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Abstract Numerical modeling of actual structural

systems is a very complex task mainly due to the lack

of complete knowledge on the involved parameters.

Simplified assumptions on the uncertain geometry,

material properties and boundary conditions make the

numerical model response differ from the actual

structural response. Improvements of the finite ele-

ment (FE) models to obtain accurate response predic-

tions can be achieved by vibration based FE model

updating which uses experimental measures to min-

imize the differences between the numerical and

experimental modal features (i.e. natural frequencies

and mode shapes). Within this context, probabilistic

model updating procedures based on the Bayes’

theorem were recently proposed in the literature in

order to take into account the uncertainties affecting

the structural parameters and their influence on the

structural response. In this paper, a novel framework

to efficiently estimate the posterior marginal PDF of

the selected model parameters is proposed. First, the

main dynamic parameters to be used for model

updating are identified by ambient vibration tests on

an actual structural system. Second, a first numerical

FE model is developed to perform initial sensitivity

analysis. Third, a surrogate model based on polyno-

mial chaos is calibrated on the initial FE model to

significantly reduce computational costs. Finally, the

posterior marginal PDFs of the chosen model param-

eters are estimated. The effectiveness of the proposed

method is demonstrated using a FE numerical model

describing a curved cable-stayed footbridge located in

Terni (Umbria Region, Central Italy).

Keywords Cable-stayed footbridge � Finite element

model � Operational modal analysis � Surrogate
model � Polynomial chaos expansion � Global
sensitivity analysis � Bayesian inference

1 Introduction

Cable-stayed footbridges and bridges are gaining

worldwide interest because of some inherent features

that determine the reduction of deck bending moments

and deformations under live loads when compared to

suspension bridges [20]. Despite the aforementioned

advantages against the suspended layout, cable-stayed
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bridges and footbridges still pose serious concerns

regarding the high sensitivity to dynamic loads,

mainly pedestrian and wind action, affecting the

structural performance of the structure.

Within this context, the development of reliable and

accurate structural FE models is of utmost importance

to accurately predict the bridge response to different

dynamic loading conditions. Therefore, the careful

assessment of the system modal characteristics in

operating conditions using experimental tests becomes

crucial to develop a suitable FE model updating

technique [13].

The commonly used approach consists of deter-

mining the structural parameters (mainly the structural

members stiffness) which minimize the differences

between the modal properties computed with the FE

model and those estimated from experimental data

recorded on the actual structure [23]. Ambient vibra-

tion tests (AVT) can be used to obtain these data given

the assumption of linear structural behavior under low

amplitude loads [7, 8, 15, 16, 32, 33]. Response time

histories are recorded under the assumption of

stationary white noise loads and the obtained data

can be processed using operational modal analysis

(OMA) algorithms in the frequency and/or time

domain [10, 12, 29, 31].

Beside classical deterministic approaches, in the

last few years probabilistic model updating procedures

have gained growing interest in the scientific commu-

nity since they are able to take into account the

uncertainties affecting the FE model parameters and

their influence on the structural response [22]. A

review of the probabilistic approach can be found

in [27, 37] and [42]. This kind of techniques can be

grouped in two main classes: classical probabilistic

approaches and Bayesian methods based on the well

known Bayes’ theorem [4].

A complete Bayesian framework relies on the

knowledge of the prior uncertain parameters proba-

bility density functions (PDFs) and takes explicitly

into account all the sources of uncertainties involved

in the process, including measurement and modeling

uncertainies, to obtain updated probability estimates

for the random parameters in terms of joint, or

marginal, PDFs and/or confidence intervals [5, 6, 46].

In the Bayesian updating procedure a complex mul-

tidimensional integration problem has to be solved

that can be rather time consuming especially when

several updating parameters are modified during the

process and/or when a large data set is used as

reference [30]. The Markov Chain Monte Carlo

(MCMC) methods are the most widely used tech-

niques for such integration and are based on the

generation of random sequences of input parameters

samples (so called Markov chains) that are in equilib-

rium with the target posterior PDFs [19, 24]. These

methods require several solutions of the structural

problem using the deterministic FE model, one for

each occurrence of the input parameters, that can make

the Bayesian procedure unfeasible.

Surrogate models based on PC expansion [26, 41]

can be used to solve this issue, dramatically reducing

the time needed for the Bayesian updating framework

by replacing the numerical FE model solution with the

surrogate solution. PC expansions are generally used

in stochastic finite element (SFEM) to describe the

random model response by a set of coefficients in a

suitable PC basis [21, 44, 45]. The number of terms to

be computed increases with the number of input

random variables (RVs) making the computational

effort with sampling based methods unpractical. A non

intrusive regression method based on the deterministic

evaluations of the FE model solution in a few number

of points can be used to address this problem [14].

