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a b s t r a c t 

Traditional bus bunching control methods (e.g., adding slack to schedules, adapting cruis- 

ing speed), in one way or another, trade commercial speed for better system stability and, 

as a result, may impose the burden of additional travel time on passengers. Recently, a dy- 

namic bus substitution strategy, where standby buses are dispatched to take over service 

from late/early buses, was proposed as an attempt to enhance system reliability without 

sacrificing too much passenger experience. This paper further studies this substitution 

strategy in the context of multiple bus lines under either time-independent or time- 

varying settings. In the latter scenario, the fleet of standby buses can be dynamically 

utilized to save on opportunity costs. We model the agency’s substitution decisions and 

retired bus repositioning decisions as a stochastic dynamic program so as to obtain the 

optimal policy that minimizes the system-wide costs. Numerical results show that the 

dynamic substitution strategy can benefit from the “economies of scale” by pooling the 

standby fleet across lines, and there are also benefits from dynamic fleet management 

when transit demand varies over time. Numerical examples are presented to illustrate the 

applicability and advantage of the proposed strategy. The substitution strategy not only 

holds the promise to outperform traditional holding methods in terms of reducing pas- 

senger costs, they also can be used to complement other methods to better control very 

unstable systems. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Bus systems are typically subject to random disturbances during operations. Those disturbances can be either minor (e.g.

drivers’ vagaries, special passenger needs) or severe (e.g. vehicle breakdown, traffic congestion). Even small disturbances

when left uncontrolled can grow rapidly into large schedule deviations that appear equivalent to disruptions to the pas-

sengers ( Newell and Potts, 1964 ). An almost inevitable consequence is that bus headways and spacings become so irregular

that they would eventually end up “bunching” together ( Osuna and Newell, 1972; Daganzo, 2008 ). This phenomenon is con-

sidered a plague in urban bus systems not only because it wreaks havoc on the punctuality and regularity of bus schedules

but, more importantly, because it imposes a heavy burden on the passengers’ travel experience (e.g., long waiting/dwelling

times, crowded buses), which may in turn affect ridership and revenue. 

Intervention strategies against small disturbances have been proposed in the last few decades; see Ibarra-Rojas et al.

(2015) for a comprehensive review. Early methods consist of adding slacks into the schedule so as to retain early buses at

certain stations and prevent the propagation of schedule discrepancies ( Newell, 1974; Abkowitz and Lepofsky, 1990; Eberlein

et al., 2001 ). Recently, other holding-based strategies were proposed to take advantage of real-time information and adap-

tively control the holding time or the speed of buses ( Daganzo, 2009; Daganzo and Pilachowski, 2011; Xuan et al., 2011;
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Bartholdi and Eisenstein, 2012; Berrebi et al., 2015; Sánchez-Martínez et al., 2016 ). Those strategies were designed to stabi-

lize headways while minimizing passenger waiting time, typically for systems that operate without a schedule. Xuan et al.

(2011) and a number of follow-up studies from the same authors adapted those methods and applied them to schedule-

based systems. Such holding approaches generally (slightly) increase travel times of passengers for better stability of arrival

times. In addition, it shall be noted that the effectiveness of these strategies would be compromised if deviations to the

schedule exceed certain bounds ( Daganzo and Ouyang, 2019 ). More drastic measures such as stop-skipping ( Fu et al., 2003;

Sun and Hickman, 2005; Liu et al., 2013 ), limited-boarding ( Delgado et al., 2009; 2012 ) and short-turning ( Ceder, 1990 ) are

no panacea either, as they create frustration among the passengers who either have to walk to their stop, or wait for another

bus. Alternative strategies such as transit signal priority ( Liu et al., 2003; Ling and Shalaby, 2004; Estrada et al., 2016 ) and

overtaking ( Wu et al., 2017 ) could be challenging to implement as they depend highly on agencies’ administration power

and the city’s roadway infrastructures. More recently, Petit et al. (2018) proposed a so-called bus substitution strategy, where

the transit agency dispatches standby buses to take over service from late/early in-operation buses. Those late/early buses

then display a “not-in-service” (NIS) sign, but still operate in a drop-off only mode to deliver all the remaining onboard pas-

sengers (before returning to the standby bus pool). They showed with one homogeneous bus route that the strategy holds

the promise to outperform the traditional fixed slack method and compete with the most advanced speed control methods

under certain circumstances (under either minor disturbances or severe disruptions). 

While most bunching mitigation literature has focused on a single transit line, effort s on multiline transit systems are

relatively rare, and existing studies mainly address traditional control strategies. For example, Hernández et al. (2015) ex-

tended the work of Delgado et al. (2012) on limited-boarding and holding strategies to a system with multiple bus lines.

Argote-Cabanero et al. (2015) studied the adaptive control from Xuan et al. (2011) for multiline networks and presented a

real-world application. Nevertheless, the potential benefits of applying the bus substitution strategy to multiline systems,

either under homogeneous settings or under time-varying settings, have not been explored yet. For instance, rather than as-

suming arbitrarily located standby buses along a homogeneous transit route, as in Petit et al. (2018) , pre-positioning of the

standby buses could shorten the dispatching lead times for substituting buses if these buses are already located within the

vicinity where delay is likely to occur in the near future. Moreover, when transit demand varies over time, it shall be ben-

eficial to allow dynamic utilization of buses either for regular service or for substitution (as standby buses). Systematically

addressing these opportunities would allow a more practical and effective bunching intervention strategy to be developed

for the transit agencies. 

In light of these needs, this paper develops a modeling framework to study how the bus substitution strategy can be

applied to multiline transit systems, where standby buses are shared across lines and can be called upon to provide regular

service (if needed). Under time-independent settings, the major decisions of the transit agency include two parts: (i) the

bus substitution decision, i.e., how to dispatch a shared pool of standby buses to substitute operating buses across multi-

ple lines; and (ii) the retired bus repositioning decision, i.e., where to reposition the retired buses over the service region

such that they can be effectively utilized in the future. The overall objective is to deliver the best service, e.g., least waiting

and dwelling times of passengers, while minimizing the total operating costs of the transit agency. A stochastic dynamic

program in an infinite horizon is developed to reveal the optimal decision-making policy in a time-independent setting,

where the bus substitution and prepositioning decisions, as well as the dynamics of bus operations across multiple lines are

addressed. Approximate dynamic programming (ADP) is used with an embedded heuristic subroutine to solve the Bellman

subproblem. Under time-varying settings, we divide the time horizon into multiple homogeneous periods, and allow dy-

namic utilization of buses (either to provide regular service or serve as standby) as part of the fleet management decision.

A multi-period optimization program is proposed to determine the optimal dynamic fleet allocation in each period. The

proposed strategies and solution algorithms are tested with a set of hypothetical transit networks, and compared with the

existing speed control methods under homogeneous settings. It is shown that the dynamic substitution strategy can bene-

fit from “economies of scale” by pooling standby buses across multiple lines, and outperform its counterparts in terms of

decreasing passenger costs. We also quantify the benefit of dynamic fleet management under time-varying demand. Results

indicate that optimal fleet utilization allows further savings on vehicle opportunity costs. A case study based on multiple

lines of the Champaign-Urbana Mass Transit District is also presented to draw managerial insights. Finally, we investigate

the feasibility of a hybrid approach where dynamic bus speed control (suitable for small schedule perturbations) and bus

substitution strategies (suitable for large perturbations) are combined together to stabilize bus operations. 

The remainder of the paper is organized as follows. Section 2 introduces the characteristics and operations of multiline

transit systems as well as the mathematical formulation of the bus substitution problem under time-independent settings.

Section 3 describes the solution algorithm based on ADP. Section 4 briefly explains how the strategy can be applied as a

building block to cases in a time-varying setting. Then, Section 5 presents a series of numerical examples that collectively

illustrate the performance and applicability of the proposed strategy. Finally, Section 6 provides concluding remarks and

future research directions. 

2. Time-independent multiline substitution 

In this section, we introduce the basic modeling framework for dynamic bus substitution when the system settings are

time-independent. We present the system dynamics and the substitution policy constraints, and propose the optimization

model. 
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Fig. 1. Illustration of multiline transit system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Model setting 

Consider an urban transit system with a set of bus lines, denoted by K, being distributed over a two-dimensional space,

as shown in Fig. 1 . Even though interdependencies may exist among different lines in the real world (e.g., due to passenger

transfers and sharing of stations), here we assume they are independent of each other for the sake of simplicity. Similar to

Petit et al. (2018) , each single line k ∈ K is assumed to be operated along a corridor and treated as a bidirectional closed

loop with length L k . Without loss of generality, we only consider one direction of each of the loops. Let N k denote the set

of operating buses along one direction of bus line k ∈ K, where each operating bus is indexed by tuple ( k,n ) for k ∈ K and

n ∈ N k . It is assumed that all the buses in the system are identical and interchangeable, e.g., they have the same cruising

speed, denoted by E , the same dwell time per passenger for alighting and boarding, denoted by A and B , respectively, and

an infinite capacity. 1 

When bus lines are independent of each other, we take one bus line k ∈ K as a representative to illustrate the dynamics

of bus operations. Assume that the passengers taking line k ∈ K arrive randomly with a steady rate over time and space, 2 

denoted by λk , and all the buses are evenly spaced along the line, i.e., the average spacing between two consecutive buses

S k equals to 
L k |N k | . According to Petit et al. (2018) , the “scheduled” commercial speed of buses in line k , denoted by V k , can

be defined as 

V k = E(1 − Bλk S k ) , ∀ k ∈ K. (1) 

It can be obtained by expressing the time traveling (1/ V k ) as the sum of the time cruising (1/ E ), and the time dwelling

