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ABSTRACT

Across scales of organization, brain activity is inherently

sparse. This is also the case for transiently occurring signal

abnormalities associated with neurological disorders, such

as epilepsy. Consequently, for the purpose of characterizing

these abnormalities, very high-dimensional brain signals may

be represented as sparse combinations of the elements of a

comprehensive (overcomplete) dictionary. Such a dictionary

may be estimated (learned) from the dataset(s) of interest.

However, given the statistical, spectral and signature hetero-

geneity of brain signals recorded over long periods of times,

the size of the dictionary may be suboptimal, particularly in

terms of its size. In this paper, signal-specific, dataset-specific

and individual-specific anomaly dictionaries, estimated via

the K-SVD algorithm from noninvasive high-frequency brain

signals collected continuously over several days are explored.

It is shown that signal-specific dictionaries may yield sub-

stantially more accurate representations than those estimated

by combining training signals from multiple electrodes.

Index Terms— Sparse dictionaries, K-SVD, brain sig-

nals, waveform anomalies

1. INTRODUCTION

There is an ongoing shift in Neuroscience from experimen-

tal paradigms in tightly controlled laboratory conditions to

more ’unsupervised’ paradigms in naturalistic and uncertain

settings (e.g, in natural habitats), which aim to study complex

multi-domain behaviors and multimodal sensory processing.

Novel experiments are thus designed to measure brain activity

from freely behaving animals and/or humans over extended

periods of time. These hold great promise to provide a wealth

of new knowledge on how the brains neural circuitry supports

complex behaviors across domains and how it processes mul-

timodal inputs from the outside world. They are also bound to

generate very high-dimensional datasets. Such data are also

routinely collected during clinical neurophysiological studies,

including sleep studies spanning days or weeks and long-term

monitoring studies for diagnostic purposes, e.g., in epilepsy

patients. They contain a wealth of information on brain dy-

namics across temporal scales but also electrophysiological
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markers of underlying neuropathologies.

Comprehensive analyses of very high-dimensional brain

signals collected continuously over long periods of time (days

or weeks) from multiple electrodes (sometimes over 200 elec-

trodes, particularly in invasive studies) are computationally

prohibitive. A typical dataset of invasively recorded brain sig-

nals spanning several days may contain O(1010) time points

with the temporal dimension being the highest (in contrast to

high-resolution imaging data where the spatial dimension is

highest). However, there is increasing evidence that across

scales of organization, from the microscale of individual neu-

rons to that of large ensembles of thousands of cells measured

with macroscale electrodes, brain activity is sparse. Further-

more, signal abnormalities, including the recently discovered

pathological high-frequency oscillations in invasive and non-

invasive EEG recordings are transient and sparse [1, 2, 3, 7,

4, 5, 6]. This property could, therefore, be exploited to sub-

stantially reduce the dimension of these signals and derive

parsimonious representations of their structure. This would

also facilitate the classification of these abnormalities or sig-

nal patterns and efficient analysis of their characteristics.

Interpretable sparse representations of high-dimensional

brain signals may be difficult to estimate. First, the statistical

properties of these signals may vary substantially with time,

potentially requiring dynamic estimation or updating of these

representations. There is growing evidence that functional ac-

tivations of neuronal ensembles may have stereotypical, mod-

ular and sparse patterns ([9, 10] and references therein). How-

ever, it is currently unclear whether these patterns repeat over

long periods of time and how they vary between neuron types,

brain regions and individuals (or animals). Furthermore, the

potential waveform variability of many electrophysiological

abnormalities are also unknown. To design robust and com-

putationally efficient detectors of physiological and/or patho-

logical neural activity, whether for characterizing functional

neural activations in response to cognitive demands, diagnos-

tic purposes, as part of brain-computer interfaces (BCI) or for

next-generation targeted therapies, it is desirable to estimate

sparse neural signal representations from a set of fundamental

elements (neural primitives, modules or atoms).

Among a large number of dimensionality reduction meth-

ods for compressed sensing and sparse signal/image represen-

tation, various dictionary-based approaches have been pro-

posed [11, 12, 13, 14, 15, 16]. All highlight two important is-
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sues: computational cost and the dimension of the dictionary.

In the case of pre-defined dictionaries ([17, 18, 19, 20] among

many others), the set of atoms based on which sparse signal

representations are estimated is a priori known or assumed.

These dictionaries are typically overcomplete and thus suffi-

ciently large to approximate a set of signals fairly well but

are not data-derived and may be thus be non-optimal. Dic-

tionaries that can be learned from the data have received con-

siderable attention (e.g., [21, 14, 15] and [22, 23] for method

reviews), with more recent work focusing on the estimation

of optimally sparse dictionaries [24]. However, similarly to

all learning-based approaches, the size and heterogeneity of

the data used to train the algorithms and derive the dictionary

may vary substantially between applications. In the case of

high-dimensional brain signals, there are very limited studies

on dictionary-based sparse representations [25, 26] (mostly

for BCI applications) and, to the best of our knowledge, no

studies on dictionaries for sparse brain signal anomalies.

