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a b s t r a c t 

Many real-world service facilities are subject to probabilistic disruptions. Such disruptions 

often exhibit correlations that arise from shared external hazards or direct interactions 

among these facilities. This paper builds an overarching methodological framework for re- 

liable facility location design under correlated facility disruptions. We first incorporate and 

extend the concepts of supporting station structure and quasi-probability from Li et al. 

(2013) and Xie et al. (2015), such that any correlated facility disruptions (positive and/or 

negative) can be equivalently represented by independent failures of a layer of properly 

constructed supporting stations, which are virtually added to the original facility system 

for capturing the effect of correlations among facilities. We then develop a compact mixed- 

integer mathematical model to optimize the facility location and customer assignment 

decisions in order to strike a balance between system reliability and cost efficiency. La- 

grangian relaxation based algorithms, including modules for obtaining upper bound and 

lower bounds of relaxed subproblems, are proposed to effectively solve the optimization 

model. Numerical case studies are carried out to demonstrate the methodology, to test the 

performance of the framework, and to draw managerial insights. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Facility location problems have been studied for decades in a variety of forms. Most classic models employ discrete

optimization techniques to determine facility location and customer assignment decisions that minimize the total system

costs or maximize the utility of these facilities ( Drezner, 1995; Daskin, 2013 ). In recent years, natural and anthropogenic

disasters repeatedly caused severe damages to built facilities and have resulted in catastrophic disasters. When a facility is

disrupted, all customers originally assigned to this facility have to either be reassigned to a surviving alternative (and bear

higher transportation costs), or lose service (and incur certain penalty costs). Ignoring the possibility of facility disruptions

during system planning could lead to a suboptimal design that is vulnerable to even infrequent disruptions ( Snyder and

Daskin, 2005; Li and Ouyang, 2010 ). 

In the reliable facility location literature, one stream of studies focused on design-related facility disruptions that can

be prevented by fortification. Interdiction models were often used to identify critical components in an infrastructure sys-

tem, and cost-effective fortification strategies were sought during facility location design. Church et al. (2004) , for example,
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proposed two models for the r -interdiction median problem and the r -interdiction covering problem (which are variants to

the p -median problem and the max covering problem, respectively), to identify the most critical facilities in a supply chain.

Brown et al. (2005) described several bi-level and tri-level attacker-defender models to address system vulnerability and ro-

bustness issues in the contexts of electric power grids, subways, airports and other critical infrastructures. Scaparra and

Church (2008b) reformulated the r-interdiction median problem (with fortification) as a maximal covering model with

precedence constraints, and aimed at identifying a subset of facilities to fortify so as to best protect the system against the

worst-case loss of non-fortified facilities. This model was later extended by Liberatore et al. (2011) to a stochastic version,

which optimally allocated defense resources among facilities to minimize the worst-case impact of a randomized intentional

disruption. Scaparra and Church (2008a) presented a bi-level formulation based on the classical p-median problem. The up-

per level problem involved decisions on which facilities to fortify in order to minimize the worst-case efficiency reduction

due to loss of unprotected facilities, while the lower-level interdiction problem described the worst-case losses. 

Another stream of research focused on modeling the expected consequences of location-specific facility disruptions.

A comprehensive review can be found in Snyder (2006) . Among a rich variety of efforts, Snyder and Daskin (2005) and

Berman et al. (2009) formulated models where facilities are subject to independent disruptions with identical failure

probabilities. More recently, a series of reliable location models were proposed to allow site-dependent disruption proba-

bilities. Berman et al. (2007) provided a nonlinear mixed-integer programming formulation as well as an efficient heuristic

solution approach. Cui et al. (2010) developed two distinct sets of models (discrete and continuous) and corresponding

solution algorithms to allow the disruption probabilities to be site-dependent. O’Hanley et al. (2013) proposed a mod-

eling technique based on a customized flow network to linearize the unreliable p -median facility location problems.

Atamtürk et al. (2012) further presented reliable location-inventory models (which allowed facilities to be subject to failures

due to inventory shortage) as well as an innovative conic programming solution approach. Zhang et al. (2016) considered

the cost savings from inventory risk-pooling and economies of scale under homogeneous and heterogeneous disruption

probabilities. 

All these studies provided insightful knowledge on reliable location problems, but they held the assumption on inde-

pendent facility disruptions, which may not always be realistic, as various types of connections and interactions may exist

among built facilities in the real world. As a result, facility disruptions could be correlated when the facilities are exposed

to shared hazards or mutual interactions. Such correlations could be positive or negative, or mixed. For example, adjacent

facilities in a local geographical region are prone to simultaneous damage by a natural disaster (e.g., earthquake, hurricane,

flooding). If one facility is known to have been disrupted by an earthquake, its neighboring facilities will bear a higher like-

lihood of being disrupted as well – this shows a positive correlation. The correlation can also be negative. Suppose multiple

facilities along a river are all threatened by flooding. If one facility is known to have been disrupted by flooding, then its

downstream peers become less likely to be disrupted due to the release of water pressure. Similar negative correlations may

also exist when facilities compete for scarce resources. 

Disruption correlation tends to have a strong impact on the performance of a reliable facility location design. Consider

a simple network where two facilities A and B jointly serve one unit of demand from a customer. The costs for serving

the demand from these two facilities are 10 and 20 units, respectively, and the penalty for not serving the demand is

100 units. When both facilities are perfectly reliable, the demand will obviously be served by A with a total cost of 10

units. When the facilities are subject to disruption, the demand will be served by A as long as A is functioning (i.e., event

A ), or by B if A is disrupted but B is functioning (i.e., event A B ), or the customer will bear the penalty if both A and B

fail (i.e., event AB ). In the case where A and B fail independently with an equal probability of 0.5, the expected service

cost is 10 × (0 . 5) + 20 × (0 . 5 × 0 . 5) + 100 × (0 . 5 × 0 . 5) = 35 units. If the facility disruptions are positively correlated, say

P (AB ) = P ( AB ) = 0 . 4 , P ( A B ) = P (A B ) = 0 . 1 , the expected service cost becomes 10 × (0 . 1 + 0 . 4) + 20 × 0 . 1 + 100 × 0 . 4 = 47

units. If the facility disruptions are negatively correlated, say P (AB ) = P ( AB ) = 0 . 1 , P ( A B ) = P (A B ) = 0 . 4 , the expected service

cost becomes 10 × (0 . 1 + 0 . 4) + 20 × 0 . 4 + 100 × 0 . 1 = 23 units. Although the marginal failure probability of each facility re-

mains 0.5 in all three cases, we can see that positive disruption correlation significantly increases the expected service cost,

while negative correlation does the contrary. This simple example demonstrates the significant impact of correlations that

has recently been reported in the existing literature ( Li and Ouyang, 2010; Liberatore et al., 2012 ). 

There are many ways to express the correlations among facility disruptions. Xie et al. (2015) showed equivalence of

three general correlation representations using scenario, marginal, or conditional probabilities. Sometimes the correla- 

tions follow explicit physical laws and take special forms. For example, under certain natural disasters (such as earth-

quakes), the correlation between two candidate locations could sometimes be specified by a decaying probability of fail-

ure “contagion” (e.g., e −distance ) that depends on their relative distance . No matter how correlations are specified, how-

ever, a very straightforward modeling approach in the reliable facility location literature would involve some type of

enumeration (or simulation and sampling) of an exponential number of random scenarios; this makes it computation-

ally difficult to even just evaluate the performance of a given design. To the best of our knowledge, only a few effort s

have been made to address correlated facility disruptions, either exactly or approximately (e.g., Liberatore et al. (2011) ;

Li and Ouyang (2010) ; Lu et al. (2015) ; An et al. (2018) ). In addition, Huang et al. (2010) addressed a variant of the

p -center model in case of large-scale emergencies, where correlated disruption was introduced by allowing many fa-

cilities to become functionless simultaneously. Gueye and Menezes (2015) considered a two-stage stochastic program

model for a median problem under correlated facility disruptions, and asymptotic results were presented based on a

scenario-based model formulation. Berman and Krass (2011) and Berman et al. (2013) introduced analytical approaches
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to help understand the effects of correlated failures in simpler spatial settings, e.g., along a line segment. Li et al. (2013)

proposed a virtual station structure that transforms a facility network with correlated disruptions into an equivalent one

with added virtual supporting stations, and the virtual stations were assumed to be subject to independent disruptions.

While an optimization model was developed, it can only handle cases where facilities are positively correlated, and the

station disruption probabilities are all identical. Based on Li et al. (2013) , Xie and Ouyang (2019) presented an optimization

framework for reliable facility location problem under the risk of network access failures, in which facilities are correlated as

they share common access points. The concept of supporting station is used to represent the network access points and to

describe the system behaviors. Recently, Xie et al. (2015) extended the network transformation theory in Li et al. (2013) by

developing a recipe for any (positive, negative, or mixed) type of correlations to be transformed into an augmented network

(with additional supporting stations). It was proven that with such a station structure, a system of interdependent facilities

with generally correlated disruptions can be equivalently represented by one with independent stations, whereas each sta-

tion fails with a “failure propensity” which “inherits all mathematical characteristics and properties of a failure probability

except that we allow it to be larger than 1” ( Xie et al., 2015 ). 1 How to optimally design the reliable location of service

facilities under site-dependent failures and positive/negative/mixed correlations, however, remains an open and nontrivial

question. 

In light of these challenges, we build upon the idea of supporting station structure ( Li et al., 2013; Xie et al., 2015 ), so

as to address the reliable facility location problem with any pattern of facility disruption correlations. An additional layer

of independent yet heterogeneous supporting stations are incorporated into the service design framework. These stations,

when properly connected to (and shared by) the candidate facility locations, collectively dictate the functioning state of built

facilities at these locations and exactly capture the effect of correlated facility disruptions. The probability of the virtual sta-

tion state (called “propensity” in Xie et al. (2015) , but will be now referred to as quasi-probability so as to be consistent

with the physics literature) may exceed unity or be negative for the purpose of calculating the final probabilities of physical

disruption scenarios of the facilities. Similar to Feynman (1987) , we introduce these quasi-probabilities to quantify the imag-

ined intermediary states of added virtual stations (whose values may exceed unity or be negative), so as to systematically

calculate the ultimate probabilities of physical facility states (whose values are ensured to be within the conventional range

[0, 1]); more about these properties will be explained in Section 2.2 and Proposition 5 . As a result, the optimization model

developed in this paper, which transfers correlated disruptions of facilities to independent disruptions of such stations, is

capable of addressing the facility location problem equivalently. A compact mixed-integer mathematical model is proposed

to determine the optimal facility location and customer assignment plans. Several customized solution approaches based on

Lagrangian relaxation, with careful treatment of negative and mixed correlations, are also developed. Case studies involv-

ing multiple patterns of correlations are conducted to demonstrate the performance and applicability of our methodology.

Managerial insights are drawn as well. 

The remainder of the paper is organized as follows. Section 2 introduces the station-based mixed-integer mathematical

model for the reliable facility location problem under correlated facility disruptions. Section 3 presents the customized

solution approaches to efficiently solve the optimization model. In Section 4 , a range of case studies involving multiple

patterns of correlations are shown. Finally, Section 5 concludes the paper and discusses future research directions. 

2. Model formulation 

This section first presents the traditional scenario-based formulation of the reliable facility location problem under corre-

lated facility disruptions. Then, after a brief introduction of using station structure to represent correlated facility disruptions

( Xie et al., 2015 ), the scenario-based reliable facility location model is transformed into an equivalent station-based model. 

2.1. Scenario-based formulation 

We denote I as the set of discrete customers, and each customer i ∈ I has a demand μi . We define J to be the set of

discrete candidate facility locations, and associate each location j ∈ J with a fixed facility cost f j . The cost for a facility at

location j to satisfy one unit of demand from customer i is denoted by d ij . 

Customers can go to candidate location j ∈ J for service if a facility is built and no disruption has occurred there. Under

any realization of the facility states, each customer i seeks service by visiting the available and functioning facility that has

the smallest transportation cost. Moreover, a penalty cost π i per unit demand will be imposed if customer i does not receive

any service. This situation occurs if no facility is reachable, or if the cost of serving customer i by the nearest available facility

already exceeds π i . We model this possibility by adding an “emergency” facility index by j = 0 with fixed cost f 0 = 0 and

transportation costs d i 0 = πi , ∀ i ∈ I . 
Let � = { 0 , 1 } |J | be the set of all possible disruption scenarios/realizations if facilities were built at all candidate locations

(including the “emergency” facility). For each ω ∈ �, which occurs with probability p ω , we use parameter δ jω = 1 to indicate
1 In theoretical physics and especially quantum mechanics, a similar concept is sometimes called “quasi-probability” (e.g., Dirac (1942) ; Feynman (1987) ), 

where “conditional probabilities and probabilities of imagined intermediary states may be negative in a calculation of probabilities of physical events or 

states. ... The other possibility is that the situation for which the probability appears to be negative is not one that can be verified directly” ( Feynman, 1987 ). 
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Fig. 1. Conceptual illustration of the station structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the facility at j (if built) is functioning in scenario ω, or 0 otherwise. The emergency facility is assumed to be always

functioning, i.e., δ0 ω = 1 , ∀ ω ∈ �. 

We denote X j and Y ij ω as binary variables indicating whether a facility is built at location j , and whether customer i visits

facility j in scenario ω, respectively. Specifically, 

X j = 

{
1 if a facility is built at location j; 
0 otherwise. 