( B λS k / V k ), which depends on the number of passengers boarding per unit distance ( λS k / V k ). Note that we ignore the dwell

time due to alighting. 3 

The dynamics of the “scheduled” trajectory for bus ( k,n ), denoted by { Y k,n ( t )} t ≥0 , can be presented as 

Y k,n (t + 1) = Y k,n (t) + V k , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , 
Y k,n (0) = (|N k | − n ) · S k , ∀ k ∈ K, n ∈ N k . (2) 

However, as mentioned earlier, buses rarely stick to their schedules if they are left uncontrolled. Let ˜ ω k,n (t) denote an

additive disturbance to bus ( k,n ) at time t , which follows an independent and identically distributed (i.i.d.) normal distri-

bution with mean 0 and variance σ 2 
k 
. The uncontrolled trajectory of bus ( k,n ), denoted by y k,n ( t ), can then be written out

similarly as in Pilachowski (2009) : 

y k,n (t + 1) = y k,n (t) + v k,n (t) + ˜ ω k,n (t) , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (3)
1 Simulation results of a real-world case study in Section 5.3 suggest that, even in the cases of large schedule deviations, vehicle occupancies remain at 

reasonable levels and bus capacity does not become a limitation before substitution occurs. The readers can refer to Section 5.5 for more discussion on 

this assumption. 
2 This assumption is generally conservative for the proposed substitution strategy. First, Appendix B analytically shows that the passenger costs in this 

continuous model are slightly overestimated as compared to those with discrete bus stops. Appendix B also discusses the impact of the discrete stops on 

the frequency of bunching occurrences, and thus the frequency and cost of substitutions. Second, for the substitution strategy, it is actually more difficult 

to handle spatially homogeneous demand. As travel demand becomes unevenly distributed over space, the locations of bunching (and substitutions) are 

more likely to concentrate in certain neighborhoods. Then, standby vehicles could be positioned strategically so as to accelerate the insertion process and 

reduce the substitution costs. 
3 This is not a critical assumption. The proposed framework can also accommodate other real-world scenarios, e.g., when boarding and alighting occur 

sequentially such that the dwell time is measured by A + B . 
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where v k, n ( t ) denotes the instantaneous commercial speed of bus n at time t . Note that v k,n ( t ) can be derived by simply

replacing S k,n in Eq. (1) with s k,n ( t ), which denotes the “actual” spacing of operating bus ( k, n ) at time t . Derivations of s k,n ( t )

can be found in Petit et al. (2018) . We further assume that buses are not allowed to leapfrog 4 , i.e., 

s k,n (t) ≥ 0 , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } . (4)

The deviation of bus ( k,n ) from schedule at time t , denoted by εk,n ( t ), can be obtained by calculating the difference between

its “scheduled” and “actual” positions at that moment, i.e., 

εk,n (t) = Y k,n (t) − y k,n (t) , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (5)

where εk,n ( t ) > 0 ( εk,n ( t ) < 0) indicates that the bus is late (early). Meanwhile, the actual bus occupancy, denoted by O k,n ( t ),

can be derived based on Eq. (9) in Petit et al. (2018) : 

O k,n (t + 1) ≈ max 

{
O k,n (t) 

[
1 − 4 v k,n (t) 

L k 

(
1 − v k,n (t) 

L k 

)]
, 0 

}
+ λk s k,n (t) , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } . (6)

The first term in Eq. (6) pertains to the number of the alighting passengers, which is based on the triangular distribution

of the destinations of the onboard passengers (see Appendix A in Petit et al. (2018) ). It is assumed that passengers travel

at most a distance of L /2. The second term pertains to the number of boarding passengers, which is proportional to the

spacing in front of the bus. 

2.2. Bus substitution strategy 

As shown in Fig. 1 , standby buses are prepositioned at certain locations that are close to the bus routes (e.g., nearby

parking lots). Denoting J as the set of parking locations and w j ( t ) as the number of standby buses that are held at j ∈ J at

time t , the transit agency’s primary decision is then to dynamically determine whether a substitution should be made such

that the system performance can be enhanced. Let ζ j,k,n ( t ) ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, n ∈ N k denote the agency’s substitution

decision at t , where ζ j,k,n (t) = 1 if a standby bus located at j is dispatched to substitute operating bus ( k, n ); or ζ j,k,n (t) = 0

otherwise. 

Due to the limited size of the standby bus fleet, the bus substitution decision at time t should be restricted by the

number of available buses at the parking locations, i.e., ∑ 

k ∈K 

∑ 

n ∈N k 
ζ j,k,n (t) ≤ w j (t) , ∀ j ∈ J , t ∈ { 0 , 1 , 2 , . . . } . (7)

Meanwhile, an operating bus can be substituted with at most one standby bus, i.e., ∑ 

j∈J 
ζ j,k,n (t) ≤ 1 , ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (8)

and we further assume that the substitution cannot be applied to an operating bus that has just been inserted into operation

recently (i.e., whose corresponding retiring bus is still running in NIS mode). Let y R 
k,n 

(t) denote the position of NIS bus ( k,

n ) at time t , where y R 
k,n 

(t) > 0 if bus ( k, n ) was just substituted and is currently going through the retirement process, while

y R 
k,n 

(t) < 0 if the NIS mode has not been activated yet. Thus, the following constraints should be applied to the substitution

decision: ∑ 

j∈J 
ζ j,k,n (t) ≤ 1 −

y R 
k,n 

(t) ( mod L k ) 

L k 
, ∀ k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (9)

where mod refers to the modulo operation, where the remainder can be negative as defined in Knuth (1972) . 

Due to the time needed for moving a standby bus from its parking location to the target insertion position along the

line, the lead time between the substitution “decision” and actual “action” needs to be explicitly considered. For simplicity

of modeling, we assume that the substitution can only happen if the associated lead time is no longer than the time interval

between two consecutive decision epochs, denoted by �, i.e., 

ζ j,k,n (t) ≤ 1 − T [ j, Y k,n (t + �) ( mod L k )] − �

T max 
, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (10)

where T max denotes the maximum travel time between any two points in the studied area and T [ j, Y k,n (t + �) ( mod L k )]

denotes the time needed to travel from parking location j ∈ J to the scheduled location of bus ( k,n ) at time (t + �) , denoted

by Y k,n (t + �) ( mod L k ) . 

Fig. 2 gives a simple illustration of a bus trajectory involving a substitution for a late operating bus. It can be observed

that the late bus is reset right back to its schedule at time t + �, after a substitution decision has been made at t . Hence,
4 To be conservative, we assume that the agency does not allow overtaking, e.g., for safety reasons. Such an assumption is not too restrictive, since we 

only need to swap the involved bus indices when leapfrog occurs, while keeping the spacing non-negative. 
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Fig. 2. Bus trajectory with substitution (from Petit et al. (2018) ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when the substitution strategy is applied, the bus deviations from the schedule can be formulated as follows: 

εk,n (t) = 

( 

1 −
∑ 

j∈J 
ζ̄ j,k,n (t − �) 

) 

·
(
Y k,n (t) − y k,n (t) 

)
, ∀ k ∈ K, n ∈ N k , t ∈ { �, � + 1 , . . . } , (11)

where ζ̄ j,k,n (t − �) denotes the substitution decision that was made at time t − �, which is already known at time t . 

Moreover, if a substitution decision has been made for bus ( k,n ), i.e., ζ j,k,n (t) = 1 , the inserted bus is then denoted by

the same index ( k,n ) starting from time t + �. In other words, operating bus ( k,n ) is treated as remaining in the system but

with an instantaneous location change upon substitution. 

2.3. Not-in-service bus retirement and repositioning 

During substitution, an operating bus would retire and change into not-in-service (NIS) mode. In this mode, a bus only

allows onboard passengers to alight, until it is empty. Once empty, it needs to be repositioned at a parking location. We

assume that the transit agency decides at the time of the substitution which parking location this NIS bus should be sent

to. Let φk,n, j (t) ∈ { 0 , 1 } , k ∈ K, n ∈ N k , ∀ j ∈ J denote the agency’s repositioning decision for NIS buses, where φk,n, j (t) = 1 if

NIS bus ( k,n ) would be sent to parking location j ∈ J , and φk,n, j (t) = 0 otherwise. Since a bus that has been substituted

must be repositionned, the following equations hold: ∑ 

j∈J 
φk,n, j (t) = 

∑ 

j∈J 
ζ̄ j,k,n (t − �) , ∀ k ∈ K, n ∈ N k , t ∈ { �, � + 1 , . . . } . (12)

After the repositioning decision has been made at t , assuming that φk,n, j (t) = 1 , the NIS bus would go through two

phases thereafter: (i) dropping off onboard passengers until it becomes empty, and (ii) traveling to the designated parking

location as directly as possible. In phase (i), it is assumed that the NIS bus travels a distance of L k /2, which is the upper

bound of the distance needed to drop off all its onboard passengers. The trajectory of NIS bus ( k,n ) along the line can be

derived as 5 

y R k,n (t 
′ + 1) = y R k,n (t 

′ ) + v R k,n (t 
′ ) , ∀ t ′ ∈ { t, t + 1 , . . . } , (13)

where v R 
k,n 

denotes its instantaneous commercial speed defined as 

v R k,n (t 
′ ) ≈

{ [ 
E −1 + max 

{ 

A 
L k / 2+ y R 

k,n 
(t) −y R 

k,n 
(t ′ ) 

(
2 − 1 

L k / 2+ y R 
k,n 

(t) −y R 
k,n 

(t ′ ) 

)
O 
R 
k,n 

(t ′ ) , 0 
} ] −1 

if O 
R 
k,n 

(t ′ ) > 0 , 

0 otherwise , 

∀ t ′ ∈ { t, t + 1 , . . . } . (14) 

The first term pertains to the cruising time. The second term pertains to the dwell time due to passengers alighting. Note

that the number of passengers alighting from the NIS buses is derived similarly to Eq. (6) , except that the maximum distance

that the onboard passengers can travel now reduces while the NIS bus advances. 
5 Similar to Eq. (10) in Petit et al. (2018) , the random disturbance term is omitted. 



