

Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion

Amir Monemian Esfahani ^a, Jordan Rosenbohm ^a, Keerthana Reddy ^a, Xiaowei Jin ^a, Tasneem Bouzid ^a, Brandon Riehl ^a, Eunju Kim ^a, Jung Yul Lim ^{a,b}, Ruiguo Yang ^{a,b,c,*}

^a Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588

^b Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198

^c Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588

*Corresponding author: ryang6@unl.edu

Abstract

Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechano-chemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional (2D) settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the crosstalk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical

stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration.

Impact statement

Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.

1. Introduction

Tissues in the human body are formed by the physical linkage among individual cells through cell-cell and cell-ECM connections. These physical structures provide mechanical integrity by transmitting physical forces across cytoskeletal networks within individual cells. In the same capacity, they also possess mechanosensors that can feel physical forces and orchestrate a proper biochemical response of different types and time-scales. This process has long been known as mechanotransduction, a phenomenon that was discovered in ion channels and later expanded to include mechanochemical processes from many other cell and tissue types¹. Exploration of mechanotransduction has uncovered many molecules with mechanosensing capabilities at the cell-ECM and cell-cell connections, most noteworthy of which are at the focal adhesion and cadherin based cell-cell adhesion sites².

Studies in cellular level mechanotransduction use many physical methods to apply a force or strain to cell adhesions, the only physical structures of a cell that can take mechanical input as a stimulus. In a two-dimensional (2D) cell culture model, mechanical stretching represents the most

convenient way of applying this mechanical input³, among others such as fluid shear. Mechanical stretching normally employs a flexible substrate where cells can grow and form a monolayer. An actuation mechanism induces an in-plane deformation of the flexible substrate and thus causes a strain on the cell monolayer as a whole and, at the molecular level, a strain on the mechanosensing molecules. Different regimens of strains, including static, cyclic, uniaxial, and biaxial, have been proposed to elicit a variety of biochemical responses⁴. Through this simple mechanism, researchers have witnessed a host of discoveries that provide understanding on how cells in different tissues connect and interact with one another in tissue morphogenesis⁵, grow and proliferate⁶, and, most importantly, probe the microenvironment through mechanosensing to direct their own fate⁷.

Linker molecules between cadherin molecules and the cytoskeleton at the cell-cell contact, such as α -catenin, generally serve as the mechanosensing elements at cell-cell adhesion sites⁸, in a similar fashion to focal adhesion kinases (FAKs) at the cell-ECM adhesion sites. They experience straining from external stimuli in the form of a conformational change, which exposes binding sites for molecules in downstream pathways. This series of events subsequently leads to strengthening of the cell-cell adhesion or dissipation of tissue level stresses within cytoskeleton elements⁹. These responses normally are achieved by forming adhesion bond clusters, or by enhancing existing cell-cell adhesion connections¹⁰. Following mechanotransduction, cells will exhibit various physiological behaviors, and the majority of cell stretching studies are aimed at cellular proliferation and tissue regeneration.

In this review, we will provide a focused overview of the 2D cell stretching practices on different cells with an emphasis on the molecular pathways in mechanotransduction which lead to cell proliferation, tissue regeneration, and wound healing. We will review cell-cell adhesive junctions and the biophysical processes in their adaptation to external strain. We will subsequently discuss different modes and regimes of cell stretching, which is followed by an overview of

mechanotransduction responses to these different types of stretching. The effect of mechanical stretch on the crosstalk between the cell-cell and cell-ECM adhesion complexes is also discussed, in addition to physiological effects that arise from the responses, such as tissue regeneration and wound healing. Then, a concluding remark and future perspective will be provided to suggest potential new niche areas of research on mechanotransduction.

2. Cell-cell adhesion

2.1. *Cell-cell adhesion junctions*

There are four types of cellular junctions at the cell-cell contact: tight junctions, gap junctions, adherens junctions (AJs), and desmosomes. Tight junctions seal the paracellular space, limiting the passage of molecules and ions through intercellular spaces and preventing the movement of membrane proteins between the upper and lower portions of the cell. Therefore, the apical and basolateral parts of the cell membrane with different functions can be preserved¹¹. Gap junctions function as pores between adherent cells, allowing small molecules, ions, and electrical current to pass directly between cells¹². This facilitates the passage of potential through a tissue. For example, moving action potential in heart muscles flows across cells, causing the heart to pulse rhythmically.¹³.

AJs and desmosomes, on the other hand, have the key role in maintaining tissue mechanical integrity. AJs are composed of classical cadherins at the extracellular area as adhesion molecules, and armadillo family proteins at the intracellular region as linker molecules¹⁴. At the extracellular domain, E-cadherin molecules from neighboring cells form catch bonds, resisting tension and maintaining tissue integrity. E-cadherin continues through the cell membrane to the cytoplasmic domain. At this point, E-cadherin is linked to linker molecules, p120- and β -catenin, which are further connected to actin filaments (AFs) through another linker molecule, α -catenin (**Figure 1A**). It has been shown that both E-cadherin and α -catenin at AJs serve as mechanosensors in different types of cells in the skin and cardiovascular tissues¹⁵. Desmosomes

are cadherin based adhesive junctions and have a molecular organization similar to AJs¹⁶. Desmosomes are composed of desmosomal cadherin, desmogleins (Dsg), and desmocollins (Dsc), as well as linker proteins from the armadillo family and the plakin family of cytolinkers¹⁷. The cytoplasmic tails of the cadherins connect to the intermediate filament network through the linker molecules (**Figure 1B**). Molecules in the desmosome junction have yet to be revealed as mechanosensors, although some studies have suggested that plakophilin serves as binding scaffolds for RhoA, which potentially regulates cell contractility¹⁸.

