐⏐⏐|t1 − t2| > 3τ , t1 ∈ [0, T ), t2 ∈ [0, T )
}

,

where [0, T ) is interpreted as the circle, as before. For the applica-
bility of the parametric transversality theorem later in the proof, it
is important to note that T is a manifold of dimension 2 without a
boundary.

Consider (oϵ(t1; τ ), oϵ(t2; τ )) as a function from the domain
{(ϵ1, . . . ϵn)} × T to R6

= R3
× R3. We will now verify that this

function is transverse to the diagonal in R3
× R3. If oϵ(t1; τ ) ̸=

oϵ(t2; τ ) there is nothing to prove. Suppose oϵ(t1; τ ) = oϵ(t2; τ )
and consider the point in R6 given by

(oϵ(t1), oϵ(t1 − τ ), oϵ(t1 − 2τ ), oϵ(t2), oϵ(t2 − τ ), oϵ(t2 − 2τ ))

The intervals [t1 − 2τ , t1] and [t2 − 2τ , t2] are disjoint because
|t1 − t2| > 3τ . By construction, there exist i1, i2, i3, i4, i5, i6 such
that λi1 , λi2 , λi3 , λi4 , λi5 , λi6 are each equal to 1 at exactly one of
the six points t1, t1 − τ , t1 − 2τ , t2, t2 − τ , t2 − 2τ and zero at the
others. If the tangent direction in the domain is taken to perturb ϵij
for j ∈ {1, . . . , 6}, it maps to a perturbation of the jth coordinate in
R6, more precisely the elementary vector ej. Therefore, the tangent
map is surjective and transversality is verified.

By the parametric transversality theorem [Hirsch, Chapter 3,
Theorem 2.7], we may choose ϵ arbitrarily small such that
(oϵ(t1; τ ), oϵ(t2; τ )) considered as a function from T to R6 is trans-
verse to the diagonal ofR3

×R3. Since T is of dimension 2, that can
only happen if oϵ(t1; τ ) ̸= o(t2; τ ) for (t1, t2) ∈ T .

To complete the proof, we only need to check the smooth-
ness/dimension condition in the parametric transversality theo-
rem. The dimension of T is 2 and the codimension of the diagonal
in R6 is 3. Thus, it is sufficient if the map from {(ϵ1, . . . ϵn)} × T to
R6 is C1 which it is. □

Lemma 7. Let o ∈ Or , r ≥ 2, be a periodic signal such that
t → o(t; τ ) is an embedding of the circle [0, T ) inR3 for delay τ > 0.
There exists ϵ0 > 0 such that dr (o, o′) < ϵ0 and T = T ′ (perturbation
has same period) imply that t → o′(t; τ ) is also an embedding of the
circle [0, T ).

Proof. By the inverse function theorem (see [8, Appendix]), there
exists ϵ0 > 0 such that for every t̃ ∈ [0, T ) there exists a
neighborhood of t̃ over which t → o′(t; τ ) is an injection if
dr (o′, o) < ϵ0 and T = T ′. Using a Lebesgue-δ argument we may
assume that o′(t1; τ ) ̸= o′(t2; τ ) for 0 < |t1 − t2| < ϵ0, making ϵ0
smaller if necessary.

Although arguments like the one above are common in differen-
tial topology, we state the version of the inverse function theorem
invoked for clarity. The version used is as follows. Suppose f is a
C r map from U , an open subset of Rm to V , an open subset of Rn

with m < n. Suppose f (x) = y and that the tangent map ∂ f
∂x is

injective at x. Then there exists a neighborhoodN of f in the weak
C r topology (r ≥ 1), a neighborhood U ′ of x, V ′ of y, and W ′ of
0 ∈ Rn−m, such that for every g ∈ N there exists a diffeomorphism
G : V ′

→ U ′
× W ′ with G−1 restricted to U ′

× 0 coinciding with g .
This theorem is applied withm = 1 and n = 3.