Y i jω = 

{
1 if customer i visits facility j in scenario ω; 
0 otherwise. 

Then it is straightforward to see that the reliable facility location problem could be formulated as the following scenario-

based formulation (RFL-SCE): 

( RFL-SCE ) min 
∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

j∈J ∪{ 0 } 

∑ 

ω∈ �
μi d i j Y i jω p ω (1a) 

s.t. 
∑ 

j∈J ∪{ 0 } 
Y i jω = 1 , ∀ i ∈ I, ω ∈ �, (1b) 

Y i jω ≤ δ jω X j , ∀ i ∈ I, j ∈ J , ω ∈ �, (1c) 

X j , Y i jω ∈ { 0 , 1 } , ∀ i ∈ I, j ∈ J ∪ { 0 } , ω ∈ �. (1d) 

The objective (1a) is the summation of the fixed facility costs and the expected transportation costs (including the

penalty costs) across all possible facility disruption scenarios. Constraints (1b) enforce that in any disruption scenario ω ∈ �,

each customer i is either assigned to a regular facility or assigned to the emergency facility. Constraints (1c) require each

customer to be assigned to only a functioning open facility. Given a problem with correlated disruptions at |J | candidate
locations, the total number of possible scenarios that need to be enumerated is 2 |J | . This implies that formulation (RFL-

SCE), which is an integer program, requires an exponential number of variables and constraints; thus it is extremely difficult

to solve, if not impossible. So in the next sections, we introduce a supporting station structure as well as an alternative

station-based formulation that is more compact in size and can be solved more efficiently. 

2.2. Supporting station structure 

Given set J , the set of all possible disruption scenarios � and their probabilities { p ω } ω ∈ � can be expressed in either

of the following two mathematical representations ( Xie et al., 2015 ): (i) scenario representation S = { p S 
J 
} ∀ J⊆J , where p S 

J 
= p ω 

if ω satisfies δ jω = 0 , ∀ j ∈ J & δ jω = 1 , ∀ j ∈ J \ J, which denotes the probability for all locations in J to be disrupted while

all others are functioning; and (ii) marginal representation M = { p M 

J 
} ∀ J⊆J , where p M 

J 
= 

∑ 

ω: δ jω =0 , ∀ j∈ J p ω , which denotes the

probability for all locations in J to be disrupted regardless of the states of all other locations. Here, the disruption of a

candidate location j ∈ J implies that a facility will be disrupted if built at location j . In the rest of this paper, when we

describe facility disruptions, we may use the phrases “disruptions of facilities” and “disruptions of candidate locations”

interchangeably. 

Two sets of facilities J 1 , J 2 ⊆ J are independent if p M 

J 1 
· p M 

J 2 
= p M 

J 1 ∪ J 2 . In many real-world systems, facility disruptions ex-

hibit spatial correlations (e.g., due to shared hazards), and there exist J 1 , J 2 ⊆ J such that p M 

J 1 
· p M 

J 2 
� = p M 

J 1 ∪ J 2 while J 1 ∩ J 2 = ∅ .
When facility disruptions are correlated as shown in Fig. 1 (a), multiple facilities are subject to simultaneous impacts, and

describing the correlation would typically require enumerating an exponential number of probabilities by specifying the sce-

nario/marginal representation (e.g., (RFL-SCE) enumerates 2 |J | scenarios). To circumvent this complexity, a virtual supporting

station structure has been proposed to transform an arbitrary probabilistic representation of correlated facility disruptions

into an equivalent representation with only independent disruptions ( Li et al., 2013; Xie et al., 2015 ). 



S. Xie, K. An and Y. Ouyang / Transportation Research Part B 122 (2019) 115–139 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To build a station structure, a set of virtual stations, denoted by K, are attached to the set of facilities, as shown in

Fig. 1 (b). A station k ∈ K could be connected to multiple facilities, and we use a binary parameter l k j = 1 to indicate that

facility j is connected to station k , or l k j = 0 otherwise. We further assume that each station is associated with a non-

negative site-dependent disruption quasi-probability q k ∈ [0, ∞ ) (which used to be referred to as “propensity” in Xie et al.,

2015 ). The larger this quasi-probability value, the more damaging that station is to its connected facilities. When the dis-

ruption quasi-probability of a station exceeds 1, it simply means that the station’s “functioning” probability is negative and

it only causes pure damage to the connected facilities. This concept, similar to those in Feynman (1987) , is used merely

to quantify the imagined intermediary states of virtual stations in calculation of probabilities of states of physical facilities.

Each station itself is also in a binary state: functioning or disrupted. The basic mechanism of the augmented facility-station

system is defined as follows: a facility remains operational if and only if at least one of its connected stations is function-

ing . Hence the operating state of the facility system is determined collectively by the states of all stations. For example, in

Fig. 1 (b), j 1 and j 2 are disrupted and j 3 is functioning if and only if stations k {1} , k {2} , k {1,2} , k {1,3} , k {2,3} , k {1,2,3} are all dis-

rupted and k {3} is functioning. Here k J is the station connected to all and only facility locations in J ; i.e., l k J j = 1 , ∀ j ∈ J and

l k J j = 0 , ∀ j / ∈ J. Following this mechanism, we can ensure that the probability of a disruption scenario is equal to the prod-

uct of q k for each corresponding disrupted station k , and ( 1 − q k ) for each functioning station k . For example, in Fig. 1 (b),

p S { 1 , 2 } = q k { 1 } q k { 2 } q k { 1 , 2 } q k { 1 , 3 } q k { 2 , 3 } q k { 1 , 2 , 3 } (1 − q k { 3 } ) . To summarize, per Proposition 1 of Xie et al. (2015) , we have the follow-

ing: 

Proposition 1. ( Xie et al., 2015 ). For a given station structure K with { q k } ∀ k ∈K , the scenario and marginal probabilistic disruption

representations are formulated respectively as 

p S J = 

∑ 

J 1 : J⊆J 1 

(−1) | J 1 |−| J| 
[ ∏ 

J 2 : J 2 ∩ J 1 � = ∅ 
q k J 2 

] 

, ∀ J ⊆ J , (2)

p M 

J = 

∏ 

J 1 : J 1 ∩ J � = ∅ 
q k J 1 

, ∀ J ⊆ J . (3)

Based on the defined mechanism and Eqs. (2) –(3) , any scenario or marginal probabilistic representation can be trans-

formed back into an equivalent station structure representation based on Proposition 4 in Xie et al. (2015) : 

Proposition 2. ( Xie et al., 2015 ). For any J ⊆ J , let J̄ = J \ J, we can compute the disruption quasi-probability q k J of candidate

station k J as: 

q k J = 

∏ 

L : ̄J ⊆L ⊆J 

[ ∑ 

J 1 : L ⊆J 1 

p S J 1 

] (−1) | L |−| ̄J | +1 

= 

∏ 

L : ̄J ⊆L ⊆J 

[
p M 

L 

](−1) | L |−| ̄J | +1 

. (4)

If q k J � = 1 , we add a station k and set its associated disruption quasi-probability to be q k J , and connect it to all and only

facility locations in J; i.e., let l k j = 1 , ∀ j ∈ J and l k j = 0 , ∀ j / ∈ J. 

A recipe for systematically constructing the supporting station structure, as proposed in Xie et al. (2015) , is presented in

Appendix B . 

2.3. Size of station structure 

One may wonder how many stations will be needed to represent a complex correlated disruption profile. Theorem 1 in

Xie et al. (2015) states that when the system is generally correlated, the number of needed stations |K| is comparable to

the number of scenario probabilities |S| needed to describe the correlation. This statement is corroborated by the numerical

examples in Xie et al. (2015) . 

While an exponential value of |K| with respect to the number of facilities |J | (as |S| could possibly be exponential) still
makes the problem intractable (even with the introduction of the station structure), we shall note that there often are cases

where |S| is exponential but |K| is polynomial (or even linear). 

Consider the following example that can mimic many service systems in the real world. As shown in Fig. 2 , suppose

that N ×M facilities (shown as squares) along a line are supported by surrounding stations (e.g., power plants, shown as

triangles). The facilities are clustered into N groups, each with M facilities inside the group that are correlated with each

other by sharing a set of supporting stations. In addition, in each group, L facilities near each side of the group bound-

ary (i.e., called boundary facilities below) have shared supports with L boundary facilities in the adjacent group. In this

system, any disruption scenario (i.e., a subset of facilities failing together) could potentially happen, and the probabil-

ity of each scenario depends on the state of all facilities. As such, the number of scenario probabilities is |S| = 2 NM . Yet,

the relative independence between different facility groups (except for the boundary facilities) jointly show a largely “lo-

cal” correlation pattern, and consequently, the number of stations needed to capture said correlation pattern is at most

|K| = N(2 M − 1) + (N − 1)(2 2 L − 2 L − 1) , which is normally far smaller than |S| . In particular, for the simplest case where
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Fig. 2. Example to demonstrate the difference between |K| and |S| . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M = L = 1 , the number of facility disruption scenarios is 2 N (exponential) while the number of needed stations is only

2 N − 1 (linear). 

As shown above, when the facility disruptions are “locally” correlated, |K| shall be far smaller than |S| , and the difference
between |K| and |S| grows sharply with the level of localness of the correlations (i.e., correlations being confined within a

local area). In particular, if the facility system J could be partitioned into N mutually exclusive subsets { J n } n =1 , 2 , ... ,N , such

that the facilities within each subset J i are correlated with one other, while facilities in different subsets are independent, the

maximum number of needed stations is |K| ≤ ∑ N 
n =1 2 

| J n | , which is typically much smaller compared to the maximum num-

ber of scenarios that are used/needed to describe the correlation, |S| = 2 |J | . We state this obvious result in the following

proposition without proof. 

Proposition 3. (Exclusive) If J = ∪ n =1 , 2 , ... ,N J n for some N > 1, such that for all i = 1 , 2 , . . . , N, the disruptions of all facilities in

J i are independent of those in J \ J i , then the maximum number of needed stations |K| and the number of scenarios |S| satisfy
|K| ≤ ∑ N 

n =1 2 
| J n | and |S| = 2 

∑ N 
n =1 | J n | , respectively, which further yields 

|K| 
|S| ≤

∑ N 
n =1 2 

| J n | 

2 
∑ N 

n =1 | J n | 
≤

{
1 , if N = 1 (globally correlated) ;∑ N 

n =1 2 
| J n | 

2 |J | , if 2 ≤ N ≤ |J | / 2 (locally correlated) . 
As an example, we consider a facility system J = ∪ n =1 , 2 , ... ,N J n where J i = { 3 i − 2 , 3 i − 1 , 3 i } , and the disruptions of J i and

J \ J i are independent. Each J i has a system structure as shown in Fig. 1 (a), and is subject to the scenario disruption profile

in Table B.1 . For this particular system J , the total number of scenarios is |S| = 

(
2 3 

)N = 8 N , while the number of stations

is only |K| = 6 N, which is much smaller than |S| . As such, the formulations we will present in later sections indicate that

when N = 4 , a scenario-based formulation would require at least 3 N + 3 N(3 N + 1) · 8 N = 638988 binary variables to describe

the scenarios, while our proposed formulation will only need at most 3 N + 3 N(3 N + 1)(6 N + 1)6 N = 93612 binary variables.

Although Proposition 3 addresses the very special case where correlation among facilities can be divided into disjoint

groups, similar relationships between |S| and |K| can be obtained for other cases. The following proposition, for example,

shows that when the disruptions are positively correlated (per Definition 1 in Xie et al. (2015) ), no station is needed to

connect any two independent facilities. 

Proposition 4. If the facility disruptions are positively correlated per Definition 1 in Xie et al. (2015) ; i.e., ∏ 

L : J 1 \{ j }⊆L ⊆J\{ j } 
(p M 

L ) 
(−1) | L |−| J 1 | ≤

∏ 

L : J 1 ⊆L ⊆J 

(p M 

L ) 
(−1) | L |−| J 1 | +1 

, ∀ j ∈ J 1 ⊆ J ⊆ J , 

then for any two facilities j 1 and j 2 that are independent of each other; i.e., p 
M { j 1 } · p 

M { j 2 } = p M { j 1 , j 2 } , we have q k J = 1 for any facility

set J that contains both j 1 and j 2 . That is, no station is connected to both j 1 and j 2 . Consequently, given pairwise-independent

facility sets { J i }, the process of computing station quasi-probabilities only needs to be conducted within each set J i , and thus gives

the overall computational complexity of O ( 
∑ N 

i =1 2 
| J i | ) . 

Proof. For any two facilities j 1 and j 2 that are independent of each other, (3) implies 

p M 

{ j 1 } = 

∏ 

J: j 1 ∈ J 
q k J , p 

M 

{ j 2 } = 

∏ 

J: j 2 ∈ J 
q k J , p 

M 

{ j 1 , j 2 } = 

∏ 

J : J ∩{ j 1 , j 2 }� = ∅ 
q k J . 

Substituting these equations into p M { j 1 } · p 
M { j 2 } = p M { j 1 , j 2 } yields ∏ 

J: j 1 ∈ J, j 2 ∈ J 
q k J = 1 . 