2.2. Biophysics of cadherin-based AJ and desmosome cell-cell adhesions

Cells adhere to their neighboring cells physically through cellular junctions with cadherin adhesion molecules, transmembrane molecules that have a key role in cell-cell adhesion. They function as a cell-cell adhesion regulator and mechanotransducer during tissue morphogenesis. Cadherin regulates cell-cell adhesion with three mechanisms: (1) providing catch bonds that strengthen when pulled, (2) varying the interfacial tension between cell surfaces through adhesion tension, and (3) initiating mechanosensing to regulate the cytoskeletal network¹⁹. Adhesion tension, like surface tension in liquids, gives rise to the circular shape of cells; at the cell-cell contact, cadherin causes a reduction in adhesion tension and, as a result, increases the surface contact area²⁰. In addition to reducing adhesion tension to decrease the interfacial tension between cells, cadherin signaling also helps increase the cell contact area, which is achieved by reorganizing the actomyosin cytoskeleton in the contact area²⁰.

Studies show that contractile actomyosin exerts pulling forces on the cadherin bonds, which resist the pulling by forming catch bonds to prevent bond rupture²¹. Forces are subsequently transmitted through cadherin bonds to the entire cytoskeletal network. The anchor points of cadherin to the cytoskeleton are mediated by α - and β - catenin, and if forces increase, vinculin and other molecules are recruited to this complex in parallel^{22,23}. Researchers determined that the weakest component resides in the cytoplasmic domain rather than the extracellular domain²⁴⁻²⁶.

2.3. Diseases related to AJs and desmosomes

In normal tissues, cells tightly attach and maintain tissue integrity. In the diseased state, on the other hand, tissues frequently have cells with detachment or abnormal integrity in cell-cell adhesion. In atherosclerosis, when plaque builds up inside blood vessels, reduction of cell adhesion strength results in the detachment of the plaque, which can lead to a stroke or heart attack²⁷. In malignant tumors, a significant decrease in cell-cell adhesion is often exhibited^{28,29}. Immunostainings of various tumor types with antibodies targeting specific proteins in the AJs have shown a correlation between the changes in the proteins' expressions and pathological conditions³⁰. In breast cancer, for instance, cadherin expressions are often downregulated and the overall loss of heterozygosity of cadherin is common³⁰. Loss-of-function mutations in α - and β -catenin proteins have also been reported in cell lines derived from human epithelial tumors³¹. However, the prevalence of these mutations in primary tumors remains to be fully understood³¹.

Desmosomes have the primary role in resisting external strain. They are prominent in the epidermis and heart, tissues often subjected to considerable mechanical stresses in the human body. Mutations in, or autoantibodies directed at, desmosomal proteins lead to compromised cardiac or cutaneous function, and sometimes both. An autoimmune attack on Dsg causes pemphigus and staphylococcus³². Ablation of the plakoglobin gene results in mouse embryonic lethality owing to mechanical fragility of the myocardium³³. Desmoplakin mutations can cause an array of diseases in the heart and skin with varying severity³⁴.

3. Monolayer based stretching

Interrogating cells in a monolayer is the most convenient way to study cell-cell adhesion and the effect of mechanotransduction in healthy and diseased conditions. In these methods, cells are seeded and grown on a flexible substrate which is then stretched through the application of a load. These loads are transduced to biochemical signals through different pathways depending on the nature of the load³⁵⁻³⁷. Different cell types behave in different ways to the same stimulation,

which has yet to be fully studied³⁸. Investigators have cultured various cell types on these flexible substrates, such as bone cells³⁹, lung cells⁴⁰, and neurons⁴¹, to study cell responses to the stretching force, including cell proliferation, migration, differentiation, cytoskeleton rearrangement, and other mechanotransduction responses.

Two common load types have been used to investigate cell-cell adhesion using flexible substrates. The simplest is static loading, in which a fixed strain is applied to the substrate and held. Viscoelastic properties of cells such as relaxation time can be investigated with this load type. Conversely, dynamic loading is used to subject the substrate to a time-varying strain. The effect of strain amplitude and frequency on tissue behavior of melanocytes has been explored with this load shape⁴². In-plane uniaxial and biaxial stretching are commonly used as methods to apply a uniformly distributed force to cells. To apply the load, the substrate is attached to a mechanism which stretches the substrate upon actuation. Bone cells and embryonic osteoblasts were investigated using this stretching method^{43,44} (**Figure 2A** and **2B**). Uniaxial and biaxial stretching methods are mainly used to study the effect of load on bone tissue^{38,45,46}. A similar in-plane technique uses vacuum pressure to apply strain to the substrate of cultured HEK293 cells (**Figure 2C**) and offers a uniform, equiaxial strain on cells⁴⁷. **Four-point bending**^{48,49} is an out-of-plane technique for applying strain to the substrate (**Figure 2D**). This method offers a low strain and uniform longitudinal and lateral stresses on cells. Curved template method is another out-of-plane stretching technique in which the substrate is pressed on a curved template which deforms the substrate out-of-plane (**Figure 2E**). By controlling the shape of the curved template, uniform strain can be achieved⁵⁰.

The main advantage of the 2D substrate deformation methods compared to other techniques such as fluid flow and 3D cell culture is that the amount of force can be precisely adjusted. Determining the force in fluid flow induced shear requires rigorous calculations and the force in 3D culture is directed in three dimensions, making the exact amount of force on cells difficult to

be calculated. Stiffness of the substrate is a parameter that plays an important role in the resolution of the applied load. Substrate stiffness is controlled by changing the substrate's thickness or chemical composition. By altering the substrate stiffness, researchers can get different force resolutions, allowing for even more control of the force. However, obtaining a fine resolution through control of substrate stiffness is still an issue. Another advantage of 2D substrate deformation methods is the variety of load conditions that can be applied to the substrate. When compared to fluidic flow and 3D stretching, more options for load application are available for substrate deformation.

Aside from these advantages, the 2D stretching method has some limitations. Since the load is applied to a cell monolayer, it is almost impossible to directly and quantitatively measure the adhesion forces at either the cell-cell or cell-ECM adhesions. Albeit, there is some statistical analysis that can be done on these data, but the exact amount of the adhesion force is not obtainable. In addition, stretching cell monolayers cannot reveal the underlying mechanotransduction crosstalk between cell-cell and cell-ECM adhesions⁴⁸. Studies have shown the interplay between integrin and cadherin based adhesions when cells are stimulated by external load or fluid shear⁵¹⁻⁵³. Since monolayer stretching applies stress and strain to both adhesion complexes at the cell-cell and cell-ECM contacts, it is difficult to decouple the mechanotransduction pathways originating from the two interfaces. A detailed discussion of this crosstalk from recent cell stretching studies is presented in the following section.