The rest of the proof is a standard compactness argument. Let

min
|t1−t2|≥ϵ0

|o(t1; τ ) − o(t2; τ )| = δ > 0,

where the minimum exists because of compactness and is greater
than 0 because t → o(t; τ ) is an embedding. By continuity, the
minimum must be positive for o′ sufficiently close to o. Simi-
larly, immersivity of o′ sufficiently close to o is a direct conse-
quence of compactness of the circle. Thus, t → o′(t; τ ) is also an
embedding. □

Theorem 8. The set of periodic signals o ∈ Or , of period T and with
r ≥ 2, for which there exists a delay τ > 0 such that t → o(t; τ ),
0 ≤ t < T , is an embedding of the circle in R3 is open and dense in
Or .

Proof. By Lemma 6, there exists an arbitrarily small perturbation
to o′ such that t → o′(t; τ ) is an embedding for 0 < τ < τ0 and
with 0 a regular value of do′/dt . Thus the set of periodic signalswith
a delay embedding andwith 0 a regular value of do/dt is dense.We
only have to prove that the set is open.

Given periodic signal o with t → o(t; τ ) an embedding,
Lemma 7 shows that t → o′(t; τ ) remains an embedding for
dr (o, o′) sufficiently small if T = T ′. If T ̸= T ′, we may still apply
Lemma 7, by defining o′′(t) = o′(tT ′/T ) which is a periodic signal of
period T . If dr (o, o′) → 0 ,then dr (o, o′′) → 0. Finally, t → o′′(t; τ )
is an embedding implies that t → o′(t; τ̃ ) is an embedding with
τ̃ = τT ′/T . □

Remark. A reviewer has noted that Theorem 8 may be obtained
directly from the results of [2]. In outline, suppose o(t) = π1p(t),
whereπ1 is the projection to the first coordinate, andp is a periodic
solution of dx/dt = f (x). The theory of [2] implies that a perturba-
tion of the observation function π1 will produce a periodic signal
whose delay map is an embedding. In principle, this argument
allows the delay τ to be arbitrary. There are two difficulties to be
overcome, however. First, the theory of [2]must be improved aswe
point out in [26]. Second, an argument for producing an f (x) with
a periodic solution p(t) such that o(t) = π1p(t) must be included.
However, when Theorem 8 is applied later it is in a context where
o(t) arises as π1p(t), and these difficulties can be easily dealt with.

Theorem 9. Suppose that o ∈ Or , r ≥ 2, and that t → o(t; τ ) is
an embedding of the circle for some delay τ > 0. Then t → o(t; τ ′)
remains an embedding if τ ′ is close enough to τ .
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Proof. The arguments used in Lemma 7 and Theorem 8 apply with
little change. □

3. Embedding periodic orbits in R3

Fig. 3.1 shows a periodic orbit of the classical Lorenz system
given by dx/dt = 10(y − x), dy/dt = −y − xz + 28x, dz/dt =

−8z/3 + xy.1 The signal extracted from that orbit is nearly flat for
a significant duration when the origin is approached.

In this section, we will prove that ‘‘typical’’ periodic orbits (in
a sense that will be made precise) yield signals that result in
embeddings of the circle. The following proposition proves that an
embedding using delay coordinates persists when the vector field
is perturbed slightly. It is the easier half of the argument.

Proposition 10. Let dx
dt = f (x), where x ∈ Rd, f : U → Rd,

and U an open subset of Rd, be a dynamical system with f a C r−1

vector field, r ≥ 2. Let p : [0, T ) → U be a hyperbolic periodic
solution of period T > 0. Let a ∈ Rd and a ̸= 0. Assume that
t → (a · p(t), a · p(t − τ ), a · p(t − 2τ )) be an embedding of the
circle [0, T ) in R3. There exists an open neighborhood of f in the C r−1

topology such that for each g in that neighborhood, there exists a C r -
close hyperbolic periodic solution p′(t) of period T ′ of dx

dt = g(x) and
a τ ′ close to τ such that t → (a · p′(t), a · p′(t − τ ′), a · p′(t − 2τ ′))
is an embedding of the circle [0, T ′) in R3.