Once the surrogate models are calibrated, they can

also be used to carry out efficient global sensitivity

analysis (GSA) based on the model output variance

decomposition method [35, 38, 39]. GSA aims to

quantify the effect of the random input parameters on

the model output variance. The PC expansions method

gives the opportunity to evaluate the sensitivity

indices analytically, starting from the PC coefficients,

without adding computational costs. An accurate GSA

is a crucial point in the Bayesian updating framework

since gives the chance to reduce the model order,

neglecting all the structural elements not affecting the

uncertainty analysis results.

In this paper, a novel approach to overcome the

main limitations of the commonly used Bayesian

framework in efficiently updating a numerical model

when incomplete experimental dynamic modal data

are available is proposed. First, estimates of the modal

parameters are obtained via AVTs on an actual

structural system. Second, sensitivity analysis is

performed to select the structural parameters that have

significant influence on the system natural frequen-

cies. Third surrogate models are calibrated on the

initial FE model and a GSA is performed to have more
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information on the uncertain parameters influence on

the selected modal features. Finally, a modified

version of the MCMC method is used to estimate the

posterior marginal PDF of the selected model param-

eters: (a) beside the commonly used system natural

frequencies, the modal assurance criterion (MAC) is

used to ensure direct mode shape matching at each

step of the chain; (b) the deterministic FE model

solution is replaced with the PC surrogate solution at

each evaluation step in order to dramatically reduce

the computational costs required to estimate the

posterior marginal PDFs. The effectiveness of the

proposed method is eventually demonstrated using a

FE numerical model describing a curved cable-stayed

footbridge located in Terni (Umbria Region, Central

Italy).

2 Bayesian inference for inverse problems

In recent years structural and modal identification

have been addressed using the Bayesian updating

framework to estimate FE model parameter from

measured dynamic data [2, 6]. This approach is based

on the Bayesian interpretation of probability which

differs from the frequentist one. In the latter, proba-

bility is viewed as the relative occurrence of a random

phenomena, whereas in the Bayesian interpretation,

probability is seen as the plausibility of a hypothesis.

Within this context the structural parameters uncer-

tainty is given by the incomplete availability of

information/data.

2.1 Uncertainty quantification framework

Consider a numerical mechanical model M charac-

terized by an input random vector H ¼
fH1; . . .;Hng 2 Rn consisting in n independent ran-

dom parameters defined according to some probability

space fX;F ;PgwhereX is the probability space,F is

the r-field and P is the probability measure.

If each Hi, i ¼ 1; 2; . . .; n, is described by the

probability density function piðhiÞ, the joint PDF is

given by the product of the n densities. Let the relation

between the vector H and the associated output

response quantities u ¼ fu1; . . .; umg 2 Rm given by

the forward problem M

u ¼ MðHÞ ð1Þ

withM : Rn ! Rm. The output response u represents

the quantity of interest (QoI) of the uncertainty

quantification (UQ) problem.

If system modal characteristics are of interest, two

different kind of uncertainties, that affect both exper-

imental and numerical predictions, have to be properly

taken into account: measurement and model uncer-

tainties. The most obvious source of uncertainty

comes from the recorded data. Measurements errors

determine a difference between the observed struc-

tural behavior D ¼ fd1; . . .; dmg 2 Rm and the actual

response D ¼ fd1; . . .; dmg 2 Rm. For this reason

measurements uncertainties are taken into account

defining the modal prediction error

e ¼ D� D ð2Þ

Model uncertainties are due to lack of knowledge on

the actual mechanical and geometrical properties,

materials, boundary conditions, construction process

and type of coupling between the structural compo-

nents. These uncertainties are considered defining the

model prediction error

e ¼ D�MðHÞ ð3Þ

that gives information on the difference between the

actual structural behavior D and the numerical model

prediction vector MðHÞ.
Both modal and model prediction errors need to be

considered in order to improve the matching between

the numerical model and the data estimations. The

total error is the difference between the model

predictions and the observed quantities (i.e. estimated

from data) and can be obtained by Eqs. (2) and (3)

eþ e ¼ D�MðHÞ ð4Þ

which represents the main equation for the whole UQ

problem, avoiding to explicitly consider the unknown

actual structural response D.

2.2 Bayes’ theorem

In the Bayesian approach, the probabilities of the

unknown parameters Hi, i ¼ 1; 2; . . .; n, characteriz-

ing a model class M when new data D becomes

available is given by the joint PDF

pðHjD;MÞ ¼ c�1pðDjH;MÞpðHjMÞ ð5Þ
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which is known as posterior distribution.

The term pðDjH;MÞ, called likelihood function,

expresses the joint probability of the data, conditional

to the unknown/adjustable vector H, and the model

class M. The term pðHjMÞ is the prior distribution,

which quantifies the initial plausibility of the vector of

parameters H associated with the model class M. The

normalizing constant c ¼ pðDjMÞ, called the evidence
of model class M, makes the integration of the

posterior PDF in (5) over the parameter space equal

to one. The c constant can be estimated by the

multidimensional integration over the parameter space

c ¼ pðDjMÞ ¼
Z

pðDjHÞpðHjMÞdH ð6Þ

In the following, the explicit dependence on the model

class M will be omitted since a single FE model only

will be considered.