4. Mechano-sensation of cell-cell stretching

Mechanical stretching induces an external strain to a layer of cells in the 2D substrate deformation scheme. At the tissue level, cells within the layer reorganize their cytoskeleton structures to dissipate the additional stress. At the cellular level, contractile forces generated from the actin filament network will be balanced at the cell-cell adhesion sites with the external force from the

stretch. Mechanosensory processes respond to the external stress by strengthening the cellular junctions via the recruitment of adhesion molecules to the cell-cell contact¹⁰.

4.1. Strengthening of the junction

Cells can strengthen cell-cell adhesion with different mechanisms. When subjected to external load, cadherin bonds can switch to long-lived, force-induced bonds with a tighter contact⁵⁴, commonly referred to as catch bonds (**Figure 3A**)^{21,55,56}. Catch bonds play important roles in cell migration and wound healing as they allow cells to grasp each other strongly when pulled and to release in the absence of external stimuli⁵⁷. In addition, mechanosensors at the AJ and the desmosome initiate a cascade of signaling processes, which results in the strengthening of the linker molecules⁵⁸. For instance, α - and β - catenin at the cytoplasmic tail of the junction can recruit vinculin to the complex⁵⁹. As a result, the force is divided between the two chains, and the junction can strengthen (**Figure 3B**)⁶⁰. Further, when mechanosensors at the junction detect stress increase at a specific location, the signaling pathway leads to an increase in the number of bonds⁶¹ and therefore the average force within each bond drops (**Figure 3C**)⁶²⁻⁶⁴. In epithelia, E-cadherin is concentrated at regions of greatest tension within the AJ⁶⁵, suggesting the presence of several mechanisms that couple the spreading of cadherins to cortical actomyosin. These may include moving cadherins linked to the cytoskeleton towards sites of higher contractile stress⁶⁶, clustering of cadherin by F-actin⁶⁷ and myosin⁶⁸, and regulating cortical actin⁶⁹.

4.2. Stress dissipation within the cell layer

The molecular complex at the cell-cell junction behaves like a spring. The force stretches the bond and can rupture it at the yield point. To mitigate the effect of applied stress, cells can align their orientation along the principle direction of the load⁷⁰, divide along the direction of the load⁷¹, or reorganize the cytoskeleton (**Figure 4**)⁷². When cells are subjected to force, they can divide and proliferate in the direction of the applied force to alleviate stress within each cell (**Figure 4A**). Another mechanism is through cell intercalation, in which cells can exchange their positions with

neighbors so that the resting length increases, and the force dissipates (**Figure 4B**)⁷¹⁻⁷⁴. Rearranging the tissue in this manner leads to additional mass in the direction of the load. Intercalation requires a combination of mechanisms, including adhesive changes at the cell-cell and cell-ECM adhesion sites that allow cells to reposition, cytoskeletal events through which cells exert the forces needed for cell neighbor exchange, and cell polarity changes to regulate these processes⁷⁵. Moreover, molecular remodeling of the cytoskeleton inside the cell by the upregulation of filaments and cross linker molecules also dissipates the internal stress (**Figure 4C**)⁷⁶⁻⁸⁰. Consequently, the rest length increases and the stress on the cytoskeleton decreases⁸¹. Further, the fluid-like behavior of the actin cytoskeleton allows extrinsic stresses to be dissipated by molecular turnover of cytoskeletal components⁸², hence reducing the load on each adhesion complex at the cell-cell junction⁸³.

4.3. Crosstalk between cell-cell and cell-ECM adhesion under mechanical stretch

It has been shown that modulation of cell-cell and cell-ECM adhesions are coordinated during tissue morphogenesis. Increasing the number of cell-ECM adhesion complexes leads to a decrease in the expression of cell-cell adhesion molecules, especially E-cadherin, during mouse lung morphogenesis^{84,85}. The adhesion of osteoblasts to collagen in bone formation promotes cell-cell adhesion on the apical surface⁸⁶. The formation of cell-ECM adhesions in cancer cells hinders formation of cell-cell adhesion, as was demonstrated by the negative feedback between the two adhesions when cells were cultured on surfaces coated with both types of adhesion molecules⁸⁷. On the other hand, cell-cell adhesion can locally disrupt the formation of cell-ECM adhesion. A study on epithelial cells showed that cadherin formation prevents cell-ECM adhesion formation, which arrests cell migration⁸⁸ and results in the disassembly of cell-ECM adhesion in the contact region⁸⁹. On the contrary, disruption of cell-cell adhesion can promote the formation of cell-ECM adhesion complex to facilitate cell migration^{90,91}.

Mechanical stretch affects mechanosensors at the cell-cell junctions in association with mechanosensors at the focal adhesion sites. Integrins and cadherins are both connected to actin filaments. Therefore, the same set of molecules are recruited in these junctions when they are subjected to external forces. Interaction of integrin and cadherin causes an upregulation in the expression of RhoA to reorganize the cytoskeleton in response to the mechanical force⁹². Actomyosin contractility is one of the major responses to mechanical forces induced at AJs and focal adhesions⁵³. In fact, the role of AJs at the cell-cell contact to communicate with cell-ECM adhesions has been well documented⁵³. These signaling activities include the vinculin signaling facilitated by α -catenin, stress sensing initiated by E-cadherin⁹³, and the transcriptional activities through β -catenin nucleus translocation¹⁵ (**Figure 5**).