Proof. The fact that a hyperbolic periodic solution such as p
perturbs to a nearby hyperbolic solution p′ in a small enough open
neighborhood of f is a standard result [13, Chapter 5]. If the signal
o(t) = a ·p(t) is such that t → o(t; τ ) is an embedding of the circle,
then t → o′(t; τ ′) is also an embedding for o′(t) = a · p′(t; τ ′) by
Theorem 8. The proof of Theorem 8 uses the choice τ ′

= τT ′/T . □

Suppose that the delay map of a signal obtained by projecting
the first component of a periodic orbit does not embed in R3. We
will show that the differential equation dx

dt = f (x), x ∈ Rd, can
be perturbed ever so slightly such that a nearby periodic orbit of
the perturbed equation results in an embedding of the circle. The
proof relies on constructing a tube around the periodic orbit. A tube
around a periodic orbit is illustrated in Fig. 3.2.

To construct a tube around any periodic orbit in Rd, we begin
by defining Pr in analogy toOr . Let Pr be the set of periodic orbits
p : [0, T ) → Rd that are r times continuously differentiable. As
before, we assume that [0, T ) is a parametrization of S1 and T > 0
for the period. As a part of the definition of P , we require dp

dt ̸= 0
for t ∈ [0, T ). The set Pr is endowed with a topology by defining
the metric dr in analogy with (2.1):

dr (p, p′) = sup
k=0,...,r

sup
0≤s<1

p(k)(sT ) − p′(k)(sT ′)
 + |T − T ′

|.

The norm over Rd is the 2-norm. The kth derivative of p is denoted
by p(k). For convenience, dp

dt and d2p
dt2

are also denoted as ṗ and p̈, re-
spectively. The tangent vector at t is defined as s(t) = ṗ(t)/

ṗ(t).
Wedenote theprojection fromRd to the first coordinate byπ1. If

p is a solution of the dynamical system dx
dt = f (x), we wish to show

that either o(t) = π1p(t) is such that t → o(t; τ ) is an embedding
of the circle [0, T ) for some delay τ > 0, or that there exists an
arbitrarily close perturbed dynamical system dx

dt = f ′(x) with a
nearby periodic orbit p′ such that t → o′(t; τ ) is an embedding
of the circle, if o′

= π1 ◦ p′.
To begin with, the signal o(t) may even be identically zero. In

our proof, we use the results of the previous section to perturb it

1 Theperiodic orbit of Fig. 3.1 in [27] couldnot be computedusing the techniques
of [27]. It was computed some years later using an initial guess thatwas constructed
from the periodic orbit A25B25 .

to o′(t) such that t → o′(t; τ ) is an embedding and then show how
to perturb the flow to realize o′(t) as π1 ◦ p′.

The next lemma constructs a tube around the periodic orbit p
in Rd (see Fig. 3.2). That tube will be used to perturb f to f ′. Known
results in differential geometry [28,29] may be used to assert the
existence of a tube. However, uniformity and smoothness guaran-
tees thatwe need could not be found in the literature. Therefore, an
elementary proof of the lemma is included. The proof will later be
modified to deduce the existence of a tubewhose radius is uniform
in a neighborhood of p. In the following lemma, δ may be thought
of as the radius of a tube around p.

Lemma 11. Suppose p ∈ Pr , r ≥ 2, and that its period is T > 0.
Then there exists δ > 0 such that

•
ṗ(t)2

− δ
p̈ > δ for t ∈ [0, T ),

• if x ∈ Rd and dist(x, p) ≤ δ, there exists a unique t ∈ [0, T )
such that dist(x, p) =

x − p(t)
.