A. Petit, C. Lei and Y. Ouyang / Transportation Research Part B 126 (2019) 68–86 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The occupancy of the NIS buses, O 
R 
k,n 

, is given as 

O 
R 
k,n (t 

′ + 1) ≈ max 

{
O 
R 
k,n (t 

′ ) 
[
1 −

v R 
k,n 

(t ′ ) 
L k / 2 + y R 

k,n 
(t) − y R 

k,n 
(t ′ ) 

(
2 −

v R 
k,n 

( t ′ ) 
L k / 2 + y R 

k,n 
(t) − y R 

k,n 
(t ′ ) 

)]
, 0 

}
, 

∀ t ′ ∈ { t, t + 1 , . . . } . (15)

Eq. (15) is derived similarly to Eq. (6) , except that the maximum distance that the retiring bus will travel while dropping

off passengers is now reduced. If y R 
k,n 

(t) is the position of the retiring bus at the time it starts operating as NIS, and y R 
k,n 

(t ′ )
is the current position of the retiring bus, the distance left to travel is L k / 2 − (y R 

k,n 
(t ′ ) − y R 

k,n 
(t)) . 

In phase (ii), the empty NIS bus ( k,n ) takes the shortest path to reach the designated parking location. To keep track of

the status of NIS bus ( k,n ) during the whole retirement process, we calculate at time t the remaining time needed to reach

parking location j , τ R 
k,n, j 

(t) , as follows: 

τ R 
k,n, j (t) = max 

{
0 , φk,n, j (t) ·

(
A · O 

R 
k,n (t) + 

L k 
2 E 

+ T 
[(
y R k,n (t) + L k / 2 

)
( mod L k ) , j 

])
+ 

(
1 − φk,n, j (t) 

)
·
(
τ R 
k,n, j (t − �) − �

)}
, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (16)

where A · O 
R 
k,n 

(t) , 
L k 
2 E and T 

[(
y R 
k,n 

(t) + L k / 2 
)

( mod L k ) , j 
]
represent the time for dropping off all onboard passengers, trav-

eling half the length of the line, and moving the empty bus to parking location j , respectively. The summation of these

three terms corresponds to the remaining time for bus ( k,n ) to reach parking lot j if it is substituted at time t , i.e.,

φk,n, j (t) = 1 . Otherwise, simply deduct � from the remaining time at time t − �, i.e., τ R 
k,n, j 

(t − �) − �. Then, we let

u R 
k,n, j 

(t) ∈ { 0 , 1 } , ∀ k ∈ K, n ∈ N k , j ∈ J denote whether or not NIS bus ( k, n ) reaches parking location j before the next deci-

sion epoch, i.e., u R 
k,n, j 

(t) = 1 if NIS bus ( k,n ) is going to reach parking location j before t + �, and u R 
k,n, j 

(t) = 0 otherwise.

The relationship between u R 
k,n, j 

(t) and τ R 
k,n, j 

(t) is described in Appendix A . 

The transition functions for NIS bus trajectories can be expressed as 

y R k,n (t) = 

( ∑ 

j∈J 
ζ̄ j,k,n (t − �) 

) 

· y k,n (t) −
( 

1 −
∑ 

j∈J 
ζ̄ j,k,n (t − �) 

) [ ∑ 

j∈J 
u R k,n, j (t − �) · y k,n (t) 

−
( 

1 −
∑ 

j∈J 
u R k,n, j (t − �) 

) 

· y R k,n (t) 

] 

, ∀ k ∈ K, n ∈ N k , t ∈ { �, � + 1 , . . . } . (17)

The first term on the right-hand side of Eq. (17) corresponds to the initialization of the NIS bus trajectory when the oper-

ating bus switches to NIS mode, while the second term indicates that the trajectory of the NIS bus is reset to −y k,n (t) 
6 if

the associated retirement process is completed between time t and t + �, i.e., the NIS bus reaches its designated parking

location. 

Jointly considering the substitution decisions and the retired buses repositioning decisions, the conservation of standby

resources over time can be written as 

w j (t + �) = w j (t) −
∑ 

k ∈K 

∑ 

n ∈N k 
ζ j,k,n (t) + 

∑ 

k ∈K 

∑ 

n ∈N k 
u R k,n, j (t) , ∀ j ∈ J , t ∈ { 0 , 1 , 2 , . . . } . (18)

2.4. Objective 

The transit agency aims at minimizing the total passengers’ costs and substitution costs over the infinite horizon. Pas-

sengers costs pertain to the average waiting times before boarding the bus, as well as the delays that they experience when

they alight from the buses (as compared to the published schedule). Similar to Eq. (17) in Petit et al. (2018) , the passenger

costs for using operating buses, denoted by C 
pax 

k,n 
(t) , can be presented as follows: 

C pax 
k,n 

(t) = μ

[(
ρ late max 

{
εk,n (t) 

V k 
, 0 

}
− ρearly min 

{
εk,n (t) 

V k 
, 0 

})
· 4 O k,n (t) v k,n (t) 

L k 

(
1 − v k,n (t) 

L k 

)
+ 

1 

2 

λk s 
2 
k,n 

(t) 

v k,n (t) 

]
, ∀ t, k ∈ K, n ∈ N k , (19)

where μ denotes the passenger’s value of time, ρ late is the weight associated with lateness, and ρearly is the weight associ-

ated with earliness. 
6 This value is arbitrary. Using a negative value allows us to simplify Eq. (9) . 
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The substitution costs include the costs for (i) requisitioning standby buses, (ii) operating NIS buses until they are empty

and repositioning them, as well as (iii) the costs associated with the passengers alighting from NIS buses, which can be

formulated as follows: 7 

C R j,k,n (t) = 

{ 

c M · T 
[
j, Y k,n (t + �) ( mod L k ) 

]} 

· ζ j,k,n (t) 

+ 

{
c M · τ R 

k,n, j (t) + 

∫ t + τ R 
k,n, j 

(t ) 

t 

C R,pax 
k,n 

(t ′ ) dt ′ 
}

· φk,n, j (t ) , ∀ t , k ∈ K, n ∈ N k , j ∈ J , (20) 

where c M 
denotes the agency operating cost per unit of time, and C 

R, pax 

k,n 
(t ′ ) denotes the passenger costs incurred on NIS

buses, i.e., 

C R, pax 

k,n 
(t ′ ) = μ

(
ρ late max 

{
εR 
k,n 

(t ′ ) 
V k 

, 0 

}
− ρearly min 

{
εR 
k,n 

(t ′ ) 
V k 

, 0 

})
· max 

{
O 
R 
k,n 

(t ′ ) v R 
k,n 

(t ′ ) 
L k / 2 + εR 

k,n 
(t ′ ) − Y k,n (t ′ ) + y R 

k,n 
(t) 

·(
2 −

v R 
k,n 

(t ′ ) 
L k / 2 + εR 

k,n 
(t ′ ) − Y k,n (t ′ ) + y R 

k,n 
(t) 

)
, 0 

}
, ∀ t ′ ≥ t, k ∈ K, n ∈ N k . (21) 

Note that there are no waiting costs associated with NIS buses in Eq. (21) as they are drop-off only. 

At this point, the dynamic multiline bus substitution problem over the infinite horizon can be formulated as follows: 

min 
ζ, φ

∞ ∑ 

t=0 

∑ 

k ∈K 

∑ 

n ∈N k 

{ 

E 

[∫ t+�

t 

C pax 
k,n 

(t ) dt 

]
+ 

∑ 

j∈J 
C R j,k,n (t) 

} 

(22) 

s.t. ( 3 ) − ( 21 ) , and 

ζ j,k,n (t) , φk,n, j (t) ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } . 
3. Solution approach 

The state space of the infinite-horizon stochastic dynamic program (22) , denoted by �, consists of the following ele-

ments: the deviations of operating buses from their schedules ε = { εk,n } k ∈K,n ∈N , their occupancies O = { O k,n } k ∈K,n ∈N , the
status of NIS buses τR = { τ R 

k,n, j 
} k ∈K,n ∈N k , j∈J , their trajectory y 

R = { y R 
k,n 

} k ∈K,n ∈N k , and their occupancy O 
R = { O 

R 
k,n 

} k ∈K,n ∈N k ,
and the number of standby buses at different parking locations w = { w j } j∈J . As such, the value function of the state ( ε, O,
τR , y R , O 

R , w ) should satisfy the Bellman’s optimality equation: 

J( ε, O , τR , y R , O 
R , w ) = min 

ζ, φ

∑ 

k ∈K 

∑ 

n ∈N k 

∑ 

j∈J 
C R j,k,n (t) + E 

[ ∑ 

k ∈K 

∑ 

n ∈N k 

∫ t+�

t 

C pax 
k,n 

(t ′ ) dt ′ 

+ J 
(
ˆ ε, ˆ O , ̂  τR , ̂  y R , ˆ O 

R , ˆ w 

)]
, ∀ 

(
ε, O , τR , y R , O 

R , w 

)
∈ �, t ∈ { 0 , 1 , 2 , . . . } , (23) 

where 
(
ˆ ε, ˆ O , ̂  τR , ̂  y R , ˆ O 

R , ˆ w 

)
∈ � denotes the state that the system transitions to at time t + �. 