At the tissue level, these integrated networks of actin filaments form a strong connection between neighboring cells and between cells and the ECM. These connections lead to a global transmission of the mechanical force across the tissue when stretched to facilitate collective migration and tissue homeostasis⁵³. Further, when an external force is applied, since both adhesion types sense the force, a force balance between these junctions is established to maintain tissue integrity. As a result, activating the FAK leads to deactivating VE-cadherins⁹⁴. Conversely, weak cell attachment to the substrate results in the aggregation of cells and an increase in cell-cell adhesion⁹⁴.

5. Mechanical stretching as a candidate for therapeutic option

The biophysical processes of strengthening cell-cell adhesion and reducing the internal tissue stress lead to a wide variety of physiological phenomena, which allows the scientific community to contemplate whether mechanical stretching can become a suitable candidate for therapeutic options. These efforts resulted in a range of studies in correlating mechanical stretch with tissue regeneration and wound healing.

5.1. Wound healing

It is widely accepted that mechanical forces are involved in both wound healing and scar formation. Mechanically stretched engineered tissues in bioreactors may have excellent organization, functionality, and strength compared with unstretched counterparts⁴. Fibroblasts have been extensively studied in biomechanical wound models, and physical forces are known to influence the expression of ECM genes and inflammatory genes involved in scar formation^{95–97}. Increased mechanical stresses in the wound environment induce hypertrophic scarring via stimulation of mechanotransduction pathways, and as a result, cell proliferation, angiogenesis, and epithelialization are accelerated⁹⁸.

Most wound healing processes occur as a result of the activation of mechanotransduction pathways⁹⁹. Rapid embryonic repair of epithelial tissues involves collective migration of cells around the wound bed. This migratory behavior requires the generation and transmission of mechanical forces for the cells to move and coordinate their movements. Understanding the different aspects of wound healing requires an understanding of the mechanical signals involved in the process, and the way these signals are modulated by the mechanical properties of cells, as well as the way the signals are converted into biochemical cues that affect cell behavior¹⁰⁰. Mechanical stimulation modulates integrin, wingless-type (Wnt), protein kinase B, FAK and several other key molecules downstream of FAK⁹⁵. For instance, when mechanical stretch is applied, Src kinase interacts with integrin intracellular domains¹⁰¹ and FAK¹⁰² at the focal adhesion site, and this further promotes signaling events at the cytoplasmic domain, including talin, paxillin, and vinculin production¹⁰³ (**Figure 5**). These signaling events promote the assembly of adhesion complexes and facilitate cell migration. For instance, talin is one the most important proteins that plays a vital role in cell migration¹⁰⁴. In addition, the dynamic interactions of paxillin with α 5 integrin and α -actinin has been implicated in the formation of protrusive regions during cell migration¹⁰⁵.

5.2. Tissue regeneration

Cyclic loading and inducing mechanical stresses are ways of improving the mechanical properties of engineered tissues and also help in accelerating regeneration of cells¹⁰⁶. It is necessary to understand biomechanical stimuli in cells as they may hold the key to prepare tissues with adequate mechanical integrity for implantation purposes. This has been demonstrated in muscle and cardiac tissues. It was shown that mechanical strain affects the maturation of cardiac tissue, cell-cell interaction, and gap junctions¹⁰⁷. In addition, in vivo-like forces were applied to human bio-artificial muscles (HBAMs) as they differentiated. By applying a cyclic load, the HBAMs acquired improved tissue elasticity and therefore an increased myofiber diameter when compared to unstretched HBAMs¹⁰⁸. Moreover, cyclic mechanical stretching stimulates proliferation of cardiomyocytes within engineered early embryonic cardiac tissue and this increase is blocked by p38MAPK inhibitor¹⁰⁹. Further, a bioreactor was used to investigate the influence of mechanical stresses and strains on properties of mature arteries¹¹⁰. In the study, cells were subjected to mechanical stress while they were cultured on a substrate, and they adapted to surrounding functional demands while growing to obtain cohesive regenerated tissues¹¹⁰.

5.3. Stem cell differentiation under mechanical stretching

Recently, researchers have focused on applying mechanical stimulation to stem cells in regenerative medicine. Several studies have reported the effects of mechanical stretch on stem cell differentiation toward cardiovascular cell types, since they are under continual strain in nature¹¹¹. In one study, mechanical loading showed to improve myocardium regeneration and reduced apoptosis during cardiomyocyte differentiation¹¹². It was also demonstrated that mesenchymal stem cell commitment and differentiation to ligament cells could be stimulated by mechanical stretch loading¹¹³. A comprehensive review on the effect of mechanical loads associated with F-actin on differentiation of stem cells revealed that the fate decision of stem cells were mostly governed by mechanical and chemical cues correlated with microfilament proteins

and intercellular adhesion molecules¹¹⁴. For instance, it was documented that cyclic mechanical stretching sped up ECM-induced osteogenic differentiation along with promoting the overall expression¹¹⁵. In addition, the RhoA/ROCK, cytoskeletal organization, and FAK were shown to regulate mechanical stretch-induced realignment of hMSCs¹¹⁶.

Mechanical stretch can further induce the migration of stem cells, such as bone marrow derived stem cells and MSCs, resulting in their production of expanded skin tissue and skin regeneration¹¹⁷. For instance, application of cyclic loading on bone marrow stromal cells promotes cell migration through the FAK-ERK1/2 pathway¹¹⁸. In addition, MSCs have been transplanted into animal models of skin tissue to investigate the effect of mechanical loading on migration of these cells to regenerate the skin¹¹⁹. Further, cyclic mechanical loading can be used to increase cardiomyocyte proliferation in early embryonic cardiac tissue¹⁰⁹.

6. Future perspectives

In this review, the basics of cell-cell junctions were discussed, and different types of such junctions and their role in cell-cell adhesion under static and stretched conditions were introduced. Some diseases that impact the functionality of AJs and desmosomes, the most important cell-cell junctions to maintain tissue integrity and resist mechanical forces, were reviewed^{10,32,120}. However, the mechanotransduction role of these junctions and their pathways in regulating disease conditions need to be better elucidated. Some studies show that desmosomes also have some mechanosensory roles in addition to classical AJs¹²⁰. Furthermore, there is some evidence suggesting that when cells are subjected to external forces, AJs and desmosomes have some crosstalk in both the mechanics of force distribution and signalling pathways in mechanotransduction^{52,53,121,122}. Studies have been mainly about AJs and there is little investigation on desmosomes, thus more studies on desmosomes and their potential interaction with AJs should be conducted.