Proof. The proof is organized so as to be easy to uniformize in the
next lemma.

1. Choice of m and m∗. Let 2m = mint∈[0,T )
ṗ(t) > 0 and

m∗
= maxt∈[0,T )

p̈(t). The first part of the lemma would
be satisfied if 4m2

− δm∗ > δ, or if δ < 4m2

1+m∗ .
2. Choice of M and r. First, we introduce the notation

dp
dt

⏐⏐⏐⏐⏐
[t1,t2]

for a vector each of whose components is the corresponding
component of ṗ evaluated at some t ∈ [t1, t2]. Crucially,
each component may chose a different t . This notation will
facilitate application of the mean value theorem. The inter-
val [t1, t2]maywrap around [0, T ), inwhich case the interval
width must be taken to be T + t2 − t1 and not t2 − t1. We
ignore such wrap-arounds from this point onwards.
Suppose t1 < t2 and tm =

t1+t2
2 . Thenṗ(tm) −

dp
dt

⏐⏐⏐⏐⏐
[t1,t2]

 ≤ max
t∈[0,T )

p̈
∞

√
d(t2 − t1).

The
√
d factor here arises in converting a componentwise

bound using the ∞-norm to a bound on the 2-norm. Evi-
dently, if we chooseM = maxt∈[0,T )

p̈
∞

×
√
d and r =

m
M
,

we may assert thatṗ(tm) −
dp
dt

⏐⏐⏐⏐⏐
[t1,t2]

 ≤ m (3.1)

for t1 < t2 and t2 − t1 ≤ r.
If s(tm) is the unit tangent vector to p at tm, we have

s(tm) · (p(t2) − p(t1)) = s(tm) ·

(
dp
dt

⏐⏐⏐
[t1,t2]

(t2 − t1)
)

= s(tm) · ṗ(tm)(t2 − t1) + s(tm)

·

(
dp
dt

⏐⏐⏐
[t1,t2]

− ṗ(tm)
)
(t2 − t1),

where the first equality is obtained by applying the mean
value theorem to each component of p(t2) − p(t1). Now,
s(tm) · ṗ(tm) =

ṗ(tm) ≥ 2m by choice of m. By (3.1), the
second term in the display above is at most m(t2 − t1) in
magnitude. Therefore,

|s(tm) · (p(t2) − p(t1))| ≥ m(t2 − t1)

for t1 < t2 and t2 − t1 ≤ r.
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Fig. 3.1. A periodic orbit of the classical Lorenz system and its x-coordinate as a function of time (over a single period). The periodic orbit shown is A24B in the nomenclature
of [27].

3. Choice ofM∗. Supposew1 is a vector orthogonal to s(t1) and
t1 < t2 with tm =

t1+t2
2 as before. Then, we have s(tm) ·w1 =

(s(tm) − s(t1)) · w1, which implies

|s(tm) · w1| ≤
s(tm) − s(t1)

 w1


≤
√
d max

t∈[0,T )

ṡ(t)
∞
(tm − t1)

w1
,

where the
√
d factor arises in converting a componentwise

bound to a bound on the 2-norm. An explicit formula for ṡ,
the time derivative of the unit tangent, will be given in the
next proof. If we choose M∗

=
√
dmaxt∈[0,T )

ṡ(t)
∞
, we

may replicate the argument given using w1, t1 with w2, t2
and assert

|s(tm) · w1| < M∗
w1

(t2 − t1) and |s(tm) · w2|

< M∗
w2

(t2 − t1).

4. Choice of ∆. We define ∆ = min|t2−t1|≥r

p(t2) − p(t1)
.

Because a periodic orbit cannot self-intersect, wemust have
∆ > 0.

We will choose δ to be smaller than the least of
4m2

1 + m∗
,

m

2M∗
,
∆

2
.