2.2.1 Prior PDF

The prior PDF, pðHÞ, describes the probability of the

FE model parameters when no evidence/information

are taken into account. A very general classification of

the Bayesian prior probabilities can be made accord-

ing to the way they are selected, distinguishing

between subjective and objective priors. The subjec-

tive priors are chosen depending on expert judgment,

i.e. personal belief. This subjective choice can be

relevant since different results of the Bayesian updat-

ing framework may be obtained when the data set used

as reference is small or not properly informative. On

the contrary, objective priors are formulated according

to some formal rules like the widely used principle of

maximum entropy [25].

2.2.2 Likelihood function

The likelihood function pðDjHÞ can be interpreted as a
measure of the accuracy of the model in describing the

measurements. The likelihood function can be

obtained according to the total probability theorem

as the convolution of the measurement and modeling

errors PDFs [3, 36]

pðDjHÞ ¼
Z

peðD� DjH;DÞpeðD�MðHÞjHÞdD

ð7Þ

where peðD� DjH;DÞ is the joint probability of the

measurement error ewhen the model is driven by a set

of parameters H and the selected data set D, while

peðD�MðHÞjHÞ is the probability of obtaining the

modeling error e given the same set of parameters H.

When no information is available on the individual

errors, the likelihood function can be formulated

modeling the total prediction error in (4) as a Gaus-

sian vector with zero mean and a constant unknown

variance r2 for all the components, making the

likelihood function in (7) a M-variate joint PDF:

pðDjHÞ / exp � 1

2
ðeþ eÞTR�1ðeþ eÞ

� �
ð8Þ

where R is the ½m� m� total error covariance matrix.

2.2.3 Posterior PDF

Once the prior PDF and the likelihood function are

defined, experimental observations and Eq. (5) are

used to obtain the marginal posterior PDFs of the

updating parameters Hi. If the number of parameters

and the data space dimension is large, the multidi-

mensional integration in (5) cannot be solved with

analytical approaches. Most of the estimates are

commonly computed with deterministic (quadrature

or cubature) or sampling based (Monte Carlo or

Lathyn Hypercube) numerical methods.

Markov Chain Monte Carlo (MCMC) is the most

recent and widely used procedure for posterior sam-

pling [19]. The term MCMC refers to all the proce-

dures that are based on random sequences of samples

(so called Markov Chain) which are in equilibrium

with the target posterior PDF, i.e. that are subject to

some acceptance criteria. Each step of the procedure

depends on the previous steps. It follows that the PDF

can be estimated by targeting a posterior PDF without

knowing the scaling factor c in Eq. (6).

Metropolis Hastings (MH) is the most known

MCMC method [24]. It requires the computation of

the forward problem in (1) at each step of the chain

and it requires about 105 sample generations to have

solution convergency. This approach can be compu-

tationally prohibitive.
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3 Spectral expansion for Bayesian updating

In order to obtain a significant reduction of the

computational burden for the evaluation of theBayesian

integral in Eq. (5) described in the previous section, an

effective method is proposed in this section. The main

idea is to use the well known PC expansion [21],

decomposing the forward model response in Eq. (1)

into polynomial terms that are orthogonal with respect

to a weighting function identified as a probability

density. The combined use of both these surrogate

models and the MAC coefficients as soft constraint in

computing the likelihood function represent the main

novelty of the proposed framework.

3.1 Polynomial chaos representation

Let H 2 Rn be a non Gaussian random vector with n

independent components defined by

H ¼ gðnÞ ð9Þ

where g is a nonlinear function, g : Rk ! Rn,

n�Nð0; IÞ is a Rk-valued vector of k independent

and identically distributed, zero mean, unit variance

Gaussian random variables (RVs) and I denotes the

identity matrix with dimensions ðk � kÞ. The solution
of the physical model in (1) can be written as

u ¼ GðnÞ ð10Þ

where G : Rk ! Rm.

Considering a k-variate model input and a univari-

ate model output, i.e. m ¼ 1, and assuming that the

model response is a finite variance RV, the PC

representation of the structural response can be written

as

u ¼
X
a2Nk

ûaWaðnÞ ð11Þ

where WaðnÞ represents the multivariate Hermite

polynomials with finite multi-index set and ûa,

a 2 Nk, are the polynomial coefficients. The set of

multivariate polynomials in the input random vector n

is orthogonal with respect to the Gaussian measure.

3.2 Polynomial chaos approximation

The representation in Eq. (11) describes the random

system response exactly when an infinite series is

considered. In practice, an appropriate truncation

scheme needs to be developed.

Considering the k-dimensional polynomials of

order not exceeding p, the response u in (11) may be

approximated using

~u ¼ ~GðnÞ ¼
XNp�1

a� 0

ûaWaðnÞ ð12Þ

where ~GðnÞ represents the surrogate model. In this

case, the number of unknown (vector) coefficients in

the summation is given by

Np ¼
�
k þ p

p

�
¼ ðk þ pÞ!

k!p!
ð13Þ

The polynomial order has to be chosen to guarantee

results accuracy. As an example, in stochastic finite

element model (SFEM) applications it is common to

choose p between 3 and 5. A suitable convergence

analysis can be carried out to determine the optimal

PC expansion order [9, 26].