Given the huge size of the state space and the binary nature of the control decisions, we proposed to solve the model

by using an ADP-based algorithm whose basic framework is presented in pseudocode in Algorithm 1 . The procedures of the

ADP algorithm are quite standard and can be found in the relevant literature ( Powell, 2011; Petit et al., 2018 ). 

For the modeling simplicity, we consider the value function approximation (VFA) as functions of state vectors ε and w .

The occupancy vector O is ignored since occupancies are highly correlated with the deviations ε, while the status informa-

tion of NIS buses, i.e., τR , is less important than the availability of those buses at each standby location, i.e., w . Therefore,

the VFA denoted by ˜ J ( ε, w ) can be defined as a finite set of one-dimensional separable functions as ˜ J ( ε, w ) = 

∑ 

j∈J 
ψ j 

(
w j 

)
+ 

∑ 

k ∈K 

∑ 

n ∈N k 
ψ k 

(
εk,n 

)
, 

where ψ j ( w j ) and ψ k ( εk,n ) are the piecewise linear functions with respect to w j and εk,n . The piecewise linear functions are

adopted since they are simple but meanwhile more stable than purely linear functions. 

Given the state of the system, the term 

∑ 

k ∈K 
∑ 

n ∈N k 
∫ t+�
t C 

pax 

k,n 
(t ′ ) dt ′ in Eq. (24) is independent of the decisions ζ,

φ. A Monte Carlo simulation method is then used to estimate its expected value. Those fixed-step simulations are

based on Eqs. (3)–(6) and (13)–(16) . The remaining combinatorial optimization problem involves the objective terms∑ 

k ∈K 
∑ 

n ∈N k 
∑ 

j∈J C R j,k,n 
(t) and E 

[˜ J (r) 
(
ˆ ε, ˆ w 

)]
. It can be solved with techniques such as enumeration or meta-heuristics (e.g.,

simulated annealing). Note that the second term is estimated using the final states generated by the Monte Carlo method. 
7 Standby buses could also be directly repositioned from one parking location to another for better utilization at later decision epochs. For simplicity, we 

chose to ignore this decision in the current study. 
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Algorithm 1 ADP algorithm 

1: Generate a random set of states. 

2: Initialize ˜ J for state variables ( ε, w ) . 

3: for r = 1 to R do 

4: Initialize the system state ε(r) , w 
(r) , O 

(r) = { O eq } n ∈ N , y R 
(r) 

, O 
R 

(r) 
, u 

R (r) . 

5: Sample the set of noise vectors 
{{ ω 

(r,q ) (t) } }
q ∈ 1 , ... ,Q for t = 0 , 1 , ..., �. 

6: for q = 1 to Q do 

7: Solve the one-stage problem: 

min 
ζ, φ

∑ 

k ∈K 

∑ 

n ∈N k 

∑ 

j∈J 
C R j,k,n (t) + E 

[ ∑ 

k ∈K 

∑ 

n ∈N k 

∫ t+�

t 

C pax 
k,n 

(t) dt + ̃
 J (r) ( ̂  ε, ˆ w ) 

] 

. (24) 

8: Obtain the marginal information v (r,q ) , and update the VFA. 

9: Update system state using Eqs. (3)-(18), { ω 
(r,q ) (t) } t=0 , 1 ,... �, and solution from the previous step. 

10: end for 

11: end for 

12: return the current value function ˜ J . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical gradients of the state variables are used as the marginal value information v ( r,q ) that are required for updating

the VFA in step 8 of Algorithm 1 . They are obtained by (i) slightly perturbing each element of the state variables indepen-

dently, (ii) solving the corresponding one-stage problem (), and then (iii) calculating the differences in objective function

values. Given the marginal value information v ( r,q ) , the VFA can be updated according to the following equation: 

˜ J (r) ( ε, w ) = 

{ (
1 − θ r−1 

)˜ J (r−1) ( ε, w ) + θ r−1 v (r,q ) , for ( ε, w ) = 

(
ε(r,q ) , w 

(r,q ) 
)
, ˜ J (r−1) ( ε, w ) , otherwise, 

where θ r−1 ∈ [0 , 1] is the step size parameter (e.g., generalized harmonic step size). 

The implementation of the proposed decision policy can be conducted in two phases: (i) the “offline” training process,

where the VFA is improved continuously by letting the ADP algorithm run for an arbitrary length of time over a large

static dataset (either historical or simulated); (ii) the “online” decision-making process, where the obtained VFA policy is

implemented in real time by solving the one-stage subproblem (24) based on the current state of the system. In practice,

as the decision intervals of the transit agency are usually on the order of 10 to 15 minutes, dispatchers can easily apply the

proposed approach and make decisions in real time. 

4. Time-varying problem 

Transit agencies may have to deal with time-varying settings (e.g., surge in travel demand, time-dependent congestion)

and need to adapt their service to best serve the passengers while keeping their operating budget. Thereby, the optimal

fleet utilization between regular and standby services is likely to change from one time period to another. In this section,

we briefly discuss the multi-period problem which aims at optimizing the transit fleet size and utilization over a non-

homogeneous planning horizon. 

Building upon the model from Section 2.1 , we consider a planning horizon [ T 1 , T P+1 ] (e.g., a day) that can be divided into

a set of P relatively homogeneous long time periods (e.g., peak hours, off-peak hours), denoted by P . These time periods

start at discrete times { T 1 , T 2 , ... T P }. The duration of each of these periods (e.g., 4-8 hours) is long as compared to the

decision epoch length (e.g., 10 min), and within each period the system parameters are assumed to be invariant. 

In period p ∈ P, the state of the system is now captured by the number of operating buses across all lines { N p,k } k ∈K , and
the number of standby buses S p . We denote the entire bus utilization plan by N = { N p,k } k ∈K,p∈P and S = { S p } p∈P . We use

c acq to denote the prorated costs of acquiring a bus, as well as the associated depreciation costs, per unit time. The multi-

period planning problem comes down to determining the optimal fleet size, and the utilization of these vehicles during

each time period, and the optimal substitution policy 
(
ζ, φ

)
= 

({ ζp, j,k,n (t) } , { φp, j,k,n (t) } 
)
, where { ζ p,j,k,n ( t )}, and { φp,j,k,n ( t )}

are the substitution and repositioning decisions during each period p ∈ P . If we replace the terms N k , ζ j,k,n (t) , and φj,k,n ( t )

in Eq. (3) - (21) by their multi-period counterparts, N p,k , ζp, j,k,n (t) , and φp,j,k,n ( t ), respectively, the multi-period version of the

model can be formulated as follows: 

min 
N , S , ζ, φ

P ∑ 

p=1 

∫ T p+1 

t= T p 

( ∑ 

k ∈K 

∑ 

n ∈N p,k 

{ 

E 

[∫ t+�

t 

C pax 
k,n 

(t ′ ) dt ′ 
]

+ 

∑ 

j∈J 
C R j,k,n (t) 

} ) 

dt + c acq ·
( ∑ 

k ∈K 
N 1 ,k + S 1 

) 

(25)

s.t. ( 3 ) − ( 21 ) , and 
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∑ 

k ∈K 
N p,k + S p = 

∑ 

k ∈K 
N p−1 ,k + S p−1 , ∀ p ∈ P\{ 1 } , (26) 

N p,k ∈ N , ∀ k ∈ K, ∀ p ∈ P, 

S p ∈ N , ∀ p ∈ P, 

ζp, j,k,n (t) , φp,k,n, j (t) ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , ∀ p ∈ P . 

The objective function now includes the passenger and agency operating costs across the entire time horizon, along with

the agency’s investment for acquiring the fleet (i.e., the second term in (25) ). Constraints (26) state that fleet size decisions

are at the tactical level; i.e., the total number of buses in the fleet shall be constant in the entire time horizon. 

While solving problem (25) , we assume that each time period is long enough so that the system will quickly reach

its stationary state. As such, the infinite-horizon model and solution from Sections 2 - 3 can be directly applied to each of

these periods. Conditional on the fleet configuration decisions ( N, S ), bus substitution decisions within each of the time

periods are similar to the solution to Problem (22) . Based on that, we propose a simple heuristic to determine N , where all

reasonable fleet combinations are tested for each time period, with the corresponding system costs obtained from the model

in Section 2 . To reduce the computation burden, for any given operating fleet, we only tested a few sizes of the standby bus

fleet — we stop as soon as the marginal benefit of having one additional standby bus in the fleet becomes negligible. Recall

that a bus could be unused (i.e., neither assigned as an operating bus nor used as a standby bus) in certain low demand

periods. In such a case, this bus’s depreciation costs could be lower. 

In real-world settings, the transition of the bus fleet between the heterogeneous time periods could be made at the

dispatchers’ discretion. Since the change in real-world travel demand is not expected to occur sharply (in contrast to what

is assumed in this section), dispatchers could progressively retire (or add) buses around the transition between time periods

so as to eventually meet the target fleet sizes. They could, for instance, retire or add buses at the termini. 

5. Numerical experiments 

In this section, we conduct a set of experiments to test the performance of the proposed strategy in a variety of ap-

plication scenarios. The purpose of the following experiments is to (i) show the benefits of pooling standby buses across

an increasing number of transit lines, (ii) show how time-varying demand can be addressed with multi-period fleet man-

agement, (iii) illustrate how the proposed strategy can be applied to real-world systems, (iv) demonstrate the benefits of

using bus substitution strategy as a complement to existing speed control strategies, and (v) investigate the impact of finite

vehicle capacity. 

Throughout this section, it is assumed that the agency makes the substitution decisions every � = 10 min over (single

or multiple) periods of 4 hours. A 30-sec time step is used to carry out the simulation of the transit system dynamics. All

distances in this section are calculated based on L1 norm to best represent an underlying dense grid of streets. In each

experiment, all standby buses are initially positioned uniformly across the standby locations. 