Researchers have used some techniques to interrogate the adhesion forces in a cell pair. However, there is no method currently available to measure the cell-cell adhesion force directly. With emerging new technologies in microfabrication, a single cell pair stretch device may be fabricated which can directly measure the cell-cell adhesion force. In making such a device, repeatability and accountability of the mechanical measurement, as well as biocompatibility and mechanical properties of the device such as stiffness, may be the most important parameters that should be considered. To visualize the mechanotransduction events and related signaling mechanisms, advanced imaging techniques such as Förster resonance energy transfer (FRET) can be adopted with *in situ* cell stretching. The effect of mechanical forces in tissue growth, repair, and remodeling has been studied for more than several decades. However, the mechanobiology research in relation to regenerative medicine is still young, and the exact mechanisms by which these forces interact with cell-cell adhesion and ways to use them to stimulate tissue regeneration can be very promising research topics.

Acknowledgement

We acknowledge the funding support: the Nebraska Center for Integrated Biomolecular Communication (NCIBC) (NIH National Institutes of General Medical Sciences P20GM113126), Nebraska Center for Nanomedicine (P30GM127200) and the NSF (Award #1826135) (all to Yang); NE DHHS Stem Cell Research Project (Stem Cell 2018-07), Seed Grant from Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules (NPOD) (P20GM104320), Pilot Grant from NIH/NIGMS Great Plains IDeA-CTR (1U54GM115458-01) and AHA Scientist Development Grant (17SDG33680170) (all to Lim).

References

1. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. *Nature Reviews Molecular Cell Biology* (2009). doi:10.1038/nrm2594
2. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. *Nature Reviews Molecular Cell Biology* (2014). doi:10.1038/nrm3896
3. Kirby, T. J. & Lammerding, J. Cell mechanotransduction: Stretch to express. *Nature Materials* (2016). doi:10.1038/nmat4809
4. Riehl, B. D., Park, J.-H., Kwon, I. K. & Lim, J. Y. Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs. *Tissue Eng. Part B Rev.* (2012). doi:10.1089/ten.teb.2011.0465
5. Ingber, D. E. Mechanical control of tissue morphogenesis during embryological development. *Int. J. Dev. Biol.* (2006). doi:10.1387/ijdb.052044di
6. Gudipaty, S. A. *et al.* Mechanical stretch triggers rapid epithelial cell division through Piezo1. *Nature* **543**, 118–121 (2017).
7. Wolfenson, H., Yang, B. & Sheetz, M. P. Steps in Mechanotransduction Pathways that Control Cell Morphology. *Annu. Rev. Physiol.* (2018). doi:10.1146/annurev-physiol-021317-121245
8. Ladoux, B., Nelson, W. J., Yan, J. & Mège, R. M. The mechanotransduction machinery at work at adherens junctions. *Integrative Biology (United Kingdom)* (2015). doi:10.1039/c5ib00070j
9. Wang, W. Y., Davidson, C. D., Lin, D. & Baker, B. M. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. *Nat. Commun.* **10**, 1186 (2019).
10. Charras, G. & Yap, A. S. Tensile Forces and Mechanotransduction at Cell–Cell Junctions. *Current Biology* (2018). doi:10.1016/j.cub.2018.02.003
11. Anderson, J. M. & Van Itallie, C. M. Physiology and function of the tight junction. *Cold Spring Harbor perspectives in biology* (2009). doi:10.1101/cshperspect.a002584
12. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. *Cell* (1996). doi:10.1016/S0092-8674(00)81282-9
13. Severs, N. J. *et al.* Gap junction alterations in human cardiac disease. *Cardiovascular Research* (2004). doi:10.1016/j.cardiores.2003.12.007
14. Harris, T. J. C. & Tepass, U. Adherens junctions: From molecules to morphogenesis. *Nat. Rev. Mol. Cell Biol.* **11**, 502–514 (2010).
15. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β -catenin activation to drive cell cycle entry. *Science (80-)*. (2015). doi:10.1126/science.aaa4559
16. Witcher, L. L. *et al.* Desmosomal cadherin binding domains of plakoglobin. *J. Biol. Chem.* (1996). doi:10.1074/jbc.271.18.10904
17. Waschke, J. The desmosome and pemphigus. *Histochem. Cell Biol.* **130**, 21–54 (2008).
18. Choi, H. J. & Weis, W. I. Structure of the armadillo repeat domain of plakophilin 1. *J. Mol. Biol.* (2005). doi:10.1016/j.jmb.2004.11.048
19. Maître, J. L. & Heisenberg, C. P. Three functions of cadherins in cell adhesion. *Curr. Biol.* **23**, 626–633 (2013).
20. Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. *J. Cell Biol.* (2007). doi:10.1083/jcb.200701058
21. Manibog, K., Li, H., Rakshit, S. & Sivasankar, S. Resolving the molecular mechanism of cadherin catch bond formation. *Nat. Commun.* (2014). doi:10.1038/ncomms4941
22. Thomas, W. A. *et al.* α -Catenin and vinculin cooperate to promote high E-cadherin-based

adhesion strength. *J. Biol. Chem.* **288**, 4957–4969 (2013).

23. Yao, M. *et al.* Force-dependent conformational switch of α -catenin controls vinculin binding. *Nature Communications* **5**, (2014).