The PC expansion was initially formulated using

standard Gaussian random input parameters and

Hermite polynomials [44] but it is in general possible

to model input system parameters with any non-

Gaussian distribution using suitable mapping with

isoprobabilistic transformations. However, it is worth

noting some limitations of PC expansion: the rate of

convergence of the PC approximation may be slow;

accuracy improvements can not be achieved even if

adding terms; moments higher than two calculated

form PC approximation can be not accurate; PC

approximations for stationary non-Gaussian stochastic

processes might not be stationary [17].

3.3 Computation of the deterministic coefficients

The deterministic coefficients ûa in (12) can be

computed using different approaches: stochastic

Galerkin, orthogonal projection and regression [28].

The stochastic Galerkin method is classified as

intrusive since the deterministic solver has to be

modified in order to obtain the stochastic solution.

Alternatively, non intrusive methods based on the

deterministic solutions of the input realizations have

been recently proposed.

The non intrusive regression method presented

in [14] is used in this work and it is based on the
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minimization of the mean square error in the response

approximation. To this aim, the random response of

the model is written as

GðnÞ ¼ ~GðnÞ þ e ¼
XNP�1

a� 0

ûaWaðnÞ þ e ð14Þ

where the residual error e collects the truncated PC

terms. The regression approach consists in finding the

set of coefficients û ¼ fû0; . . .; ûNp�1gT which mini-

mizes the variance of the residual error

û ¼ arg min

�
E

��
GðnÞ �

XNP�1

a� 0

ûaWaðnÞ
�2��

ð15Þ

i.e. the best approximation of the mathematical model

GðnÞ. The discretized version of the continuous

problem in (15) is based on a set of NR [NP

regression points gathered in the vector

X ¼ fn1; . . .; nNRg, called experimental design (ED).

For each of these points a set of NR realizations of the

input vector H can be evaluated according to Eq. 9.

The least square minimization problem can there-

fore be solved by minimizing the mean square

truncation error

û ¼ arg min
1

NR

XNR

i¼1

�
GðniÞ �

XNP�1

a� 0

ûaWaðniÞ
�2

ð16Þ

where U ¼ fGðn1Þ; . . .;GðnNRÞg is the vector collect-

ing the numerical model responses at the selected

regression points. Equation (16) is equivalent to the

linear system

û ¼ ðATAÞ�1ATU ð17Þ

where A is the Vandermonde like design matrix

defined as

A ¼

w0ðn1Þ w1ðn1Þ � � � wNP�1ðn1Þ
w0ðn2Þ w1ðn2Þ � � � wNP�1ðn2Þ

..

. ..
. . .

. ..
.

w0ðnNRÞ w1ðnNRÞ � � � wNP�1ðnNRÞ

2
666664

3
777775

ð18Þ

that needs to be not singular in order to have a well

defined problem, i.e. ATA has to be positive definite

and invertible.

The number of regression points should be larger

than the number of the unknown PC coefficients to

ensure the numerical stability of the regression points.

It is worth noting that the choice of the regression

points highly influence the accuracy of the results. One

possible choice is to generate these sampling points

using the Gaussian quadrature rule with a full tensor

grid scheme evaluating the deterministic solution at

ðpþ 1Þn sampling points [41].

3.4 Moment analysis

Given the orthogonality conditions of the PC expan-

sion basis the output response statistics can be

estimated from the deterministic coefficients. In

particular, the mean value l~u and the variance r2~u of

the surrogate model response ~u can be obtained by

l~u ¼E½~GðnÞ� ¼ E

�XNP�1

a� 0

ûaWaðnÞ
�
¼ û0 ð19Þ

r2~u ¼E½ð~GðnÞ � û0Þ2� ¼
X
a 6¼0

ûa
2

ð20Þ

where W0 ¼ 1 and E½WaðnÞ� ¼ 0; 8a 6¼ 0.

3.5 Global sensitivity analysis

The influence of the input parameters on the output

QoI can be quantified using sensitivity analysis. Input

factors are considered unessential when they have no

effect on the output variability. The identification of

unessential input parameters can lead to significant

reduction of the problem dimension. This aspect is

crucial especially when dealing with probabilistic

design problems or Bayesian updating for the estima-

tion of input parameters.

Within this context, the global sensitivity analysis

(GSA) method is one of the most widely used and it is

based on the variance decomposition of the random

system output as [38, 39]
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Var½MðHÞ� ¼
Xn
i¼1

Vi þ
Xn
i\j

Vi;j þ � � � þ V1;2;...;n

ð21Þ

where

Vi ¼ VarHi
ðEH~i

½MðHÞjHi�Þ ð22Þ

Vij ¼ VarHij
ðEH~ij

½MðHÞjHi;Hj�Þ � Vi � Vj ð23Þ

with i; j ¼ 1; . . .; n and H~i indicates the set of all

parameters exceptHi. The total variance of the model

output is thus decomposed into a sum of terms

depending on each input random parameter taken

alone and on their interactions.