All tests are performed on a desktop computer with 2.5 GHz CPU and 16 GB RAM. To stay conservative, here we consider

that the early buses yield no delay cost if alighting passengers arrive early at their destinations, i.e., ρ late = 1 and ρearly = 0 .

Note that we also do not account for the benefits from early passenger arrivals. 

5.1. Benefits of standby vehicles pooling 

In this section, we present a set of experiments on a hypothetical transit network of different sizes to show the benefits

of pooling the standby buses across multiple transit lines. For simplicity we consider only one demand period. The system

costs are compared to those associated with the speed control strategies. 

All the lines are set with the same characteristics: L k = 8 km, N k = 4 buses, λk = 40 pax/km-h, ∀ k ∈ K. The disturbances

follow a normal distribution with the standard deviation σk = 0 . 045 km. Buses cruise at speed E = 30 km/h, passengers

board at rate B = 4 s/pax and alight at rate A = 2 s/pax. In each scenario, we consider two parking locations, whose positions

are fixed across all scenarios. Fig. 3 shows the route layout and parking locations for five scenarios, each with different

numbers of bus lines and standby buses. The monetary cost of time for passengers is set to be μ = 20 $/h and the agency

operating costs are c M 
= 37 $/h ( Petit et al., 2018 ). For all scenarios, an additional fixed depreciation cost of 12 $/h ( Neff and

Dickens, 2015 ) is also associated with each transit vehicle in the fleet, regardless of how it is operated. 

Fig. 4 plots the resulting average costs for each scenario and compares those with the one-way looking strategy ( Daganzo,

2009 ), the two-way looking strategy ( Daganzo and Pilachowski, 2011 ), and the ideal system where there is no disturbance.

We assume that the standby buses are unused for those three counterparts. 8 The costs for both the one-way looking and the

two-way looking strategies are derived based on the reduced commercial speed proposed in the corresponding references.

Since the travel demand is homogeneous along each line, it is assumed that all passengers travel on average a distance

of L /4. We assume favorably that passengers do not experience any other delays under these alternative strategies. The
8 For interested readers, Petit et al. (2018) studied scenarios where the dynamic substitution strategy uses the same number of buses in the fleet as the 

one- and two-way looking strategies, but with various splits between operating buses and standby buses. 



A. Petit, C. Lei and Y. Ouyang / Transportation Research Part B 126 (2019) 68–86 77 

Fig. 3. System layout of the hypothetical examples. 

Fig. 4. Costs per line for the different control strategies. 

 

 

 

 

 

 

 

 

 

 

waiting and riding costs for the dynamic substitution strategy are obtained through simulation of cumulative boardings and

alightings of each operating and NIS bus. All costs are averaged over a set of 20 simulations. As mentioned in Petit et al.

(2018) , the substitution strategy can compete with the most advanced control strategies (e.g., speed control), especially in

the case of driverless vehicles. Therefore, here we assume that all buses are driverless vehicles and the agency costs only

include the costs of operating the vehicles, along with the depreciation costs. The cost of self-driving technology for those

autonomous vehicles is ignored. In addition, we consider the alternative case where passengers have access to real-time bus

arrival times. Thereby, their waiting time can be reduced to a negligible amount. 

Fig. 4 (a) shows that the overall system costs per bus line decrease as the number of lines in the system increases, which

indicates that the dynamic substitution strategy can benefit from the “economies of scale” effect for pooling the standby

fleet across the entire system. On the other hand, the speed control strategies are implemented on each line independently

of each other and do not benefit from such economies; their unit costs remain constant across all scenarios. One can also
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Table 1 

Average performance for different network sizes and different control methods (4-hr time period). 

Number of lines 1 2 3 4 5 

Noiseless system Waiting costs 937 1873 2810 3746 4683 

Riding costs 1873 3746 5620 7493 9366 

Total passenger costs 2810 5620 8429 11239 14049 

Agency costs 784 1568 2352 3136 3920 

Total costs 3594 7188 10781 14375 17969 

Total costs per line 3594 

One-way looking strategy ( Daganzo, 2009 ) Waiting costs 1050 2100 3150 4199 5249 

Riding costs 2053 4107 6160 8214 10267 

Total passenger costs 3103 6207 9310 12413 15517 

Agency costs 784 1568 2352 3136 3920 

Total costs 3887 7775 11662 15549 19437 

Total costs per line 3887 

Two-way looking strategy ( Daganzo and Pilachowski, 2011 ) Waiting costs 1028 2057 3085 4114 5142 

Riding costs 2021 4042 6063 8084 10105 

Total passenger costs 3050 6099 9149 12198 15248 

Agency costs 784 1568 2352 3136 3920 

Total costs 3834 7667 11501 15334 19168 

Total costs per line 3834 

Dynamic substitution Waiting costs 1612 2715 3708 4427 5354 

Riding costs 1982 3913 5817 7657 9496 

Total passenger costs 3594 6628 9525 12084 14850 

Agency costs 880 1760 2640 3520 4400 

Substitution costs 79 166 319 553 810 

Total costs 4553 8554 12484 16157 20060 

Total costs per line 4553 4277 4161 4039 4012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

see that when |K| ≥ 4 , the proposed substitution strategy outperforms both speed control strategies in terms of passenger

costs. As a result, although it requires additional resources from the agency, its overall system costs do not exceed those

of the best speed control strategies by more than 5% when |K| ≥ 4 . The detailed numerical results in Table 1 indicate that

the system costs per line decrease by 6.1% for the two-line system, 8.7% for the three-line system, 11.3% for the four-line

system, and 11.9% for the five-line system. This clearly indicates that for a massive transit system with many lines, the

proposed substitution strategy holds the greater potential to outperform the most advanced control methods to date by

sharing a fleet of standby buses across the system. It is also interesting to see that in the five-line case, the passenger costs

for the substitution strategy are within 6% of those of the noiseless system; the standby resources almost balance out all

the inconvenience caused by the disturbances. 

In Fig. 4 (b), waiting costs are ignored due to availability of real-time information. Although the benefit from the pooling

effect is reduced, the substitution strategy benefits the most. As a result, it outperforms both speed control strategies in

terms of passenger costs for all cases. Note that the performance of both speed strategies is slightly better too, as we ignore

the extra waiting due to slower commercial speeds. 

To gain more insights on the utilization of the standby buses, it is also interesting to note that their average usage during

the 4-hour period increases as the number of lines/buses increases, from about 25% for one line to nearly 55% for five lines.

This is because the agency has more standby buses at hand, and can better react to schedule deviations. When standby

buses are left unused for a significant amount of time, as shown in this example, it opens the opportunity for re-using the

standby buses as regular buses from time to time. The passenger experience would be further improved, while the agency

makes better use of the expensive standby resources. While a dynamic optimization of the standby fleet might be difficult

to implement in short term windows, it would still be beneficial for the agency to adapt its fleet configuration during a

longer time horizon. This is the focus of the next example. 

5.2. Dynamic fleet management 

When a significant amount of time exists for standby buses to remain idle, we may improve their usage by reducing the

fleet size as well as enhancing their utilization. This is especially the case when systems face time-varying demand over a

multi-period horizon. 

We consider two homogeneous lines with length L k = 9 km over two 4-hour periods with two standby locations, similar

to Fig. 3 (b). The first time period represents an off-peak period (e.g., 1 pm - 5 pm) with demand λk = 30 pax/km-h, and the

second represents a peak period (e.g., 5 pm - 9 pm) with λk = 50 pax/km-h. As travel demand typically alternates between

peak and off-peak periods, the two time periods can be representative of a typical “peak/off-peak” cycle within a day of

service. We assume that the agency wants to ensure a minimum scheduled headway of 5 min during peak hours, and 8

min during off-peak. Therefore, there should be at least 3 and 5 buses operating on each line during off-peak and during

peak-hours, respectively. It is assumed that the agency can have at most 18 buses available to serve those two lines and

each bus would incur a prorated acquisition cost of 16 $/h. The remaining parameters are the same as in Section 5.1 . As
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Table 2 

System costs and optimal fleet configurations for different fleet sizes. 

Total fleet size Off-peak period Peak period Total cost 

Operating fleet Standby fleet Unused Costs Operating fleet Standby fleet Costs 

12 (4,4) 4 0 8,639 (5,5) 2 Inf Inf 

13 (4,4) 5 0 8,518 (5,5) 3 13,819 22,337 

14 (4,4) 5 1 8,606 (5,5) 4 13,300 21,906 

15 (4,4) 5 2 8,694 (5,5) 5 13,355 22,049 

16 (4,4) 5 3 8,782 (5,5) 6 13,263 22,045 

17 (4,4) 5 4 8,870 (6,6) 5 13,172 22,042 

18 (4,4) 5 5 8,957 (6,6) 6 13,142 22,099 

Fig. 5. CUMTD 5-line network. 

Table 3 

Characteristics of the five CUMTD lines. 

Line 1 2 3 4 5 

Length [km] 7.52 9.01 8.22 8.06 8.20 

Number of buses 3 3 3 3 3 

Demand density [pax/km-hr] 35.0 30.0 50.0 32.0 40.0 

Headway [min] 6.8 7.7 8.8 7.0 8.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such, all operating and standby buses are associated with a depreciation cost of 12$/h. An unused bus would be associated

with a depreciation cost of 6 $/h, i.e., 50% of the operating bus depreciation value. 

Table 2 shows the optimal fleet configuration for each fleet size between 12 and 18 buses. The costs reported include the

waiting costs, riding costs, substitution costs and fixed agency costs to account for operations, depreciation, and acquisition.