The first part of the lemma follows immediately. Now suppose
x ∈ Rd and dist(x, p) ≤ δ. Suppose dist(x, p) is equal to

x−p(t1)


as well as
x − p(t2)

 for t1 < t2. By item 4 above, we must have
t2 − t1 < r, which we will now assume.

Because t = t1 minimizes (x − p(t)) · (x − p(t)), we may
differentiate and deduce (x − p(t1)) · ṗ(t1) = 0. Equivalently
(x − p(t1)).s(t1) = 0. Thus, we may write x = p(t1) + w1,with w1
orthogonal to the tangent s(t1) and dist(x, p) =

w1
. Likewise,

we may write x = p(t2) + w2,with w2 orthogonal to the tangent
s(t2) and dist(x, p) =

w2
.

From p(t1) + w1 = p(t2) + w2, we obtain

s(tm) · (p(t2) − p(t1)) = s(tm) · (w1 − w2) .

Taking absolute values, applying item 2 above to the left hand side,
and item 3 above to the right hand side, we get

m(t2 − t1) < M∗
(w1

 +
w2

)
(t2 − t1),

or dist(x, p) > m
2M∗ ≥ δ, contradicting our hypothesis about x.

Thus, the assumption t1 < t2 is mistaken, and we can only have
t1 = t2 proving the second part of the lemma. □

The following lemma is a uniform version of the preceding
Lemma 11. The lemma allows us to construct a tube of radius δ

around all periodic orbits of period T that are within a distance ϵ

of p. Its proof is a minor modification of the preceding proof.

Lemma 12. Suppose p ∈ Pr , r ≥ 2, and that its period is T > 0.
Then there exist ϵ > 0 and δ > 0 such that p′

∈ Pr , with the same
period as p, and dr (p, p′) ≤ ϵ imply that

•
ṗ′(t)

2
− δ

p̈′
 > δ for t ∈ [0, T ),

• if x ∈ Rd and dist(x, p′) ≤ δ, then there exists a unique
t ∈ [0, T ) such that dist(x, p′) =

x − p′(t)
.

Proof. In the previous proof, we demonstrated the existence of a
δ that works for p. This proof comes down to choosing ϵ so that
m,m∗, M, r, M∗, and ∆ work for all p′ with the same period as p
and satisfying dr (p, p′) ≤ ϵ.

The quantity m is a lower bound on
ṗ(t). Because ϵ controlsṗ(t) − ṗ′(t)

 over t ∈ [0, T ), we may assume ϵ small enough and
replace m by m/2 to make it work for p′.

The quantitym∗ is an upper bound on
p̈(t). Because ϵ controlsp̈(t) − p̈′(t)

 over t ∈ [0, T ), we may assume ϵ small enough and
replace m∗ by 2m∗ to make it work for p′.

The quantity M is essentially an upper bound on
p̈(t)

∞
.

Because ϵ controls
p̈(t) − p̈′(t)

 over t ∈ [0, T ), we may assume
ϵ small enough and replaceM by 2M to make it work for p′.

We may use the same definition of r =
m
M

after modifying m
andM as above.

The quantityM∗ is essentially an upper bound on
ṡ(t)

∞
. The

unit tangent vector s is given by s = ṗ/(ṗ · ṗ)1/2. Differentiating,
we obtain

ṡ =
p̈

(ṗ · ṗ)1/2
−

ṗ (p̈ · ṗ)

(ṗ · ṗ)3/2
.

Because r ≥ 2, we may control the variation in p, ṗ, and p̈ by
making ϵ small. Thus, we may assume ϵ small enough and replace
M∗ by 2M∗ to make it work for p′.

We begin by defining∆ = min|t2−t1|≥r

p(t2)−p(t1)
 as before.

By assuming ϵ small enough and replacing ∆ by ∆/2, we may
assume ∆ to work for all p′.