24. Maître, J. L. *et al.* Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. *Science* (80-). (2012). doi:10.1126/science.1225399

25. Rohani, N., Carty, L., Luu, O., Fagotto, F. & Winklbauer, R. EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. *PLoS Biol.* (2011). doi:10.1371/journal.pbio.1000597

26. Tabdanov, E., Borghi, N., Brochard-Wyart, F., Dufour, S. & Thiery, J. P. Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion. *Biophys. J.* (2009). doi:10.1016/j.bpj.2008.11.059

27. Wang, H. & Huo, Y. Adhesion Molecules and Atherosclerosis. in *Atherosclerosis: Molecular and Cellular Mechanisms* (2010). doi:10.1002/9783527629589.ch3

28. Sundfeldt, K. Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. in *Molecular and Cellular Endocrinology* (2003). doi:10.1016/S0303-7207(03)00068-6

29. Lozano, E., Betson, M. & Braga, V. M. M. Tumor progression: Small GTPases and loss of cell-cell adhesion. *BioEssays* (2003). doi:10.1002/bies.10262

30. Berx, G. *et al.* E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. *Oncogene* (1996).

31. Ding, L. *et al.* Genome remodelling in a basal-like breast cancer metastasis and xenograft. *Nature* (2010). doi:10.1038/nature08989

32. Najor, N. A. Desmosomes in Human Disease. *Annu. Rev. Pathol. Mech. Dis.* **13**, 51–70 (2018).

33. Bierkamp, C., McLaughlin, K. J., Schwarz, H., Huber, O. & Kemler, R. Embryonic heart and skin defects in mice lacking plakoglobin. *Dev. Biol.* (1996). doi:10.1006/dbio.1996.0346

34. Cheong, J. E. L., Wessagowit, V. & McGrath, J. A. Molecular abnormalities of the desmosomal protein desmoplakin in human disease. *Clinical and Experimental Dermatology* (2005). doi:10.1111/j.1365-2230.2005.01736.x

35. Owan, I. *et al.* Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. *Am. J. Physiol.* (1997). doi:10.1152/ajpcell.1997.273.3.C810

36. Han, Y., Cowin, S. C., Schaffler, M. B. & Weinbaum, S. Mechanotransduction and strain amplification in osteocyte cell processes. *Proc. Natl. Acad. Sci.* (2004). doi:10.1073/pnas.0407429101

37. Verbruggen, S. W., Vaughan, T. J. & McNamara, L. M. Strain amplification in bone mechanobiology: A computational investigation of the in vivo mechanics of osteocytes. *J. R. Soc. Interface* (2012). doi:10.1098/rsif.2012.0286

38. Assanah, F. & Khan, Y. Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review. *J. Mater. Sci.* (2018). doi:10.1007/s10853-017-1948-y

39. Pioletti, D. P., Müller, J., Rakotomanana, L. R., Corbeil, J. & Wild, E. Effect of micromechanical stimulations on osteoblasts: Development of a device simulating the mechanical situation at the bone-implant interface. *J. Biomech.* (2003). doi:10.1016/S0021-9290(02)00301-9

40. Trepat, X. Viscoelasticity of human alveolar epithelial cells subjected to stretch. *AJP Lung Cell. Mol. Physiol.* (2004). doi:10.1152/ajplung.00077.2004

41. Pfister, B. J., Weihs, T. P., Betenbaugh, M. & Bao, G. An in vitro uniaxial stretch model for axonal injury. *Ann. Biomed. Eng.* (2003). doi:10.1114/1.1566445

42. Wang, H., Ip, W., Boissy, R. & Grood, E. S. Cell orientation response to cyclically

deformed substrates: Experimental validation of a cell model. *J. Biomech.* (1995). doi:10.1016/0021-9290(95)00101-8

43. Hung, C. T. & Williams, J. L. A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates. *J. Biomech.* (1994). doi:10.1016/0021-9290(94)90212-7

44. Schaffer, J. L. *et al.* Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. *J. Orthop. Res.* (1994). doi:10.1002/jor.1100120514

45. Somjen, D., Binderman, I., Berger, E. & Harell, A. Bone remodelling induced by physical stress is prostaglandin E2 mediated. *BBA - Gen. Subj.* (1980). doi:10.1016/0304-4165(80)90126-9

46. Jin, G., Yang, G. H. & Kim, G. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. *Journal of Biomedical Materials Research - Part B Applied Biomaterials* (2015). doi:10.1002/jbm.b.33268

47. Ursekar, C. P. *et al.* Design and construction of an equibiaxial cell stretching system that is improved for biochemical analysis. *PLoS One* **9**, (2014).

48. Yang, R., Broussard, J. A., Green, K. J. & Espinosa, H. D. Techniques to stimulate and interrogate cell–cell adhesion mechanics. *Extrem. Mech. Lett.* **20**, 125–139 (2018).

49. Bottlang, M., Simnacher, M., Schmitt, H., Brand, R. A. & Claes, L. A cell strain system for small homogeneous strain applications | Ein zellstimulations-system zur applikation kleiner homogener dehnungen. *Biomed. Tech.* (1997).

50. Williams, J. L. Strain Fields on Cell Stressing Devices Employing Clamped Circular Elastic Diaphragms as Substrates. *J. Biomech. Eng.* (1992). doi:10.1115/1.2891398

51. McMillen, P. & Holley, S. A. Integration of cell–cell and cell–ECM adhesion in vertebrate morphogenesis. *Curr. Opin. Cell Biol.* **36**, 48–53 (2015).

52. Goodwin, K. *et al.* Cell–cell and cell–extracellular matrix adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. *Mol. Biol. Cell* (2017). doi:10.1091/mbc.e17-01-0033

53. Mui, K. L., Chen, C. S. & Assoian, R. K. The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces. *J. Cell Sci.* (2016). doi:10.1242/jcs.183699

54. Buckley, C. D. *et al.* The minimal cadherin–catenin complex binds to actin filaments under force. *Science (80-)*. (2014). doi:10.1126/science.1254211

55. Jurado, J., de Navascués, J. & Gorfinkel, N. α -Catenin stabilises Cadherin–Catenin complexes and modulates actomyosin dynamics to allow pulsatile apical contraction. *J. Cell Sci.* (2016). doi:10.1242/jcs.193268

56. Huang, D. L., Bax, N. A., Buckley, C. D., Weis, W. I. & Dunn, A. R. Vinculin forms a directionally asymmetric catch bond with F-actin. *Science (80-)*. (2017). doi:10.1126/science.aan2556