Proposition 5 in Xie et al. (2015) shows that, when facility disruptions are positively correlated, the disruption quasi-

probability for any station k ∈ K satisfies q k ∈ [0, 1]. Then, 
∏ 

J: j 1 ∈ J, j 2 ∈ J q k J = 1 implies that q k J = 1 for any facility set J contain-

ing both j and j . This completes the proof. �
1 2 
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Proposition 4 is quite revealing; it implies that the number of stations shall be limited if the correlations are local and

positive (which often occurs in the real world). For example, consider a chain of N facilities located sequentially in a line,

such that any two adjacent facilities are positively correlated while any non-adjacent facilities are mutually independent. In

such a system, the maximum number of scenarios is |S| = 2 N , while the maximum number of stations needed to express the

correlation is only |K| = 2 N − 1 , which is far smaller than |S| for all N > 2. In the most special case when facility disruptions

are all independent to each other, there exist one-to-one connections between facilities and stations, which implies that

|S| = 2 N and |K| = N. 

The supporting station structure of compact size is now ready to be integrated into a mathematical optimization frame-

work for reliable facility location design under correlated facility disruptions. As we will soon see, the introduction of

supporting stations helps avoid enumeration of an exponential number of disruption scenarios (which is necessary in the

scenario-based formulation) and reduce the model complexity drastically. 

2.4. Station-based formulation 

In this section, we take advantage of the station structure to propose a new model formulation for the reliable facility

location problem under correlated disruptions. Note that the station structure can be specified by { q k } ∀ k ∈K and { l k j } ∀ j∈J ,k ∈K ,
which are constructed from the recipe in Appendix B and used as input data for optimization. With the augmented facility-

station system, each customer i now seeks service by visiting its most preferred facility j that is connected to a functioning

station k (defined as a station-facility pair ( k, j ) in the rest of the paper, and a station-facility pair is disrupted if the in-

volved station is disrupted), and if the station k becomes disrupted, the customer will visit the next most preferred pair

option, which could be either the same facility j with another functioning station k ′ , or a different facility j ′ with a different

functioning station k ′ . We define R as the maximum number of regular station-facility pairs that a customer can visit, then

each customer is assigned to a set of up to (R − 1) backup station-facility pairs as part of the service plan. We assume that

all customers have full knowledge of the functioning status of station-facility pairs after the realization of disruption(s), and

hence each customer directly visits its serviced station-facility pair that is functioning and has the smallest backup level.

Specifically, a customer will visit its level- r station-facility pair if all its level-1, . . . , level- (r − 1) pair options have been dis-

rupted. The transportation cost for station-facility pair ( k, j ) to satisfy one unit of demand from customer i is again denoted

by d ij . For all i ∈ I, j 1 , j 2 ∈ J , we let c i j 1 j 2 = 1 if d i j 1 ≤ d i j 2 , or 0 otherwise. 

Note that each customer can be assigned to at most R regular station-facility pairs. In addition to the dummy emer-

gency facility (with index j = 0 ) defined earlier, we further add a dummy emergency station (with index k = 0 ) to allow

the “penalty assignment”, i.e., when a customer loses service. Note that l 00 = 1 and q 0 = 0 , and we set the corresponding

transportation cost to be the penalty cost, i.e., d i j | j=0 = πi , ∀ i ∈ I . Typically, a customer shall be assigned to station-facility

pair (0,0) at level R + 1 as long as regular station-facility pairs are available for backup levels 1 , 2 , . . . , R . However, if at some

backup level s ∈ { 1 , 2 , . . . , R } , customer i cannot receive service from any station-facility pair ( k, j ) at a cost less than π i (per

unit demand), it will choose to pay the penalty cost π i , i.e., visit the emergency station-facility pair at level s . 

We now need several sets of decision variables. Again, variables X := { X j } j∈J denote the location decisions as in the
scenario-based formulation. The assignment of customers to station-facility pairs at multiple backup levels is specified by

Y := { Y ik jr } i ∈I,k ∈K∪{ 0 } , j∈J ∪{ 0 } ,r∈{ 1 , 2 , ... ,R +1 } where 

Y ik jr = 

{
1 if customer i is assigned to station-facility pair (k, j) at level r;
0 otherwise. 

Finally, we define variables Z := { Z ik jr } i ∈I,k ∈K∪{ 0 } , j∈J ∪{ 0 } ,r∈{ 1 , 2 , ... ,R +1 } with Z ik jr ∈ R denotes the quasi-probability for customer

i to be assigned to station-facility pair ( k, j ) at level r . This could happen only when station k is functioning, station k

and facility j are connected, and all the station-facility pairs assigned to customer i at levels 1 , 2 , . . . , r − 1 are unavailable.

Therefore, the value of Z ikjr depends on the assignments of customer i to station-facility pairs at levels 1 , 2 , . . . , r − 1 (i.e.,

{ Y ihls } ∀ (h,l) ,s =1 , 2 , ... ,r−1 ) and the corresponding quasi-probabilities (i.e., { Z ihls } ∀ (h,l) ,s =1 , 2 , ... ,r−1 ). 

The reliable facility-location problem under correlated facility disruptions can be formulated as the following station-

based mixed-integer programming model (RFL-STA): 

( RFL-STA ) min 
∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

k ∈K∪{ 0 } 

∑ 

j∈J ∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j Z ik jr Y ik jr (5a)

s.t. 

R ∑ 

r=1 

Y ik jr ≤ X j , ∀ i ∈ I, j ∈ J , k ∈ K, (5b)

Y ik jr ≤ l k j , ∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , . . . , R + 1 , (5c)

∑ 

j∈J 

R ∑ 

r=1 

Y ik jr ≤ 1 , ∀ i ∈ I, k ∈ K, (5d)
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R +1 ∑ 

r=1 

Y i 00 r = 1 , ∀ i ∈ I, (5e) 

∑ 

k ∈K 

∑ 

j∈J 
Y ik jr + 

r ∑ 

s =1 

Y i 00 s = 1 , ∀ i ∈ I, r = 1 , 2 , . . . , R + 1 , (5f) 

Y ik 1 j 1 r ≤
r−1 ∑ 

s =1 

Y ik 2 j 2 s + c i j 1 j 2 + 2 − l k 2 j 2 −
[∑ 

h ∈I 
∑ 

k ∈K 
∑ R 

s =1 Y hk j 2 s 

|I||K| R 
]
, 

∀ i ∈ I, j 1 , j 2 ∈ J , k 1 , k 2 ∈ K, 2 ≤ r ≤ R, (5g) 

Z ik j1 = l k j ( 1 − q k ) , ∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , (5h) 

Z ik jr = l k j ( 1 − q k ) ·
∑ 

k ′ ∈K 

∑ 

j ′ ∈J 

q k ′ 

1 − q k ′ 
Z ik ′ j ′ (r−1) Y ik ′ j ′ (r−1) , 

∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 2 , 3 , . . . , R + 1 , (5i) 

X j , Y ik jr ∈ { 0 , 1 } , ∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , . . . , R + 1 . (5j) 

The objective function (5a) presents the expected system cost including the fixed facility cost, the expected total trans-

portation cost, and the expected penalty cost (associated with the dummy station-facility pair). Constraints (5b) and (5c) en-

force that customers can only be assigned to station-facility pairs with open facilities. Constraints (5d) make sure that each

customer’s assignment will not involve any station at more than one backup level. Constraints (5e) postulate that each cus-

tomer is assigned to the dummy emergency station-facility pair at a certain backup level, while constraints (5f) require that

at each level r , a customer i ∈ I is either assigned to a station-facility pair, or has been assigned to the dummy station-facility

pair at an earlier level s ≤ r . Constraints (5g) enforce that a customer is always assigned to the closest functioning station-

facility pair for service; i.e., for any 1 ≤ r ≤R and two arbitrary station-facility pairs ( k 1 , j 1 ), ( k 2 , j 2 ) with d i j 2 < d i j 1 , if facility

j 2 is built, and a customer i is assigned to ( k 1 , j 1 ) at level r , then i should have been assigned to ( k 2 , j 2 ) at some level

s < r . Constraints (5g) ensure equivalence between (RFL-STA) and (RFL-SCE), as we will prove in C.1 . Constraints (5h) –(5i)

recursively define the values of Z ikjr based on the mechanism of the station structure: at level r > 1, the value of Z ikjr equals

(1 − q k ) q k ′ / (1 − q k ′ ) Z ik ′ j ′ r−1 if that customer i is assigned to ( k ′ , j ′ ) at level r − 1 . Since quasi-probability q k can take any

nonnegative value in [0, ∞ ), Z ikjr can take any real value in [ M k , ̂
 M k ] , where 

M k = min 
∀ L ⊆K\{ k } 

[ 

(1 − q k ) 
∏ 

l∈ L 
q l 

] 

, ̂ M k = max 
∀ L ⊆K\{ k } 

[ 

(1 − q k ) 
∏ 

l∈ L 
q l 

] 

, ∀ k ∈ K. 

Finally, Constraints (5j) define integrality of the variables. 

We then show in Proposition 5 below that the above formulation (RFL-STA) correctly captures the key issues associated

with the reliable location model under correlated disruptions. Similar to Proposition 1 in Cui et al. (2010) , our station-based

formulation (RFL-STA), with sufficiently large R , is equivalent to the scenario-based formulation (RFL-SCE). 

Proposition 5. When R = |K| , the station-based formulation (RFL-STA) with station structure is guaranteed to yield exactly the

same optimal objective value and optimal solutions as the scenario-based formulation (RFL-SCE). 

Proof. See Section C.1 . �

If R < |K| , the two formulations are not necessarily equivalent. However, when only a limited number of facilities are

built in the optimal solution, if R is as large as the total number of all stations connected to the open facilities, the two

formulations are equivalent. Furthermore, as the value of R only influences very high order terms in the formulation, even

choosing an R value smaller than |K| would have only a small impact on the optimal location decisions. 2 More discussion

on this choice can be found in Cui et al. (2010) and Section 4.1 . 

It is worth noting that when the facility disruptions are uncorrelated (no matter homogeneous or heterogeneous), each

facility is connected to exactly one station, and vice versa. This implies that the virtual station structure is no longer needed

(as we can consolidate each station-facility pair into a single facility) and index k can be removed from (RFL-STA). In such

cases, our station-based model (RFL-STA) will degenerate to the (LRUFL) model in Cui et al. (2010) . 
2 One of the side-effects of the approximate model formulation (with a small R) is that the customers do not necessarily go to the nearest operational 

facility, but rather they may, at least theoretically, go to a more reliable yet farther one so as to lower the risk of losing service completely. 



S. Xie, K. An and Y. Ouyang / Transportation Research Part B 122 (2019) 115–139 123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation (RFL-STA) is nonlinear because the objective and constraints (5i) contain nonlinear terms Z ikjr Y ikjr . However,

since each Z ikjr Y ikjr is a product of a bounded continuous variable and a binary variable, we can linearize it by applying a

variant of the technique introduced by Sherali and Alameddine (1992) , i.e., we replace each Z ikjr Y ikjr by a new continuous

variable W ikjr and enforce their equivalence by adding the following four sets of constraints. 

W ik jr ≤ Z ik jr + M k (Y ik jr − 1) , (6a)

W ik jr ≥ Z ik jr + 
̂ M k (Y ik jr − 1) , (6b)

W ik jr ≤ ̂ M k Y ik jr , (6c)

W ik jr ≥ M k Y ik jr . (6d)

The model formulation is now transformed into the following: 

( LRFL-STA ) min 
∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

k ∈K∪{ 0 } 

∑ 

j∈J ∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j W ik jr (7a)

s.t. (5 b) − (5 h ) , (7b)

Z ik jr = ( 1 − q k ) 
∑ 

k ′ ∈K 

∑ 

j ′ ∈J 

q k ′ 

1 − q k ′ 
W ik ′ j ′ (r−1) , 

∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 2 , 3 , . . . , R + 1 , (7c)

(6 a ) − (6 d) , ∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , . . . , R + 1 , (7d)

X j , Y ik jr ∈ { 0 , 1 } , ∀ i ∈ I, j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , . . . , R + 1 . (7e)

This mixed-integer linear program (LRFL-STA) could in theory be solved by commercial solvers such as CPLEX and Gurobi.

However, the existence of station-facility pairs as well as their associated site-dependent disruption quasi-probability exac-

erbates the model complexity. In light of this, we develop customized solution approaches in the next section. 

3. Solution approach 

3.1. Lagrangian relaxation 

We choose to relax constraints (5b) in (LRFL-STA) with Lagrangian multipliers { λik j } ∀ i ∈I, ∀ k ∈K, ∀ j∈J and move them as

penalty terms to the objective function. The objective function becomes 

min 
∑ 

j∈J 

( 

f j −
∑ 

i ∈I 

∑ 

k ∈K 
λik j 

) 

X j + 

∑ 

i ∈I 

∑ 

k ∈K∪{ 0 } 

∑ 

j∈J ∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j W ik jr + 

∑ 

i ∈I 

∑ 

k ∈K 

∑ 

j∈J 
λik j 

R ∑ 

r=1 

Y ik jr . 

The above relaxation of the set of constraints (5b) essentially decouples the location and assignment variables X and Y .

The remaining model can be decomposed into multiple disjoint parts. The part involving X , 

min 
X j ∈{ 0 , 1 } , ∀ j 

∑ 

j∈J 

( 

f j −
∑ 

i ∈I 

∑ 

k ∈K 
λik j 

) 

X j , 

can be solved by simple inspection; i.e., given any { λikj }, we can easily find the optimal X as follows: 

X j = 

{
1 if f j −

∑ 

i ∈I 
∑ 

k ∈K λik j < 0 ;
0 otherwise. 