The rest of the proof of the previous lemma works without
change. □

Half of the smoothness lemma that follows is a special case
of the main theorem in [28]. Given a periodic orbit and a tube
around it, the lemma shows that each point in the tube can be
expressed as a sum of a point on the periodic orbit and a vector
orthogonal to the tangent at that point. Additionally, the lemma
provides smoothness and uniformity guarantees.

Lemma 13. Assume the same setting as in Lemma 12. Given p′ with
dr (p, p′) ≤ ϵ and a point x0 ∈ Rd with dist(x0, p′) ≤ δ, we may
send x0 → t0, where p′(t0) is the unique point on p′ closest to x0, and
x0 → w0, where w0 = x0 − p′(t0). The functions t0(x0) and w0(x0)
are C r−1. In addition, the magnitudes of all derivatives of order r − 1
or less have upper bounds that depend only on p and δ.
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Fig. 3.2. A periodic orbit with a tube around it.

Proof. It is sufficient to prove the lemma for t0(x0). The assertions
aboutw0(x0) follow easily from that point.

The function (x0 − p′(t)) · (x0 − p′(t)) has a unique minimum at
t = t0. By differentiating, we get the equation (x0 − p′(t0)).

dp′(t0)
dt

= 0. If we define

f(x0, t0) = (x0 − p′(t0)).
dp′(t0)

dt
We may think of the equation f(x0, t0) = 0 as implicitly defining
t0(x0) as a function of x0. We have

∂f

∂t0
= p̈′(t0) ·

(
x0 − p′(t0)

)
−

dp′(t0)
dt

·
dp′(t0)

dt
.

Here
x0 − p′(t0)

 = dist(x0, p′) ≤ δ. We may use the first part of
Lemma 12 and conclude that the partial derivative ∂f/∂t0 is greater
than δ in magnitude.

Thus, the C r−1 smoothness of t0(x0) follows by the implicit func-
tion theorem. To upper bound the magnitudes of the derivatives,
we simply have to use chain rule and implicit differentiation. For
example, if x0 = (ξ1, . . . , ξd), we have

∂t0
∂ξ1

= −
e1 ·

dp′(t0)
dt

∂f
∂t0

, (3.2)

where e1 = (1, 0, . . . , 0). Now the denominator is δ or more
in magnitude and the magnitude of the numerator has an upper
bound that depends only on p′.

To obtain bounds for derivatives of t0(x0) of order r − 1 or
less, we may repeatedly differentiate (3.2). The bounds on the
derivatives obtained in this manner depend only on the first r
derivatives of p′ and δ. If we assume ϵ < 1, we may bound the
first r derivatives of p′ in terms of the derivatives of p. Thus, the
magnitudes of all derivatives of order r − 1 or less have upper
bounds that depend only on p and δ. □

Theorem 14. Let p(t) be a periodic solution of the dynamical system
dx/dt = f (x), where f is C r−1. If o(t) = π1p(t) is a periodic signal,
there exists either a delay τ > 0 such that t → o(t; τ ), 0 ≤ t < T , is
an embedding of the circle [0, T ) or another vector field f ′, arbitrarily
close to f in the C r−1 topology, with a periodic solutionp′(t) arbitrarily
close to p(t) in Pr and of the same period such that t → π1p′(t; τ ) is
an embedding of the circle [0, T ) for some τ > 0.

Proof. Let o(t) = π1p(t) and assume that there is no delay τ > 0
such that t → o(t; τ ) is an embedding. By Lemma 6, we can find a
periodic signal o′(t) of period T , and arbitrarily close to o(t) in Or ,
such that t → o′(t; τ ) for some τ > 0. Define

p′(t) = p(t) +

⎛⎜⎝ o′(t) − o(t)
0
...

⎞⎟⎠ . (3.3)

It suffices to construct a vector field f ′ such that p′(t) is a periodic
solution of dx

dt = f ′(x) and f ′
→ f as p′

→ p.