57. Rakshit, S. & Sivasankar, S. Biomechanics of cell adhesion: How force regulates the lifetime of adhesive bonds at the single molecule level. *Physical Chemistry Chemical Physics* (2014). doi:10.1039/c3cp53963f

58. Bertocchi, C. *et al.* Nanoscale architecture of cadherin-based cell adhesions. *Nat. Cell Biol.* (2017). doi:10.1038/ncb3456

59. Bays, J. L. *et al.* Vinculin phosphorylation differentially regulates mechanotransduction at cell–cell and cell–matrix adhesions. *J. Cell Biol.* (2014). doi:10.1083/jcb.201309092

60. Bays, J. L., Campbell, H. K., Heidema, C., Sebbagh, M. & Demali, K. A. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. *Nat. Cell Biol.* (2017). doi:10.1038/ncb3537

61. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. *Nat. Cell Biol.* (2007). doi:10.1038/ncb1520

62. Priya, R., Yap, A. S. & Gomez, G. A. E-cadherin supports steady-state Rho signaling at

the epithelial zonula adherens. *Differentiation* (2013). doi:10.1016/j.diff.2013.01.002

63. Bois, J. S., Jülicher, F. & Grill, S. W. Pattern formation in active fluids. *Phys. Rev. Lett.* (2011). doi:10.1103/PhysRevLett.106.028103

64. Priya, R. *et al.* Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions. *PLoS Comput. Biol.* (2017). doi:10.1371/journal.pcbi.1005411

65. Wu, S. K. *et al.* Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. *Nat. Cell Biol.* (2014). doi:10.1038/ncb2900

66. Joanny, J. F. & Prost, J. Active gels as a description of the actin-myosin cytoskeleton. *HFSP Journal* (2009). doi:10.2976/1.3054712

67. Wu, Y., Kanchanawong, P. & Zaidel-Bar, R. Actin-Delimited Adhesion-Independent Clustering of E-Cadherin Forms the Nanoscale Building Blocks of Adherens Junctions. *Dev. Cell* (2015). doi:10.1016/j.devcel.2014.12.003

68. Smutny, M. *et al.* Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. *Nat. Cell Biol.* (2010). doi:10.1038/ncb2072

69. Verma, S. *et al.* A WAVE2-Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens. *Mol. Biol. Cell* (2012). doi:10.1091/mbc.E12-08-0574

70. Harris, A. R. *et al.* Characterizing the mechanics of cultured cell monolayers. *Proc. Natl. Acad. Sci.* **109**, 16449–16454 (2012).

71. Wyatt, T. P. J. *et al.* Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. *Proc. Natl. Acad. Sci.* (2015). doi:10.1073/pnas.1420585112

72. Hart, K. C. *et al.* E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape. *Proc. Natl. Acad. Sci.* (2017). doi:10.1073/pnas.1701703114

73. Collinet, C., Rauzi, M., Lenne, P. F. & Lecuit, T. Local and tissue-scale forces drive oriented junction growth during tissue extension. *Nat. Cell Biol.* (2015). doi:10.1038/ncb3226

74. Campinho, P. *et al.* Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. *Nat. Cell Biol.* (2013). doi:10.1038/ncb2869

75. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. *Nature Reviews Molecular Cell Biology* (2014). doi:10.1038/nrm3723

76. Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. *Nature Physics* (2015). doi:10.1038/nphys3224

77. Khalilgharibi, N., Fouchard, J., Recho, P., Charras, G. & Kabla, A. The dynamic mechanical properties of cellularised aggregates. *Current Opinion in Cell Biology* (2016). doi:10.1016/j.ceb.2016.06.003

78. Liang, X., Michael, M. & Gomez, G. Measurement of Mechanical Tension at cell-cell junctions using two-photon laser ablation. *BIO-PROTOCOL* (2016). doi:10.21769/BioProtoc.2068

79. Tambe, D. T. *et al.* Collective cell guidance by cooperative intercellular forces. *Nat. Mater.* (2011). doi:10.1038/nmat3025

80. Jodoi, J. N. *et al.* Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. *Dev. Cell* (2015). doi:10.1016/j.devcel.2015.11.018

81. Clément, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic Dissipation Stabilizes Cell Shape Changes during Tissue Morphogenesis. *Curr. Biol.* (2017). doi:10.1016/j.cub.2017.09.005

82. Wyatt, T., Baum, B. & Charras, G. A question of time: Tissue adaptation to mechanical forces. *Current Opinion in Cell Biology* (2016). doi:10.1016/j.ceb.2016.02.012

83. Kruse, K., Fritzsche, M., Duke, T., Charras, G. & Lewalle, A. Analysis of turnover dynamics of the submembranous actin cortex. *Mol. Biol. Cell* (2013). doi:10.1091/mbc.e12-06-0485

84. Onodera, T. *et al.* Btbd7 regulates epithelial cell dynamics and branching morphogenesis. *Science* (80-.). (2010). doi:10.1126/science.1191880

85. Sakai, T., Larsen, M. & Yamada, K. M. Fibronectin requirement in branching morphogenesis. *Nature* (2003). doi:10.1038/nature01712

86. Izu, Y. *et al.* Type XII collagen regulates osteoblast polarity and communication during bone formation. *J. Cell Biol.* (2011). doi:10.1083/jcb.201010010

87. Al-Kilani, A., De Freitas, O., Dufour, S. & Gallet, F. Negative feedback from integrins to cadherins: A micromechanical study. *Biophys. J.* (2011). doi:10.1016/j.bpj.2011.06.009

88. Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. *Proc. Natl. Acad. Sci.* (2010). doi:10.1073/pnas.1002662107

89. McCain, M. L., Lee, H., Aratyn-Schaus, Y., Kléber, A. G. & Parker, K. K. Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. *Proc. Natl. Acad. Sci. U. S. A.* (2012). doi:10.1073/pnas.1203007109

90. Schlippe, M. Von *et al.* Functional interaction between E-cadherin and αv -containing integrins in carcinoma cells. *J. Cell Sci.* (2000).