If all terms in Eq. 21 are divided by Var½MðHÞ�
one obtains

1 ¼
XN
i¼1

Si þ
XN
i\j

Si;j þ � � � þ S1;2;...;N ð24Þ

where Si and Si;j are the so-called Sobol’ indices. The

first order indexes Si quantify the influence of each

single random parameter on the response variance and

can be computed directly by

Si ¼
Var½Vi�

Var½MðHÞ� ð25Þ

while the higher order indexes Si;j quantify the

influence of all possible combination of the input

random parameters on the response variance and are

given by

Si;j ¼
Var½Vij�

Var½MðHÞ� ð26Þ

Once that PC coefficients are defined, the Sobol’

indices can be easily evaluated as a function of the

deterministic coefficients [40], significantly reducing

the computational cost if compared to sampling based

method, e.g. Monte Carlo or Quasi Monte Carlo.

3.6 Posterior evaluation based on polynomial

chaos expansion

Once the PC expansion coefficients are obtained, the

surrogate model can be used to obtain a response

surface uðnÞ analytically (Eq. (10)) and to perform the

posterior sampling via MCMC avoiding the time

consuming solutions of the numerical model MðHÞ.

A suitable choice of the operator g in Eq. (9)

becomes crucial depending on the chosen PC basis and

the polynomial order. Indeed, errors due to the

functional approximation of the surrogate model

responses may cause fallacious results of the Bayesian

updating framework. For this reason, one has to

carefully validate the surrogate model in order to

obtain significant results. With this approach, the

likelihood function in (8) can be computed using an

indirect method based on a surrogate solution of the

forwardmodel and the posterior marginal distributions

are estimated using samples of n.

The updating process can cause misleading results

when experimental modal data are used as reference

because of possible frequency matching associated to

different mode shapes. To overcome this problem the

main idea is to use the MAC coefficient [1] in order to

measure the correlation rate between the experimental

and numerical mode shapes. MAC coefficient assumes

values ranging from 0 to 1, when the two modes have

zero or perfect correlation, respectively. The classical

MCMC MH algorithm is thus modified using the

MAC coefficients as soft constraint so that the total

error in Eq. (4) at each step of the chain is computed as

the difference between the model predicted and the

observed natural frequencies only when they corre-

spond to the same mode shape.

4 Case study

4.1 Initial FE model

The footbridge under investigation in this work is

named ‘‘Umbria Gateway’’ and is located in Terni—

Umbria Region—100 km north from Rome (Fig. 1).

The footbridge has a total length of 180 m and has two

main parts: a curved shape one with a total length of

120 m, which is supported by an asymmetric array of

cables connected to a 60 m tall inverted tripod tower

through a pair of circular rings; a straight 60 m span

with two bowstring arches. The footbridge plan view

of the curved shape spans is shown in Fig. 2.

A three-dimensional FE model of the cable-stayed

spans was built using the software SAP 2000 [34]. The

bridge geometry was carefully described and different

mechanical characteristics were selected for the

structural components (Table 1). Each stay was mod-

eled with a nonlinear element describing both tension-
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stiffening and large deflections so that an iterative

solution is required.

Several authors investigated the significance of the

nonlinear behavior of this class of bridges, mainly due

to cable sag and large deflection [18, 43]. Cable sag is

usually the most significant feature since cable stiff-

ness becomes larger when cable tension increases. For

this reason, the dynamic characteristics were esti-

mated performing two types of modal analysis:

ordinary modal analysis (MA 1) in the undeformed

equilibrium configuration; pre-stress modal analysis

(MA 2) in the dead load and cable pre-tension

deformed equilibrium configuration. In the latter,

large displacements non linear static analysis was

performed and the stiffness matrix updated by means

of 200 incremental steps. The equilibrium was reached

at each step using the iterative Newton–Raphson

method.

Table 2 reports the results obtained with the two

modal analyses. As expected, the cable pretension

cause increased footbridge natural frequencies.

Although the differences are very small, the reference

deformed configuration is crucial to estimate the

dynamic response to wind and/or earthquake loads.

Eight mode shape types were found in the range of

frequencies of interest 0–3.5 Hz: five are vertical; two

are lateral and one is torsional. It is worth noting that

some dominant modes have frequencies very close to

each other.

4.2 Dynamic identification

The footbridge dynamic characterization in terms of

natural frequencies and corresponding vibration mode

Fig. 1 View of the ‘‘Umbria Gateway’’ cable-stayed footbridge

S1 S2 S3 

S4 

Vertical
Vertical, transversal
Vertical, transversal, longitudinal

A B C 
D 

E 

Fig. 2 Plan view and measurement locations on the cable-stayed spans

Table 1 Mechanical properties used in the initial FEM

Material E (GPa) Mass density ðkN=m3)

Steel S355 210 78

Cables 160 77

Concrete C32/40 33.345 25
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shapes was obtained from full-scale measurements in

operating conditions using classical contact sensors.