Note that for a fleet of 12 buses during the peak period, two standby buses are not sufficient to prevent the system from

failing; i.e., buses end up bunching permanently and substitutions cannot occur frequently enough to restore the system.

It is also interesting to see how during the off-peak period, it is preferable to leave buses unused rather than acquiring

them in the standby fleet. Their lower depreciation costs outrun the marginal benefit that they could provide if they were

in the standby fleet. The optimal fleet size appears to be 14 buses, with 5 operating buses dispatched on each line and 4

left as standby during the peak period, and 4 operating buses on each line, with 5 standby buses and one unused during

the off-peak period. It is noticeable that the agency should transform one standby bus along with the unused one in the

off-peak period into operating buses in the peak period. In this way, the opportunity costs for maintaining a standby fleet

are reduced through effective dynamic fleet management across multiple periods. 

5.3. CUMTD case study 

In the following, we consider a real-world test case with five of the most popular CUMTD bus lines on the campus of

the University of Illinois at Urbana-Champaign (UIUC); i.e., 1 Yellow, 10 Gold, 13 Silver, 12 Teal and 5 Green. The topo-

logical layout of the bus routes is shown in Fig. 5 , which is drawn to scale. The parameters of each line are displayed in

Table 3 . All distances between points are computed with the L norm to account for the fact that streets form a dense grid
1 
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Fig. 6. Evolution of schedule deviations under substitutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the campus. 9 Five large parking lots are selected as candidate locations for holding standby buses, as marked by red

squares in Fig. 5 . The cruising speed for all buses is set to be E = 25 km/h by taking account of a large number of stops on

campus and high density of interfering pedestrians. Boarding and alighting times are assumed to be B = 4 s/pax and A = 2

s/pax, respectively. The monetary value of passenger time is assumed to be μ = 10 $/h (i.e., about 50% of the hourly wage

in Champaign-Urbana ( Bureau of Labor Statistics, 2017 )) and the operating cost factor is assumed to be c M 
= 37 $/h. We

consider using a fleet of 6 standby buses to control bunching across these five lines in one time period. 

Fig. 6 illustrates the deviations from the schedule for all five lines. It shows that the deviations can be contained within

a reasonable limit by using the six standby buses. The maximum deviation on lines 2 to 4 is less than 1.5 km, which

corresponds to about 3.5 min of lateness/earliness. For lines 1 and 5, the deviations are also usually contained below 1.5

km but can occasionally reach 1.8 km (i.e., less than 4 min). Fig. 7 illustrates the occupancy of the operating buses on line

3, the highest across all lines. We can observe that it reaches a maximum of about 27 passengers, which can be handled

easily by a regular single-deck bus used by CUMTD. 

To obtain an overview of the usage and distribution of standby buses, we keep track of the number of standby buses

at each parking location over time, as shown in Fig. 8 . First, we clearly see that on average half of the standby fleet is in

NIS mode at all times. This gives a lower bound of the number of standby buses needed to operate this 5-line system. We

can also observe that the maximum average number of standby buses at a given location at the same time is about 2 (at

location 2), which can easily be accommodated by most of the parking lots on UIUC campus. On average, there are 14.0

substitution dispatches from location 2 during the 4-hr planning horizon. Location 2 appears as a strategic location as it is

the most frequently used place for holding standby buses. This is intuitive since it is the only centrally located one that can

offer the widest coverage and the fastest substitution to all five lines. In comparison, locations 1, 3, 4, and 5 respectively

yield 3.5, 4.4, 2.9, and 2.5 dispatches on average. Locations 1, 4 and 5 are used least frequently because of their peripheral

positions with respect to the overall layout of the transit lines. Location 3 has the advantage of being close to 3 lines, which

explains why it is used slightly more often than locations 1, 4 and 5. Therefore, we can draw the insights that, to fully

exploit the benefit of the substitution strategy, a transit agency should ensure proper coverage of the system by reserving

certain parking spots near the places where most of the bus lines would intersect. 
9 One-way street restrictions and other geographical obstacles are ignored for simplicity. 
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Fig. 7. Evolution of bus occupancies with substitution on line 3. 

Fig. 8. Distribution of standby locations over the 4-hour time horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Hybrid bunching control 

We know that the dynamic holding/speed strategies in the literature can effectively absorb small schedule deviations

up to a certain magnitude. However, adverse weather conditions, persistent traffic congestion, or surge in travel demand,

can cause large disturbances that push the system out of the stable domain of these strategies. When such perturbations

happen, those strategies will likely fail to keep the transit system on time. The dynamic substitution strategy can serve as a

perfect complement to the dynamic holding/speed strategies, by triggering a substitution as a remedy once the deviations

become so large that either the system will need a significant amount of time to recover, or it will simply fail. Meanwhile,

the dynamic holding/speed control strategies can also help smooth out small perturbations such that substitutions will be

used only infrequently — and only a smaller number of standby buses will be needed. 

In the following, we combine the bus substitution with the one-way looking strategy proposed in Daganzo (2009) as an

example of the hybrid method, and implement it on the CUMTD case as described in Section 5.3 . In addition, we assume

that buses cannot be early with respect to their schedules, to help maintain schedule stability. 

To represent a heavy load, the demand densities for the five lines are set to be 79, 75, 90, 77, and 83 pax/km-hr, re-

spectively. A larger disturbance and a greater value of time are employed as well, where σk = 0 . 147 km/min and μ = 30

$/h, respectively. This could represent a busy weekday where many students commuting to class cannot be too late. Since

speed control is implemented, we only consider a fleet of three standby buses. The remaining parameters are the same as

in section 5.3 . 

According to Daganzo and Pilachowski (2011) , the dynamics of the bus trajectories are 

y k,n (t + 1) = y k,n (t) + V k − δk + αk s k,n (t) , ∀ t ∈ { 0 , 1 , 2 · · · } , k ∈ K, n ∈ N k , 
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Fig. 9. Sample trajectories of 3 lines under speed control and substitutions. 

Table 4 

Average results for different standby fleet sizes and different control methods (4-hr time horizon). 

Average 

waiting cost 

Average 

riding cost 

Total 

passenger 

costs 

Operating costs Substitution 

costs 

Total costs 

w/ driver w/o driver w/ driver w/o driver 

One-way looking 

strategy 

8,765 43,946 52,711 6,720 2,940 0 59,431 55,651 

Hybrid strategy 7,569 43,090 50,659 7,620 3,084 150 58,429 53,893 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where αk and δk are the control parameters. Passengers check the schedule and arrive at the time that the bus is scheduled

to arrive. As such, the passenger waiting time is simply proportional to the schedule deviations. The formula for the number

of passengers boarding bus n on line k at time t is λk · S k 
V k 

· v k,n (t) and their associated waiting time is λk 
S k 
V k 

εk,n (t) . 

A set of sample trajectories are shown in Fig 9 . One can observe that deviations are effectively contained by only a few

substitutions despite the high demand and large disturbances. Most substitutions occur when the deviations reach about 1.3

km (e.g., line 1 at t = 3.3 hours, line 2 at t = 2.5 hours), or when buses are not evenly spaced (e.g., line 3 at t = 0.5 hours). 

Table 4 reports that the passenger costs of the proposed hybrid approach decrease by nearly 4% as compared to that

of the speed control strategy alone. If we assume that drivers operate the buses at a cost of 63 $/h, the agency’s costs for

applying the hybrid method would increase by 16%. However, due to the huge demand and the large value of time, the

overall system costs can be reduced by 1.7%. If we consider driverless vehicles, system costs are reduced by a higher value

of 3.2%. Thus, integration of the substitution strategy with other mitigation approaches shows a great promise to maintain

a more reliable service for the transit systems that are heavily loaded or suffer from serious disturbances. 

5.5. Impact of finite vehicle capacity 

As mentioned in Section 2.1 , this paper assumes that buses have infinite capacity, and hence vehicle substitutions will

not be induced by full buses. Such a simplification will be reasonable only if the schedule deviation and bus occupancy are

highly correlated (e.g., late buses tend to carry more passengers, and vice versa). To test whether such an assumption is

reasonable, we now impose a finite bus capacity which may also trigger vehicle substitutions, and investigate its impact on

the system performance. 

To ensure a high occupancy of buses, we consider two identical bus lines, each with length L = 9 km, N k = 3 operating

buses, and a demand density of λ = 80 pax/km-h. These two lines share 4 standby buses. The remaining settings are the

same as the two-line case in Section 5.1 . We apply the methodology described in Section 3 to obtain the VFA policy (i.e.,

assuming infinite vehicle capacity). We then simulate the system operations with this VFA policy, but now consider a finite

vehicle capacity that ranges from 50 to 75 passengers. Passengers are denied boarding once a bus is full, and they have

to wait for the next available bus. At each decision epoch, if an operating bus has reached its capacity, a substitution is

triggered with the closest available standby bus. The simulations are run over 50 realizations of uncertainties; for each

vehicle capacity, the average number of substitutions and the corresponding average system costs are reported in Table 5 .

The substitutions are further classified into 3 categories: (i) those only due to deviations (based on the VFA policy), although

this operating bus has not reached its capacity; (ii) those only due to occupancy, i.e., a bus has reached its capacity but the

VFA policy does not trigger a substitution; (iii) both, i.e., the VFA policy triggers a substitution and meanwhile this bus has

reached its capacity. The corresponding performance under infinite vehicle capacity is also included as the benchmark. 

Table 5 shows that, in general, more substitutions are triggered by both the VFA and the capacity constraint as the bus

capacity decreases. This shows a strong correlation between schedule deviation and bus occupancy. As a result, the number

of substitutions due to occupancy only is very small as compared to those covered by the VFA policy. Also, the total number

of substitutions only increases marginally (i.e., by 5%) for lower-capacity vehicles, which indicates that substitutions due to
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Table 5 

Average results for different vehicle capacities (4-hr time horizon). 