91. Livshits, G., Kobiak, A. & Fuchs, E. Governing epidermal homeostasis by coupling cell-cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. *Proc. Natl. Acad. Sci.* (2012). doi:10.1073/pnas.1202120109

92. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. *Nat. Rev. Mol. Cell Biol.* (2010). doi:10.1038/nrm2957

93. Borghi, N. *et al.* E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. *Proc. Natl. Acad. Sci.* (2012). doi:10.1073/pnas.1204390109

94. Wang, Y. *et al.* Integrins regulate VE-cadherin and catenins: Dependence of this regulation on Src, but not on Ras. *Proc. Natl. Acad. Sci.* (2006). doi:10.1073/pnas.0510774103

95. Barnes, L. A. *et al.* Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. *Adv. Wound Care* (2017). doi:10.1089/wound.2016.0709

96. Chiquet, M., Tunç-Civelek, V. & Sarasa-Renedo, A. Gene regulation by mechanotransduction in fibroblasts. *Appl. Physiol. Nutr. Metab.* (2008). doi:10.1139/h07-053

97. Eckes, B. *et al.* Mechanical tension and integrin $\alpha 2\beta 1$ regulate fibroblast functions. in *Journal of Investigative Dermatology Symposium Proceedings* (2006). doi:10.1038/sj.jidsymp.5650003

98. Agha, R., Ogawa, R., Pietramaggiori, G. & Orgill, D. P. A review of the role of mechanical forces in cutaneous wound healing. *Journal of Surgical Research* (2011). doi:10.1016/j.jss.2011.07.007

99. Yu, H. S., Kim, J. J., Kim, H. W., Lewis, M. P. & Wall, I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. *Journal of Tissue Engineering* (2016). doi:10.1177/2041731415618342

100. Zulueta-Coarasa, T. & Fernandez-Gonzalez, R. Tension (re)builds: Biophysical mechanisms of embryonic wound repair. *Mechanisms of Development* (2017). doi:10.1016/j.mod.2016.11.004

101. Plotkin, L. I. *et al.* Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. *Am. J. Physiol. Cell Physiol.* (2005).

102. Boutahar, N., Guignandon, A., Vico, L. & Lafage-Proust, M. H. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. *J. Biol. Chem.* (2004). doi:10.1074/jbc.M313244200

103. Razzak, M. A. *et al.* Cellular and molecular responses to mechanical expansion of tissue. *Front. Physiol.* (2016). doi:10.3389/fphys.2016.00540
104. Huang, C. *et al.* Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. *Nat. Cell Biol.* (2009). doi:10.1038/ncb1868
105. Laukitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of $\alpha 5$ integrin, paxillin, and α -actinin during formation and disassembly of adhesions in migrating cells. *J. Cell Biol.* (2001). doi:10.1083/jcb.153.7.1427
106. Butler, D. L. *et al.* The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine. *Tissue Eng. Part B Rev.* (2009). doi:10.1089/ten.teb.2009.0340
107. Shimko, V. F. & Claycomb, W. C. Effect of Mechanical Loading on Three-Dimensional Cultures of Embryonic Stem Cell-Derived Cardiomyocytes. *Tissue Eng. Part A* (2008). doi:10.1089/ten.a.2007.0092
108. Powell, C. A., Smiley, B. L., Mills, J. & Vandenburg, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. *Am. J. Physiol. Physiol.* (2013). doi:10.1152/ajpcell.00595.2001
109. Liu, L. J., Tinney, J. P., Keller, B. B., Tobita, K. & Clause, K. C. Engineered Early Embryonic Cardiac Tissue Increases Cardiomyocyte Proliferation by Cyclic Mechanical Stretch via p38-MAP Kinase Phosphorylation. *Tissue Eng. Part A* (2009). doi:10.1089/ten.tea.2008.0169
110. Bilodeau, K., Couet, F., Boccafoschi, F. & Mantovani, D. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. *Artif. Organs* (2005). doi:10.1111/j.1525-1594.2005.00154.x
111. Lammerding, J., Kamm, R. D. & Lee, R. T. Mechanotransduction in cardiac myocytes. in *Annals of the New York Academy of Sciences* (2004). doi:10.1196/annals.1302.005
112. Park, J. S. *et al.* Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. *Biotechnol. Bioeng.* (2004). doi:10.1002/bit.20250
113. Altman, G. H. *et al.* Cell differentiation by mechanical stress. *FASEB J.* (2002). doi:10.1096/fj.01-0656fje
114. Fan, Y.-L., Zhao, H.-C., Li, B., Zhao, Z.-L. & Feng, X.-Q. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. *ACS Biomater. Sci. Eng.* (2019). doi:10.1021/acsbiomaterials.9b00126
115. Huang, C. H., Chen, M. H., Young, T. H., Jeng, J. H. & Chen, Y. J. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. *J. Cell. Biochem.* (2009). doi:10.1002/jcb.22356
116. Xu, B. *et al.* RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. *J. Cell. Physiol.* (2012). doi:10.1002/jcp.23016
117. Song, G., Ju, Y., Soyama, H., Ohashi, T. & Sato, M. Regulation of Cyclic Longitudinal Mechanical Stretch on Proliferation of Human Bone Marrow Mesenchymal Stem Cells. *Tech. Sci. Press* (2008).
118. Zhang, B. *et al.* Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. *Stem Cell Res.* (2015). doi:10.1016/j.scr.2015.01.001
119. Liang, X., Huang, X., Zhou, Y., Jin, R. & Li, Q. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation. *Stem Cells Transl. Med.* (2016). doi:10.5966/sctm.2015-0274
120. Johnson, J. L., Najor, N. A. & Green, K. J. Desmosomes: Regulators of cellular signaling and adhesion in epidermal health and disease. *Cold Spring Harb. Perspect. Med.* 4, (2014).
121. Gumbiner, B. M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. *Cell* **84**, 345–357 (1996).

122. Jang, M. *et al.* Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. *Biomater. Sci.* (2018). doi:10.1039/c8bm00843d