The dynamic response was recorded using fourteen

uni-axial accelerometers (10 V/g sensitivity) located

in the five cross-sections A, B, C, D and E of the bridge

deck (Fig. 2). The obtained acceleration time histories

were used to identify vertical, horizontal and torsional

vibration modes with the enhanced frequency domain

decomposition (EFDD) method [11].

Two different data sets with 400 Hz sampling rate

were recorded with time lengths 710 s (data set #1)

and 926 s (data set #2), respectively. Data were

downsampled with order of decimation 30 and high-

pass filtered in order to remove offsets and drifts.

Furthermore, different values of the frequency reso-

lution were considered changing the number of

frequency lines in the spectral density spectrum.

Reliability of results was investigated using different

order of decimation and different type of filters. Plots

of non-zero singular values are shown in Fig. 3 for

data set #2. Eight modes were clearly identified whose

frequencies are highlighted with the vertical dashed

lines. Table 3 summarizes the minimum, fmin, and the

the maximum, fmax, values of the identified natural

frequencies considering both data sets #1 and #2,

different frequency resolutions and order of decima-

tion 20 and 40. Figure 4 shows the 3D representation

of the identified vibration modes. The magnitudes of

the mode shapes at sensor locations were identified

directly with the measured data, while the other

magnitudes were interpolated using the boundary

conditions and the identified mode shapes at sensor

locations by means of cinematic equations.

Table 2 Modal features

obtained from MA 1 and

MA 2

Mode MA 1 (Hz) MA 2 (Hz) Difference (%) Mode’s type

1 1.025 1.030 0.49 Vertical

2 1.491 1.514 1.52 Lateral

3 1.766 1.774 0.45 Torsional

4 2.180 2.184 0.18 Vertical

5 2.306 2.365 2.49 Lateral

6 2.977 2.982 0.17 Vertical

7 3.151 3.153 0.06 Vertical

8 3.419 3.423 0.12 Vertical

0 1 2 3 4

Frequency Hz

0
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40
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80

100

120

SV
 d

B
| (

10
-6

 m
/s

2 )2 /H
z

Fig. 3 Non zero singular

values plots for data set #2

Table 3 Range of identified natural frequencies from data sets

#1 and #2

Mode fmin (Hz) fmax (Hz) Mode’s type

1 0.97 0.97 Vertical

2 1.11 1.13 Vertical

3 1.67 1.69 Lateral

4 1.79 1.80 Torsional

5 2.40 2.47 Lateral

6 2.58 2.59 Vertical

7 3.30 3.31 Vertical

8 3.35 3.40 Vertical
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The MAC was used to identify the modal shapes

from the experimental data sets. Given a set of modal

vectors it is possible to estimate a MACmatrix, whose

components are the MAC numbers estimated from

each pair of mode shapes. In the following, two

different MAC matrices will be estimated: the auto-

MAC matrix and the MAC matrix. The first is

estimated from the experimental mode shapes while

the second is computed pairing one experimental with

one numerical mode shape. It is worth noting that the

diagonal terms in the auto-MACmatrix are all equal to

1 since each mode shape is paired with itself (Fig. 5a).

The auto-MAC value of the pair given by mode

shapes #1 and #2 (bending mode shapes with

frequencies below 1.2 Hz) is greater than 0.95. This

would indicate that there are high chances that the two

vectors describe the same mode shape even if the two

corresponding peaks on the singular value curves are

clearly separated, being evidence of a sort of mode

shape splitting phenomenon. Furthermore, the numer-

ical model presents a single bending mode shape with

associated frequency at 1.03 Hz. Further experimental

investigation would be needed to assess the actual

nature of these identified modes. A possible reason for

the observed mode shape splitting could be related to

temperature effects and/or high amplitudes of the

excitation during the AVTs (e.g. due to wind).

Figure 5b shows the MAC matrix estimated from

the experimental mode shapes (data set #2) and the FE

analysis. It is worth to note that the higher MAC values

are not on the matrix diagonal terms because of the

experimental mode shape splitting phenomena

described above. These values are greater than 0.80

indicating an initial good correlation between the

experimental and numerical modal vectors.

4.3 Deterministic sensitivity analysis

and selection of the updating parameters

Selection of the updating parameters is a key issue in

the model updating procedure since they have to be

directly related to the measurement results used as

reference data. This selection usually relies on expert

judgment. A preliminary sensitivity analysis was thus

carried out in order to have information for an efficient

selection. In particular, the sensitivity of the natural

frequencies to variations in model mass density,

structural steel and cable Young’s moduli, cable

tension stiffening, stiffness of rotational and transla-

tional springs used to describe soil-structure interac-

tion was evaluated.