We further notice that the remaining problem can be further separated into individual subproblems, one for each cus-

tomer, as long as we relax the term 

∑ 

h ∈I 
∑ 

k ∈K 
∑ R 

s =1 Y hk j 2 s in (5g) by 
∑ 

k ∈K 
∑ R 

s =1 Y ik j 2 s . The relaxed subproblem (RFL-STA-SP i )

with respect to customer i is 

( RFL-STA-SP i ) min 
∑ 

k ∈K∪{ 0 } 

∑ 

j∈J ∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j W k jr + 

∑ 

k ∈K 

∑ 

j∈J 
λk j 

R ∑ 

r=1 

Y k jr (8a)
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s.t. Y k jr ≤ l k j , ∀ j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , . . . , R + 1 , (8b) 

∑ 

j∈J 

R ∑ 

r=1 

Y k jr ≤ 1 , ∀ k ∈ K, (8c) 

R +1 ∑ 

r=1 

Y 00 r = 1 , (8d) 

∑ 

k ∈K 

∑ 

j∈J 
Y k jr + 

r ∑ 

s =1 

Y 00 s = 1 , ∀ r = 1 , 2 , . . . , R + 1 , (8e) 

Y k 1 j 1 r ≤
r−1 ∑ 

s =1 

Y k 2 j 2 s + c i j 1 j 2 + 2 − l k 2 j 2 −
∑ 

k ∈K 
∑ R 

s =1 Y k j 2 s 

|I||K| R , 

∀ i ∈ I, j 1 , j 2 ∈ J , k 1 , k 2 ∈ K, 2 ≤ r ≤ R, (8f) 

Z k j1 = 1 − q k , ∀ j ∈ J , k ∈ K, (8g) 

Z k jr = ( 1 − q k ) 
∑ 

k ′ ∈K 

∑ 

j ′ ∈J 

q k ′ 

1 − q k ′ 
W j ′ k ′ (r−1) , 

∀ j ∈ J , k ∈ K, r = 2 , 3 , . . . , R + 1 , (8h) 

(6 a ) − (6 d) , (8i) 

Y k jr ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, r = 1 , 2 , . . . , R + 1 . (8j) 

Note that (RFL-STA-SP i ), although still a mixed-integer linear program, is much smaller in size than the original (LRFL-

STA), and hence it can often be efficiently handled by commercial solvers like CPLEX. However, solving this subproblem

repeatedly (for each customer, and across Lagrangian relaxation iterations) could pose as a computational burden. Thus,

Section 3.3 further proposes an optional customized algorithm to solve (RFL-STA-SP i ). 

The optimal objective values from the relaxed subproblems provide a lower bound to the original problem.

Section 3.2 describes a heuristic to perturb the subproblem solutions in order to obtain a feasible solution to the original

problem (which provides an upper bound). With the upper bound and lower bound, we use standard subgradient techniques

( Fisher, 2004 ) to update the multipliers λ in the Lagrangian procedure; i.e., 

λn +1 
ik j 

= λn 
ik j + t n j 

(∑ 

r 

Y n ik jr − X n j 

)
, (9) 

t n j = 

ξ n ( Z ∗ − Z D (λ
n ) ) 

‖ 

∑ 

r Y 
n 
ik jr 

− X n 
j 
‖ 
2 
, (10) 

where λn 
ik j 

represents a generic multiplier in the n th iteration, t n is the step size, ξ n is a scalar, and Z ∗ and Z D ( λ
n ) are the

best upper bound and the current lower bound, respectively. 

The above bounds, especially the lower bound, may be far from optimum (e.g., due to duality gaps from the relaxed

constraints). If the Lagrangian relaxation algorithm fails to obtain a small enough gap in a certain number of iterations, we

embed it into a branch-and-bound (B&B) framework to further reduce the gap. We construct a binary tree by branching

on X . Specifically, among all unbranched variables, we select and branch on the one whose construction yields the least

system cost. After building the branching tree, we run the Lagrangian relaxation algorithm at each node to determine the

corresponding feasible solution and lower bound, and update them after finishing both child branches. While traversing the

binary tree, depth-first search is found to perform slightly better than breadth-first or least-cost-first searches for small or

moderate-sized instances (which are likely to be solved to optimality). However, if the instances are large, it is difficult to

traverse the entire tree and completely close the gap. In such cases, least-cost-first search is preferable since it tends to

yield a reasonably good lower bound before completely traversing the entire tree. 
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3.2. Upper bound 

To obtain a good upper bound to the original model (RFL-STA), we first fix the facility location decisions from the relaxed

subproblem. Then for each customer i , we sort all station-facility pairs associated with open facilities (i.e., pair ( k, j ) is

considered if X j = 1 , l k j = 1 ) in ascending order of ( d ij , p k ); ( k 1 , j 1 ) comes before ( k 2 , j 2 ) if d i j 1 < d i j 2 or d i j 1 = d i j 2 , q k 1 < q k 2 .

Then at every level r , we assign customer i to pair ( k, j ) with the smallest ( d ij , q k ) as long as i has never been assigned to

any pair ( k, j ′ ), ∀ j ′ at levels 1 , 2 , . . . , r − 1 before. The following two propositions state two properties of the optimal solution

to (RFL-STA) and indicate that the feasible solution constructed from this heuristic approach is likely to be near optimum. 

First, constraints (5g) ensure the following property, which we state without proof: 

Proposition 6. ( Property I ) In any optimal solution ( X, Y, Z ) to (RFL-STA), a customer will be assigned to backup station-facility

pairs based on the corresponding distances; i.e., if Y ik jr = 1 for some i, k, j, r, then X j ′ = 0 or l k ′ j ′ = 0 or ∃ r ′ < r s.t. Y ik ′ j ′ r ′ =
1 , ∀ k ′ , j ′ with d i j ′ < d i j . 

Next, the following proposition reveals the relationship between assignment decisions and station disruption quasi-

probabilities: 

Proposition 7. ( Property II ) In any optimal solution ( X, Y, Z ) to (RFL-STA), a customer will be assigned to backup station-

facility pairs that involve the same facility based on the corresponding disruption quasi-probabilities of the associated stations;

i.e., if Y ik jr = 1 for some i, k, j, r, then l k ′ j = 0 or ∃ j ′ , r ′ < r s.t. Y ik ′ j ′ r ′ = 1 , ∀ k ′ with q k ′ ≤ q k . 

Proof. See Appendix C.3 . �

Based on these two properties, given location decisions from the relaxed subproblem solutions, if R is sufficiently large,

this heuristic yields the optimal customer assignments; otherwise, it can only guarantee feasible but not necessarily optimal

assignments. Nevertheless, since the quasi-probabilities for using high-level back-ups (i.e., the product of multiple station

disruption quasi-probabilities, which is equivalently the product of multiple facility disruption scenario probabilities) are

often smaller by orders of magnitude, the solution given by this sorting/greedy heuristic shall be quite close to the optimal

one. 

3.3. Lower bound 

As mentioned before, although the relaxed problem is separable by customer i , each subproblem is still combinatorial

and the worst-case complexity is exponential. Therefore, in this section, we develop an algorithm which helps quickly find

lower bounds to the relaxed subproblems (RFL-STA-SP i ). 

Equations (8h) show that Z kjr depends on Z k j(r−1) and Y k j(r−1) , which builds connections across the decision variables

and brings difficulty in solving subproblem (RFL-STA-SP i ). Instead of having Z kjr directly in the formulation, we approximate

them with fixed numbers. 

Similar properties as those stated in Propositions 6 and 7 apply to (RFL-STA-SP i ), which suggest that certain customer-

station-facility assignments would never appear in the optimal solution to (RFL-STA-SP i ). We summarize them into the

following rules: 

Rule 1 If customer i is assigned to two different facilities at some levels, then it will always be assigned to the closer

facility at a lower level; i.e., Y ik 1 j 1 r 1 = Y ik 2 j 2 r 2 = 1 , and d i j 1 < d i j 2 ⇒ r 1 < r 2 ; 

Rule 2 If customer i is assigned to a facility j , then it will be assigned to all station-facility pairs associated with j ,

{ (k, j) } ∀ k : l k j =1 at consecutive backup levels as long as k has never been used at a lower level; i.e., let K j = { k :
l k j = 1 , Y ikls = 0 , ∀ l ∈ J , l � = j, s < r} , then Y ik jr = 1 for some k, r ⇒ Y ik 1 js = Y ik 2 j(s +1) = · · · = Y ik n j(s + n −1) = 1 for some

permutation k 1 , k 2 , . . . , k n of K j and some s ; 

Rule 3 If customer i is assigned to multiple station-facility pairs (k 1 , j) , (k 2 , j) , . . . , (k n , j) that involve the same facility

j , then these pairs should be used in ascending order of the involved station disruption quasi-probabilities; i.e.,

Y ik 1 jr = Y ik 2 j(r+1) = · · · = Y ik n j(r+ n −1) = 1 ⇒ q k 1 ≤ q k 2 ≤ · · · ≤ q k n ; 

Based on these rules, we can set Y k jr = Z k jr = 0 for some ( k, j, r ) without affecting the optimal solution. For example, in

the system shown in Fig. 1 (b), if we assume that d i 1 j 1 < d i 1 j 2 , q k { 1 } < q k { 1 , 2 } < q k { 2 } < q k { 1 , 2 , 3 } < q k { 1 , 3 } < q k { 2 , 3 } , then we have:

(i) Y i 1 k { 1 , 2 } j 1 1 = Y i 1 k { 1 , 2 } j 1 3 = 0 because j 1 should be used first if it is built, and k {1,2} should be used after k {1} and before

k {1,3} , k {1,2,3} ; (ii) Y i 1 k { 2 } j 2 1 = Y i 1 k { 2 } j 2 3 = Y i 1 k { 2 } j 2 4 = Y i 2 k { 2 } j 2 6 = 0 because k {2} should always be used after k {1,2} , and also after

k {1} , k {1,2,3} , k {1,3} if j 1 is used. After setting these Y kjr and Z kjr to be zero, we can use algorithm LowerBound ( i ), for each

customer i , to construct lower bounds to Z kjr and Z 00 r as αkjr and βr , respectively, and relax (RFL-STA-SP i ) into the following

(RFL-STA-RSP i ): 

We replace Z kjr and Z 00 r respectively by their estimates αkjr and βr , and relax (RFL-STA-SP i ) into the following (RFL-STA-

RSP i ): 

( RFL-STA-RSP i ) min 
∑ 

k ∈K 

∑ 

j∈J 

R +1 ∑ 

r=1 

(
μi d i j αk jr + λk jr 

)
Y k jr + 

R +1 ∑ 

r=1 

μi d i 0 βr Y 00 r (11a)
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s.t. Y k jr ≤ l k j , ∀ j ∈ J ∪ { 0 } , k ∈ K ∪ { 0 } , r = 1 , 2 , · · · , R + 1 , (11b) 

∑ 

j∈J 

R ∑ 

r=1 

Y k jr ≤ 1 , ∀ k ∈ K, (11c) 

R +1 ∑ 

r=1 

Y 00 r = 1 , (11d) 

∑ 

k ∈K 

∑ 

j∈J 
Y k jr + 

r ∑ 

s =1 

Y 00 s = 1 , ∀ r = 1 , 2 , · · · , R + 1 , (11e) 

Y k jr ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, r = 1 , 2 , . . . , R + 1 . (11f) 

Proposition 8. The solution to (RFL-STA-RSP i ) is a lower bound to the solution to ( RFL-STA-SP i ). 

Proof. Let Y ∗, Z ∗ and W 
∗ be the optimal solution to (RFL-STA-SP i ). We can construct (RFL-STA-RSP i ) from (RFL-STA-SP i ) in

three sequential steps: (i) replace Z kjr and Z 00 r by αkjr and βr , respectively, and add constraints to set Y k jr = 0 for some

( k, j, r ) pairs; (ii) remove constraints (8f) –(8i) ; and (iii) remove those constraints Y k jr = 0 that were added in step (i), and

instead, set the corresponding αkjr to be sufficiently large. In step (i), we know that adding those Y ik j = 0 does not change

the optimal solution to (RFL-STA-SP i ), and based on the construction of αkjr and βr , we know αk jr Y 
∗
k jr 

and βr Y 
∗
00 r 

are lower

bounds to Z ∗
k jr 

and Z ∗
00 r 

, respectively. In step (ii), removing constraints obviously never increases the objective value of a

minimization problem. Step (iii) just uses an alternative way to enforce the Y k jr = 0 constraints; i.e., when the coefficients

of those Y kjr are set to be infinity, these variables cannot equal 1 at optimality (because a finite feasible solution is known

to exist). Therefore, each of the three steps provides a lower bound to the model built in the previous step, hence the

optimal objective value of (RFL-STA-RSP i ) is a lower bound to the optimal objective value of ( RFL-STA-SP i ). This completes

the proof. �

We observe that ( RFL-STA-RSP i ) is a combinatorial generalized assignment problem, which can be solved by an adapted

Hungarian algorithm as in Cui et al. (2010) . ( RFL-STA-RSP i ) aims at assigning one station-facility pair to each level (up

to R + 1 ) based on the updated coefficients associated with each Y kjr , so as to minimize the total expected system cost.