This paper investigated dictionaries of high-frequency

(>100 Hz) anomalies in very high-dimensional electro-

physiological signals for sparse representations of the lat-

ter. These anomalies are thought to be intrinsically sparse

in time and possibly in space (they occur transiently and in

a subset of recording electrodes) and may be sensitive and

specific biomarkers of abnormal neurodynamic processes,

e.g., seizures. The K-SVD method [15], and for comparison

the Method of Optimal Direction (MOD) [12], were used to

learn these dictionaries. The paper addresses primarily the

heterogeneity of estimated dictionaries, when the training

data are selected from individual electrodes, all electrodes, a

single patient or multiple patients, and associated accuracy of

the resulting sparse representations.

2. MATERIALS AND METHODS

2.1. The K-SVD and MOD methods

Both methods are only briefly summarized here. Details on

their development and characteristics may be found in [15]

and [12]. The K-SVD method aims to derive (learn) a dictio-

nary of atoms from a representative (training) dataset. For a

set of N vectors Y = {yi(t)}, i = 1, ...N , each of length n,

a dictionary of K atoms, with K ≪ N , is estimated so as to

minimize the error:

min{‖ Y −DX ‖2
F
} (1)

∀i, ‖ xi ‖0≤ T0, the latter being a typically small set of

pre-defined non-zero entries. ‖ · ‖F refers to the Frobenius

norm and ‖ · ‖0 the l
0 norm, the count of non-zero entries

in a vector. D ∈ RnXn is the dictionary and X = {xi} is

the coefficient matrix of sparse representations, which are

both updated to ultimately converge to a local minimum.

Similarly, the MOD method involves sparsification (individ-

ually for each signal) and dictionary update, using standard

methods, e.g. Orthogonal Matching Pursuit (OMP) [27]. It

is a computationally efficient method that converges after a

small number of iterations. The primary challenge in the

context of high-dimensional brain signals is how to optimally

estimate the dictionary. In the case of spatially localized

high-frequency pathological waveform anomalies with little

a priori information of their origin of onset (at least non in

noninvasive signals) and co-occurrence of transient physio-

logical, and thus normal, activity, it is unclear if electrode-

specific, region-specific and/or patient specific dictionaries

versus overcomplete global dictionaries are most appropriate.

2.2. Electrophysiological data

The study was approved by the BIDMC institutional review

board. Noninvasive (scalp) EEGs were analyzed from three

adult epilepsy patients with continuous data collected at the

Comprehensive Epilepsy Center, Beth Israel Deaconess Med-

ical Center (BIDMC), as part of clinically indicated studies,

using a 10-20 EEG system (22 electrodes). One patient had

additional sub-temporal electrodes (a total of 28 electrodes).

Signals were sampled at a rate of 500 samples/s and were

re-referenced to an average reference montage prior to analy-

sis. Given that the study focused on the high-frequency (> 80

Hz) part of the EEG spectrum, signals were high-pass filtered

with a 3rd order elliptical filter (cutoff at 80 Hz, 0.5 dB ripple

in the passband and 20 dB attenuation in the stopband). Ex-

amples of pathological, transient and spatially localized high-

frequency waveforms are shown in Figure 1.

Data from 2 adult patients [one male and one female, ages

29 and 47, respectively] with diagnosed focal epilepsy. One

patient had seizures originating in the left temporal lobe and

one patient had seizures original in bilateral frontal lobes. It is

currently unclear whether stereotypical high-frequency signal

abnormalities occur across electrodes, brain regions or even

patients. Thus, patients with electrophysiological abnormali-

ties in different parts of the brain were included. Scalp EEG

recordings spanned ∼50 - ∼70 h.

Scalp EEGs recorded over long periods of time are

typically contaminated by various artifacts, including eye-

blinking (typically high-amplitude but low-frequency), mus-

cle activity (high-amplitude and broadband twitching, chew-

ing, etc) and movement (typically lower frequency). The

algorithm presented in [8] was used to suppress these ar-

tifacts, though it is possible that residual, muscle-related

high-frequency activity is still detectable in high-pass filtered

signals. Training datasets were carefully selected from peri-

ods not containing high-frequency waveforms that are likely

to be associated with muscle artifacts. This was done by

examining the broadband data at the same time segments as

those containing measurable high-frequency activity, since ar-

tifacts have high amplitudes and are usually easily detectable

by visual inspection. For each electrode, a training dataset

spanning an interictal period of 2 h was used to estimate and
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Fig. 1. One-second interictal (non-seizure) high-pass and

corresponding low-pass filtered segments from electrodes T7

(top left), T8 (top right), C3 (bottom left) and C4 (bottom

right). Low-pass filtered segments are included to show that

identified high-frequency waveforms are unlikely to be re-

lated to muscle artifacts (which would be detectable at low

frequencies as well). Note that high-frequency activity in

electrode C3 has negligible amplitude.

update the corresponding dictionary.