A first result of the sensitivity analysis is that large

variations of both cable tension in each of the stays and

spring stiffness, describing the soil-structure interac-

tion, have negligible effects on the numerical model

natural frequencies. On the contrary, eigenfrequencies

are very sensitive to variations in the steel and cable

elasticity moduli, and the model mass density (Fig. 6).
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Fig. 4 Vibration modes estimated from experimental data using EFDD
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The red star-continuous lines refer to the experimen-

tally identified natural frequencies, while the magenta

square-dashed lines refer to the initial numerical

model eigenfrequencies. The remaining two lines

refer to different choices of the chosen parameters. It is

rather clear that it is possible to improve the numerical

model if the higher steel moduli and the lower mass

density are chosen.

Assuming that the model mass density does not

vary significantly along the deck and considering that

the Young’s modulus and the mass density are

correlated, only two updating parameters were

selected for the Bayesian framework: the deck and

cable stiffnesses described by the steel, Esteel, and

cable, Ecables, elastic moduli, respectively. The real

valued random vector H has therefore components

H1 ¼ Esteel and H2 ¼ Ecables. These random parame-

ters were assumed to be statistically independent.

4.4 Surrogate model validation and global

sensitivity analysis

The six natural frequencies, f EXPi , i ¼ 2; . . .; 7, iden-

tified from the experimental data were used as

reference, i.e. discarding f EXP1 to account for the

possible mode shape splitting described in the previ-

ous section. The corresponding six numerical model

frequencies f FEMi , i ¼ 1; . . .; 6, are set as QoIs. The PC

expansion in Eq. 12 was used in order to build a

surrogate model for each of the selected QoI.

Since no direct information (e.g. measures of the

mechanical characteristics) are available for the

random vector H, a normal distribution was assumed

for both components, H1 and H2, to build the six

different response surfaces. The mean values of these

two PDFs were assumed to be equal to the nominal

values of the two different materials used for deck and

cables in Table 1, while the coefficient of variations

(cov) were set to 0.15 and 0.20 in order to avoid

unfeasible samples in the simulation procedure, i.e. the

deformed equilibrium configuration with dead load

and cables pre-tension was always guaranteed. The

resulting two PDFs were used as prior densities in the

Bayesian updating.

Each of the six surrogate models was built with a

three steps procedure. First, ðpþ 1Þ2 samples of the

input random parametersHwere mapped into samples

of n on a grid selected with the Gaussian quadrature

approach using Eq. (9). In this case study g is a linear

function. Second, the deterministic coefficients ûa
in (12) were evaluated using the regression method,

which estimates the solution of the numerical model in

the regression points and solves the linear system of

equations in (15). Third, the difference between the

response vectors u and ~u, i.e. the error vector, ~e, was

evaluated on the ðpþ 1Þ2 pairs of samples fh1; h2g.
The surrogate model was finally validated estimat-

ing the mean and the variance of the error vector for

polynomial orders, p, equal to 3,4 and 5 (typical of
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Fig. 5 MAC matrices for data set #2: a auto-MAC matrix;

b MAC matrix
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SFEM practical applications). Following this proce-

dure it was possible to obtain a perfect matching

between numerical and surrogate models with mean

and variance of the error vectors lower than 10�16 and

10�3, respectively (Fig. 7). It is important to note that

the error variance decreases when the polynomial

order increases (Fig. 7b), while there is not a clear

trend for the error mean (Fig. 7a).

The selection of the best polynomial order was also

pursued by estimating the error vector outside the grid

used to calibrate the proxy model, driving the simu-

lation of the parameters fh1; h2g in the tail values of

the vector H joint probability density function.

Figure 8 shows the errors, for each of the first six

natural frequencies, between the surrogate and the

numerical model at two of the tail samples fh1; h2g,
varying the polynomial order. Order p ¼ 4 seems to

give an accurate solution for all the six proxy models

with this selection of the input parameters. Similar

plots can be obtained for different selection of the tail

values. Polynomial order p ¼ 5 was found to be the

best selection for all the tested pairs of input

parameters.

Figure 9 shows the six surrogate models obtained

with polynomial order p ¼ 5 in the n space, one for

each numerical eigenfrequency ~fi
FEM , i ¼ 1; . . .; 6.,

together with the corresponding f EXPi estimated

from data (horizontal surface), and the error absolute

value, i.e. j~fiFEMðnÞ � f EXPi j (blue surface).
As it was expected from the sensitivity analyses, the

response surfaces show that the natural frequencies are

almost constant varying the cable stiffness n2. On the

contrary the dependency of the natural frequencies is

strongly non linear with the deck stiffness n1.

Once the surrogate models were built, it was

possible to estimate the variance of the Np polynomial

coefficients ûa for each QoI. These variances were

used to estimate, for each of the six proxy models, the

first and second order Sobol’ indices according to

Eqs. (25) and (26), which give information on the

influence of the uncertain parametersH1,H2 and their

combination on the QoI, i.e. the six selected natural

frequencies (Fig. 10). The obtained results confirm

that the natural frequencies are mainly influenced by

the deck stiffness.