However, the actual maximum assignment level R max (i.e., the largest r such that Y k jr = 1 for some ( k, j ) pair) may be

smaller than R due to lower cost associated with the emergency station-facility pair than all other remaining pairs at some

level r < R . The main challenge is to identify the level that the emergency station-facility pair should be assigned to. As

such, we enumerate R max from 0 to R and for each R max , we fix Y 00 ,R max +1 = 1 and Y k jr = 0 , r > R max + 1 . In this way, the

( RFL-STA-RSP i ) is simplified into a standard assignment problem that can be solved by conventional Hungarian algorithm.

We solve ( RFL-STA-RSP i ) and calculate the associated total cost for each enumeration of R max . By comparison, the value

of R max corresponding to the lowest total cost is the actual maximum assignment level R max . After fixing R max , It is worth

noting that in the enumeration process, the assignment solutions to model with R max = r can be used as a warm start to the

model with R max = r + 1 , which helps expedite the computation. Specifically, if the penalty cost d i 0 (or say π i ) is sufficiently

large, we only need to solve ( RFL-STA-RSP i ) for one iteration, i.e., R max = R . 

4. Case study 

We apply the proposed model and solution algorithms to two sets of examples under different correlation patterns and

parameter settings. The first set of examples demonstrate reliable facility system planning for the U.S. networks with 49

and 88 nodes under given correlation patterns; see Fig. 3 . 3 The second set of examples are used to compare the results and

computational performance of the scenario-based and station-based formulations. In all cases, the customer set I and facility

candidate set J are set to be the same. 

The proposed solution algorithms are programmed in C++ and run on a 64-bit Intel i7-3770 computer with 3.40 GHz CPU

and 8 G RAM. The reformulated problem ( RFL-STA-RSP i ) is solved by the Hungarian algorithm. 
3 The location data set is from Snyder and Daskin (2005) and can be accessed at http://www.lehigh.edu/ ∼lvs2 , all input data, including the correlation 
profile, will be available for download at the corresponding author’s webpage https://yfouyang.cee.illinois.edu . 

http://www.lehigh.edu/~lvs2
https://yfouyang.cee.illinois.edu
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Fig. 3. Input networks of the U.S. map with locations from 1990 census data. 

Table 1 

Scenario representation of correlation profile for the 49-node network. 

J p S J J p S J J p S J J p S J 

Local 1 Local 3 Local 5 Local 6 

2 0.008 15 0.010 28 0.010 33 0.010 

3 0.008 15,16 0.008 29 0.008 34 0.008 

2,3 0.006 15,17 0.008 30 0.006 35 0.006 

2,3,4 0.005 15,16,17 0.008 28,29 0.008 36 0.005 

2,3,4,5 0.004 15,16,18 0.006 29,30 0.006 33,34 0.008 

2,3,6 0.005 15,17,19 0.006 30,31 0.005 34,35 0.006 

2,3,6,7 0.004 15,16,17,18 0.005 28,29,30 0.006 35,36 0.005 

2,3,4,6 0.005 15,16,17,19 0.005 29,30,31 0.005 33,34,35 0.006 

2,3,4,5,6 0.003 15,16,17,18,19 0.005 30,31,32 0.004 34,35,36 0.005 

2,3,4,6,7 0.003 Local 4 28,29,30,31 0.005 33,34,35,36 0.004 

2,3,4,5,6,7 0.002 20 0.010 29,30,31,32 0.003 Local 8 

Local 2 23 0.012 28,29,30,31,32 0.005 47 0.010 

12 0.010 20,23 0.008 Local 7 48 0.005 

11,12 0.010 20,21,23 0.006 39 0.010 49 0.005 

10,11,12 0.008 20,22,23 0.005 40 0.010 46,47 0.010 

9,11,12 0.008 20,21,22,23 0.004 39,40 0.010 4 8,4 9 0.010 

9,10,11,12 0.008 47,4 8,4 9 0.005 

8,9,10,11,12 0.006 46,47,4 8,4 9 0.005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. U.S. network cases 

We first test our methodology on the U.S. map: (i) a 49-node network with locations as the state capitals of the con-

tinental United States plus Washington, D.C.; and (ii) a 88-node network with the 49-node locations and 39 other largest

cities in the United States. 

Local disruption correlations are observed among the locations in each of the 8 local areas in the 49-node network (see

different markers in Fig. 3 (a)). Facility disruptions across these local areas, however, are assumed to be independent. The

scenario-based correlation profile (as if obtained from historical observations) for each local area is presented in Table 1 , in

which the column with header “J ” lists the facility locations disrupted in each scenario, and the column with header “p S 
J 
”

presents the corresponding scenario probabilities. 

The resulting station structure, including the set of facilities J k connected to each station k as well as its disruption

quasi-probability q k , is listed in Table 2 . The total number of stations is 75, which is much smaller than the total number of

scenarios in the entire network 12 × 7 × 10 × 7 × 13 × 11 × 4 × 8 × 2 14 = 4 . 41 × 10 11 . 

Similarly, the 88-node network as shown in Fig. 3 (b) includes 13 local areas. The scenario-based disruption correlation

profile for each local area is presented in Table 3 , and the resulting station structure is listed in Table 4 . Again, the total

number of stations is only 129, while the total number of scenarios is 4.4 ×10 18 . 

We first test our model and algorithm for R = 10 , 15 , 20 , 75 using the 49-node network with the system parameter val-

ues from Snyder and Daskin (2005) , and R = 10 , 20 , 30 , 129 using the 88-node network. For the 49-node network, in par-

ticular, we run three set of instances (49-I, 49-II, 49-III): (1) 49-I uses the exactly same parameter values as Snyder and

Daskin (2005) ; (2) 49-II reduces the fixed facility costs to 1/3 of their original values in Snyder and Daskin (2005) ; and (3)

49-III doubles all the input scenario probabilities in Tables 1 and 3 . In addition, We run another instance with independent
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Table 2 

Station disruption quasi-probabilities for the 49-node network. 

k J k q K k J k q k k J k q k k J k q k 

1 7 0.40 0 0 20 18,19 0.8696 39 28,31,32 0.9600 58 4 8,4 9 0.3333 

2 6,7 0.5556 21 17,19 0.6250 40 28,30,31,32 0.9783 59 46,47,48 0.80 0 0 

3 5 0.40 0 0 22 17,18,19 0.9946 41 28,29 0.6667 60 46,47,49 0.80 0 0 

4 5,7 0.9615 23 16,18 0.6250 42 28,29,30,31,32 0.0978 61 46,47,4 8,4 9 0.0938 

5 5,6,7 1.0636 24 16,18,19 0.9946 43 36 0.40 0 0 62 1 0.0200 

6 4,5 0.5556 25 16,17,18,19 0.9758 44 35,36 0.5556 63 13 0.0200 

7 4,5,7 1.0636 26 15,16,17,18,19 0.0610 45 34,35,36 0.6429 64 14 0.0200 

8 4,5,6,7 1.0062 27 22 0.40 0 0 46 33 0.4 4 4 4 65 24 0.0200 

9 3,4,5,6,7 0.8222 28 21 0.4 4 4 4 47 33,36 1.0714 66 25 0.0200 

10 2,4,5,6,7 0.8222 29 21,22 0.9783 48 33,35,36 1.0216 67 26 0.0200 

11 2,3,4,5,6,7 0.0547 30 21,22,23 0.6970 49 33,34 0.6429 68 27 0.0200 

12 8 0.4286 31 20,21,22 0.6571 50 33,34,36 1.0208 69 37 0.0200 

13 8,10 0.6364 32 20,21,22,23 0.0502 51 33,34,35 0.7368 70 38 0.0200 

14 8,9 0.6364 33 32 0.50 0 0 52 33,34,35,36 0.1190 71 41 0.0200 

15 8,9,10 0.8643 34 31,32 0.6250 53 39 0.50 0 0 72 42 0.0200 

16 8,9,10,11 0.80 0 0 35 30,31,32 0.6667 54 40 0.50 0 0 73 43 0.0200 

17 8,9,10,11 0.0500 36 29,30,31,32 0.7059 55 39,40 0.0400 74 44 0.0200 

18 18 0.50 0 0 37 28 0.6250 56 46 0.50 0 0 75 45 0.0200 

19 19 0.50 0 0 38 28,32 0.8889 57 46,47 0.50 0 0 

Table 3 

Scenario representation of correlation profile for the 88-node network. 

J p S J J p S J J p S J J p S J 

Local 1 Local 3 Local 4 Local 7 

2 0.008 22 0.012 29 0.010 52 0.010 

3 0.008 21,22 0.010 31 0.010 53 0.008 

2,3 0.006 22,23 0.010 29,31 0.008 54,55 0.006 

2,3,4 0.005 21,22,23 0.008 29,30,31 0.007 56,57 0.006 

2,3,4,5 0.004 20,21,22,23 0.006 29,30,31,32 0.006 52,53 0.008 

2,3,6 0.005 21,22,23,24 0.006 29,30,31,32,33 0.004 53,54,55 0.006 

2,3,6,7 0.004 21,22,23,25 0.006 29,30,31,32,34 0.005 54,55,56,57 0.005 

2,3,4,6 0.005 21,22,23,24,25 0.005 29,30,31,32,36 0.005 52,53,54,55 0.005 

2,3,4,5,6 0.003 20,21,22,23,24,25 0.004 29,30,31,32,34,36 0.004 53,54,55,56,57 0.004 

2,3,4,6,7 0.003 Local 6 29,30,31,32,33,34 0.003 52,53,54,55,56,57 0.003 

2,3,4,5,6,7 0.002 45,46 0.010 29,30,31,32,33,34,36 0.003 Local 8 

Local 2 47 0.008 29,30,31,32,34,35,36 0.003 61 0.010 

8 0.008 48 0.006 29,30,31,32,33,34,35,36 0.002 62 0.008 

9,10 0.008 49 0.005 Local 10 63 0.008 

11 0.008 50,51 0.004 68 0.010 64,65 0.008 

8,9,10 0.006 45,46,47 0.008 69 0.010 62,63 0.006 

9,10,11 0.006 47,48 0.006 68,69 0.020 61,62,63 0.005 

8,9,10,11 0.005 4 8,4 9 0.005 Local 11 61,64,65 0.005 

8,9,10,11,12 0.004 49,50,51 0.004 76 0.010 62,63,64,65 0.005 

8,9,10,11,15 0.004 45,46,47,48 0.006 77,78 0.010 61,62,63,64,65 0.003 

8,9,10,11,12,13,14 0.004 47,4 8,4 9 0.005 76,77,78 0.005 Local 12 

8,9,10,11,12,13,14,15 0.003 4 8,4 9,50,51 0.004 Local 13 79,80 0.008 

Local 5 45,46,47,4 8,4 9 0.005 85 0.005 81 0.008 

38 0.010 47,4 8,4 9,50,51 0.004 86 0.005 79,80,81 0.010 

39 0.010 45,46,47,4 8,4 9,50,51 0.003 87 0.005 79,80,81,82 0.006 

40 0.010 Local 9 88 0.005 79,80,81,83 0.005 

38,39 0.008 66 0.010 85,86 0.010 79,80,81,82,83 0.004 

39.40 0.008 67 0.010 87,88 0.010 79,80,81,82,84 0.004 

38,39,40 0.005 66,67 0.010 85,86,87,88 0.005 79,80,81,82,83,84 0.003 

 

 

 

 

 

 

 

 

 

facility disruptions using each of the network, with the same marginal facility probabilities as the correlated instances. The

initial values of the Lagrangian multipliers are all set to be 0, and the Lagrangian relaxation/B&B procedure is executed to a

tolerance of 0.5%, or up to 3600 seconds in CPU time. The algorithm performance is summarized in Table 5 , and the optimal

facility locations and initial customer assignments are shown in Fig. 4 . 