Using Lemmas 11 and 12, find an ϵ > 0 and a δ > 0, such that
a δ-tube may be constructed as in the lemma for all periodic orbits
p′ of the same period as p satisfying dr (p, p′) < ϵ. In addition, by
taking o′ close enough to o, we may assume that dr (p, p′) < ϵ.

The following calculation is the heart of the proof:

dp′(t)
dt

=
dp(t)
dt

+ ϵ1(t)

= f (p(t)) + ϵ1(t)
= f (p′(t)) + ϵ1(t) + ϵ2(t),

where

ϵ1(t) =

⎛⎜⎜⎝
d(o′(t) − o(t))

dt
0
...

⎞⎟⎟⎠
and ϵ2(t) = f (p(t)) − f (p′(t)). Evidently, as o′

→ o in Or , the
periodic signals ϵ1(t) and ϵ2(t) go to 0 in Or−1.

Let λ : R → R be a C∞ bump function with λ(x) = 1 for
|x| ≤ 1/2 and λ(x) = 0 for |x| ≥ 3/4. Suppose x0 is a point
in the δ-tube around p′. Then Lemma 13, allows us to write x0 as
x0 = p′(t0(x0))+w0(x0). The perturbation δf : Rd

→ Rd is defined
as

δf (x0) = (ϵ1(t0(x0)) + ϵ2(t0(x0)))λ
(
w0(x0).w0(x0)

δ2

)
for x0 in the δ-tube aroundp′, and zero otherwise. As a consequence
of Lemma 13, δf → 0 in the C r−1 sense as o′

→ o.
By construction, p′(t) is a periodic solution of the dynamical

system dx/dt = f ′(x), with f ′
= f + δf . □

Finally, as a consequence of Proposition 10 and Theorem 14, we
have the following theorem.

Theorem 15. Let dx
dt = f (x), where x ∈ Rd, f : U → Rd, and U

an open subset of Rd, be a C r , r ≥ 2, dynamical system. Let a ∈ Rd

be a nonzero vector. Let p : [0, T ) → U be a hyperbolic periodic
solution of period T > 0. There exists an open neighborhood of f
in the C r−1 topology such that an open and dense set of g in that
neighborhood admit a nearby hyperbolic periodic solution p′(t) of
dx′/dt = g(x′) of period T ′ and a delay τ ′ > 0 such that the delay
map t → (a · p′(t), a · p′(t − τ ′), a · p′(t − 2τ ′)) is an embedding of
the circle [0, T ′) in R3.

Proof. Proposition 10 and Theorem 14 imply Theorem 15 with
a = (1, 0, . . . , 0). The theorem may be reduced to that case for
any a ̸= 0 by a linear change of variables. □

The theorem does not assert that periodic orbits can be embed-
ded in R3 for an open and dense set of C r vector fields g . Instead,
the theorem limits itself to a neighborhood of a vector field f which
is known to admit a hyperbolic periodic orbit. Such a restriction
is essential because there exist open sets of vector fields none of
which admit any periodic solution.

4. Discussion

In this paper, we have considered an extension of the delay
coordinate embedding theory. The current embedding theory of
Sauer et al. [2] is based on fixing the dynamical system and per-
turbing the observation function.We have obtained an embedding
theorem for periodic orbits that fixes the observation function but
perturbs the dynamical system.

Periodic solutions are a special case that arise in applications
[14,15]. However, a generalization to a broader setting is desirable
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both from the theoretical point of view as well as for wider appli-
cability.

Our approach in this paper relies heavily on the periodicity
of signals. Yet some differences between our approach and that
of Sauer et al. may be pertinent to more general settings. The
approach of Sauer et al. is able to handle aspects of the embedding
result, such as injectivity, immersivity, and distinct points on the
same periodic orbit, relatively independently. Our argument is
more layered. A global argument is structured above a local argu-
ment, and the argument for periodic orbits relies on the argument
for periodic signals.
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