Capacity Substitutions due to Total substitutions Waiting costs Riding costs Substitution costs Total costs 

Deviations Occupancy Both 

Inf 22.7 0.0 0.0 22.7 14,508 13,012 278 27,798 

75 22.1 0.0 0.7 22.8 14,483 12,973 276 27,732 

70 21.8 0.0 1.0 22.8 14,530 12,971 276 27,777 

65 21.2 0.0 1.6 22.8 14,602 12,968 276 27,846 

60 20.3 0.1 2.7 23.1 14,674 12,954 276 27,904 

55 18.6 0.4 4.4 23.4 14,854 12,941 278 28,073 

50 16.9 0.9 6.2 24.0 15,088 12,902 279 28,269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

occupancy are “dominated” by VFA-triggered substitutions for these cases. Not surprisingly, the average total costs increase

by less than 2% when the vehicle capacity drops from infinity to 50. 

Notice too, interestingly, that the total costs for cases with certain finite vehicle capacities (70-75) are slightly smaller

than those of infinite capacity. In those cases, the additional wait that passengers experience (due to full buses) is out-

weighed by the shorter turn-around time that an NIS bus may need so as to become available again for the next substitution

(since there is likely a smaller number of onboard passengers that must alight before the bus can retire). 

One should recognize that the above conclusion only holds for the chosen system parameters. In practice, a transit agency

may face very low vehicle capacities that impact vehicle substitution more significantly. In such cases, our model can still

be applicable if we still include the vehicle occupancy as part of the system state and Bellman Equation (e.g., (23) ), and

train the VFA policy accordingly. 

6. Conclusion 

This paper uses a dynamic substitution strategy to mitigate bus bunching for urban transit systems with multiple bus

lines. This strategy entails dispatching standby buses, which are prepositioned at suitable locations, to take over service from

late/early in-operation buses. Once an operating bus has been substituted, it changes into NIS or retiring mode, in which

only passenger alighting is allowed until the bus becomes empty. Therefore, the agency needs to decide how to dispatch

the shared pool of standby buses to substitute operating buses across all lines, and where to reposition the NIS buses over

the service region. The agency’s goal is to deliver the best service, e.g., least waiting and dwelling times of passengers, while

minimizing the total operating costs. Under homogeneous settings, we formulate the problem into a stochastic dynamic

program in an infinite-horizon and develop a non-myopic ADP-based algorithm to reveal the optimal decision-making

policy for substitution and repositioning. We also present a multi-period dynamic program to tackle time-varying systems

with a dynamic utilization of the fleet (either to provide regular service or serve as standby). The proposed strategies

and solution algorithms are tested with a set of hypothetical transit networks, and compared with the existing adaptive

speed control methods under homogeneous settings. Results show that the dynamic substitution strategy can benefit from

“economies of scale” by pooling standby buses across multiple lines, and outperform its counterparts in terms of decreasing

passenger costs. We also quantify the benefit of dynamic fleet management under time-varying demand. It is shown that

optimal fleet utilization allows further savings on vehicle opportunity costs. Moreover, a case study based on a subnetwork

of the transit system in Champaign, Illinois, is also presented, showing the potential of the proposed approach for stabilizing

small transit systems. Finally, a hybrid approach that combines speed control and bus substitution strategies is introduced

to stabilize extremely unstable systems. It is shown that it yields smaller system costs than any single strategy used alone. 

In this research, the proposed strategy is tested in small-scale networks. However, in reality transit agencies may monitor

over 50 or more bus lines. It shall be intuitive that the larger the number of bus lines, the higher the benefits from pool-

ing standby buses. Therefore, one of the future research opportunities could be to apply the proposed dynamic substitution

strategy to large-scale real-world transit networks. One challenge in this direction has to do with solving the Bellman equa-

tion for many lines, as the optimization problem at each decision epoch involves a difficult combinatorial problem when

the transit network becomes large. Future work should also seek field implementations of the proposed strategy, to exam-

ine the real performance of the strategy as compared to the theoretical predictions. Also, future effort s can be devoted to

improving the proposed hybrid approach under large disturbances. The design of the speed control law could account for

the impact of the bus substitutions, especially when deviations grow large. This would limit the loss in cruising speed and

improve the passenger experience. Furthermore, vehicle capacity constraints could be considered in the model to also allow

for substitutions when vehicle occupancy is reaching the maximum capacity. In that case, vehicle occupancy should also

be included in the VFA as part of the system state. The proposed dynamic substitution strategy could also potentially be

modified to control headway-based systems; e.g., by using headways as state variables and determining bus insertion loca-

tions/times based on bus trajectory projections. Finally, we are also interested in the strategic planning of the standby fleet

across a network of routes. We wish to optimize the allocation and positioning of standby resources in a large-scale transit

network to reduce the agency costs while maintaining a satisfying level of service. In addition, we could consider the transit

demand as endogenously dependent on the level of service; e.g., the total amount of transit riders is modeled as a function

of passenger experience (i.e., travel time), and included as part of the state variables that influence the system dynamics. 
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Appendix A. Status of the not-in-service buses 

Recall u R 
k,n, j 

(t) ∈ { 0 , 1 } , ∀ k ∈ K, n ∈ N k , j ∈ J denote whether or not NIS bus ( k,n ) reaches parking location j before the

next decision epoch, i.e., u R 
k,n, j 

(t) = 1 if NIS bus ( k,n ) is going to reach parking location j before t + �, and u R 
k,n, j 

(t) = 0

otherwise. The relationship between u R 
k,n, j 

(t) and τ R 
k,n, j 

(t) can be expressed by the following set of inequalities: 

u R k,n, j (t) ≥ α1 
k,n, j (t) + α2 

k,n, j (t) − 1 , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (27) 

u R k,n, j (t) ≤ α1 
k,n, j (t) , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (28) 

u R k,n, j (t) ≤ α2 
k,n, j (t) , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (29) 

where α1 
k,n, j 

(t) and α2 
k,n, j 

(t) are binary indicators defined as follows: 

α1 
k,n, j (t) ≥

τ R 
k,n, j 

(t) 

M 

, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (30) 

α1 
k,n, j (t) < 1 + 

τ R 
k,n, j 

(t) 

M 

, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (31) 

α2 
k,n, j (t) > 

� − τ R 
k,n, j 

(t) 

M 

, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (32) 

α2 
k,n, j (t) ≤ 1 + 

� − τ R 
k,n, j 

(t) 

M 

, ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (33) 

α1 
k,n, j (t) , α

2 
k,n, j (t) ∈ { 0 , 1 } , ∀ j ∈ J , k ∈ K, n ∈ N k , t ∈ { 0 , 1 , 2 , . . . } , (34) 

where M is an upper bound of τ R 
k,n, j 

(t ) , ∀ t , k ∈ K, n ∈ N k , j ∈ J . Eqs. (30) - (34) state that α1 
k,n, j 

(t) = 1 if and only if τ R 
k,n, j 

(t) >

0 , and α2 
k,n, j 

(t) = 1 if and only if τ R 
k,n, j 

(t) ≤ �, such that u R 
k,n, j 

(t) = 1 if and only if τ R 
k,n, j 

(t) ∈ (0 , �] . 

Appendix B. Continuous vs. discrete models 

In this paper, we model the spatial dimension with a continuous approximation. We now compare this continuous model

with a more commonly seen discrete model. To be consistent with the rest of the paper, we denote the demand density in

the discrete system by λ and the commercial speed of the buses by V . In addition, we denote the stop spacing by s , and the

walking speed by v w . 

First, we look at a discrete system with no randomness, where the target headway H is maintained. Under such condi-

tions and with discrete stops, the total waiting time, W 
D 
1 

, experienced by the passengers within the catchment area illus-

trated in Fig. 10 , can be expressed as 

W 
D 
1 = 

∫ s/ 2 
x =0 

[∫ x/V + H 
t= x/V 

(
H − t − x 

V 

)
λdt + 

∫ x/V + H 
t= H−x/ v w 

(
2 H − t − x 

V 

)
λdt 

]
dx 

+ 

∫ 0 
x = −s/ 2 

[∫ x/ v w + H 
t= x/V 

(
H − t + 

x 

V 

)
λdt + 

∫ x/V + H 
t= H+ x/ v w 

(
2 H − t + 

x 

V 

)
λdt 

]
dx, (35) 

https://doi.org/10.13039/501100008982
https://doi.org/10.13039/100006752
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Fig. 10. Catchment area over one stop spacing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the first term corresponds to the passengers within this area who are able to catch bus 1, and the second term per-

tains to the passengers who have to wait for bus 2. Simple algebra shows that the above formula reduces to the following:

W 
D 
1 = 

λH 
2 s 

2 
. (36)

In the continuous model, the equivalent demand in this catchment area is cleared when a bus travels a distance of s . At

each time step, a bus travels a distance of V (in units of distance per time step). As a result, the number of passengers

boarding within this time step is λVH , the average waiting time is H /2, and the number of time steps to travel a distance of

s is about s / V . As such, the total waiting time experienced by passengers within the same catchment area in the continuous

model, denoted by W 
C 
1 

, equals to λH 2 s 
2 , which is exactly the same as W 

D 
1 . Moreover, in the discrete model, the travel time

for each passenger can be approximated by 

T D 1 ≈ L 

4 V 
+ 

s 

2 v w 
− s 

2 V 
. (37)

If L 
 s , then Eq. (37) yields the same result as that of the continuous model, i.e., L 
4 V . 