From Table 5 and Fig. 4 , we can summarize the following observations:: (1) our model and algorithm perform very well,

especially on the 49-node cases, solving the first set (i.e., case 49 -I) to less than 1% gap and most of the other two sets

(i.e., 4 9-II, 4 9-III) to less than 5% gap within 1 h. For the larger 88-node cases, we can still obtain 7%-8% gap within 1 h

computation time; (2) the maximum back-up level R does affect the location decision and optimal system cost when R is

small; however, when R becomes large, the optimal facility locations are insensitive to it. This implies that we can set an

arbitrary yet reasonably large value of R for many applications; (3) even with a sufficiently large R , i.e., R = |K| , such that the
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Table 4 

Station disruption quasi-probabilities for the 88-node network. 

k J k q k k J k q k k J k q k 

1 7 0.40 0 0 45 40 0.3846 89 68,69 0.0450 

2 6,7 0.5556 46 38,39 0.5652 90 76 0.3333 

3 5 0.40 0 0 47 38,40 1.0903 91 77,78 0.3333 

4 5,7 0.9615 48 39,40 0.5652 92 76,77,78 0.0450 

5 5,6,7 1.0636 49 38,39,40 0.0970 93 84 0.4286 

6 4,5 0.5556 50 50,51 0.3750 94 83 0.4286 

7 4,5,7 1.0636 51 49,50,51 0.5714 95 83,84 0.9608 

8 4,5,6,7 1.0062 52 4 8,4 9,50,51 0.6364 96 82,84 0.5833 

9 3,4,5,6,7 0.8222 53 47,4 8,4 9,50,51 0.6875 97 82,83,84 0.9107 

10 2,4,5,6,7 0.8222 54 45,46 0.4286 98 81,82,83,84 0.80 0 0 

11 2,3,4,5,6,7 0.0547 55 45,46,50,51 1.0980 99 79,80,82,83,84 0.80 0 0 

12 15 0.4286 56 45,46,49,50,51 1.0259 100 79,80,81,82,83,84 0.0500 

13 13,14,15 0.6364 57 45,46,4 8,4 9,50,51 1.0127 101 87,88 0.3333 

14 12,13,14 0.4286 58 45,46,47 0.6364 102 86,87,88 0.7500 

15 12,13,14,15 1.2833 59 45,46,47,50,51 1.0275 103 85,87,88 0.7500 

16 11,12,13,14,15 0.7692 60 45,46,47,49,50,51 1.0080 104 85,86 0.3333 

17 9,10,11,12,13,14,15 0.7647 61 45,46,47,48 0.7333 105 85,86,88 0.7500 

18 8,12,13,14,15 0.7692 62 45,46,47,48,50,51 1.0130 106 85,86,87 0.7500 

19 8,11,12,13,14,15 0.8450 63 45,46,47,4 8,4 9 0.7895 107 85,86,87,88 0.1422 

20 8,9,10,12,13,14,15 0.7647 64 45,46,47,4 8,4 9,50,51 0.1693 108 1 0.0200 

21 8,9,10,11,12,13,14,15 0.0684 65 56,57 0.3750 109 16 0.0200 

22 24,25 0.40 0 0 66 54,55,56,57 0.50 0 0 110 17 0.0200 

23 20 0.4 4 4 4 67 53,54,55,56,57 0.6154 111 18 0.0200 

24 20,25 0.60 0 0 68 52 0.4286 112 19 0.0200 

25 20,24 0.60 0 0 69 52,56,57 1.0370 113 26 0.0200 

26 20,24,25 1.7857 70 52,54,55,56,57 1.0588 114 27 0.0200 

27 20,23,24,25 0.7778 71 52,53 0.5844 115 28 0.0200 

28 20,21,24,25 0.7778 72 52,53,56,57 1.0640 116 37 0.0200 

29 20,21,23,24,25 0.8635 73 52,53,54,55 0.6667 117 41 0.0200 

30 20,21,22,23,24,25 0.0670 74 52,53,54,55,56,57 0.1335 118 42 0.0200 

31 35 0.40 0 0 75 64,65 0.3750 119 43 0.0200 

32 35,36 0.6250 76 62,63 0.3750 120 44 0.0200 

33 34,35,36 0.6667 77 62,63,64,65 0.9275 121 58 0.0200 

34 33 0.40 0 0 78 61 0.3750 122 59 0.0200 

35 33,35 1.0417 79 61,64,65 1.1228 123 60 0.0200 

36 33,35,36 0.9600 80 61,63,64,65 0.7037 124 70 0.0200 

37 33,34,35 0.7059 81 61,62,64,65 0.7037 125 71 0.0200 

38 33,34,35,36 1.2143 82 61,62,63 1.0159 126 72 0.0200 

39 32,33,34,35,36 0.8333 83 61,62,63,64,65 0.1086 127 73 0.0200 

40 30,32,33,34,35,36 0.8400 84 66 0.50 0 0 128 74 0.0200 

41 30,31,32,33,34,35,36 0.8333 85 67 0.50 0 0 129 75 0.0200 

42 29,30,32,33,34,35,36 0.8333 86 66,67 0.0400 

43 29,30,31,32,33,34,35,36 0.0720 87 68 0.6667 

44 38 0.3846 88 69 0.6667 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

station-based formulation is exactly equivalent to the scenario-based formulation, our algorithm still works quite effectively,

as it is capable of providing solutions with a small optimality gap within a short amount of time; (4) by comparing the

second set of 49-node cases (i.e., 49-II) under independent and correlated facility disruptions, we can see that ignoring

correlations in reliable facility location models may lead to quite sub-optimal system design, i.e., solutions provided in the

independent and correlated instances are different; (5) finally, the comparison between 49-I and 49-III, as expected, implies

that doubling input disruption probabilities increases the overall system cost as well as the optimal number of facilities to

be built. 

4.2. Model comparison 

To better demonstrate the advantage of the proposed modeling framework, we further test both the scenario-based for-

mulation (RFL-SCE) and station-based formulation (RFL-STA) on four networks, with 14, 17, 19, and 25 nodes, respectively. As

shown in Fig. 5 , each of the four networks is part of the 49-node network in Fig. 3 , with the corresponding local correlation

profiles presented in Table 1 . For example, the three local areas in Fig. 5 (a) correspond to Local 2, Local 3, and Local 4 in

Table 1 , respectively, with the location indices adjusted accordingly. Independent stations (those not appearing in Table 1 )

each fail independently with probability 0.02. 

Table 6 compares the results from (RFL-SCE) and (RFL-STA). It can be observed that for each case, the solutions (i.e., the

final UB and location decisions) from the two formulations are exactly the same. However, our station-based formulation can

be solved to optimality much more quickly than the scenario-based formulation, especially when correlations are present. In
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Table 5 

Algorithm performance for the U.S. networks with 49 and 88 nodes. 

Nodes Pattern R a Facility Root Root Root Overall Overall Overall CPU 

UB LB gap (%) UB LB gap (%) time 

49-I Indp 5 9,22,26,38,46 891,150 860,404 3.450 887,868 883,507 0.491 96 

Corr 10 9,22,26,38,46 893,049 834,126 6.598 887,881 883,451 0.499 1557 

15 9,22,26,38,46 888,855 835,584 5.993 887,868 883,493 0.493 2373 

20 9,22,26,38,46 891,150 834,113 6.400 887,868 883,486 0.494 2568 

75 9,22,26,38,46 891,150 834,741 6.330 887,868 879,537 0.938 3600 

49-II Indp 5 7,9,16,22,26,36,38,47,48 586,886 572,538 2.445 586,194 583,291 0.495 654 

Corr 10 9,13,15,23,26,29,38,47,48 597,735 554,304 7.266 595,102 570,308 4.166 3600 

15 7,9,16,22,26,29,38,42,47,48 589,864 554,304 6.029 587,996 569,597 3.129 3600 

20 7,9,16,22,26,29,38,42,47,48 589,657 554,304 5.996 587,794 568,639 3.259 3600 

75 7,9,16,22,26,29,38,42,47,48 589,122 554,229 5.923 587,793 565,163 3.850 3600 

49-III Indp 5 9,17,22,36,38,46 922,190 862,314 6.493 911,476 906,932 0.499 521 

Corr 10 9,15,22,36,38,46 926,889 812,649 12.325 912,682 874,124 4.225 3600 

15 9,17,22,36,38,46 922,594 812,649 11.917 911,868 871,296 4.449 3600 

20 9,17,22,36,38,46 922,198 812,648 11.879 911,483 869,052 4.655 3600 

75 9,17,22,36,38,46 922,191 812,649 11.878 911,476 857,396 5.933 3600 

88 Indp 5 10,25,29,39,57,61,71,83,87 1,242,190 1,200,420 3.363 1,242,200 1,221,060 1.702 3600 

Corr 10 10,25,29,39,57,61,71,83,87 1,254,600 1,112,030 11.364 1,254,600 1,150,340 8.310 3600 

20 10,25,29,39,57,61,71,83,87 1,242,200 1,115,950 10.163 1,242,200 1,150,620 7.372 3600 

30 10,25,29,39,57,61,71,83,87 1,244,970 1,107,200 11.066 1,242,200 1,150,830 7.355 3600 

129 10,25,29,39,57,61,71,83,87 1,244,970 1,102,360 11.455 1,242,200 1,140,060 8.223 3600 

a In the case with independent facility disruptions, R refers to the maximum number of backup facilities (as in Cui et al. (2010) ), while in 

the case with correlated facility disruptions, R corresponds to the maximum number of backup station-facility pairs. 

Fig. 4. Facility location solutions for U.S. networks with 49 and 88 nodes. 
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Fig. 5. Network setup and correlation pattern for the four cases. 

Table 6 

Performance comparison between (RFL-SCE) and (RFL-STA). 

Pattern # of Scenario-based (RFL-SCE) Station-based (RFL-STA) 

nodes UB Facilities Time (s) UB Facilities Time (s) 

No disruption 14 257,581 PA-2,MI-6,FL-14 0.1 257,581 PA-2,MI-6,FL-14 0.1 

17 304,372 PA-2,MI-8,AL-15 0.2 304,372 PA-2,MI-8,AL-15 0.3 

19 338,555 PA-2,MI-6,AL-13 0.4 338,555 PA-2,MI-6,AL-13 0.5 

25 426,942 PA-2,IN-10,AL-15 0.5 426,942 PA-2,IN-10,AL-15 0.9 

Correlation 14 266,412 PA-2,MI-6,AL-13 0.5 266,412 PA-2,MI-6,AL-13 0.8 

17 313,426 PA-2,MI-8,AL-15 35.8 313,426 PA-2,MI-8,AL-15 1.6 

19 348,426 PA-2,IN-8,AL-13 252.2 348,426 PA-2,IN-8,AL-13 3.2 

25 – – – 436,833 PA-2,AL-15,IL-19 6.7 
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Algorithm 1 Construct αkjr and βr as lower bounds to Z kjr and Z 00 r , respectively, ∀ i ∈ I . 
LowerBound (i ) 

1: for r do 

2: for (k, j) do 

3: αk jr = 0 

4: if l k j = 1 then 

5: K r 
k 

= 0 , prob = 1 . 0 

6: for k ′ do 
7: if k ′ � = k, l k ′ j = 1 , q k ′ < q k then 

8: K r 
k 

= K r 
k 

+ 1 , prob = prob · q k ′ 
9: end if 

10: end for 

11: if K r 
k 

< r then 

12: minProduct = 1 . 0 

13: if K r 
k 

< r − 1 then 

14: for (k ′ , j ′ ) do 
15: if j ′ � = j, k ′ � = k, d i j ′ < d i j , αk ′ j ′ ,r−1 −K r 

k 
∈ (0 , minProduct ) then 

16: minProduct = αk ′ j ′ ,r−1 −K r 
k 

17: end if 

18: end for 

19: end if 

20: αk jr = q k · prob · minProduct 

21: end if 

22: end if 

23: end for 

24: end for 

25: for r do 

26: βr = 1 . 0 , minProduct = 1 . 0 

27: for (k, j) do 

28: if l k j = 1 , αk jr ∈ (0 , minProduct ) then 

29: minProduct = αk jr 

30: end if 

31: end for 

32: βr = minProduct 

33: for (k, j) do 

34: αk jr = αk jr · (1 − q k ) /q k 
35: if αk jr = 0 then 

36: αk jr = ∞ 

37: end if 

38: end for 

39: end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

particular, the scenario-based formulation cannot even provide a feasible solution to the 25-node network due to exhaustion

of computer memory (by the excessive number of scenarios). This comparison verifies the correctness and effectiveness of

our station-based formulation (RFL-STA), as well as its clear superiority over the traditional scenario-based formulation

(RFL-SCE), even for moderate-sized problem instances. We can easily project that the advantage will be even bigger for

larger applications. 

5. Conclusion 

In this paper, we focus on the problem of reliable facility location design under correlated facility disruptions. To handle

the complexity associated with correlated facility disruptions, we incorporate and extent the idea of supporting station struc-

ture introduced in Li et al. (2013) ; Xie et al. (2015) , and augment the original facility system by adding an additional layer of

supporting stations. The stations, each being associated with a site-dependent disruption quasi-probability (which may take

a value larger than 1), are assumed to function independently and can equivalently capture the effect of correlation among

facility disruptions. We show a number of important properties of such a station structure. To optimize facility location

design, we further show that the reliable facility location problem under correlated facility disruptions can be formulated

into a compact mixed-integer mathematical model, which is equivalent to the traditional scenario-based formulation and

is much more compact in size. The proposed model can be solved by customized Lagrangian relaxation algorithms (with
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customized modules for obtaining upper and lower bounds). Multiple case studies with various network settings and cor-

relation patterns are conducted to test the performance and applicability of the methodology. Superiority of the proposed

station structure has also been clearly demonstrated via numerical experiments. 

The study can be further extended in several directions. First, in many real-world contexts, the reachability of facilities

or the access distances could be affected by the facility/station disruptions as well. For example, debris from earthquakes

or floods may block nearby roadway segments and change the shortest paths between points. Such complicating issues

should be addressed in future studies. Second, real-world applications may involve specific types of correlation patterns from

physical laws (e.g., decaying probability of failure “contagion”, or conventional correlation matrix). Specific model structure

and insights might be available at those correlation patterns. Third, it will be beneficial to conduct a systematic complexity

analysis on data input preparation, model formulation, and solution algorithm for the most general correlation patterns. We

also plan to apply our methodology to more real-world cases, so as to help policy makers develop engineering and planning

guidelines that will lead to more reliable and resilient systems. In light of the large size of many real-world applications,

additional effort s might be put on developing even more sophisticated and effective solution algorithms. 

Contribution statement 

Reliable facility location models have been developed in a variety of forms to address probabilistic facility disruptions.

Most of these existing models assume independent facility disruptions. In reality, however, disruptions could be correlated

when the facilities are subject to shared hazards/mutual interactions, and such correlations could be positive or negative,

or mixed. Facing the challenge of handling an exponential number of disruption scenarios even for a given location design,

only a few very recent studies have incorporated correlated facility disruptions into the location design framework for very

special correlation patterns. A systematic methodology framework is needed to design reliable facility locations under site-

dependent and generally correlated facility disruptions. 