3. RESULTS

Electrode-specific dictionaries and corresponding sparse re-

constructions were first estimated. The signal reconstruction

root-mean square errors (RMSE) for each electrode, aver-

aged over all recordings for each patient, are shown in Figure

2. RMSEs when a ’mismatched’ signal dictionary was used

in the reconstructions (i.e, a dictionary estimated based on

signals from one electrode was used to estimate sparse rep-

resentations of signals from a different electrodes) are also

superimposed. Although electrode-specific dictionaries may

share common waveform anomaly atoms, given that a rela-

tively large area of cortex must be simultaneously active for

low-amplitude, high-frequency signals to be measurable at

the scalp, signal reconstruction errors increased substantially

when a particular electrode-specific dictionary was used to

represent signals are other electrodes. Note that across esti-

mations, differences between results based on the K-SVD and

the MOD were negligible, in the sense of the accuracy of the

sparse representations.

Training signals from all electrodes were then combined

to estimate a common dictionary for the entire dataset. De-

spite an average 20-fold increase in the size of the dictionary,

reconstruction RMSEs were substantially increased (∼ 25%
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(b) Patient 2.

Fig. 2. RMSE of sparse signal representations based on in-

dividual (electrode-specific dictionaries) are shown for each

electrode (black) and corresponding RMSEs using a mis-

matched dictionary, i.e., the dictionaries for electrode Fp1

(green), F3 (magenta), C3 (central), P3 (red), as a common

dictionary to estimate representations of all electrodes. Er-

ror bars indicate the standard deviation of the RMSE over all

recordings.

higher) when a common dictionary was estimated and used

for sparse representations of the entire dataset compared to

the smaller electrode-specific dictionaries. Thus, increasing

the size and heterogeneity of the dictionary did not improve

the accuracy of the sparse representation. The results for pa-

tient # are shown in Figure 3.

Finally, sparse representations based on dictionaries from

multiple patients were estimated. For each electrode, high-

pass filtered training signals the 2 patients were combined.

Increasing the heterogeneity of the dictionary at the electrode

level, i.e., combining training waveforms from multiple pa-

tients but maintaining electrode-specific dictionaries. The

size of these dictionaries increased modestly (on average

slightly more than 50%), indicating both a potentially non-

linear relationship between the number of datasets (patients)

and the increase in dictionary size as well as the existence

of common anomaly atoms between patients. Interestingly,

142



Fp1F3 C3 P3 O1 F7 T7 P7 T1 F9 T9 P9 Fz PzFp2F4 C4 P4 O2 F8 T8 P8 T2F10T10P10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Electrode

R
o
o
t
−
M
e
a
n
−
S
q
u
a
r
e
 
E
r
r
o
r

 

 

Common dictionary

Electrode−specific dictionary

Fig. 3. RMSE of sparse signal representations based on in-

dividual (electrode-specific dictionaries) are shown for each

electrode (black) and corresponding RMSEs using a common

dictionary are superimposed (red).

based on this dictionary the accuracy of the sparse represen-

tations increased for patient #2 and decreased for patient #1,

relative to those based on patient- and electrode-specific dic-

tionaries. This may be due to the fact that the training dataset

was adequate for one of the patients’ recordings but not for

the other. These results are summarized in Figure 4.
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Fig. 4. RMSE of sparse signal representations based on in-

dividual (electrode-specific dictionaries) are shown for each

electrode, for patients #1 (brown) and #2 (black) respectively,

and corresponding RMSEs using a common dictionary for

both patients superimposed (blue).

4. CONCLUSION

In a preliminary investigation of sparse representations of

high-frequency waveform anomalies in very high-dimensional

electrophysiological signals based on data-derived dictionar-

ies, we have assessed the impact of the training data used

to learn these dictionaries and the latter’s heterogeneity on

the accuracy of the sparse representations. Electrode-specific

dictionaries yielded substantially more accurate representa-

tions than those estimated by combining training signals from

multiple electrodes to derive a larger and theoretically more

heterogeneous and more redundant dictionary. This suggests

that waveform anomalies may vary substantially between

electrodes with potentially little overlap. In contrast, when

training data from both patients were combined to estimate

electrode-specific dictionaries, the accuracy of the estimated

sparse representations only decreased slightly for one patient

and increased substantially for the other. It is possible that

this is in part due to the choice of the training dataset, which

may not have adequately captured the variability of wave-

form anomalies across the entire recordings for one of the

patients. There findings are based on a very small patient

sample (although the data spanned ≤50 h). A substantially

larger sample is necessary to assess the relationship between

the size of the dictionary size and the number of datasets

used to estimate it, common atoms in electrode-specific dic-

tionaries and the impact of different training data. Ideally, a

single (overcomplete) dictionary is desirable that can be used

across datasets and electrodes. This preliminary investiga-

tion suggests that augmenting the training dataset to include

data from multiple electrodes does not result in improved

sparse representations, highlighting the potential heterogene-

ity of high-frequency waveforms across the brain. Finally,

systematic simulations are necessary to assess issues in dic-

tionary learning and the accuracy of sparse representations in

a controlled way.
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