Now let’s consider the case when randomness arises. For the discrete model, the extra waiting time W 
D 
2 and extra travel

time T D 
2 

experienced by an average passenger, due to randomness, have been estimated in Daganzo and Ouyang (2019) as

follows: 

W 
D 
2 = 

1 

2 
· V ar(h ) 

H 

, 

T D 2 ≈
[
( 1 + β) 

S − 1 
]

· V ar(h ) 
H 

, (38)

where S is the average number of stops that a passenger travels, h is the actual headway that passengers experience in the

vehicle, and β �1 is a unitless constant that can be approximated as λsB (where B is the time needed for boarding one

passenger). A similar analysis on the continuous model shows that the average extra waiting time per passenger W 
C 
2 

= W 
D 
2 

,

and that 

T C 2 ≈
[ (

1 + 

β

k 

)kS 

− 1 

] 

· V ar(h ) 
H 

, (39)

where k is the number of time steps needed to overcome one stop spacing ( k 
1). The decomposition of T D 
2 

and T C 
2 

down

to the second order, using the Binomial theorem, yields 

T D 2 ≈
(
Sβ + 

S(S − 1) 

2 
β2 

)
· V ar(h ) 

H 

, 

T C 2 ≈
(
Sβ + 

S(kS − 1) 

2 k 
β2 

)
· V ar(h ) 

H 

. (40)
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This clearly shows that for β �1, the two terms are approximately equal. As k → ∞ , the difference in the second order term

is in order of 1 S , which is about 5% to 10%, for typical values of S ∼ 10 − 20 stops. As a result, the estimated travel time in

the continuous model is slightly larger than that in the discrete model. 

In addition, Pilachowski (2009) has used simulations to compare the bunching phenomena in both a discrete-stop setting

and a continuous-stop setting. It was found that when the system is left uncontrolled, the buses in the continuous stop

model collapse into bunches earlier than the discrete stop model. This indicates that a system with discrete stops is easier

to control than the continuous counterpart, and that less substitutions would be needed, which also reduces agency costs

for substitutions. In light of those conclusions, the proposed strategy can be expected to perform better in discrete settings.

References 

Abkowitz, M.D. , Lepofsky, M. , 1990. Implementing headway-based reliability control on transit routes. Journal of Transportation Engineering 116 (1), 49–63 .

Argote-Cabanero, J. , Daganzo, C.F. , Lynn, J.W. , 2015. Dynamic control of complex transit systems. Transportation Research Part B: Methodological 81 (1),

146–160 . 
Bartholdi, J.J. , Eisenstein, D.D. , 2012. A self-coördinating bus route to resist bus bunching. Transportation Research Part B: Methodological 46 (4), 4 81–4 91 . 

Berrebi, S.J. , Watkins, K.E. , Laval, J.A. , 2015. A real-time bus dispatching policy to minimize passenger wait on a high frequency route. Transportation
Research Part B: Methodological 81, 377–389 . 

Bureau of Labor Statistics, 2017. May 2016 metropolitan and nonmetropolitan area occupational employment and wage estimates Champaign-Urbana, IL.
https://www.bls.gov/oes/current/oes _ 16580.htm . 

Ceder, A. , 1990. Optimal design of transit short-turn trips. Transportation Research Record: Journal of the Transportation Research Board 1221, 8–22 . 

Daganzo, C. , Ouyang, Y. , 2019. Public Transportation Systems Public Transportation Systems: Principles of System Design, Operations Planning and Real-Time
Control. World Scientific . 

Daganzo, C.F. , 2008. Fundamentals of Transportation and Traffic Operations. Emerald, Inc. . 
Daganzo, C.F. , 2009. A headway-based approach to eliminate bus bunching: systematic analysis and comparisons. Transportation Research Part B: Method-

ological 43 (10), 913–921 . 
Daganzo, C.F. , Pilachowski, J. , 2011. Reducing bunching with bus-to-bus cooperation. Transportation Research Part B: Methodological 45 (1), 267–277 . 

Delgado, F. , Munoz, J.C. , Giesen, R. , 2012. How much can holding and/or limiting boarding improve transit performance? Transportation Research Part B:

Methodological 46 (9), 1202–1217 . 
Delgado, F. , Muñoz, J.C. , Giesen, R. , Cipriano, A. , 2009. Real-time control of buses in a transit corridor based on vehicle holding and boarding limits. Trans-

portation Research Record: Journal of the Transportation Research Board (2090) 59–67 . 
Eberlein, X.J. , Wilson, N.H.M. , Bernstein, D. , 2001. The holding problem with real-time information available.. Transportation Science 35 (1), 1–18 . 

Estrada, M. , Mensión, J. , Aymamí, J.M. , Torres, L. , 2016. Bus control strategies in corridors with signalized intersections. Transportation Research Part C:
Emerging Technologies 71, 500–520 . 

Fu, L. , Liu, Q. , Calamai, P. , 2003. Real-time optimization model for dynamic scheduling of transit operations. Transportation Research Record: Journal of the

Transportation Research Board (1857) 48–55 . 
Hernández, D. , Muñoz, J.C. , Giesen, R. , Delgado, F. , 2015. Analysis of real-time control strategies in a corridor with multiple bus services. Transportation

Research Part B: Methodological 78, 83–105 . 
Ibarra-Rojas, O. , Delgado, F. , Giesen, R. , Muñoz, J. , 2015. Planning, operation, and control of bus transport systems: A literature review. Transportation

Research Part B: Methodological 77, 38–75 . 
Knuth, D. , 1972. The Art of Computer Programming. Addison-Wesley . 

Ling, K. , Shalaby, A. , 2004. Automated transit headway control via adaptive signal priority. Journal of Advanced Transportation 38 (1), 45–67 . 
Liu, H. , Skabardonis, A. , Zhang, W. , 2003. A dynamic model for adaptive bus signal priority. In: Preprint CD-ROM, 82nd Transportation Research Board

Annual Meeting, Washington, DC . 

Liu, Z. , Yan, Y. , Qu, X. , Zhang, Y. , 2013. Bus stop-skipping scheme with random travel time. Transportation Research Part C: Emerging Technologies 35,
46–56 . 

Neff, J. , Dickens, M. , 2015. 2013 Public Transportation Association Fact Book. Technical Report. American Public Transportation Association, Washington, DC .
Newell, G.F. , 1974. Control of pairing of vehicles on a public transportation route, two vehicles, one control point.. Transportation Science 8 (3), 248–264 . 

Newell, G.F. , Potts, R.B. , 1964. Maintaining a bus schedule. Proceedings of the 2nd Australian Road Research Board Conference 2, 388–393 . 
Osuna, E.E. , Newell, G.F. , 1972. Control strategies for an idealized public transportation system.. Transportation Science 6 (1), 52–72 . 

Petit, A. , Ouyang, Y. , Lei, C. , 2018. Dynamic bus substitution strategy for bunching intervention. Transportation Research Part B: Methodological 115, 1–16 . 

Pilachowski, J.M. , 2009. An Approach to Reducing Bus Bunching. University of California, Berkeley . 
Powell, W.B. , 2011. Approximate Dynamic Programming: Solving the curses of dimensionality, 703, 2nd John Wiley & Sons . 

Sánchez-Martínez, G. , Koutsopoulos, H. , Wilson, N. , 2016. Real-time holding control for high-frequency transit with dynamics. Transportation Research Part
B: Methodological 83, 1–19 . 

Sun, A. , Hickman, M. , 2005. The real–time stop–skipping problem. Journal of Intelligent Transportation Systems 9 (2), 91–109 . 
Wu, W. , Liu, R. , Jin, W. , 2017. Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour. Trans-

portation Research Part B: Methodological 104, 175–197 . 

Xuan, Y. , Argote, J. , Daganzo, C.F. , 2011. Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis. Transporta-
tion Research Part B: Methodological 45 (10), 1831–1845 . 

http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0001
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0001
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0001
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0002
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0002
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0002
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0002
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0003
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0003
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0003
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0004
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0004
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0004
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0004
https://www.bls.gov/oes/current/oes_16580.htm
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0005
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0005
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0006
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0006
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0006
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0007
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0007
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0008
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0008
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0009
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0009
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0009
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0010
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0010
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0010
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0010
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0011
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0011
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0011
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0011
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0011
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0012
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0012
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0012
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0012
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0013
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0013
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0013
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0013
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0013
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0014
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0014
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0014
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0014
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0015
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0015
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0015
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0015
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0015
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0016
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0016
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0016
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0016
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0016
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0017
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0017
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0018
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0018
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0018
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0019
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0019
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0019
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0019
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0020
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0020
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0020
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0020
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0020
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0021
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0021
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0021
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0022
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0022
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0023
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0023
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0023
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0024
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0024
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0024
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0025
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0025
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0025
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0025
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0026
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0026
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0027
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0027
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0028
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0028
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0028
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0028
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0029
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0029
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0029
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0030
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0030
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0030
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0030
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0031
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0031
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0031
http://refhub.elsevier.com/S0191-2615(18)30710-0/sbref0031

	Multiline Bus Bunching Control via Vehicle Substitution
	1 Introduction
	2 Time-independent multiline substitution
	2.1 Model setting
	2.2 Bus substitution strategy
	2.3 Not-in-service bus retirement and repositioning
	2.4 Objective

	3 Solution approach
	4 Time-varying problem
	5 Numerical experiments
	5.1 Benefits of standby vehicles pooling
	5.2 Dynamic fleet management
	5.3 CUMTD case study
	5.4 Hybrid bunching control
	5.5 Impact of finite vehicle capacity

	6 Conclusion
	Acknowledgments
	Appendix A Status of the not-in-service buses
	Appendix B Continuous vs. discrete models
	References