In this paper, we extend the station structure approach in Li et al. (2013) and incorporate the idea of quasi-probability

( Xie et al., 2015 ) to capture any pattern of facility disruption correlations (positive, negative, or mixed). An additional layer

of supporting stations are added and properly connected to the facilities. These stations, each being associated with a site-

dependent disruption quasi-probability, are assumed to function independently and can equivalently capture the correlations

among facilities. With these newly added stations, we are able to develop a compact mixed-integer mathematical model to

optimize the reliable facility location decisions. To hedge against the complexity associated with the model, Lagrangian re-

laxation based algorithms, including customized modules for obtaining upper bound and lower bounds of relaxed subprob-

lems are developed. Multiple case studies with various types of correlated facility disruptions are carried out to demonstrate

the applicability and performance of our model and algorithms. Managerial insights are also drawn. 
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Appendix A Notation list 

I Set of customers 

J Set of candidate facility locations 

K Set of virtual stations 

� Set of all possible facility disruption scenarios/realizations 

S Scenario representation of facility disruptions 

M Marginal representation of facility disruptions 

R Total number of regular station-facility pairs assigned to any customer ( R − 1 pairs as backup options) 

μi Demand of customer i 

f j Fixed cost for building a facility at location j 

d ij Cost for a facility at j to satisfy one unit of demand from customer i 

c i j 1 j 2 Whether facility j 1 is closer to customer i than facility j 2 , c i j 1 j 2 = 1 if d i j 1 < d i j 2 , 0 otherwise 

l kj Whether facility j is connected to station k , l k j = 1 if they are connected, 0 otherwise 

q k Quasi-probability for station k to be disrupted 

k J Station connected to all and only facilities in set J 

π i Penalty cost for customer i to lose one unit of demand 

δj ω Whether facility built at location j is functioning in scenario ω, δ jω = 1 if it is functioning, 0 otherwise 

p ω Probability for scenario ω to occur 

p S 
J 

Probability for all locations in J to be disrupted while all others are operating 
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p M 

J Probability for all locations in J to be disrupted regardless of the states of all other locations 

X j Whether a facility is built at location j , X j = 1 if it is, 0 otherwise 

Y ij ω Whether customer i is assigned facility j in scenario ω, Y i jω = 1 if it is, and 0 otherwise 

Y ikjr Whether customer i is assigned to station-facility pair ( k, j ) at level r , Y ik jr = 1 if it is, and 0 otherwise 

Z ikjr Quasi-probability for customer i to be assigned to station-facility pair ( k, j ) at level r 

W ikjr W ik jr = Z ik jr Y ik jr 

M k Minimum value of Z ik jr , ∀ i ∈ I, j ∈ J ∪ { 0 } , r = 1 , 2 , . . . , R + 1 ̂ M k Maximum value of Z ik jr , ∀ i ∈ I, j ∈ J ∪ { 0 } , r = 1 , 2 , . . . , R + 1 

λn 
ik j 

Lagragian multiplier in the n th iteration of the Lagrangian relaxation procedure 

t n 
j 

Step size in the n th iteration of the Lagrangian relaxation procedure 

αkjr Approximation of Z kjr for any customer i 

βr Approximation of Z 00 r for any customer i 

Appendix B. Recipe for building station structure 

This appendix presents the recipe in Xie et al. (2015) for building the station structure from the scenario representation

of facility disruption correlations, i.e., S = { p S 
J 
} ∀ J⊆J . 

Formula (4) , which calculates station disruption quasi-probabilities from scenario probabilities, can be decomposed via

two steps: (i) calculate marginal facility disruption probability p M 

J as follows 

p M 

J = 

∑ 

J 1 : J⊆J 1 

p S J 1 ; (B.1) 

and (ii) calculate station disruption quasi-probabilties as follows 

q k J = 

∏ 

L : ̄J ⊆L ⊆J 

[
p M 

L 

](−1) | L |−| ̄J | +1 

. (B.2) 

To illustrate the idea, we use the simple three-facility system in Fig. 1 (a)–(b) as an example. The scenario-based disrup-

tion probabilities are given as input data, as shown in Table B.1 . The marginal facility disruption probabilities from (B.1) is

as follows: 

p M 

{ 1 } = p S { 1 } + p S { 1 , 2 } + p S { 1 , 3 } + p S { 1 , 2 , 3 } = 0 . 60 , 

p M 

{ 2 } = p S { 2 } + p S { 1 , 2 } + p S { 2 , 3 } + p S { 1 , 2 , 3 } = 0 . 55 , 

p M 

{ 3 } = p S { 3 } + p S { 1 , 3 } + p S { 2 , 3 } + p S { 1 , 2 , 3 } = 0 . 50 , 

p M 

{ 1 , 2 } = p S { 1 , 2 } + p S { 1 , 2 , 3 } = 0 . 45 , 

p M 

{ 1 , 3 } = p S { 1 , 3 } + p S { 1 , 2 , 3 } = 0 . 40 , 

p M 

{ 2 , 3 } = p S { 2 , 3 } + p S { 1 , 2 , 3 } = 0 . 35 , 

p M 

{ 1 , 2 , 3 } = p S { 1 , 2 , 3 } = 0 . 30 . 

Then from (B.2) , the disruption quasi-probabilities for the stations can be computed as 

q k { 1 } = 

p M 

{ 1 , 2 , 3 } 
p M 

{ 2 , 3 } 
= 

0 . 30 

0 . 35 
= 0 . 86 , 

q k { 2 } = 

p M 

{ 1 , 2 , 3 } 
p M 

{ 1 , 3 } 
= 

0 . 30 

0 . 40 
= 0 . 75 , 

q k { 3 } = 

p M 

{ 1 , 2 , 3 } 
p M 

{ 1 , 2 } 
= 

0 . 30 

0 . 45 
= 0 . 67 , 
Table B.1 

Different representations of the correlated facility disruptions for the 3-facility example. 

Scenario representation p S { 1 } p S { 2 } p S { 3 } p S { 1 , 2 } p S { 1 , 3 } p S { 2 , 3 } p S { 1 , 2 , 3 } 
0.05 0.05 0.05 0.15 0.10 0.05 0.30 

Marginal representation p M { 1 } p M { 2 } p M { 3 } p M { 1 , 2 } p M { 1 , 3 } p M { 2 , 3 } p M { 1 , 2 , 3 } 
0.60 0.55 0.50 0.45 0.40 0.35 0.30 

Station representation q k { 1 } q k { 2 } q k { 3 } q k { 1 , 2 } q k { 1 , 3 } q k { 2 , 3 } q k { 1 , 2 , 3 } 
0.86 0.75 0.67 0.93 0.95 1.00 0.79 
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q k { 1 , 2 } = 

p M 

{ 1 , 3 } · p M 

{ 2 , 3 } 
p M 

{ 3 } · p M 

{ 1 , 2 , 3 } 
= 

0 . 40 · 0 . 35 
0 . 50 · 0 . 30 = 0 . 93 , 

q k { 1 , 3 } = 

p M 

{ 1 , 2 } · p M 

{ 2 , 3 } 
p M 

{ 2 } · p M 

{ 1 , 2 , 3 } 
= 

0 . 45 · 0 . 35 
0 . 55 · 0 . 30 = 0 . 95 , 

q k { 2 , 3 } = 

p M 

{ 1 , 2 } · p M 

{ 1 , 3 } 
p M 

{ 1 } · p M 

{ 1 , 2 , 3 } 
= 

0 . 45 · 0 . 40 
0 . 60 · 0 . 30 = 1 . 00 , 

q k { 1 , 2 , 3 } = 

p M 

{ 1 } · p M 

{ 2 } · p M 

{ 3 } · p M 

{ 1 , 2 , 3 } 
p M 

{ 1 , 2 } · p M 

{ 1 , 3 } · p M 

{ 2 , 3 } 
= 

0 . 60 · 0 . 55 · 0 . 50 · 0 . 30 
0 . 45 · 0 . 40 · 0 . 35 = 0 . 79 . 

In so doing, the entire marginal representation and associated station structure are obtained, as summarized in Table B.1 .

Appendix C. Proof of propositions 

C1. Proof of Proposition 5 

Proof. We first map an optimal solution to (RFL-STA) to a feasible solution to (RFL-SCE). Let ( X, Y, Z ) be an optimal solution

to (RFL-STA). We let j(i, r) = j : Y ik jr = 1 , k (i, r) = k : Y ik jr = 1 , J(i, r) = { j ∈ J ∪ { 0 } : j � = j(i, r) , ∃ k, l ≤ r − 1 , Y ik jl = 1 } , R i =
{ 1 } ∪ { r > 1 : ∃ j � = j ′ , k � = k ′ , s.t. Y ik jr = Y ik ′ j ′ r−1 = 1 } , and for each r ∈ R , we let r i (r ) ∈ { r ′ : r ′ ∈ R i , r 

′ > r, r ′ ≤ r ′′ , ∀ r ′′ > r } . We

construct a solution ( X 
′ , Y ′ ) as follows 

(i) X ′ 
j 
= X j ; 

(ii) Y ′ 
i jω = 

{
1 , if j = j(i, r) for some r , δ jω = 1 , δ j ′ ω = 0 , ∀ j ′ ∈ J(i, r) ;
0 , otherwise. 

By construction, ( X 
′ , Y ′ ) is a feasible solution to (RFL-SCE). In particular, for any customer i ∈ I and any scenario ω ∈ �,

either there exists exactly one j ∈ J such that j = j(i, r) for some r , δ jω = 1 , δ j ′ ω = 0 , ∀ j ′ ∈ J(i, r) , or there exists no j ∈ J 

such that j = j(i, r) for some r , δ jω = 1 . Hence, there exists exactly one j ∈ J ∪ { 0 } such that Y i jω = 1 , ∀ i ∈ I, ω ∈ �, which

implies that (1b) hold. 

We next show that ( X 
′ , Y ′ ) achieves the same objective value as ( X, Y, Z ). We denote 
( X, Y, Z ) and �( X 

′ , Y ′ ) as the
objectives of (RFL-STA) and (RFL-SCE), respectively, and �(i, r) = { ω ∈ � : Y ′ 

i j(i,r) ω 
= 1 } . We have the following result 

�(X 
′ , Y 

′ ) = 

∑ 

j∈J 
f j X 

′ 
j + 

∑ 

i ∈I 

∑ 

j∈J ∪{ 0 } 

∑ 

ω∈ �
μi d i j Y 

′ 
i jω p ω 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 
∑ 

ω∈ �(i,r) 

p ω 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 
∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 
p S J . 

Applying Equations (6) in Xie et al. (2015) yields 

∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 
p S J = 

∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 

∑ 

J 1 : J⊆J 1 

(−1) | J 1 |−| J| 
[ ∏ 

J 2 : J 2 ∩ J 1 � = ∅ 
q k J 2 

] 

= 

∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 

∑ 

J 1 : J⊆J 1 

(−1) | J 1 |−| J| A (J 1 ) 

= 

∑ 

J : J (i,r) ⊆J 

C J A (J) , 

where A (J) = 

∏ 

J 2 : J 1 ∩ J � = ∅ q k J 1 
and C J is the ultimate coefficient of A (J) , which are 

C J = 

⎧ ⎨ ⎩ 

1 , if J = J(i, r) ;
−1 , if J = J(i, r) ∪ { j(i, r) };∑ 

J ′ ⊆J \ J(i,r) (−1) | J \ J (i,r) |−| J ′ | = 

∑ | J \ J (i,r) | 
n =0 

( −1) n 
(| J \ J (i,r) | 

n 

)
= 0 , otherwise . 

Therefore, we have 

�(X 
′ , Y 

′ ) = 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 
∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 
p S J 
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= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) [ A (J(i, r)) − A (J(i, r) ∪ { j(i, r) } ) ] 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 

[ ∏ 

J : J ∩ J (i,r) � = ∅ 
q k J −

∏ 

J : J ∩ (J (i,r ) ∪{ j(i,r ) } ) � = ∅ 
q k J 

] 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 

r i (r) −1 ∑ 

l= r 

l−1 ∏ 

l ′ =1 

q k (i,l ′ ) 
(
1 − q k (i,l) 

)
= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

R +1 ∑ 

r=1 

μi d i j(i,r) 

r−1 ∏ 

l=1 

q k (i,l) 
(
1 − q k (i,r) 

)
= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

j∈J ∪{ 0 } 

∑ 

k ∈K∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j Y ik jr Z ik jr 

= 
(X , Y , Z ) , 

which implies that the optimal solution to (RFL-SCE) is a lower bound to (RFL-STA). 