4.5 Bayesian inverse problem solution

Setting D ¼ ff EXP2 ; . . .; f EXP7 g as reference vector and

replacing the numerical model in (10) with the

surrogate model (12), the posterior marginal PDF of

the two dimensional random vector H ¼ fH1;H2g
can be estimated with Eqs. (5), (6) and (7).

In particular, the MCMC Metropolis Hastings

(MH) method was used, sampling directly from the n

space by replacing the numerical evaluation at each

step of the chain with the surrogate solution. The

initial covariance matrix of the error in Eq. (8) was

assumed to be diagonal with all components equal to

0.01 Hz.

In this work the updating framework was improved

using the information given by the diagonal MAC

coefficients. In particular, since deck and cables

stiffness variations can cause a swap in the natural

frequency and mode shapes, the MAC values were

used as constraints to guarantee both the natural

frequency andmode shapematching at each step of the

MH algorithm. Each component of the residual vector

ðeþ eÞ in Eq. (8) was thus computed as the difference
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Fig. 6 Eigenfrequencies variations with changes in the mechanical parameters: a steel modulus of elasticity; b cables modulus of

elasticity; c model mass density; d boundary conditions
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between the experimental and numerical natural

frequencies that have the highest diagonal MAC

coefficient.

The modified MCMC MH algorithm was applied

generating 40,000 posterior samples that are

consistent with the unscaled posterior PDF defined

in Sect. 3.6. In order to ensure convergency in this

case study, the whole algorithm to estimate the

posterior PDF requires the evaluation of the deter-

ministic solution about 150,000 times. If the numerical

FE model is used, the updating framework would

require more than 5 months since the single analysis
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Fig. 7 Variation in the error vectors in the first six natural

frequencies for polynomials order 3, 4 and 5: a error vector

mean; b error vector variance
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Fig. 8 Difference between the numerical and surrogate first six

natural frequencies for polynomials order 3, 4 and 5 for two tail

samples of the vector H
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takes between 1 and 2 min. It is clear that this

approach would be unfeasible. The proposed method-

ology, that uses surrogate models in such a complex

cases, makes the solution possible, reducing the

computing time to about 60 min.

The results of the proposed updating Bayesian

procedure are shown in Figs. 11 and 12. The H1

posterior distribution has mean value equal to

266 GPa, about 1.25 times the mean value of the

prior PDF. The H2 posterior distribution is very

similar to the prior PDF, indicating that the chosen

data set, D, is non informative with respect to this

random parameter. This result was expected since the

natural frequencies are mainly influenced by the deck

stiffness, H1, as was shown by the Sobol indices

reported in Fig. 10.

Figure 12 shows the response of the FE model

before and after the parameters updating. In particular,

Fig. 12a compares the experimental natural frequen-

cies with those obtained from the initial and updated

numerical model, using the H posterior mean value.

The differences between the experimental and the

numerical eigenfrequencies before the Bayesian

updating procedure were greater than 8%, with the

only exception of the 3rd numerical mode shape for

which the error was lower than 1%. After the update

these errors were reduced to 1%, with the only

exception of the 3rd mode shape for which the error

is equal to 8%.

Figure 12b compares the MAC values before and

after the updating procedure. The initial experimental

and numerical mode shapes were characterized by

high values of the MAC number (i.e. correlated

vectors). After the update the most significant increase

of the MAC values, from 73 to 92%, occurs for the

3rd mode shape (torsional). On the contrary the

Fig. 9 Surrogate models
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diagonal MAC value decreases for the 4th and the 5th

mode shape.

5 Conclusion

The work presented in this paper describes a novel

approach to overcome the main limitations of the

commonly used Bayesian framework in efficiently

updating a numerical model when incomplete exper-

imental dynamic modal data are available.

The proposed approach uses in-situ recorded

acceleration time histories to estimate natural fre-

quencies and mode shapes by OMA procedures in the

frequency domain. A polynomial chaos representation

of the dynamic output stochastic response in terms of

natural frequencies (i.e. surrogate model) is used both

to effectively select the uncertain parameters and to

significantly reduce the computation time when esti-

mating the posterior marginal probability density

functions by means of a modified MCMC MH

procedure.

The main novelty of the proposed approach is given

by: (a) the replacement of the FE model response with

the surrogate model response; (b) the use of MAC

coefficients to ensure direct mode shape matching at

each step of the Markov chain.

The effectiveness of the proposed method was

demonstrated using a FE numerical model describing

a curved cable-stayed footbridge located in Terni
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(Umbria Region, Central Italy). The obtained results

demonstrated the importance of using suitable infor-

mative data sets. In this case study it was found that the

natural frequencies were mainly influenced by the

deck stiffness rather than the cable stiffness. Work is

in progress to investigate the effect of changes in the

updating parameters on the numerical model mode

shapes variations in order to improve the likelihood

function in the Bayesian updating framework, obtain-

ing a more informative experimental data set.
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