Conversely, we map an optimal solution to (RFL-SCE) to a feasible solution to (RFL-STA). Given an optimal solution ( X,

Y ) to (RFL-SCE), without loss of generality, we assume that each customer always visits its closest open facility for service,

and if there exist more than one facility with equal distance, we break the tie by choosing the facility based on index: let

J ∗ = { j ∈ J : X j = 1 } , for each customer i , let j i 
1 
, j i 

2 
, . . . , j i | J ∗| +1 

be an ordering of the facilities in J ∗ ∪ {0} such that for all 2 ≤
r ≤ | J ∗| + 1 , d 

i j i 
r−1 

≤ d 
i j i r 

and if d 
i j i 
r−1 

= d 
i j i r 

, j i 
r−1 

< j i r . Since a facility is functioning if and only if at least one of its connected

stations is operating, we let K ∗ = { k ∈ K : ∃ j ∈ J ∗, l jk = 1 } , and r i n = |{ k ∈ K ∗ : ∃ n 1 < n, l 
j i n 1 

= 1 }| be the total number of sta-

tions that are connected to at least one facility in { j i 
1 
, . . . , j i 

n −1 
} , we know that facility j i n is visited by i if only if all facilities

in { j i 
1 
, . . . , j i 

n −1 
} are unavailable (i.e, all the r i n stations are disrupted). Then we define two sequences of facilities and stations

respectively as: (i) j(i, 1) , j(i, 2) , . . . , j(i, | K ∗| + 1) such that j(i, r) ∈ { j : r j < r ≤ r j+1 } ; and (ii) k (i, 1) , k (i, 2) , . . . , k (i, | K ∗| + 1)

such that k (i, r) ∈ K(i, r) = { k : l j(i,r) k = 1 , l j(i,l) k = 0 , ∀ l < r, j(i, l) � = j(i, r) } , and if K(i, r − 1) = K(i, r) , k (i, r − 1) < k (i, r) . We

construct a solution ( X 
′ , Y ′ , Z ′ ) as follows 

(i) X ′ 
j 
= X j ; 

(ii) Y ′ 
ik jr 

= 

{
1 , if j = j(i, r) , k = k (i, r) , d i j ≤ d i 0 ;
0 , otherwise; 

(iii) Z ′ 
ik jr 

= 

{(
1 − q k (i,r) 

)∏ r−1 
l=1 

q k (i,l) , if j = j(i, r) , k = k (i, r) , d i j ≤ d i 0 ;
0 , otherwise. 

By examining the constraint sets in (RFL-STA), we observe that ( X 
′ , Y ′ , Z ′ ) is a feasible solution to (RFL-STA). We next

show that ( X 
′ , Y ′ , Z ′ ) achieves the same objective value as ( X, Y ). We let R i = { r i 

1 
+ 1 , r i 

2 
+ 1 , . . . , r i | J ∗| +1 

+ 1 } , for each r ∈ R i ,

we let r i (r) ∈ { r ′ : r ′ ∈ R i , r 
′ > r, r ′ ≤ r ′′ , ∀ r ′′ > r} , and �(i, r) = { ω ∈ � : δ j(i,r) ω = 1 , δ j(i,l) ω = 0 , ∀ l < r, j(i, l) � = j(i, r) } 


(X 
′ , Y 

′ , Z ′ ) = 

∑ 

j∈J 
f j X 

′ 
j + 

∑ 

i ∈I 

∑ 

j∈J ∪{ 0 } 

∑ 

k ∈K∪{ 0 } 

R +1 ∑ 

r=1 

μi d i j Y 
′ 
ik jr Z 

′ 
ik jr 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

R +1 ∑ 

r=1 

μi d i j(i,r) 

r−1 ∏ 

l=1 

q k (i,l) 
(
1 − q k (i,r) 

)
= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 

r i (r) −1 ∑ 

l= r 

l−1 ∏ 

l ′ =1 

q k (i,l ′ ) 
(
1 − q k (i,l) 

)
= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 
∑ 

J : J (i,r) ⊆J, j(i,r) / ∈ J 
p S J 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

r∈R i 

μi d i j(i,r) 
∑ 

ω∈ �(i,r) 

p ω 

= 

∑ 

j∈J 
f j X j + 

∑ 

i ∈I 

∑ 

j∈J ∪{ 0 } 

∑ 

ω∈ �
μi d i j Y i jω p ω 

= �(X , Y ) . 
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Therefore, the optimal solution to (RFL-STA) is also a lower bound to (RFL-SCE), implying that the optimal solutions to

(RFL-STA) and (RFL-SCE) are exactly the same. This completes our proof. �

C2. Example for the proof of Proposition 5 

Proof. We present a small example to better illustrate the proof procedure in C.1 . Considering the three-facility system

presented in Appendix B , we first assume that the optimal solution to (RFL-STA) is ( X, Y, Z ) with 

X 1 = X 3 = 1 , X 2 = 0 , 

Y 1 k { 1 } 11 = Y 1 k { 1 , 2 } 12 = Y 1 k { 1 , 3 } 13 = Y 1 k { 1 , 2 , 3 } 14 = Y 1 k { 3 } 35 = Y 1 k { 2 , 3 } 36 = Y 1007 = 1 , 

Y 2 k { 1 } 11 = Y 2 k { 1 , 2 } 12 = Y 2 k { 1 , 3 } 13 = Y 2 k { 1 , 2 , 3 } 14 = Y 2 k { 3 } 35 = Y 2 k { 2 , 3 } 36 = Y 2007 = 1 , 

Y 3 k { 3 } 31 = Y 3 k { 1 , 3 } 32 = Y 3 k { 2 , 3 } 33 = Y 3 k { 1 , 2 , 3 } 34 = Y 3 k { 1 } 15 = Y 3 k { 1 , 2 } 16 = Y 3007 = 1 , 

and the optimal objective is 


(X , Y , Z ) = f 1 + f 3 

+ μ1 

(
d 13 q k { 1 } q k { 1 , 2 } q k { 1 , 3 } q k { 1 , 2 , 3 } (1 − q k { 3 } q k { 2 , 3 } ) + π1 q k { 1 } q k { 1 , 2 } q k { 1 , 3 } q k { 1 , 2 , 3 } q k { 3 } q k { 2 , 3 } 

)
+ μ3 

(
d 31 q k { 3 } q k { 1 , 3 } q k { 2 , 3 } q k { 1 , 2 , 3 } (1 − q k { 1 } q k { 1 , 2 } ) + π3 q k { 3 } q k { 1 , 3 } q k { 2 , 3 } q k { 1 , 2 , 3 } q k { 1 } q k { 1 , 2 } 

)
+ μ2 

(
d 21 (1 − q k { 1 } q k { 1 , 2 } q k { 1 , 3 } q k { 1 , 2 , 3 } ) + d 23 q k { 1 } q k { 1 , 2 } q k { 1 , 3 } q k { 1 , 2 , 3 } (1 − q k { 3 } q k { 2 , 3 } ) 

+ π2 q k { 1 } q k { 1 , 2 } q k { 1 , 3 } q k { 1 , 2 , 3 } q k { 3 } q k { 2 , 3 } 
)

= f 1 + f 3 + μ1 (0 . 2 d 13 + 0 . 4 π1 ) + μ2 (0 . 4 d 21 + 0 . 2 d 23 + 0 . 4 π2 ) + μ3 (0 . 1 d 31 + 0 . 4 π3 ) 

Constructing from ( X, Y, Z ), a feasible solution to (RFL-SCE) is ( X 
′ , Y ′ , Z ′ ) with 

X ′ 1 = X ′ 3 = 1 , X ′ 2 = 0 , 

Y ′ 11 ∅ = Y ′ 11 { 2 } = Y ′ 11 { 3 } = Y ′ 11 { 2 , 3 } = Y ′ 13 { 1 } = Y ′ 13 { 1 , 2 } = Y ′ 10 { 1 , 3 } = Y ′ 10 { 1 , 2 , 3 } = 1 , 

Y ′ 21 ∅ = Y ′ 21 { 2 } = Y ′ 21 { 3 } = Y ′ 21 { 2 , 3 } = Y ′ 23 { 1 } = Y ′ 23 { 1 , 2 } = Y ′ 20 { 1 , 3 } = Y ′ 20 { 1 , 2 , 3 } = 1 , 

Y ′ 33 ∅ = Y ′ 33 { 1 } = Y ′ 33 { 2 } = Y ′ 33 { 1 , 2 } = Y ′ 31 { 3 } = Y ′ 31 { 2 , 3 } = Y ′ 30 { 1 , 3 } = Y ′ 30 { 1 , 2 , 3 } = 1 , 

which gives the corresponding objective value as 

�(X 
′ , Y 

′ , Z ′ ) = f 1 + f 3 

+ μ1 

(
d 13 (p { 1 } + p { 1 , 2 } ) + π1 (p { 1 , 3 } + p { 1 , 2 , 3 } ) 

)
+ μ3 

(
d 31 (p { 3 } + p { 2 , 3 } ) + π3 (p { 1 , 3 } + p { 1 , 2 , 3 } ) 

)
+ μ2 

(
d 21 (p ∅ + p { 2 } + p { 3 } + p { 2 , 3 } ) + d 23 (p { 1 } + p { 1 , 2 } ) + π2 (p { 1 , 3 } + p { 1 , 2 , 3 } ) 

)
= f 1 + f 3 + μ1 (0 . 2 d 13 + 0 . 4 π1 ) + μ2 (0 . 4 d 21 + 0 . 2 d 23 + 0 . 4 π2 ) + μ3 (0 . 1 d 31 + 0 . 4 π3 ) 

= 
(X , Y , Z ) . 

This implies that the optimal solution to (RFL-SCE) is no larger than 
( X, Y, Z ), thus is a lower bound to (RFL-STA). 

Conversely, assuming that the optimal solution to (RFL-SCE) is ( X 
′ , Y ′ , Z ′ ), we can construct ( X, Y, Z ) which is a fea-

sible solution to (RFL-STA) (The detail is omitted here as it is very similar to the procedure described right above). Since


(X , Y , Z ) = �(X 
′ , Y ′ , Z ′ ) , the optimal solution to (RFL-STA) is no larger than �( X 

′ , Y ′ , Z ′ ), thus is a lower bound to (RFL-

SCE). Therefore, we can conclude that the optimal solutions to (RFL-SCE) and (RFL-STA) are exactly the same. �

C3. Proof of Proposition 7 

Proof. Suppose, for a contradiction, that ( X, Y, Z ) is optimal to (RFL-STA) but violates Property II, i.e., there exist i, j, k 1 ,

k 2 , r such that X j = 1 , l k 1 j = l k 2 j = 1 , q k 1 ≤ q k 2 , Y ik 2 jr = 1 , Y ik 1 jr ′ = 0 , ∀ r ′ < r. We will show that by replacing k 2 with k 1 the

objective of (RFL-STA) will decrease. We simply construct a different solution ( X 
′ , Y ′ , Z ′ ) as follows: 

(i) X ′ 
j 
= X j ; 

(ii) Y ′ 
hkls 

= 

{ 

1 , if (h, k, l, s ) = (i, k 1 , j, r) ;
0 , if (h, k, l, s ) = (i, k 2 , j, r) ;
Y hkls , otherwise; 

(iii) Z ′ 
hkls 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

1 −q k 1 
1 −q k 2 

Z hk 2 ls , if (h, k, l, s ) = (i, k 1 , j, r) ;
0 , if (h, k, l, s ) = (i, k 2 , j, r) ;
q k 1 
q k 2 

Z hkls , if s > r;

Z hkls , otherwise. 
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By construction, ( X 
′ , Y ′ , Z ′ ) is a feasible solution to (RFL-STA). We use 
( X, Y, Z ) to denote the objective value of (RFL-

STA) associated with ( X, Y, Z ), assume that Y ik ir j ir r = Y i 00 R i = 1 , it follows that 


(X , Y , Z ) − 
(X 
′ , Y 

′ , Z ′ ) = μi d i j Z k 2 jr + 

R i ∑ 

s = r+1 

μi d il is Z k is l is s − (μi d i j Z 
′ 
k 1 jr 

+ 

R i ∑ 

s = r+1 

μi d il is Z 
′ 
k is l is s 

) 

= 

μi Z k 2 jr 

1 − q k 2 

[ 

d i j (1 − q k 2 ) + q k 2 

R i ∑ 

s = r+1 

d il is 

s −1 ∏ 

s ′ = r+1 

q k is ′ (1 − q k is ) 

−
( 

d i j (1 − q k 1 ) + q k 1 

R i ∑ 

s = r+1 

d il is 

s −1 ∏ 

s ′ = r+1 

q k is ′ (1 − q k is ) 

) ] 

= 

μi Z k 2 jr 

1 − q k 2 
(q k 2 − q k 1 ) 

( 

−d i j + 

R i ∑ 

s = r+1 

d il is 

s −1 ∏ 

s ′ = r+1 

q k is ′ (1 − q k is ) 

) 

As q 
k iR 

i = 0 , and d il is ≤ d il i,s +1 from Proposition 6 , we have 

R i ∑ 

s = R i −1 

d il is 

s −1 ∏ 

s ′ = r+1 

q k is ′ (1 − q k is ) ≥ d 
il iR i −1 

R i −2 ∏ 

s ′ = r+1 

q k is ′ (1 − q 
k iR i −1 ) + d 

il iR i −1 

R i −1 ∏ 

s ′ = r+1 

q k is ′ 

= d 
il iR i −1 

R i −2 ∏ 

s ′ = r+1 

q k is ′ 

By induction, we can conclude that 

−d i j + 

R i ∑ 

s = r+1 

d il is 

s −1 ∏ 

s ′ = r+1 

q k is ′ (1 − q k is ) ≥ −d i j + d il ir+1 ≥ 0 . 

Since 
μi Z k 2 jr 

1 −q k 2 
≥ 0 , q k 2 − q k 1 ≥ 0 , we have 
( X, Y, Z ) ≥
( X 

′ , Y ′ , Z ′ ), which implies that 
( X, Y, Z ) is not optimal. This com-

pletes the proof. �
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